

Extended Delivery Service

Rooster 2.1 Automation SDK

Introduction

Rooster Extended Delivery Service is designed so that third party addins can interface
with Rooster can operate in and on the Rooster environment. Addins can provide
functions that Rooster itself does not provide.

Addins can be authored by the end (power) users, site administrators, third-party
vendors, or just about anybody who wish to automate some process, add additional
feature or simply enhance his or her Rooster experience.

Rooster’s EDS uses Component Object Model to communicate with the clients (addins).
Clients can be programs (written in any programming language) and scripts. The most
transparent programming language for COM clients, for the Windows platform, is
Microsoft Visual Basic, and the most common scripting languages are Python, Java
Scripts, JScripts, VBS and others. Enclosed with the extended Rooster distribution are
several sample clients written in Visual Basic and several scripts as well. (You can
download extended distribution from the Rooster Home Page.)

Rooster's COM Automation server supports any number of clients. All the clients need
to be running on the local machine. Support for remote (network) clients will be
introduced in on the future releases, if there is sufficient interest.

Rooster's COM server can be turned on and off via Options (Extended Delivery Service
Category). To switch Rooster's COM server simply check/uncheck Automation Enabled
check-box. In addition, when enabled, Rooster's EDS interface is automatically
registered (or unregistered if disabled) in the Running Object Table/Windows Registry.

Rooster EDS interface is exposed via Properties, Standalone Functions and Events.

1. Properties

Properties lets you access miscellaneous program, session or configuration related
information. Information is requested by the addin, and is returned immediately.
[In the future releases, properties may also be used so the Rooster can obtain
particular, client specific, information. There will also be more of this, "classic",
properties.]

 VersionMajor - Rooster series-number
 VersionMinor1 - First minor number
 VersionMinor2 - Second minor number
 VersionBuild - Version build number

 Subscriptions(0) - Array of feed aliases
 Subscriptions(1) - Array of feed URLs
 Subscriptions(2) - Array of feed names

 ClientsCount - Number of currently connected addins

2. Standalone Functions

Standalone functions are primarily intended to start particular action. Following functions
are currently available:

 AboutRooster - Open Rooster About box
 DisplayOptions([0-20]) - Open Options dialog
 [Number refers to the zero indexed Category, from the top to the bottom.]

 SubscriptionsImport([opml file path]) - Import subscriptions
 SubscriptionsExport - Export subscriptions

 OpenBoxes - Open the Boxes window
 OpenFeeds - Open the Feeds window
 OpenTasks - Open the Tasks window
 DisplayNewsTicker - Open the News Ticker
 OpenInbox - Open the Inbox
 OpenTrash - Open the Trash

 FeedValidate([feed url]) - Validate the feed
 FeedPreview([feed url]) - Preview the feed
 FeedSubscribe([feed url]) - Subscribe to a new feed

 Windows(-1) - Close all open windows
 Windows(0) - Restore all open windows
 Windows(1) - Minimize all open windows

 Windows(2) - Maximize all open windows
 Windows(3) - Stretch all open windows
 Windows(4) - Center all open windows

3. Events

Unlike the standard Methods and Properties, EDS Events are implemented in slightly
different manner. This is how it works:

Rooster's COM addins need to apply for particular Event. There are 3 major events: On
Display, On Request and On Delivery. When the event occurs, EDS fires a notification
function, which is implemented by the event sink interface on the client side, with
particular data passed via parameters of the (notification) function. For example:

VB Addin

'Declarations section

Private WithEvents edsObject As RoosterLib.EDS

<...>

'Connect

Set edsObject = CreateObject("Rooster.EDS.1")

<...>

'Apply for the event

edsObject.ApplyForDisplay edsObject

<...>

'This is the event notification function

Private Sub edsObject_DisplayingArticles(ByVal bsAuthor As String,

 ByVal bsHeadline As String,

 ByVal bsFeedName As String,

 ByVal bsDate As String,

 ByVal bsArticleBody As String)

'Article information automatically picked up from here. For example:

MyNewHeadline$ = bsHeadline

End Sub

<...>

'Call off On Display application (do not receive notifications anymore)

edsObject.CallOffDisplay edsObject

'Disconnect

Set edsApplication = Nothing

Notes:

- RoosterLib is the library, and EDS is the common name of Rooster’s

application object.

- To add the reference to the Rooster Type Library, click Project/References,

and check "Rooster 1.0 Type Library" from the list.

C++ Addin

//Declarations section
IEDSPtr edsObject;

<...>

//Connect

::CoInitialize(NULL);

HRESULT hr = edsObject.CreateInstance("Rooster.EDS.1");

//Apply for the event

if (SUCCEEDED(hr)) edsObject->ApplyForDisplay(edsObject);

<...>

//This is the event notification function.

void CMyAddinEventSink::DisplayingArticles(LPCTSTR bsAuthor,

 LPCTSTR bsHeadline,

 LPCTSTR bsFeedName,

 LPCTSTR bsDate,

 LPCTSTR bsArticleBody)

{

//Article information automatically picked up from here. For example:

strMyNewHeadline = bsHeadline;

}

<...>

//Call off On Display application (do not receive notifications anymore)

edsObject->CallOffDisplay(edsObject);

//Disconnect

edsObject.Release();

::CoUninitialize();

Notes:

- Derive CMyAddinEventSink class from the CCmdTarget base class.

For C++ applications you need to implement event sink interface to receive notifications,
and for VB applications it is sufficient to declare your WithEvents COM object as stated
above. VB IDE will automatically create the function prototype for you.

During the session, single addin can apply (and call off the application) for any number
of events, any number of times. Addin can apply for different types of events
simultaneously. Addin needs to apply for single type of event (for example On Display)
only once (unless it calls off the application).

Addin should call off the application (for particular event) before disconnecting from the
server (for every type of event it applied for).

Addin should disconnect from the COM server before quitting.

if "Exit Rooster when the last addin disconnects" (Options/Exiting) check-box is
checked, Rooster will automatically exit when the last addin quits. This applies only if
Rooster session was started from that or another addin.

3.1 On Display Event

On Display event occurs when the article is opened from the newsbox summary. At that
moment, all addins that are applied for this event will receive event notifications with the
article information passed as function parameters.

ApplyForDisplay (...)
Apply the addin for On Display events.

DisplayingArticles (...)
When the article is opened, event is fired.

CallOffDisplay (...)
Call off the application for On Display events.

3.2 On Request Event

On Request event occurs when the user clicks "Pass to Addins" from the article-menu.

ApplyForRequest (...)
Apply the addin for On Request events.

RequestingArticles (...)
When the menu item "Pass To Addins" is clicked, event is fired.

CallOffRequest (...)
Call off the application for On Request events.

3.3 On Delivery Event

On Delivery event occurs when the articles are downloaded. There are two sub-types of
delivery-events: On Delivery Royal & Get Articles.

3.3.1 On Delivery Royal

On Delivery Royal applies for all future downloads, for all subscribed feeds (royal stuff).
Addin will receive the articles as long as it is applied for this event. Articles download
may be initiated directly from the Rooster's main interface, or from the addin.

ApplyForDeliveryRoyal (...)
Apply to receive all the articles when the feeds are checked.

GettingArticles (...)
After being downloaded, articles are passed to the clients by the way of this function.

CallOffDeliveryRoyal (...)
Call off the application for Delivery Royal.

3.3.2 Get Articles

Unlike Delivery Royal, "Get Articles" is one-time event. When the function is called,
Rooster will download, and pass the articles, for particular feed, to the addin. Feed alias
is specified as parameter of "GetArticles" function.

GetArticles (...)
Download articles for particular feed. One time only.

GettingArticles (...)
Get the articles here. The same function is used by Delivery Royal.

You will notice there is no "call off" function as this is one-time event.

4. Data Types

Data types are different, depending on the client and the platform. The most common
are String, Integer and Variant (VB), LPCTSTR, SHORT and VARIANT (C++) etc.

5. How to Enable/Disable Extended Delivery Service

To enable EDS via graphical interface:
1. Start Rooster
2. Click Options/EDS
3. Check "Enable Automation"
4. Hit OK

To enable EDS via command-line:
1. Open the Windows Explorer and browse to the Rooster program folder
2. Open the Command-prompt
3. Type: Rooster.exe /RegServer
4. Hit Enter

To disable EDS via graphical interface:
1. Start Rooster
2. Click Options/EDS
3. Uncheck "Enable Automation"
4. Hit OK

To disable EDS via command-line:
1. Open the Windows Explorer and browse to the Rooster program folder
2. Open the Command-prompt
3. Type: Rooster.exe /UnRegServer
4. Hit Enter

6. EDS Interface Specs

Short (Common) Name: EDS
Class Name: CEDS
Interface Name: IEDS
Events Interface Name: _IEDSEvents
Events Interface ID (IID):
{ 0xe54d5dcf, 0x02d8, 0x40ca, { 0x82, 0xc6, 0x60, 0xc4, 0x8c, 0x0f, 0x09, 0x9b } }

Object Lifetime: EDS object is valid as long as there are connected addins and the
automation is enabled.

Dual Interface: EDS supports standard IUnknown and IDispatch interfaces.

7. Updates

EDS may not be updated with every release of Rooster. Future versions may contain
not only the new features but the enhanced versions of current features. So please
track the change log (of the Release Notes) for information on updates. If API is
updated, clients of course need to be updated as well, in order to work with the
corresponding Rooster release.

As you can see there are huge possibilities regarding the inter-program exchange and
in which direction the EDS will go depends partially on you. If your business demands
particular feature feel free to contact me and lay down your ideas.

EDS will be focused on, and will explore, primarily COM. Other types of API are also
possible, but will not be implemented in the near future.

8. Your Own Addins

If you want to share your addins with others, feel free to send the URL's and I'll add
them to the Rooster web site. This applies for both programs and scripts.

9. Usage & Examples

As mentioned earlier, EDS allows us to access and extend many of Rooster's basic
functions. For example, let's say you maintain a web site. On the site you want to have
a frame with the latest news about football player XYZ, or a movie star or particular
news event from your county and so on. All you need to do is subscribe to particular
feed(s), and set up you custom addin to receive On Delivery Royal event notifications.
Inside the notification function just specify the search criteria (in our case "player XYZ",
movie star name or a county name) and if you have a match, update or append the web
site text. So once you set up the function, your web site will automatically be updated
with the relevant information. It's so easy you can't beat it with a stick.
In the similar manner you can update the database or the news-ticker, create custom
notifications and so on. (For the sample code please see edsOnDelivery example.)

Here is another example: You just downloaded the articles from your favorite news
feed. One of the articles you wish to save in your e-mail storage. In the article window
click Article/Pass To Addins, and your COM addin (which is applied for On Request
events) will receive the article information. From there you can import the article to your
e-mail client (is the client provides some type of API that supports importing of
messages). If the client supports COM (as Office Outlook for example), that will make
the task even easier. (For the sample code please see Feed2Outlook example.)

As a part of the Extended Rooster Distribution, this SDK and documentation is
accompanied with several sample addins:

● edsOnDelivery shows how to apply for Royal Delivery and how to download and get
articles for particular feed.

● edsOnRequest shows how to pass a single open article to the addin(s).

● edsOnDisplay demonstrates how to automatically obtain articles information when the
articles are opened (from the Rooster's main interface).

● edsFunctions shows how to validate, preview and subscribe to a feed. It also
demonstrates how to open Rooster's main windows and how to arrange or close
windows. In addition, it shows how to facilitate Import and Export functions.

● edsProperties shows how to display subscriptions related information. List-boxes are
populated with (subscribed) feed aliases, names and URLs.

● Feed2Outlook let's us copy (or download) articles to the Outlook mail storage.

Appendix - Launch on Startup

Additional feature was added at the late stage of Rooster 2 development.

It's the possibility to start collection of addins when the Rooster starts. This applies for
programs (exe-files) and scripts (VBS, JScripts and Python scripts).

To add your program (or script) to the startup collection, start Rooster and click
Tools/Addins. Click Add, browse and select the addin. Toggle Launch on Startup button
for each addin you wish to be executed on startup.

Note. Command-line parameter "edsStartup" is passed when the addin is launched just
as an indication it has been launched by Rooster, on startup, and that Automation is
enabled. If the Automation is disabled, addins startup-options are suspended.

