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Chapter 1: BIRD Design

1.1 Introduction

This document describes the internal workings of BIRD, its architecture, design decisions and rationale
behind them. It also contains documentation on all the essential components of the system and their
interfaces.

Routing daemons are complicated things which need to act in real time to complex sequences of external
events, respond correctly even to the most erroneous behavior of their environment and still handle enormous
amount of data with reasonable speed. Due to all of this, their design is very tricky as one needs to carefully
balance between efficiency, stability and (last, but not least) simplicity of the program and it would be
possible to write literally hundreds of pages about all of these issues. In accordance to the famous quote of
Anton Chekhov ”Shortness is a sister of talent”, we’ve tried to write a much shorter document highlighting
the most important stuff and leaving the boring technical details better explained by the program source
itself together with comments contained therein.

1.2 Design goals

When planning the architecture of BIRD, we’ve taken a close look at the other existing routing daemons
and also at some of the operating systems used on dedicated routers, gathered all important features and
added lots of new ones to overcome their shortcomings and to better match the requirements of routing in
today’s Internet: IPv6, policy routing, route filtering and so on. From this planning, the following set of
design goals has arisen:

e Support all the standard routing protocols and make it easy to add new ones. This leads to modularity
and clean separation between the core and the protocols.

e Support both IPv4 and IPv6 in the same source tree, re-using most of the code. This leads to abstraction
of IP addresses and operations on them.

o Minimize OS dependent code to make porting as easy as possible. Unfortunately, such code cannot be
avoided at all as the details of communication with the IP stack differ from OS to OS and they often
vary even between different versions of the same OS. But we can isolate such code in special modules
and do the porting by changing or replacing just these modules. Also, don’t rely on specific features
of various operating systems, but be able to make use of them if they are available.

o Allow multiple routing tables. Easily solvable by abstracting out routing tables and the corresponding
operations.

o Offer powerful route filtering. There already were several attempts to incorporate route filters to a
dynamic router, but most of them have used simple sequences of filtering rules which were very inflexible
and hard to use for non-trivial filters. We’ve decided to employ a simple loop-free programming
language having access to all the route attributes and being able to modify the most of them.

e Support easy configuration and re-configuration. Most routers use a simple configuration language
designed ad hoc with no structure at all and allow online changes of configuration by using their
command-line interface, thus any complex re-configurations are hard to achieve without replacing the
configuration file and restarting the whole router. We’ve decided to use a more general approach:
to have a configuration defined in a context-free language with blocks and nesting, to perform all
configuration changes by editing the configuration file, but to be able to read the new configuration
and smoothly adapt to it without disturbing parts of the routing process which are not affected by the
change.

e Be able to be controlled online. In addition to the online reconfiguration, a routing daemon should be
able to communicate with the user and with many other programs (primarily scripts used for network
maintenance) in order to make it possible to inspect contents of routing tables, status of all routing
protocols and also to control their behavior (disable, enable or reset a protocol without restarting all
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1.3. Architecture 5

the others). To achieve this, we implement a simple command-line protocol based on those used by
FTP and SMTP (that is textual commands and textual replies accompanied by a numeric code which
makes them both readable to a human and easy to recognize in software).

e Respond to all events in real time. A typical solution to this problem is to use lots of threads to
separate the workings of all the routing protocols and also of the user interface parts and to hope
that the scheduler will assign time to them in a fair enough manner. This is surely a good solution,
but we have resisted the temptation and preferred to avoid the overhead of threading and the large
number of locks involved and preferred a event driven architecture with our own scheduling of events.
An unpleasant consequence of such an approach is that long lasting tasks must be split to more parts
linked by special events or timers to make the CPU available for other tasks as well.

1.3 Architecture

The requirements set above have lead to a simple modular architecture containing the following types of
modules:

Core modules
implement the core functions of BIRD: taking care of routing tables, keeping protocol status, interacting
with the user using the Command-Line Interface (to be called CLI in the rest of this document) etc.

Library modules
form a large set of various library functions implementing several data abstractions, utility functions
and also functions which are a part of the standard libraries on some systems, but missing on other
ones.

Resource management modules
take care of resources, their allocation and automatic freeing when the module having requested shuts
itself down.

Configuration modules
are fragments of lexical analyzer, grammar rules and the corresponding snippets of C code. For each
group of code modules (core, each protocol, filters) there exist a configuration module taking care of
all the related configuration stuff.

The filter
implements the route filtering language.

Protocol modules
implement the individual routing protocols.

System-dependent modules
implement the interface between BIRD and specific operating systems.

The client
is a simple program providing an easy, though friendly interface to the CLI.

1.4 Implementation

BIRD has been written in GNU C. We’ve considered using C++4, but we’ve preferred the simplicity and
straightforward nature of C which gives us fine control over all implementation details and on the other hand
enough instruments to build the abstractions we need.

The modules are statically linked to produce a single executable file (except for the client which stands on
its own).

The building process is controlled by a set of Makefiles for GNU Make, intermixed with several Perl and
shell scripts.

The initial configuration of the daemon, detection of system features and selection of the right modules to
include for the particular OS and the set of protocols the user has chosen is performed by a configure script
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generated by GNU Autoconf.

The parser of the configuration is generated by the GNU Bison.

The documentation is generated using SGMLtools with our own DTD and mapping rules which produce
both an online version in HTML and a neatly formatted one for printing (first converted from SGML to
KTEX and then processed by TEX and dvips to get a PostScript file).

The comments from C sources which form a part of the programmer’s documentation are extracted using a
modified version of the kernel-doc tool.

If you want to work on BIRD, it’s highly recommended to configure it with a -—enable-debug switch which
enables some internal consistency checks and it also links BIRD with a memory allocation checking library
if you have one (either efence or dmalloc).



Chapter 2: Core

2.1 Forwarding Information Base

FIB is a data structure designed for storage of routes indexed by their network prefixes. It supports insertion,
deletion, searching by prefix, ‘routing’ (in CIDR sense, that is searching for a longest prefix matching a
given IP address) and (which makes the structure very tricky to implement) asynchronous reading, that is
enumerating the contents of a FIB while other modules add, modify or remove entries.

Internally, each FIB is represented as a collection of nodes of type fib_node indexed using a sophisticated
hashing mechanism. We use two-stage hashing where we calculate a 16-bit primary hash key independent
on hash table size and then we just divide the primary keys modulo table size to get a real hash key used
for determining the bucket containing the node. The lists of nodes in each bucket are sorted according to
the primary hash key, hence if we keep the total number of buckets to be a power of two, re-hashing of the
structure keeps the relative order of the nodes.

To get the asynchronous reading consistent over node deletions, we need to keep a list of readers for each
node. When a node gets deleted, its readers are automatically moved to the next node in the table.

Basic FIB operations are performed by functions defined by this module, enumerating of FIB contents is
accomplished by using the FIB_.WALK() macro or FIB.ITERATE_START() if you want to do it asyn-
chronously.

For simple iteration just place the body of the loop between FIB.-WALK() and FIB_-WALK_END(). You
can’t modify the FIB during the iteration (you can modify data in the node, but not add or remove nodes).

If you need more freedom, you can use the FIBITERATE_*() group of macros. First, you initialize an
iterator with FIB.ITERATE_INIT(). Then you can put the loop body in between FIB.ITERATE_START()
and FIB_ITERATE_END(). In addition, the iteration can be suspended by calling FIB_ITERATE_PUT().
This’ll link the iterator inside the FIB. While suspended, you may modify the FIB, exit the current function,
etc. To resume the iteration, enter the loop again. You can use FIB_ITERATE_UNLINK() to unlink the
iterator (while iteration is suspended) in cases like premature end of FIB iteration.

Note that the iterator must not be destroyed when the iteration is suspended, the FIB would then contain
a pointer to invalid memory. Therefore, after each FIB_ITERATE_INIT() or FIB_ITERATE_PUT() there
must be either FIBAITERATE_START() or FIB.ITERATE_UNLINK() before the iterator is destroyed.

Function

void fib_init (struct fib * f, pool * p, uint addr_type, uint node_size, uint node_offset, uint hash_order,
fib_init_fn énit) — initialize a new FIB

Arguments

struct fib * f
the FIB to be initialized (the structure itself being allocated by the caller)

pool * p
pool to allocate the nodes in

uint addr_type
— undescribed —

uint node_size
node size to be used (each node consists of a standard header fib_node followed by user data)

uint node_offset
— undescribed —

uint hash_order
initial hash order (a binary logarithm of hash table size), 0 to use default order (recommended)

fib_init_fn indt
pointer a function to be called to initialize a newly created node

7
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Description
This function initializes a newly allocated FIB and prepares it for use.

Function
void * fib_find (struct fib * f, const net_addr * a) — search for FIB node by prefix

Arguments

struct fib * f
FIB to search in

const net_addr * a
— undescribed —

Description
Search for a FIB node corresponding to the given prefix, return a pointer to it or NULL if no such node exists.

Function

void * fib_get (struct fib * f, const net_addr * a) — find or create a FIB node

Arguments

struct fib * f
FIB to work with

const net_addr * a
— undescribed —

Description
Search for a FIB node corresponding to the given prefix and return a pointer to it. If no such node exists,
create it.

Function

void * fib_route (struct fib * f, const net_addr * n) — CIDR routing lookup

Arguments

struct fib * f
FIB to search in

const net_addr * n
network address

Description
Search for a FIB node with longest prefix matching the given network, that is a node which a CIDR router
would use for routing that network.

Function
void fib_delete (struct fib * f, void * E) — delete a FIB node

Arguments

struct fib * f
FIB to delete from

void * E
entry to delete
Description

This function removes the given entry from the FIB, taking care of all the asynchronous readers by shifting
them to the next node in the canonical reading order.
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Function
void fib_free (struct fib * f) — delete a FIB

Arguments

struct fib * f
FIB to be deleted

Description
This function deletes a FIB — it frees all memory associated with it and all its entries.

Function
void fib_check (struct fib * f) — audit a FIB

Arguments

struct fib * f
FIB to be checked

Description
This debugging function audits a FIB by checking its internal consistency. Use when you suspect somebody
of corrupting innocent data structures.

2.2 Routing tables

Routing tables are probably the most important structures BIRD uses. They hold all the information about
known networks, the associated routes and their attributes.

There are multiple routing tables (a primary one together with any number of secondary ones if requested
by the configuration). Each table is basically a FIB containing entries describing the individual destination
networks. For each network (represented by structure net), there is a one-way linked list of route entries
(rte), the first entry on the list being the best one (i.e., the one we currently use for routing), the order of
the other ones is undetermined.

The rte contains information specific to the route (preference, protocol metrics, time of last modification
etc.) and a pointer to a rta structure (see the route attribute module for a precise explanation) holding the
remaining route attributes which are expected to be shared by multiple routes in order to conserve memory.

Function

int net_roa_check (rtable * tab, const net_addr * n, u32 asn) — check validity of route origination in a ROA
table

Arguments

rtable * tab
ROA table

const net_addr * n
network prefix to check

u32 asn
AS number of network prefix

Description

Implements RFC 6483 route validation for the given network prefix. The procedure is to find all candi-
date ROAs - ROAs whose prefixes cover the given network prefix. If there is no candidate ROA, return
ROA_UNKNOWN. If there is a candidate ROA with matching ASN and maxlen field greater than or equal
to the given prefix length, return ROA_VALID. Otherwise, return ROA_INVALID. If caller cannot determine
origin AS, 0 could be used (in that case ROA_VALID cannot happen). Table tab must have type NET_ROA4
or NET_ROAG6, network n must have type NET_IP4 or NET_IP6, respectively.
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Function

*

rte * rte_find (net * net, struct rte_src * src¢) — find a route

Arguments

net * net
network node

struct rte_src * src
route source

Description
The rte_find() function returns a route for destination net which is from route source sre.

Function

ES

rte * rte_get_temp (rta * a) — get a temporary rte

Arguments

rta * a
attributes to assign to the new route (a rta; in case it’s un-cached, rte_update() will create a cached
copy automatically)

Description
Create a temporary rte and bind it with the attributes a. Also set route preference to the default preference
set for the protocol.

Function

rte * rte_cow_rta (rte * r, linpool * Ip) — get a private writable copy of rte with writable rta

Arguments

rte * r
a route entry to be copied

linpool * Ip
a linpool from which to allocate rta

Description

rte_cow_rta() takes a rte and prepares it and associated rta for modification. There are three possibilities:
First, both rte and rta are private copies, in that case they are returned unchanged. Second, rte is private
copy, but rta is cached, in that case rta is duplicated using rta_do_cow(). Third, both rte is shared and
rta is cached, in that case both structures are duplicated by rte_do_cow() and rta_do_cow().

Note that in the second case, cached rta loses one reference, while private copy created by rta_do_cow() is
a shallow copy sharing indirect data (eattrs, nexthops, ...) with it. To work properly, original shared rta
should have another reference during the life of created private copy.

Result
a pointer to the new writable rte with writable rta.

Function

void rte_ingt_tmp_attrs (rte * r, linpool * Ip, uint maz) — initialize temporary ea_list for route
Arguments

*

rte * r

route entry to be modified
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linpool * Ip
linpool from which to allocate attributes

uint max
maximum number of added temporary attribus

Description

This function is supposed to be called from make_tmp_attrs() and store_tmp_attrs() hooks before
rte_make_tmp_attr() | rte_store_tmp_atir() functions. It allocates ea_list with length for maz items for
temporary attributes and puts it on top of eattrs stack.

Function

void rte_make_tmp_attr (rte * r, uint id, uint type, uintptr_t val) — make temporary eattr from private route
fields

Arguments

rte * r
route entry to be modified

uint id
attribute ID

uint type
attribute type

uintptr_t val
attribute value (u32 or adata ptr)

Description

This function is supposed to be called from make_tmp_attrs() hook for each temporary attribute, after
temporary ea_list was initialized by rte_init_tmp_attrs(). It checks whether temporary attribute is supposed
to be defined (based on route pflags) and if so then it fills eattr field in preallocated temporary ea list on
top of route r eattrs stack.

Note that it may require free eattr in temporary ea_list, so it must not be called more times than max
argument of rte_init_tmp_attrs().

Function

uintptr_t rte_store_tmp_attr (rte * r, uint id) — store temporary eattr to private route fields
Arguments

*

rte * r

route entry to be modified

uint id
attribute ID

Description

This function is supposed to be called from store_tmp_attrs() hook for each temporary attribute, after
temporary ea_list was initialized by rte_init_tmp_attrs(). It checks whether temporary attribute is defined
in route r eattrs stack, updates route pflags accordingly, undefines it by filling eattr field in preallocated
temporary ea_list on top of the eattrs stack, and returns the value. Caller is supposed to store it in the
appropriate private field.

Note that it may require free eattr in temporary ea_list, so it must not be called more times than max
argument of rte_init_tmp_atirs()
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Function

void rte_make_tmp_atirs (rte ** r, linpool * Ip, rta ** old_attrs) — prepare route by adding all relevant
temporary route attributes

Arguments

rte ** r
route entry to be modified (may be replaced if COW)

linpool * Ip
linpool from which to allocate attributes

rta ** old_attrs
temporary ref to old rta (may be NULL)

Description

This function expands privately stored protocol-dependent route attributes to a uniform eattr / ea_list
representation. It is essentially a wrapper around protocol make_tmp_attrs() hook, which does some addi-
tional work like ensuring that route r is writable.

The route r may be read-only (with REF_COW flag), in that case rw copy is obtained by rte_cow() and r is
replaced. If rte is originally rw, it may be directly modified (and it is never copied).

If the old_attrs ptr is supplied, the function obtains another reference of old cached rta, that is necessary in
some cases (see rte_cow_rta() for details). It is freed by rte_store_tmp_attrs(), or manually by rta_free().
Generally, if caller ensures that r is read-only (e.g. in route export) then it may ignore old_attrs (and set it
to NULL), but must handle replacement of r. If caller ensures that r is writable (e.g. in route import) then
it may ignore replacement of r, but it must handle old_attrs.

Function

void rte_store_tmp_attrs (rte * r, linpool * Ip, rta * old_attrs) — store temporary route attributes back to
private route fields

Arguments

ES

rte * r

route entry to be modified

linpool * Ip
linpool from which to allocate attributes

rta * old_attrs
temporary ref to old rta

Description

This function stores temporary route attributes that were expanded by rte_make_tmp_attrs() back to private
route fields and also undefines them. It is essentially a wrapper around protocol store_tmp_attrs() hook, which
does some additional work like shortcut if there is no change and cleanup of old_attrs reference obtained by
rte_make_tmp_attrs().

Function

void rte_announce (rtable * tab, uint type, net * net, rte * new, rte * old, rte * new_best, rte * old_best) —
announce a routing table change

Arguments

rtable * tab
table the route has been added to

uint type
type of route announcement (RA_UNDEF or RA_ANY)
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net * net
network in question

rte * new
the new or changed route
rte * old
the previous route replaced by the new one
* new_best
the new best route for the same network

rte

rte * old_best
the previous best route for the same network

Description

This function gets a routing table update and announces it to all protocols that are connected to the same
table by their channels.

There are two ways of how routing table changes are announced. First, there is a change of just one route
in net (which may caused a change of the best route of the network). In this case new and old describes the
changed route and new_best and old_best describes best routes. Other routes are not affected, but in sorted
table the order of other routes might change.

Second, There is a bulk change of multiple routes in net, with shared best route selection. In such case
separate route changes are described using type of RA_ANY, with new and old specifying the changed route,
while new_best and old_best are NULL. After that, another notification is done where new_best and old_best
are filled (may be the same), but new and old are NULL.

The function announces the change to all associated channels. For each channel, an appropriate preprocessing
is done according to channel ra_ mode. For example, RA_OPTIMAL channels receive just changes of best routes.
In general, we first call preexport() hook of a protocol, which performs basic checks on the route (each
protocol has a right to veto or force accept of the route before any filter is asked). Then we consult an
export filter of the channel and verify the old route in an export map of the channel. Finally, the rt_notify()
hook of the protocol gets called.

Note that there are also calls of rt_notify() hooks due to feed, but that is done outside of scope of
rte_announce().

Function

void rte_free (rte * e) — delete a rte

Arguments

rte * e
rte to be deleted

Description
rte_free() deletes the given rte from the routing table it’s linked to.

Function

void rte_update2 (struct channel * ¢, const net_addr * n, rte * new, struct rte_src * src) — enter a new update
to a routing table

Arguments

struct channel * ¢
channel doing the update

const net_addr * n
— undescribed —

rte * new
a rte representing the new route or NULL for route removal.
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struct rte_src * src
protocol originating the update

Description

This function is called by the routing protocols whenever they discover a new route or wish to update/remove
an existing route. The right announcement sequence is to build route attributes first (either un-cached with
aflags set to zero or a cached one using rta_lookup(); in this case please note that you need to increase the
use count of the attributes yourself by calling rta_clone()), call rte_get_-temp() to obtain a temporary rte,
fill in all the appropriate data and finally submit the new rte by calling rte_update().

src specifies the protocol that originally created the route and the meaning of protocol-dependent data of
new. If mew is not NULL, src have to be the same value as new->attrs->proto. p specifies the protocol that
called rte_update(). In most cases it is the same protocol as src. rte_update() stores p in new->sender;
When rte_update() gets any route, it automatically validates it (checks, whether the network and next hop
address are valid TP addresses and also whether a normal routing protocol doesn’t try to smuggle a host
or link scope route to the table), converts all protocol dependent attributes stored in the rte to temporary
extended attributes, consults import filters of the protocol to see if the route should be accepted and/or its
attributes modified, stores the temporary attributes back to the rte.

Now, having a ”public” version of the route, we automatically find any old route defined by the protocol src
for network n, replace it by the new one (or removing it if new is NULL), recalculate the optimal route for
this destination and finally broadcast the change (if any) to all routing protocols by calling rte_announce().
All memory used for attribute lists and other temporary allocations is taken from a special linear pool
rte_update_pool and freed when rte_update() finishes.

Function

void rt_refresh_begin (rtable * ¢, struct channel * ¢) — start a refresh cycle

Arguments

rtable * ¢
related routing table ¢ related channel

struct channel * ¢
— undescribed —

Description

This function starts a refresh cycle for given routing table and announce hook. The refresh cycle is a sequence
where the protocol sends all its valid routes to the routing table (by rte_update()). After that, all protocol
routes (more precisely routes with ¢ as sender) not sent during the refresh cycle but still in the table from
the past are pruned. This is implemented by marking all related routes as stale by REF_STALE flag in
rt_refresh_begin(), then marking all related stale routes with REF_DISCARD flag in rt_refresh_end() and
then removing such routes in the prune loop.

Function

void rt_refresh_end (rtable * t, struct channel * ¢) — end a refresh cycle

Arguments

rtable * ¢
related routing table

struct channel * ¢
related channel

Description
This function ends a refresh cycle for given routing table and announce hook. See rt_refresh_begin() for
description of refresh cycles.
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Function

void rte_dump (rte * e) — dump a route

Arguments

*

rte * e

rte to be dumped

Description
This functions dumps contents of a rte to debug output.

Function

void rt_dump (rtable * t) — dump a routing table

Arguments

rtable * ¢
routing table to be dumped

Description
This function dumps contents of a given routing table to debug output.

Function
void rt_dump_all (void) — dump all routing tables

Description
This function dumps contents of all routing tables to debug output.

Function
void rt_init (void) — initialize routing tables

Description

This function is called during BIRD startup. It initializes the routing table module.

Function

void rt_prune_table (rtable * tab) — prune a routing table

Arguments

rtable * tab
— undescribed —

Description

The prune loop scans routing tables and removes routes belonging to flushing protocols, discarded routes

and also stale network entries. It is called from rt_event(). The event is rescheduled if the current iteration
do not finish the table. The pruning is directed by the prune state (prune_state), specifying whether the
prune cycle is scheduled or running, and there is also a persistent pruning iterator (prune_fit).

The prune loop is used also for channel flushing. For this purpose, the channels to flush are marked before

the iteration and notified after the iteration.

Function

void rt_lock_table (rtable * r) — lock a routing table

Arguments

rtable * r
routing table to be locked

Description

Lock a routing table, because it’s in use by a protocol, preventing it from being freed when it gets undefined

in a new configuration.
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Function

void rt_unlock_table (rtable * r) — unlock a routing table

Arguments

rtable * r
routing table to be unlocked

Description
Unlock a routing table formerly locked by rt_lock_table(), that is decrease its use count and delete it if it’s
scheduled for deletion by configuration changes.

Function

void rt_commit (struct config * new, struct config * old) — commit new routing table configuration

Arguments

struct config * new
new configuration

struct config * old
original configuration or NULL if it’s boot time config

Description

Scan differences between old and new configuration and modify the routing tables according to these changes.
If new defines a previously unknown table, create it, if it omits a table existing in old, schedule it for
deletion (it gets deleted when all protocols disconnect from it by calling rt_unlock_table()), if it exists in both
configurations, leave it unchanged.

Function

int rt_feed_channel (struct channel * ¢) — advertise all routes to a channel

Arguments

struct channel * ¢
channel to be fed

Description

This function performs one pass of advertisement of routes to a channel that is in the ES_ FEEDING state.
It is called by the protocol code as long as it has something to do. (We avoid transferring all the routes in
single pass in order not to monopolize CPU time.)

Function

void rt_feed_channel_abort (struct channel * ¢) — abort protocol feeding

Arguments

struct channel * ¢
channel

Description
This function is called by the protocol code when the protocol stops or ceases to exist during the feeding.
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Function
net * net_find (rtable * tab, net_addr * addr) — find a network entry

Arguments

rtable * tab
a routing table

net_addr * addr
address of the network

Description
net_find() looks up the given network in routing table tab and returns a pointer to its net entry or NULL if
no such network exists.

Function

net * net_get (rtable * tab, net_addr * addr) — obtain a network entry

Arguments

rtable * tab
a routing table

net_addr * addr
address of the network

Description
net_get() looks up the given network in routing table tab and returns a pointer to its net entry. If no such
entry exists, it’s created.

Function

rte * rte_cow (rte * r) — copy a route for writing
Arguments

*

rte * r

a route entry to be copied

Description

rte_cow() takes a rte and prepares it for modification. The exact action taken depends on the flags of the
rte — if it’s a temporary entry, it’s just returned unchanged, else a new temporary entry with the same
contents is created.

The primary use of this function is inside the filter machinery — when a filter wants to modify rte contents
(to change the preference or to attach another set of attributes), it must ensure that the rte is not shared
with anyone else (and especially that it isn’t stored in any routing table).

Result
a pointer to the new writable rte.

2.3 Route attribute cache

Each route entry carries a set of route attributes. Several of them vary from route to route, but most
attributes are usually common for a large number of routes. To conserve memory, we've decided to store
only the varying ones directly in the rte and hold the rest in a special structure called rta which is shared
among all the rte’s with these attributes.

Each rta contains all the static attributes of the route (i.e., those which are always present) as structure
members and a list of dynamic attributes represented by a linked list of ea_1list structures, each of them
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consisting of an array of eattr’s containing the individual attributes. An attribute can be specified more
than once in the ea_list chain and in such case the first occurrence overrides the others. This semantics is
used especially when someone (for example a filter) wishes to alter values of several dynamic attributes, but
it wants to preserve the original attribute lists maintained by another module.

Each eattr contains an attribute identifier (split to protocol ID and per-protocol attribute ID), protocol
dependent flags, a type code (consisting of several bit fields describing attribute characteristics) and either
an embedded 32-bit value or a pointer to a adata structure holding attribute contents.

There exist two variants of rta’s — cached and un-cached ones. Un-cached rta’s can have arbitrarily complex
structure of ea_list’s and they can be modified by any module in the route processing chain. Cached rta’s
have their attribute lists normalized (that means at most one ea_list is present and its values are sorted
in order to speed up searching), they are stored in a hash table to make fast lookup possible and they are
provided with a use count to allow sharing.

Routing tables always contain only cached rta’s.

Function

struct nexthop * nexthop_merge (struct nexthop * z, struct nexthop * y, int rz, int ry, int maz, linpool *
Ip) — merge nexthop lists

Arguments

struct nexthop * z
list 1

struct nexthop * y
list 2

int rz
reusability of list

int ry
reusability of list y

int maz
max number of nexthops

linpool * Ip
linpool for allocating nexthops

Description

The nexthop-merge() function takes two nexthop lists z and y and merges them, eliminating possible du-
plicates. The input lists must be sorted and the result is sorted too. The number of nexthops in result is
limited by maz. New nodes are allocated from linpool Ip.

The arguments rx and ry specify whether corresponding input lists may be consumed by the function (i.e.
their nodes reused in the resulting list), in that case the caller should not access these lists after that. To
eliminate issues with deallocation of these lists, the caller should use some form of bulk deallocation (e.g.
stack or linpool) to free these nodes when the resulting list is no longer needed. When reusability is not set,
the corresponding lists are not modified nor linked from the resulting list.

Function

*

eattr * ea_find (ea list * e, unsigned id) — find an extended attribute

Arguments

ea list * e
attribute list to search in

unsigned id
attribute ID to search for

Description
Given an extended attribute list, ea_find() searches for a first occurrence of an attribute with specified ID,
returning either a pointer to its eattr structure or NULL if no such attribute exists.
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Function
eattr * ea_walk (struct ea_walk_state * s, uint id, uint maz) — walk through extended attributes

Arguments

struct ea_walk_state * s
walk state structure
uint id
start of attribute ID interval

uint max
length of attribute ID interval

Description

Given an extended attribute list, ea_walk() walks through the list looking for first occurrences of attributes
with ID in specified interval from id to (id + maz - 1), returning pointers to found eattr structures, storing
its walk state in s for subsequent calls.

The function ea_walk() is supposed to be called in a loop, with initially zeroed walk state structure s with
filled the initial extended attribute list, returning one found attribute in each call or NULL when no other
attribute exists. The extended attribute list or the arguments should not be modified between calls. The
maximum value of maz is 128.

Function

int ea_get_int (ealist * e, unsigned id, int def) — fetch an integer attribute
Arguments

ealist * e
attribute list

unsigned id
attribute 1D

int def
default value

Description
This function is a shortcut for retrieving a value of an integer attribute by calling ea_find() to find the
attribute, extracting its value or returning a provided default if no such attribute is present.

Function

void ea_do_prune (ealist * e)

Arguments

ea_list * e
— undescribed —

Description
for this reason.

Function
void ea_sort (ea list * e) — sort an attribute list

Arguments

ea_list * e
list to be sorted

Description

This function takes a ea_list chain and sorts the attributes within each of its entries.

If an attribute occurs multiple times in a single ea_list, ea_sort() leaves only the first (the only significant)
occurrence.
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Function

unsigned ea_scan (ealist * e) — estimate attribute list size

Arguments

ea list * e
attribute list

Description
This function calculates an upper bound of the size of a given ea_list after merging with ea_merge().

Function

void ea_merge (ealist * e, ea list * t) — merge segments of an attribute list

Arguments

ea_list * e
attribute list

ea_list * ¢
buffer to store the result to

Description

This function takes a possibly multi-segment attribute list and merges all of its segments to one.

The primary use of this function is for ea_list normalization: first call ea_scan() to determine how much
memory will the result take, then allocate a buffer (usually using alloca()), merge the segments with
ea_merge() and finally sort and prune the result by calling ea_sort().

Function

int ea_same (ealist * x, ealist * y) — compare two ea_list’s
Arguments

ealist * z
attribute list

ea list * y
attribute list

Description
ea_same() compares two normalized attribute lists z and y and returns 1 if they contain the same attributes,
0 otherwise.

Function

void ea_show (struct cli * ¢, const eattr * e¢) — print an eattr to CLI

Arguments

struct cli * ¢
destination CLI

const eattr * e
attribute to be printed

Description

This function takes an extended attribute represented by its eattr structure and prints it to the CLI
according to the type information.

If the protocol defining the attribute provides its own get_atér() hook, it’s consulted first.
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Function

void ea_dump (ealist * e¢) — dump an extended attribute

Arguments

ea list * e
attribute to be dumped

Description
ea_dump() dumps contents of the extended attribute given to the debug output.

Function

uint ea_hash (ea_list * e) — calculate an ea_list hash key
Arguments

ea_list * e
attribute list

Description
ea_hash() takes an extended attribute list and calculated a hopefully uniformly distributed hash value from
its contents.

Function

ealist * ea_append (ea_list * to, ealist * what) — concatenate ea_list’s

Arguments

ea list * to
destination list (can be NULL)

ea_list * what
list to be appended (can be NULL)

Description
This function appends the ea_list what at the end of ea_1list to and returns a pointer to the resulting list.

Function

rta * rta_lookup (rta * o) —look up a rta in attribute cache
Arguments

*

rta * o

a un-cached rta

Description

rta-lookup() gets an un-cached rta structure and returns its cached counterpart. It starts with examining
the attribute cache to see whether there exists a matching entry. If such an entry exists, it’s returned and
its use count is incremented, else a new entry is created with use count set to 1.

The extended attribute lists attached to the rta are automatically converted to the normalized form.

Function

void rta_dump (rta * a) — dump route attributes

Arguments

rta * a
attribute structure to dump

Description
This function takes a rta and dumps its contents to the debug output.
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Function

void rta_dump_all (void) — dump attribute cache

Description
This function dumps the whole contents of route attribute cache to the debug output.

Function
void rta_init (void) — initialize route attribute cache
Description

This function is called during initialization of the routing table module to set up the internals of the attribute
cache.

Function

rta * rta_clone (rta * r) — clone route attributes
Arguments

rta * r
a rta to be cloned

Description
rta_clone() takes a cached rta and returns its identical cached copy. Currently it works by just returning
the original rta with its use count incremented.

Function

void rta_free (rta * r) — free route attributes

Arguments

rta * r
a rta to be freed

Description

If you stop using a rta (for example when deleting a route which uses it), you need to call rta_free() to
notify the attribute cache the attribute is no longer in use and can be freed if you were the last user (which
rta_free() tests by inspecting the use count).

2.4 Routing protocols

2.4.1 Introduction

The routing protocols are the bird’s heart and a fine amount of code is dedicated to their management and
for providing support functions to them. (-: Actually, this is the reason why the directory with sources of
the core code is called nest :-).

When talking about protocols, one need to distinguish between protocols and protocol instances. A protocol
exists exactly once, not depending on whether it’s configured or not and it can have an arbitrary number of
instances corresponding to its "incarnations” requested by the configuration file. Each instance is completely
autonomous, has its own configuration, its own status, its own set of routes and its own set of interfaces it
works on.

A protocol is represented by a protocol structure containing all the basic information (protocol name, default
settings and pointers to most of the protocol hooks). All these structures are linked in the protocol_list list.
Each instance has its own proto structure describing all its properties: protocol type, configuration, a
resource pool where all resources belonging to the instance live, various protocol attributes (take a look at
the declaration of proto in protocol.h), protocol states (see below for what do they mean), connections
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to routing tables, filters attached to the protocol and finally a set of pointers to the rest of protocol hooks
(they are the same for all instances of the protocol, but in order to avoid extra indirections when calling the
hooks from the fast path, they are stored directly in proto). The instance is always linked in both the global
instance list (proto_list) and a per-status list (either active_proto_list for running protocols, initial_proto_list
for protocols being initialized or flush_proto_list when the protocol is being shut down).

The protocol hooks are described in the next chapter, for more information about configuration of protocols,
please refer to the configuration chapter and also to the description of the proto_commit function.

2.4.2 Protocol states

As startup and shutdown of each protocol are complex processes which can be affected by lots of external
events (user’s actions, reconfigurations, behavior of neighboring routers etc.), we have decided to supervise
them by a pair of simple state machines — the protocol state machine and a core state machine.

The protocol state machine corresponds to internal state of the protocol and the protocol can alter its state
whenever it wants to. There are the following states:

PS_DOWN
The protocol is down and waits for being woken up by calling its start() hook.

PS_START
The protocol is waiting for connection with the rest of the network. It’s active, it has resources
allocated, but it still doesn’t want any routes since it doesn’t know what to do with them.

PS_UP
The protocol is up and running. It communicates with the core, delivers routes to tables and wants to
hear announcement about route changes.

PS_STOP
The protocol has been shut down (either by being asked by the core code to do so or due to having
encountered a protocol error).

Unless the protocol is in the PS_DOWN state, it can decide to change its state by calling the proto_notify_state
function.

At any time, the core code can ask the protocol to shut itself down by calling its stop() hook.

2.4.3 Functions of the protocol module

The protocol module provides the following functions:

Function

struct channel * proto_find_channel_by_table (struct proto * p, struct rtable * ¢) — find channel connected to
a routing table

Arguments

struct proto * p
protocol instance

struct rtable * ¢
routing table

Description
Returns pointer to channel or NULL

Function

struct channel * proto_find_channel_by_name (struct proto * p, const char * n) — find channel by its name
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Arguments

struct proto * p
protocol instance

const char * n
channel name

Description
Returns pointer to channel or NULL

Function

