BAIKONUR
Internet/Intranet Suite
Application Developer’s Guide

43

44

Introduction

BAIKONUR Intranet Suite includes the Web Application Server, the HTML Controls
Library and additional tools. It enables the developer to create application software
in Internet/Intranet technology. An Intranet application is an application that utilizes
the technologies and software tools that had originally been designed to access
datain Internet. The wide proliferation of Internet technologies offers solutions to a
number of complicated problems that challenge the developers of almost any
application software, be it a rudimentary program or an elaborate corporate information
storage/retrieval system. Among the most important advantages that Intranet
technology offers, the following clearly stand out:

a) It provides an easy and inexpensive way of gaining access to remote data. Internet
is a global network, and therefore you don’t have to use a long-distance or leased
telephone communication line to access a database in Moscow from, say, London
— an outlet to Internet is all you need to do that.

b) It allows the client to use virtually any operating system and any computer - any
Web browser on any platform can be used as a client program. No additional
software download is required.

c) It makes administration easier. Only one copy of Intranet application running on
the Web is required.

d) It permits many users to simultaneously work with data on an SQL server even if
the number of its user licenses is limited. An Intranet application can supply data
for many users by utilizing only a single connection to a database. A country-
wide ticket reservation and booking system is a vivid example of that.

e) Itenables the developer to easily and quickly create HTML pages that can represent
most up-to-date data, even in real time (for example, a HTML page may contain
the latest stock exchange quotations).

Due to the use of Borland Delphi (or C++ Builder, or JBuilder), applications of this

kind can be developed in a visual environment and in as short a time span as
conventional application software.
To build software systems in Intranet technology, you need the following:

* A Web browser as a client application. There is now a horde of Web browsers on
the market for practically any software and hardware platforms (such as Netscape,

Mosaic, Lynx, Internet Explorer, Ariadna and so on). More than that, a Web
browser can be built into a client application. Delphi, for one, incorporates a
library of components allowing you to do just that. Senior versions of BAIKONUR
(starting from BAIKONUR Enterprise) include components allowing the developer
to create client applications that do not use the Hypertext Markup Language
(HTML).

* A Web server that can transmit data from an Intranet application to the client and
backward. We suggest that you use BAIKONUR if you want to be able to utilize
the Baikonur HTML Controls library most comprehensively. BAIKONUR is a Web
server that, apart from supporting typical Web-server functions, can also function
as an application server. BAIKONUR can launch the necessary application on
the client’s request, and then supervise and manage the transmission of data to/
from the client.

* An Intranet application software. To facilitate the building of such applications in
Delphi or C++ Builder, we have incorporated a Baikonur HTML Controls Library
into our BAIKONUR Intranet Suite.

The Intranet application development technology which BAIKONUR offers can be
utilized both for developing closed corporate information systems and building an
open Internet Web site or expanding its functionality. This technology and the latest

Internet developments (Java, ActiveX, etc.) are not mutually exclusive, but rather

supplement one another.

Apart from the development of conventional Internet/Intranet applications, BAIKONUR
can also be employed to solve non-trivial (from the point of view of Internet) tasks,
such as data replication, remote monitoring, organizing a print server, etc.

45

Chapter 1

This chapter presents an overview of the general principles of developing applications
for BAIKONUR, and some of issues related to the use of HTML and browsers.

What is BAIKONUR?

46

BAIKONUR Web Application Server, as its name implies, is a two-faceted software
package - it is a usual Web server and an application server all in one.

The Web server is needed to perform the usual functions of sending HTML pages,
images and other resources on a client’s (browser’s) request. In addition to that, the
Web server supports CGl and ISAPI interface technologies. You can use BAIKONUR
to build a conventional Web site. See “BAIKONUR. Getting Started” for details on
how to install, start-up and administer a Web server.

The application server is needed to organize an interface between the user and the
application launched on the server upon receipt of a corresponding request. This
request is essentially the URL specifying the name of the program (called the Web
application) to be launched. The remote client can use any Web browser that supports
the HTML protocol (Netscape Navigator, Microsoft’s Internet Explorer, etc.). The
application server is responsible for launching the appropriate application on the
client’s request, passing data from the client to the application and backward, and
closing the application.

To exchange data between the client and application, use is made of the HTTP
protocol. Dialog screen forms are described with the help of the HTML (Hypertext
Markup Language), which permits the use of interactive control elements, such as
single-line and multiple-line text input/edit fields (Edit, Memo), button controls
(Button), view lists and drop-down lists (ListBox, ComboBox), and others. Once itis
launched in response to a client’s request, the Web application builds an HTML
script describing the user dialog, and passes it to the client. The user performs the
necessary actions (views and modifies data in the input fields), and sends the modified
data (generated by the browser after the user clicks a submit-type button) to the
application. The application parses and saves the incoming data, builds a new HTML
script and sends it back to the client, and so on. The HTMLPage and HTMLControl
components from Baikonur HTML Controls Library are responsible for such functions

as parsing of the incoming data, generation of the HTML script based on the form’s
current status, and transfer of data between the application and the server. All this is
done automatically, so that the application developer doesn’t normally have to interfere
into this process.

The client-application interface scheme outlined above is very reminiscent of the
CGl or ISAPI, but with one important exception. The Web application does not stop
functioning after data is sent to the client. Instead, it retains its status in expectation
of a next user-generated request. In fact, the user works on a remote terminal and
application is located on the server. The user can have several applications launched
on the server and work with all of them simultaneously.

There exists a somewhat similar interface standard (known as FastCGl), which
services all incoming requests within the framework of a single process, but does
not terminate it after the user breaks the connection. BAIKONUR server can open
an arbitrary number of processes and direct information flows from the client to the
appropriate process or thread. In this sense, BAIKONUR server solves the most
general (and therefore most complicated) remote user-to-application interface
problem more efficiently than most existing approaches.

Building of Web applications

For developing BAIKONUR applications in Delphi (or C++ Builder), use is made of
Baikonur HTML Controls Library. After setup, the components of that library are
located on the “HTML”, “HTML DB” and “HTML Add” pages of the Components
Palette. The process of connecting the components library is described in the
“BAIKONUR. Getting Started” manual. A detailed description of these components
can be found in Annex A.

The following Section gives an overview of the basic principles of building Web
applications. Specific solutions are given in the “Examples” section.

Types of Web applications

There are three types of Web applications:

* A single-user Web application, whereby a new instance of the application is
launched for every user.

* A multiuser Web application, whereby only one instance of the application is
launched, but its users do not interact with one another in any way.

* Ashared Web application (a variation of the multiuser application), whereby all
users can work together in one and the same dialog.

The simplest type of an Web application for a developer is the single-user one,
because the technology employed to create it is basically no different from that of
creating a conventional application program. For example, it can be a program for
viewing and editing data, a program for gaining access to a private bank information,
etc. From the point of view of the developer, everything looks as if all the users were
working concurrently on a single computer, each with his/her own instance of the
program. However, the simplicity of such an approach is fraught with the problem of
computer system resources (since the number of program instances that can be

47

48

launched simultaneously is limited). Therefore we have provided a capability of setting
the maximum number of simultaneously launched programs in the BAIKONUR
application server’s administration utility.

The problem of limited system resources can, to a certain extent, be solved by
organizing a multiuser-type Web application (although in that case the programmer
must himself ensure that dialog forms would be dynamically built for each user
during his/her work session with a program). The maximum number of users of a
multiuser Web application increases 10- to 20-fold. Some examples of building
multiuser and shared applications are given further in the text.

General Tips of Building an Web application

1. The application’s main form must contain a HTMLControl component responsible
for the interface between the application and the BAIKONUR server.

2. On every form of the application there must be a THTMLPage component
responsible for generation of the HTML script describing that form.

3. You should use Baikonur HTML Controls library components as the objects for
building the user dialog.

4. You can use standard Delphi (or C++ Builder) components (“Data access” page
of the Components Palette) to provide access to data.

5. You can use any Delphi components in the program, but they will not be visible
in a browser. It therefore makes sense to employ only invisible components
(such as TTimer or TIBEventAlerter). Besides, it is good practice to employ
TPanel when designing a form.

6. An application may contain more than one form, but it cannot be an MDI application.
The forms should not be modal (i.e., you can’'t use ShowModal). It is desirable
that once a form is closed, the focus is explicitly returned to the calling form, for
example:

procedure TForm2.FormClose (Sender: TObject; var Action:
TCloseAction) ;

begin
Forml. SetFocus;

end;

Form Design Tips

Since the onscreen appearance and placement of objects on an HTML page cannot
be arbitrary (they are determined by the Web browser), a Web-browser page can
differ substantially from the corresponding Delphi form.

The basic algorithm of designing an HTML page is as follows:

+ Ifthe top edge of one object is located above the bottom edge of another object
on the form, the two objects will be located on one and the same line on the

HTML page. In this version of HTML Components Library, the object located
higher on the form will appear left-most on the HTML page.

* The vertical spacing between objects is calculated based on the size of the
form’s current font, and equals an integer number of lines.

* The horizontal spacing between objects equals an integer number of character
positions and is determined by the control’s Distance property.

Considering that an HTML page is essentially a set of lines, we recommend that the
following technique be used to create an application interface. First, a panel (TPanel)
is placed on the form and top alignment is specified for it (Align=alTop). Then, the
objects that must be located on one and the same line on the HTML page are
placed on the panel and are left-aligned (Align=alLeft). If necessary, the HTMLRuler
can be placed between the panels.

In this version of BAIKONUR, a design-time form preview capability is not provided.
However, you can still obtain the HTML script for a form at design time by double-
clicking on the HTMLPage object, saving the script to a file and then viewing it from
a browser.

Controlling the Application’s Behavior

The behavior of an Web application is controlled by the HTMLControl component,
which must be located on the application’s main form. By appropriately setting the
properties of that component, you can specify whether the Web application is a
single-user or a multiuser one, set its timeout value, etc.

* The FinalURL property determines the HTML page that will be sent to the user
when the given application is closed. The HideApp property determines whether
the application will appear in the Task Bar at start up. If the application and all its
screen forms are “hidden” (using the HideForm property of the HTMLPage
component), the user will not be able to switch from it elsewhere by using the
<Alt>+<Tab> accelerator key. Besides, the application will not appear on the
applications list in the Task Manager (although it will show in the list of processes).
If BAIKONUR Web Server works as a Windows NT service, the application will
not appear on the screen in any case. It will only be visible onscreen when
working under Windows 95 or when BAIKONUR is started up in the debug mode.

* The MultiUser property indicates whether the service is of the multiuser type. If
this property is set to False, a single-user application is implied (whereby a
separate instance of the program will be launched for every user). If the same
property is set to True, the application will be a multiuser one, with only a single
instance of the program launched for all users. The way the interface between
such a program and its users can be organized will be discussed further in the
text. The setting of the MultiUser property has a meaning only at program startup.
Changing this property at run time will have no effect on program execution.

* The TimeOut property determines how long the program is allowed to idle (in
seconds) before it will be closed. If TimeOut=-1, the application will not be closed.
If the TimeOut property is set to 0 (zero), the application will start up, post one
screen form to the user, and terminate. If the case of a multiuser application, a
timeout event for one of the users will result in that the latter will be merely
deleted from the list of users working with this specific application. If it is the last
user on the active users list, the application will terminate.

49

50

Controlling a Form’s Behavior

The onscreen appearance and behavior of a form is determined by the HTMLPage
component.

* You can specify a background image (in GIF or JPEG format) in the Backimage
property for the page. If it is not specified or an incorrect file name is specified,
the page background color will default to the cirBackground property.

* The CheckFrame property indicates whether the form’s actuality is to be checked.
By default, the Web application assigns a unique number to each page it sends
out. Each time a next user-originated request is received, a check is made of
whether it is associated with the current form. If not, an error message is posted.
An error situation may occur if the user clicks the “Back” button in his/her browser
to go back to the previous page or a page belonging to another application, and
then accidentally clicks a Submit-type button on that “obsolete” form, thereby
originating a wrong (in the context of the current program) request. Normally, the
default value of this property needs not be changed (see “Browser’s “Back” Button
and Page Caching” in Chapter II).

* The HideForm property determines whether the screen form will be hidden.

* The Multipart property determines the document’s type. The page being sent out
will be treated as a type ‘text/html document if Multipart=False, and as a type
‘multipart/mixed document if Multipart=True. ‘Multipart/mixed means that the
application can send out a page to a user without waiting for that user’s request.
If necessary, you can use the SendMultiPage procedure of the HTMLControl
component to have a new page sent out. Such a page will be received by all the
users who are currently working with it in a browser and did not break the
connection.

IMPORTANT. Athistime, documents of the “multipart/mixed” type are supported

only by Netscape Navigator 2.0 and above.

* You can use the Title property to specify the text to be displayed in the browser’s
caption.

MultiUser Web applications

By default, a Web application will be a single-user one, because the MultiUser
property of the HTMLControl component defaults to False. In a single-user service,
a separate instance of the program is launched for every user.

A Web application will be a multiuser one if you set the MultiUser property of the
HTMLControl component to True at design time. All users of a multiuser Web
application will be working with a single instance of the program. There are two
general kinds of multiuser services, whereby:

* all users are working with their own sets of screen forms and are independent
from one another.

¢ all users are working in one common dialog and can interact with one another.
Let us consider the first method of building a multiuser service. Apparently, this
method calls for the use of dynamically created forms.

The program’s main screen form will, of course, be created automatically, and it is

this form that all the users accessing your application will normally start working
with. You must therefore take this into account when designing your main form. As
far as possible, you must not place any input fields on the main form or, if you do so,
make sure that they are returned to their original state once an HTML script is sent
to the user. For example, the main screen form may contain only a menu with type
HTMLButton or HTMLImageButton buttons. If the main form does include fields for
the input of some information (for example, information about the user), it is good
practice to ensure that these are returned to their initial state after the received
information has been processed and the appropriate HTML script has been generated.
You can use the OnDataSend event of the HTMLPage component to achieve this.

Thus, the principal requirement that the main form of a multiuser-service should
meet consists in that all its input fields (if any) must return to their initial state after
the appropriate data is sent to the user.

Secondary screen forms of the program must usually be created dynamically (a
secondary screen form may be created automatically as well, as long as the above
requirement to the main form is met). For example, if clicking on a button on the
form must take the user to another form, the code could be as follows:

procedure TForml.HTMLButtonlClick (Sender: TObject) ;
begin

Form2:=TForm2.Create (Self) ;

Form2. Show;

end;

Note that you must use the Show method rather than the ShowModal method.
Once a secondary form is closed, it must be destroyed. It is also desirable that the
input focus be set to the calling form immediately after that:

procedure TForm2.FormClose (Sender: TObject; var Action:
TCloseAction) ;

begin
Action:=caFree;
if Owner is Tform then
(Owner as TForm) .SetFocus;

end;

Let us briefly discuss the second method of building a multiuser service, whereby
users can concurrently work with one and the same form. If program logic requires

51

that all users currently working with a given form must see the changes made in the
program by one of the users, it would be good practice to employ the “multipart/
mixed” document type (see the Multipart property of the HTMLPage component).
Multiuser services of this type are obviously still fairly rare. They are mostly employed
for performing such tasks as organizing server chats, viewing stock exchange
quotation, viewing database HTML pages, and the like.

User’s Interface Limitations

52

To the programmer, building an Web application is no different from creating a
conventional application in Delphi, although there do exist a few limitations. These
limitations are determined by certain specific features of the HTTP protocol and the
HTML standard.

Events

The main limitation is that the browser generates no events other than a Submit-type
button click event. Consequently, all changes made by the clientin the form’s control
elements are passed to the application simultaneously when a Submit-type button
is clicked. Besides, the order in which objects are updated in the application can be
arbitrary. The only sure thing is that the button will not be clicked until after all other
objects are updated. You must therefore create such an application whose status
would not depend on the order in which objects on the form are edited.

In the browser, the user interface turns out to be poorer in its functional capabilities
compared to the commonly familiar interface of the programs written in Delphi. Thus,
most of the existing browsers do not support “drag-and-drop” capability, cannot
respond to mouse- or keyboard-generated events, etc.

You can enhance your interface somewhat through the use of Java scripts, Java
applets or ActiveX objects. As far as Java scripts are concerned, they are supported
by this version of the library. The other extensions can, in principle, be used now as
well, but subsequent versions of the library will have special controls built in to
support these extensions.

Forms

You must also take into account the fact that only a single form can be displayed in
abrowser at a time. Your application can be a multi-window one, but in this version
of the library you cannot use modal screen forms (ShowModal). And, of course, you
must preclude the use of standard dialogs (such as MessageDlg or ShowMessage)
and objects from the «Dialogs» page of Delphi Components Palette, because no
HTML scripts are generated for them. Otherwise, the client will have no way of
knowing that a screen form of this type has been opened in the application, and will
not be able to close it.

The placement of items on the form cannot be arbitrary either, although it is possible
to build fairly diverse pages by using the HTML table tools (HTMLTable component,
the <TABLE> tag).

Components

There are substantial differences between HTML objects and Delphi’s standard
controls (in the currently available browser versions):

¢ text font control capabilities are less flexible;
¢ conponents have no mouse- and keyboard-driven events;
¢ there are no customary drop-down or pop-up menus;

* there are no owner-draw components.
The peculiarities of the user-to-application interface via a browser have a bearing on
the way data-aware components are functioning. In the current version of the library,
data is updated as follows. The user may edit the contents of the input field
(HTMLDBEdit, HTMLDBMemo, HTMLDBCheckBox) and click a submit-type button.
The modified data will be sent to the application and saved in the database if:

* the data setis editable (i.e., the ReadOnly property for TTable is set to False or
the RequestLive property for TQuery is setto True);

* the field is allowed to be edited (i.e., the ReadOnly property of the input field
associated with the given element is set to False);

¢ the input data matches the field type (otherwise, an error message will be
generated);

* the new data does differ from the old one;

If the data set is in the data browse mode (dsBrowse) at the instant of arrival of fresh
data, it will be changed to the edit mode (dsEdit).

HTML tools are inadequate to organize verification of the input data on the client’s
side. The user may therefore input, for example, an incorrect date. An attempt to
save such a date will cause an exception, and a corresponding message will be
posted to the client. Verification of user-input data can be organized by utilizing
JavaScript capabilities.

In most cases, the HTMLNavigator component is employed to navigate through
tables, the process being as follows. The user modifies data in the input fields and
clicks the “Refresh” button or “Next” button. The forms’ description is passed to the
application and a check is made of whether or not the contents of the input fields
have changed. If they have, the datais saved in the table.

Handling of Exceptions

All unhandled exceptions occurring between the receipt of a user request and the
sending of a response are intercepted and processed by the HTMLControl component.
By default, an HTML script with an error message is generated. The default error
message appears as shown in Figure 1.

53

sdt Metzcape - [hitp:/fvad ws/project] . exe]
File Edit “iew Go Bookmark: Optiong Directory Sfindow
Help
Error : Diwvision by zero
0k |
r-g| [Documert: Done By

Figure 1. Error Message

As an application developer, you can interfere into the exception handling process in
two ways: (a) with the help of a try ... except construct, or (b) by creating an
OnException event handler of the HTMLControl component. With such an event
handler, you can send an HTML script with a custom error message to the user, or
perform some actions before simply returning the current form’s script.

To have a custom error message sent as an HTML script, you can use the
SendErrorScript procedure of the HTMLControl component, as shown in the following
example:

procedure TForml.HTMLControllException (Sender: TObject;
E: Exception) ;

var
s : string;
begin
if E is EDivByZero then
s:='Division by zero.’
else
s:=E .Message;
HTMLControll. SendErrorScript(s) ;

end;

To perform certain actions and then send out the current form’s script, you can write
something like this:

procedure TForml.HTMLControllException (Sender: TObject;
E: Exception) ;
var
s: string;
begin
StatusLabel.Caption:=E.Message;
s :=HTMLPagel . HTMLPageScript;

HTMLControll. SendResource (@s[1], Length(s), “text/
html”) ;

end;

Debugging of Web applications

This version of the library does not support Web application run-time debugging
capability from Delphi’s integrated debugging environment (although this capability
will undoubtedly be built into subsequent versions). You can, however, debug
applications executed under the control of BAIKONUR with the aid of Borland’s
Turbo Debugger. To do so:

* Check the “Include TDW debug info” option on the Linker page in the project’s
settings.

¢ Compile your application.
* Run the application by issuing a request from the browser.
¢ Startthe Turbo Debugger.

¢ Attach to the running program by checking the TDW option in the File|Attach
menu.

Application debugging can be performed in Windows NT (when BAIKONUR operates
in the debug mode) or Windows 95 environment.

While debugging an application, it is good practice to view the data received from
and sent to the client. The received data (which also includes the HTTP header) is
accessible in the OnReceive event handler of the HTMLControl component. The
sent-out data is accessible in the OnSend event handler of the HTMLControl
component.

55

Browser-Specific Features

56

Different HTML browsers display one and the same differently and support HTML 2.x
and 3.x standards in different ways. Some browsers have their own HTML extensions.
Therefore we recommend that you check your applications with various browser
versions.

This version of Baikonur HTML Controls Library supports the use of ‘multipart/mixed
type documents. Documents of this type are currently supported only by Netscape 2.0
and above.

Delphi HTML Controls library may not contain some element which a certain browser
does support. Forinstance, there is no <marquee> element supported by Microsoft's
Internet Explorer in the library. In order to place such a tag on a form, you must use
the HTMLTag component as follows:

Place the HTMLTag where you need it on the form.

Specify '<marquee> Some scrolling text </marquee>’ in the Caption property.

In MS Internet Explorer, this element will be displayed as scrolling text.

Chapter 11

In this Chapter we analyze a number of examples illustrating the techniques employed
to develop applications and control their behavior at run time.

Running and Closing of Application,
Passing of Parameters

Running of Application by the User

The user can run an application by specifying its URL in the browser, for example
as: http://web_serv/demo.exe. Obviously, this is not very convenient for the end
user. The best way is to place a reference to that application on one of the static
HTML pages. The application would then be launched when the user clicks on that
reference with the mouse.

One and the same application can be called for execution with the use of either the
application’s name or its alias. For example, if the alias for the DEMO.EXE program
is specified as baik_demo.html=c:\baikonur\home\demo.exe in the server settings,
an alternate way of running it would be to specify its URL as http://web_serv/
baik_demo.html.

Passing of Parameters to the Application

You can pass certain parameters to an application at start-up time as well as at run-
time. Since an application can be a muiltiuser one, the passing of parameters is
performed in a somewhat unusual way. To have a program called with parameters,
you must specify them in that program’s URL. For example, you can specify http:/
Iweb_serv/demo.exe?params=/p+/c+qqq+/D%3a90 (which will be equivalent to
launching the demo.exe program from the command line by specifying demo.exe /p
/¢ qqq/D:90). That is, you append the application’s URL with the question mark “?”
and the “params="keyword followed by the parameters proper. Note that all space
characters should be replaced with the “plus” character (“+”), and any other
“dangerous” characters— with their hexadecimal equivalents. For example, the colon

“w.n

character (*“:”) must be replaced with %3a.

57

58

It is important to realize that parameters in an application are accessed via the
Params property set for a given user, and NOT via the ParamCount and ParamStr
variables. For example, if you specify
HTMLLabel1.Caption:=HTMLControl1.CurrentUser.Params somewhere in the
application, then HTMLLabel1 shall point to the string “/p /c qqq /D:90”.

You can specify an individual set of parameters for every user.

IMPORTANT. Parameters for an application can be specified not only at program
start-up time, but at any time during program execution as well. In the latter case,
the value of the Params property for the user will be changed to match the newly
specifuid parameters.

Closing Application
.

You can close a program from the browser by specifying “.!” after the “.exe” extension
in that program’s URL. For example, the URL specified as http./Aiveb_serv/demo.exe.!
will close the demo.exe application. If the application has “hung up” and does not
respond to any requests, you can still terminate it by issuing an URL like http.//
web_serv/demo.exe.!?terminate - this will have the same effect as removing the
task via the Task Manager by clicking the “End Process” button.

You can also place a reference with a similar URL (http://web_serv/idemo.exe.!) on
the application’s form; clicking on that reference will likewise terminate the task.
Besides, an application can be closed on the click of a button if you specify the
following in that button’s OnClick event handler:

procedure TForml.HTMLButtonlClick (Sender: TObject) ;
begin
HTMLControll .UserClose;

end;

When an application is closed, a screen form with a message informing the user
that the application is closed (default final page) will be posted to the user:

ﬁ demo.exe at vad_ws - Microsoft Internet Explorer M= B3
File Edt “iew Go Favoites Help

APPLICATION demo.exe IS CLOIED

Welh Application Server BAIEONUR (tm)
(] Epsylon Technologies, 1996. All, rights reserwved.

Figure 2. Default Final Page
It is often desirable to change the application’s default termination behavior and
display some static HTML page on the screen instead. If some URL is specified in
the FinalURL property of the HTMLControl component, then a corresponding page
will be show in a browser after closing application.

Termination of Task on TimeOut

The HTMLControl component includes a TimeOut property. Setting this property to
a positive value greater than zero will lead to automatic termination of the
corresponding application for the “idling” user. TimeOut is essentially the period of
time (in seconds) elapsing after the most recent instant of user access to the
application. Once the TimeOut period expires the application automatically deletes
the user information from memory (although this does not result in the release of
system resources captured by the user, if any). If the user is the last one to access
it, the application will be closed. If subsequently the user issues a request to the
application closed on timeout (for example, by clicking a button on the form of the
application that has already been closed), he/she will receive the following error
message:

Clicking the “OK” button will take the user to the application’s main form, and he/
she will have to start work

from the very beginning. You can individually set timeout value for every user in
application by using TimeOut property of Tuserlnfo class.

We shall discuss how an application is closed on timeout and how system resources
are released in greater detail later in the text, while describing a sample multiuser
SQL server application.

Deleting the User From Application

Apart from the normal program termination technique described above, there is yet
another method of deleting the user from the application (i.e., closing the application
for the user). The conditions under which this takes place are determined by the
program itself. Thus, you can have a user “disconnected” from the application if he/
she violates certain pre-defined rules (for example, exceeds the allowed time limit of

59

using the program). For deleting a user from the application, use is made of the
DeleteUserByID method of the HTMLControl component . For the user, this will
appear as a timeout. You can call this method at any time except while the incoming
request is being processed (most frequently, on timer). In the latter case, use should
be made of the UserClose method.

Like the UserClose method, the DeleteUserByID method merely deletes information
on a specific user from memory, but does not release the resources captured by
that user (the developer himself must see to it that the resources are freed).

Here is an example of the “delete user by ID” method:

procedure TForml.TimerlTimer (Sender: TObject) ;
var
i: Integer;
begin
with HTMLControll do
for i:=0 to UserCount-1 do
if TimelimitExceed(Users[i]) then begin
FreeResource (Users[i]) ;
DeleteUserByID (Users[i] . ID) ;
end;

end;

Designing a User Interface

60

Placement of Components on a Form

The way components are placed on a form at design time is conditioned by the
peculiarities of the Hypertext Markup Language. Since an HTML page can be thought
of as a set of lines in which individual items follow one another, these lines can be
“‘emulated” at design time by means of conventional Tpanel panels. The panels are
placed on the form and are top-aligned (Align=alTop). The components are placed in
a panel and are left-aligned (Align=alLeft). This guarantees that in a browser these
components will be placed exactly as they had been arranged at design time. The
horizontal distance, or spacing, between individual items (in character positions) is
determined by the Distance property of each visible HTML component.

An example of how a form can be built following this algorithm can be the DBTOTAL
program - a form designed to represent the BIO_GIF.DB table. The form’s view at

design time is shown in Figure 3.

gfoet ___________________________MED
Fish STORE

-n*:--l| oo || o | G e

fizmmrara
Catwywy : [P o,

L | 0
= m.mﬁa'_' F-Il.-il--—|-|r| T il fed v Dt e] WP

: O Failiah Fdtuand Facdios =|....mﬁ
Pt B2 L

Figure 3. View of Form at Design Time
The same form will appear in a browser as follows:

e LR e e O DRl e W

Fish STORE

Ll I R B R

g
[
I Craeripddas
LT] e i =E i
—— o
v

Figure 4. View of Form in a Browser
There are, however, certain alignment peculiarities in situations when an image must
be placed on a form. Graphic objects of the HTML components library have an
Alignimage property, which determines the alignment of the image on the page
relative to its other elements. In the above example, that property for the HTMLDBGIF
component was set to aiDefault. If you set this property to aiRight, the page will

appear as follows:

61

62

I [@ o= o jeewsis [pow [mow W= S0

Fizsh STORE
'_l_l;lil miea #oar 23 0 peew plocar

Flok Wass | Prminmes amefimeaim
aall] I|- i

IcrigTioca

FOEUTE] PEEORAN R FREORSN SRR Sl DR = iR

s Ly mer | "

T =

Figure 5. Image Alignment

Controlling the Appearance of Text on a Page

The way text will appear on a page is to a great extent dependent on the browser.
Although the HTML includes a large number of tags designed to control text properties,
not all of them are supported by different browsers. Besides, the name of the font
and its base size are normally conditioned by the browser’s current settings. You
can specify a different font name on an HTML page when FontFace property of
HTMLPage component is True. But it leads to increasing of HTML script size.
When working with Baikonur HTML Controls library’s text components, you can
specify:

» fonttype (proportional or monospaced);

font face (when FontFace property of HTMLPage is True)
e fontcolor;
* font size;

* font style (bold, italic, underlined, strike-out).

The text components include HTMLLabel and HTMLDBText, HTMLMemo and
HTMLDBMemo (when Style=msText), HTMLCheckBox and HTMLDBCheckBox,
HTMLRadio, HTMLList, etc.

The font of a component is assumed to be the base font if it matches the form’s font.
If that font’s properties differ in any way, then a corresponding tag must be placed on
the HTML page.

The font type is determined by the Preformat property of the corresponding
components. If you set this property to False, the browser will display the text in
proportional font and “autoformat” it (i.e., delete all “unnecessary” white spaces and
line breaks and adjust the text so that it would fit the width of the browser’s screen
page). If you set the Preformat property to True, the browser will display the text in
monospace (fixed-width) font, and no “autoformatting” will take place.

Figure 6 shows how preformatted and non-preformatted texts will appear on a form
(the TOTAL program):

[ML Sersos - Wionsh ford Emptems_____________ FiJ
Be [e o P Hes

THIMMene conpoaerd (AT FEFIFPRITED bexl): ﬂ

b romeratel il @ e e mrpinbintl ¢ el o Lbr Evgeut

| TDEOTX ToT e MET TXT. Firiie oitd theie bt 18

| el b bl ey e el et ik Theee it il Aodewerd- lr
| it ned thal W outa P Ui ! Do MO et Bs TEST i p W,

| odhe e HerieoRraly. H o roseseivitl drpliraon B fliwrsd, spos M il eion
| parponivs B oho BT ket ot thom TESIT 40 b bl iy iy oy, i o i

ML ans conponacd JFREFORERTTEY faxt) -

Figure 6. Text Formatting Examples

The font color is determined by the components’ Font.Color property. Note that
some browsers have no color font support capability.

The font size is determined by the components’ Font. Size property. However, the
HTML supports only 7 font sizes. Therefore the size of the font of a component on
the page may differ somewhat from its size at design time.

The font style is determined by the components’ Font. Style property. Again, not all
browsers support all the font styles that can be specified with HTML.

Figure7 gives an example of different font styles, sizes and colors:

e [Jpess s Poslgisli =sp

EQiEIEIHJ'&:JiI'_I!I_Ijjﬂi!I"_'I_l"-i_-llj

|

Taear Wk D QIApLERe] LE & URCLGET 14

BEDOWN) mad 208

POl & wacth w

=

ENd LE QICTECEEC LoooE Lont

o |
W Pl 0 o 00 e

Figure 7. Examples of Font Styles, Sizes and Colors

Apart from the text formatting capabilities implemented in the library, the HTML also
includes a multitude of other tags affecting the appearance of text. They can be
placed on a page by using the HTMLTag component. For example, if you assign a
string like

<SMALL>This text is smaller in size.</SMALL>

to the Caption property of the HTMLTag component, the text will be output in a
browser one size smaller than the base font.

63

64

Use of the THTMLTable Component

As is well known, a HTML document is little more than a set of lines that may
include text, pictures, input fields, buttons, etc. Therefore the onscreen appearance
of the user dialog turns out to be rather primitive. You cannot, for example, have
several vertically stacked input/edit fields placed to the right of a memo field.

To obtain a more complex and attractive interface, use can be made of the THTMLTable
component. This component is displayed in a browser in the form of a table (with or
without borders) in which you can place text or any objects (such as images, input
fields, button controls, etc.). Without the use of a table, for example, itis impossible
to build a page on which several radio buttons are located to the right of a Memo
object or a ListBox.

At design time, HTMLTable appears as a panel partitioned into several cells. The
number of rows and columns in the table is determined by its Rows and Cols
properties, respectively. The object placed into a table is assumed to be located in
the cell which its upper left-hand corner is located in. You can specify alignment
type for a component in the cell (for example, Align=alClient), in which case the
component will occupy the entire cell. You can place several objects and even
another HTMLTable component into one and the same cell. To simplify the placement
of several components in a table cell, you can first place a usual panel into the cell
and only then place the necessary components there. Components can be moved
from one table cell to another.

The way a table will appear in a browser is determined by the Border and
WidthOnPage parameters. The Border parameter sets the width of the table’s border.
If Border=0, your table will have no border around it. The WidthOnPage parameter
determines the width of the table on the browser page (in percent). If WidthOnPage
=0, the browser will “autoadjust” the table to its screen page width.

If you use tables, bear in mind that pages containing tables take longer to be displayed
in browsers.

Here is an example of an HTML table at design time:

2

Figure 8. Table at Design Time

The same table will appear in a browser as follows:

3e Hatmcapa - [HTEL Sars

B Bl Yow (o (fesbeelic Dpboes Dmochey fireion b
o
P I HTMLEadke]
I HTHLEaked
_I'J ~ HTHLEuhs?
il Donumst Dusa =1

Figure 9. Table in Browser

At design time, you can individually “tune up” every table cell by specifying its
background color, alignment and other parameters. To invoke the cells editor, double-
click on HTMLTable or invoke the Cells property editing dialog in the Objects Inspector.
An example of such a dialog is illustrated by the following picture:

Sawcied ol 1. 1) o O | o Cascsl

Figure 10. Editing of HTML Table Cells

For each cell you can specify whether the text wrapping feature will be enabled
(NOWRAP), how many columns and rows a given cell will span (COLSPAN and
ROWSPAN), what background color the cell will have and how wide it will be (in
percent of the table width), and how it will be aligned horizontally and vertically
(Align and Valign, respectively).

Use of THTMLDynamicTable Component

Using a dynamic HTML table, the developer can place on the form a table the
appearance of which will vary dynamically at run time. Thus, you can add new rows
and columns to a dynamic HTML table, change color of its cells, etc. The version of
the library under discussion supports only the placement of text in dynamic table
cells. If, however, you add the text of an HTML tag into a cell, that object will be
visible there in a browser. Unlike a static HTML table, a dynamic table can include
up to 32767 columns and as many rows. It should be borne in mind, however, that
when the table contains a large number of cells, program execution speed slows
down considerably (both at design time and at run time).

65

66

At design time, the text in and the format of dynamic table cells are adjusted with
the help of the component’s cells editor (which can be invoked by double-clicking
the cell) or by accessing the DynCells property of the Objects Inspector. The dynamic
table cell editing dialog is illustrated below:

P bl Coes j
LS n
T WP — =}
I Preforas AT 2
e I "._'I P B
oo] L |
ALK Wl
T Dafwall T Darml
ool ol 111 o X o |

Figure 11. Dynamic Table Editor Session for Adjusting Cell Parameters

You can specify the text to be displayed in a specific cell by entering it in the input
field or by invoking the text input dialog (the “...” button). You can specify the properties
of individual cells or the properties of an entire row of cells. For each cell you can
specify whether it will be visible (Visible), whether the text wrapping feature will be
enabled (NOWRAP), whether the text will be preformatted (Preformat), how many
adjacent columns or rows the cell will span (COLSPAN and ROWSPAN), how wide
the cell will be (in percent of the table width), what background color it will have
(BGColor), what font will be used to display text in the cell (button A), and how the
cell will be aligned horizontally and vertically (Align and Valign, respectively).

The dynamic table will appear in a browser as shown below:

Ei HTML Service - Microsoft Internet Explorer 9= B3

Parmn [paexka Bwao [lNepexoo KHM=Gpadnoe 7
=

Cell 2:3
Cell 3:1 Cell 3:2 Cell3:3

I

Figure 12. Dynamic HTML Table in Browser

At run time, you can control the properties of individual cells, columns and rows of
your dynamic HTML table by accessing its Cell, Col and Row properties, respectively.
See the component’s description to learn more about these properties.

If you wish to minimize the size of the HTML script sent from the application to the
client, you should set the component’'s CoolTable property to False. You will still be

able to control the cell's contents, its visibility, and COLSPAN and ROWSPAN
parameters. However, such parameters as background color, font color and type
and alignment will then be set to their default values.

Use of THTMLDBGrid Component

The THTMLDBGrid component is a direct descendant of TCustomDBGrid, but the
way it is presented on an HTML page is somewhat different.

You can navigate between records within the grid only with the help of the
THTMLNavigator. If data is marked as editable, the browser will display input fields
in the current record. If the field contains a list (i.e., Pick List was specified for the
field at design time), the browser will display a combobox with a list in that field, as
shown below:

L yew o Tl IR
I | 1 | ’ | i |
Hm “apriad LT
=l |
Eaadd B o =
rly e]

Xl Dstumadt [

Figure 13. View of HTML DBGrid in a Browser

There is also a grid operating mode that differs somewhat from what most
programmers are accustomed to. This mode takes effect when the ShowAll property
is setto True. In that case the browser will display all records from the source data
set, but you will not be able to navigate through the table or edit its data. Although
browsing through all the table records is often all that is needed, sometimes you
would want to be able to select one of them and perform some action with it.

Let us consider a sample program (see the DBTOTAL program). Here, we want all
records from the BIOLIFE.DB table to be visible onscreen, and a radio button
displayed against each record. When the user checks one of these buttons and
clicks the Submit button, the program should return a description from the
corresponding Memo field.

To have a radio button placed into the grid, you can use the following technique. Add
a computable string-type field to the table, and assign to it the string containing the
corresponding HTML tag in the OnCalcFields event handler for Ttable. In the browser,
this field will appear as a radio button. After the application receives a request from
the browser (OnUpdate event for HTMLPage), you will have to check which of the
buttons was selected and update the memo field contents accordingly.

Place the THTMLControl, THTMLPage, TTable, TDataSource, THTMLDBGrid,
THTMLMemo components and two THTMLButton buttons on the form. At design
time, your project’s form will appear approximately as shown in Figure 14:

67

Wiew Memo | .
- [HTMLMemal
Tag ISpecies Mo ISpecies MHame ILength [em] -
. 90020 Ballistoides conspicillun a0 .
. 90030 Lutjanus sebae 21} = .
e _;lJ :

Figure 14. Project Form in the Designer

1. Tune TTable to the BIOLIFE.DB table from the DBDEMOS alias, and use the
Fields Editor to add the SpeciesNo, SpeciesName, and Length(cm) fields to it.
Create a computable string-type field 100 characters long and name it Tag.

2. Set the grid’'s ShowAll property to True and the dg/ndicator option to False.
3. Write the OnCalcFields event handler for TTable:
procedure TForml.TablelCalcFields (DataSet: TDataSet) ;
var
s: string;
begin
{generate radio button’s tag}
s:='<input type=radio name=»R1l" value=’ +
TablelSpeciesNo.AsString;

{is radio button associated with the viewed records
checked?}

if Key=TablelSpeciesNo.AsString then s:=s+’ checked’;
s:=s+'>';
TablelTag.AsString:=s;

end;

1. Write the OnUpdate event handler for HTMLPage:

procedure TForml.HTMLPagelUpdate (Sender: TObject;
Valuelist: TStringList) ;
begin
{what button is selected?}
Key:=Valuelist.Values[“R1”];
{if selected, read memo field}
if Key<>’''’ then begin
Tablel.FindKey ([StrToInt (Key) 1) ;
HTMILMemol . Text:=TablelNotes.AsString;
HTMIMemol .Visible:=True;
{save selected record}
Key:=TablelSpeciesNo.AsString;
end;

end;

The Key variable should be declared as global.
Your project is now ready. In a browser, it will appear as follows:

B o e @ peleee Qoo Qe Selor Hel

] LT o Arhlr i WA I i O] SRECT OV T A
el DR TS RS ORI8O0 @ @i 8 TIEE T AN Lorriae el 0 ol
apuileg Bah Bl Mgfth w8 Fury mimen Fooised The b OF an P b el i
InrEnt Lo mal ik el OF Bl wity g Snga 6 Frd [he b anfe: 1o el

Sricn

Tig Baadad ME S Hava (B T T

T arm B O O Ay 50 |

LA i Lul@ran 16D 21} |

| Credr sy] |

L i1 | Paracwiiin nuoceu o |

. oom it ki m | =l
o'l Toreant [ers =

Figure 15. View of Project in a Browser

69

Examples of Multiuser Applications

70

Obtaining a multiuser application is seemingly straightforward — all you have to do is
set the MultiUser property of the HTMLControl component to True. Once you do
that, all user requests will be addressed to one and the same instance of the
application. However, the developer in this case is sure to bug himself with questions
like “how do | know who the request has originated from?”; “how do | ensure that the
users would not “interfere” with one another while working with one and the same
form?”; “how do | determine when a user disconnects from the program?”, etc. Let
us see how these problems can be solved.

Connection to SQL server

An Intranet application developer often encounters the situation whereby several
users with their unique names and passwords must be able to access and use data
of an SQL server concurrently but independently from one another. As was already
said earlier, the obvious solution in such a case is to give every user access to his/
her own instance of a dynamically generated form. Let us see how this solution can
be implemented, using the InterBase table as an example (see the IB_CONN
example).

Obviously, a user wishing to gain access to the InterBase database must first specify
his/her name and password. Therefore the application’s form #1 (main form), which
is static and will be common for all users of the application, must prompt the user to
input his/her login name and password. When the user does that and clicks the
“OK” button, a second form (form #2) is dynamically generated, a connection with
the InterBase (the DataBase component) is established and the table is opened,
enabling the user to proceed with his/her work. Each user gets his/her own instance
of the second form to work with, and does not interfere with the work of other users.
If no connection takes place, the form #2 is deleted and the user receives an error
message. Clicking the “OK” button in the error message returns the user to the
main screen form.

So, our project’s form #1 will appear as follows at design time:

Login to InterBase

Figure 16. Form #1 at Design Time

Form #2 at design time will look like this:

E Form2 | (O] x|
InterEase table

Figure 17. Form #2 at Design Time
The “OK” button click event handler for Form #1:

procedure TForml.HTMLButtonlClick (Sender: TObject) ;
begin
{create a new instance of Form 2}
Form2:=TForm2.Create (Self) ;
try
with Form2.DataBasel do begin
{database name should be unique!!!!}
DataBaseName:=' Temp’ +IntToStr (HIMLControll .CurrentUser. ID) ;
{request user name and password}
Params.Values[“USER NAME”] :=HTMLEditl.Text;
Params.Values[“PASSWORD”] :=HTMLEdit2.Text;
end;
{clear input fields - Form 1 is to be shared by all}

HTMLEditl.Text:='"';

71

72

HTMLEdit2.Text:='"';

{open table and display Form 2}
Form2.Tablel.DataBaseName:=Form2.DataBasel .DataBaseName;

Form2.Tablel.Open;

Form2. Show;
except

{connect error - delete form}

Form2.Free;

raise Exception.Create(“Incorrect username or
password.”) ;

end;

end;

Hence, an instance of Form #2 is automatically created for every user wishing to
access the database, provided that he or she enters a correct username and a valid
password. Now, we have to insure that this instance is deleted after the user leaves
the application. Judging by the application’s structure, this can be done in the
OnUserGone event handler of the HTML Control component:

procedure TForml.HTMLControllUserGone (Sender: TObject;
UserID: Integer);

begin
{which form is user in?}
{if in Form 1 - Form 2 is not created yet}
{if in TForm 2 - it should be destroyed}
if HTMLControll.CurrentUser.ActiveForm is TForm2 then
HTMIL.Controll.CurrentUser.ActiveForm. Free;

end;

Organizing a User-to-User Interface in a Program

It is sometimes necessary to organize an interface between the users within the
framework of one and the same application. Let us see how this can be done, using
the CHAT (multiuser chat server) program as an example (see also the NN_DEMO

program).

Form #1 in this example prompts the user for his/her name. Generally, it is possible
to identify the user based on the CurrentUser or Users property of the HTMLControl
component, but BAIKONUR server can also work in a mode whereby no username
or password are polled for (see “User Authorization” Section).

So, the main form of our application will query the user for his/her name:

& Name Input

=] E3

Welcome to Text Chat Server

Wwhat is your name ; |

ok |

Figure 18. Requesting the User Name
The form’s module will contain the following:

{user data record}

type
UserData = record

ID : DWord;

Name : string;

end;

{let no more that 10 users can be working concurrently}

const

MaxUsers = 10;

var

73

74

Ud : Array[l..MaxUsers] of UserData;

Ui : Byte;

implementation

{initial settings}
procedure TForm3.FormCreate (Sender:
begin
FillChar (Ud, SizeOf (Ud), #0);
Ui:=0;

end;

{find free cell in usernames array}
function GetFreeCell: Byte;
var
i: Byte;
begin
Result:=0;
for i:=1 to MaxUsers do
if Ud[i].ID=0 then begin
Result:=i;
Break;
end;

end;

TObject) ;

When the user clicks the “OK” button, his/her name is entered into the array of

usernames:

procedure TForm3.HTMLButtonlClick (Sender: TObject) ;
begin
Ui:=GetFreeCell;
{if there is free space in array}
if Ui<>0 then begin
{fill in user record}
Ud[Ui] .ID:=HTMLControll.CurrentUser.ID;
Ud[Ui] .Name:=HTMLEditl.Text;
HTMLEditl.Text:='"';
{go to Form 2}
Forml. Show;
end
{if the user is one too many}
else
raise Exception.Create (“Too many users”);
end;
An attempt of the 11th user to connect to the program should be “parried”:
procedure TForm3.HTMLControllNewUser (Sender: TObject;
UserID: Integer);
begin
if GetFreeCell=0 then
HTMLControll.UserClose;

end;

75

76

Form #2 of the program is where the user-to-user chat will actually be displayed. In
our case, this form should be of the ‘multipart/mixed type. To achieve this, we must
set the Multipart property of the HTMLPage component to True. Besides, we must
ensure that one and the same instance of the form is employed for all the users.
Our form #2 will look in the designer as follows:

57 Chat Server

(=T] | :ll':ll lhul

i o Chat Srem |

Figure 19. Chat Demo Form in Designer

When the user types in a message in HTMLEdit and clicks the “Send” button, the
message must be moved into the HTMLMemo field, and the updated form should be
sent to all the users who are currently viewing it:

procedure TForml.SendClick (Sender: TObject) ;

var
UName: string;

begin
UName:= UserByID (Form3.HTMLControll.CurrentUser. ID) ;
HTMIMemol .Lines.Add (UName +’ :’/+HTMLEditl.Text) ;
HTMLEditl.Text:='"';
Form3.HTMLControll. SendMultiPage (HTMLPagel, False) ;

end;

{UserByID returns username by his/her ID}
function UserByID (ID: DWord): string;
var

i : Byte;

begin
Result:=’Unknown’ ;
for i:=1 to MaxUsers do
if Ud[i].ID=ID then begin
Result:=Ud[i] .Name;
if Result=’’ then
Result:='No “+IntToStr (Ud[i].ID) ;
Break;
end;
end;

Clicking the “Clear” button should clear the Memo field:
procedure TForml.ClearClick (Sender: TObject) ;
begin

HTMIMemol .Lines.Clear;
Form3.HTMLControll. SendMultiPage (HTMLPagel, False);

end;

When one of the users exits from the chat server program, his/her name should be
purged from the users list:

procedure TForml.HTMLButton4dClick (Sender: TObject) ;
var
i: Byte;
begin
for i:=1 to MaxUsers do
if Ud[i].ID=Form3.HTMLControll.CurrentUser.ID then

begin

77

Ud[i] .ID:=0;
Form3.HTMLControll.UserClose;
Break;

end;

end;

IMPORTANT. Since the above program relies on the use of the ‘multipart/mixed’
document type, it will function only in Netscape Navigator 2.0 and above.
At program run time, form #2 will appear as shown in Figure 20.

hin Metscape - [HTML Service]
File Edit %iew Go Bookmarks Option: Directory Window Help

Chat Server

Clear | Send | I

Andy: Hi! How are wou?
Vadim: I'm fine!

Exit fram Chat Server |

1 | =]

=8| [143 bytes read | =EON

Figure 20. Chat Form in a Browser

Special Types of Forms

Creating ‘Multipart/Mixed’ Type Documents

This section demonstrates the use of ‘multipart/mixed type documents (documents
of this type are presently supported only by Netscape 2.0 and above). An application
using this document type can update the contents of a page in the client’s browser
without waiting for a user request. If we want a form in our application to conform to
a ‘multipart/mixed page type, we must set the Multipart property of the HTMLPage
component to True. When the browser receives such a form, the connect will not be
broken and the application will be able to update the form and send it to the client
when appropriate. This is done through the use of the SendMultiPage method of the
HTMLControl component.

In the following example (see the NN_DEMO program), a new page is sent on a
timer event:

78

procedure TForml.TimerlTimer (Sender: TObject) ;
begin
{update memo form’s contents}
UpdateMemolines;
{send updated page}
HTMLControll. SendMultiPage (HTMLPagel, False) ;

end;

The second parameter in the SendMultiPage method denotes whether the page
being sent is the last one. If so, the connect will be terminated.

Whenever this method is called for execution, the page will be sent to all the clients
who are currently viewing it and did not break the connect.

You can have a page sent out not only on a timer event, but also when a certain
button in the application is clicked or when the database is updated.

Use of JavaScript in Application Development

This version of the library has JavaScript support built into it. JavaScript makes it
possible to noticeably extend the capabilities of the user interface in a browser.
However, not all browsers support JavaScript technology. Our library includes the
TJavaScript component, and it is there that you can place your JavaScript program
code. Besides, HTML components have some properties which you can use to link
certain browser events to certain JavaScript functions. These properties begin with
the letters JS followed by the event name. The THTMLCheckBox component, for
example, has the JSOnClick property, with the help of which the necessary JavaScript
function can be invoked when the user clicks on that component (for instance, to
have the form sent to the server, like in response to a submit-type button click
event). You can specify either the function described in the TJavaScript component
or a set of function or method calls to JavaScript objects separated by a semicolon
(‘) in the properties of JavaScript-related components.

In the following example (see the JAVASCR program), JavaScript is employed to
have a page sent to the server when the CheckBox object is clicked and when a
ComboBox item is checked. To achieve this, place the components on the project’s
form as shown in Figure 21.

79

80

Figure 21. Form | in Designer

In this example, JavaScript is employed in a dual capacity, because:
(a) this.form.submit() is explicitly specified in the JSOnClick property of the
ComboBox component (case sensitive!), and (b) the name of the DoSubmit() function
whose text is enclosed in the TJavaScript component is specified in the JSOnClick
property of the CheckBox component.

Here is an implementation of the DoSubmit() function in the JavaScript component:

function DoSubmit () {

document.Forml.submit ()

The CheckBox component determines whether the HTMLHeader header will be visible
in the form:

procedure TForml.HTMLCheckBox1lClick (Sender: TObject) ;
begin
HTMLHeaderl .Visible:=HTMLCheckBoxl.Checked;

end;

The ComboBox component determines the contents of the HTMLHeader header in
the form:

procedure TForml.HTMLComboBoxlChange (Sender: TObject) ;
begin

HTMLHeaderl.Caption:=HTMLComboBoxl.Text;

end;

If you now run a program like this from a browser that supports JavaScript (Internet
Explorer 3.0 or Netscape 2.0 and above), the form will change whenever the user
selects one of the ComboBox items or clicks the CheckBox.

The TJavaScript component is employed in situations when large amounts of
JavaScript text need be placed on a page. It also allows you to indicate the name of
the function specified in that text in the components’ properties.

Ei HTML Service - Microsoft Internet Explorer =] E3

FParin [paeka Buo Mepexon Matpadtos 2
=]

Test Application

I Test_Application - I

¥ Show Header

Refresh | Cloze |

I|

Figure 22. View of Sample JavaScript in Browser

Updating of Form’s Data

The following example illustrates the use of the OnUpdate event of the HTMLPage
component. This event occurs every time a request describing a form is received
from the browser (such a request is sent by the browser whenever the user clicks a
Submit-type button). The event is invoked before the contents of the form’s controls
are updated, and can be used for preliminary verification or conversion of the user-
input data.

Suppose we have a form that contains a case-sensitive HTMLEdIt (or HTMLDBEdIt)
component, requiring that the text be input in uppercase. Obviously, we cannot
MAKE the user do so by means of HTML tools alone. What we can do, however, is
to convert the user-input text to uppercase before updating the corresponding data
(the same goal can be achieved in another way as well, but we just give you an
example here). The conversion is performed in the OnUpdate event of the HTMLPage
component:

procedure TForml.HTMLPagelUpdate (Sender: TObject;
Valuelist: TStringList) ;
begin

Valuelist.Values[HTMLEditl.Name] :=

81

UpperCase (Valuelist.Values [HTMLEditl.Name]) ;

end;

This event can also be used for changing the text's code page (for instance, from
KOI8-R to WIN1251).

Special Techniques

82

User Authentication

If the user authentication option has been enabled in the server’s initial settings, the
browser will query the user for his’lher name and password when he/she first tries to
access the BAIKONUR server, as shown in Figure 23:

Basic Authentication

H
1]
Realm: _l

Cancel

Lsermame: I

Password: I

Figure 23. User Authentication Dialog

The user may enter any name and password and click “OK”. BAIKONUR users are
identified by their names and IP addresses. If user authentication is disabled (see
“BAIKONUR Server Administrator’s Guide”), the users will be distinguished only by
their IP addresses. In the latter case, users with identical IP addresses may interfere
with one another when working with applications. A situation like this may, for instance,
occur when the users work via Proxy servers.

Verification of the username and password can be done in-program. The developer
has all the necessary information on new users to decide how the program will
subsequently work with a given user.

Let us consider an example whereby the program performs username and password
verification when a new user tries to connect to it, and terminates if the newcomer is
not a registered user.

The name, password and IP address of the current user (i.e., the user currently
attempting to enter the program) are accessible in the CurrentUser property of the
HTMLControl component. The list of the program’s registered users is accessible in
the Users property.

It is most appropriate to perform verification of the user-supplied password at the
time a new user is attempting to log in to the program, i.e. in the OnNewUser event
handler of the HTMLControl component:

procedure TForml.HTMLControllNewUser (Sender: TObject;

UserID: Integer);

begin
with HTMLControll.CurrentUser do begin
{are parameters valid?}
if NotAllowed (Name, Password, IPAddr) then
{if no, close user}
HTMILControll.UserClose;
end;

end;

The NotAllowed function in this case should return True if the user attempts to log in
with an invalid username/password combination or from an illegal IP address. In our
case, the user will receive the program’s final screen, although we could also arrange
for a special custom-message screen form to be posted to such a user instead of
executing the UserClose event.

IMPORTANT. Even if the user authentication option is not enabled in the server's
settings, you can still make the application tell the browser that it must query the
user for his/her name and password. To do so, use the OnReceive event and the
SendResponse method of the HTMLControl component:

procedure TForml.HTMLControllReceive (Sender: TObject;
var Form: TForm;

UserID: Integer; var Data: string; var Action:
TReceiveAction) ;

begin
{if username and password are not supplied, then}
if (HTMLControll.CurrentUser.Name='"’)and
(HTMLControll.CurrentUser.Password='') then begin
{cancel further processing of request}
Action:=raCancel;
{return ‘unauthorized access’ resonse}

HTMLControll. SendResponse (HTMLControll.CurrentUser. ID,

83

84

“401 Unauthorized”,’WWW-Authenticate:
Basic’,”,”);

HTMLControll.DeleteUserByID (UserID) ;
end;

end;

As aresult of execution of the above code the browser will query the user for his/her
name and password, and then send out a fresh request.

Requesting a Resource

The following example demonstrates the use of the OnResource event of the
HTMLPage component. This event occurs every time the browser requests the
program for a resource the reference to which is placed on the form (for example, as
demo.exe?ImageRes1).

A reference like this will appear on the form if the THTMLImageRes, HTMLImageButton
or HTMLDBGIF component is used. The browser will then be able to request this
resource automatically, and the program will send in the requested image. In this
case, the developer does not need to interfere with the image send/receive mechanism.
However, you can utilize that mechanism for your specific needs. You can, for example,
place the HTMLLabel component on the form and specify the URL as
demo.exe?Some_Resource_ID. Once the user clicks on such a reference in the
browser, the application will receive a resource request, which will invoke the
OnResource event handler of the HTMLPage component. Since the application
doesn’t “know” what resource the browser actually needs, the developer must in this
case write such an event handler that would generate and send the requisite resource
(which can be of any type — a GIF or JPEG image, plain text, an HTML page or a file
of any type). If the requested resource is not sent, the browser will remain in the wait
mode.

The LINKFORM example shows how the user can go to another form in the application
by clicking on a resource reference rather than on a button. To achieve this, we must
place the HTMLLabel component on form #1 and specify the URL as
linkform.exe?GotoForm2. Then, we must write the OnResource event handler of the
HTMLPage1 component on form #1:

procedure TForml.HTMLPagelResource (Sender: TObiject;
ResName: string;

UserID: Integer; var ResourceWasSent: Boolean) ;
var

s: string;

begin

{what resource is requested?}

if ResName=’GotoForm2' then begin
{set flag if response was sent}
ResourceWasSent:=True;
{get HTML image of Form 2}
s:=Form2.HTMLPagel . HTMLPageScript;
{send HTML script to user}

HTMLControll. SendResource (UserID, @s[1l], Length(s),
“text/html”) ;

{‘take’ user to Form 2}
HTMLControll.CurrentUser.ActiveForm:=Form2;
end;

end;

You can employ this method for solving such tasks as sending the selected file to
the user, navigating through the HTML pages of a database, etc.

Browser’s “Back” Button and Page Caching

Most browsers save the HTML pages which the user is browsing through in a special
RAM area or on the hard disk (in cache memory). Such browsers allow the user to
go back to previous pages simply by clicking the “Back” button. The necessary
HTML page is then retrieved from the cache memory rather than requested from the
Web server anew. This capability turns out to be very useful when static pages are
involved, but can well lead to incorrect results if the user works with an application.
Suppose that the user works with a program that allows him/her to navigate through
the records of a database table and modify (edit) its fields. If he/she clicks the
“Back” button and goes back to one of the previously viewed pages, the program’s
actual status (i.e., the table’s current record) may no longer correspond to what the
user sees on the screen. If the user now edits the record and saves it, the new data
might not be saved in the record it was expected to.

If the application consists of more than one form and the user clicks the “Back”
button to go back to one of the previous forms, he/she may cause its data to be sent
to the actual form, which likewise may result in an incorrect execution of the program.
Several solutions can be suggested to guarantee correct execution of the program

85

86

which the user works with from a browser.

The first solution (implemented in the BAIKONUR components library) consists in
verifying whether the page sent from the browser to the application is actual. Every
time a page describing a certain form of the application is sent to the user, it is
automatically assigned a unique number in a hidden field (the hidden tag). Once the
user fills in the page input fields and sends it back to the application (for example,
by clicking a Submit-type button on the form), the program verifies that unique number.
If it does not match the number of the most recently sent page, the user receives a
message stating that the page just sent is not actual (<Not actual form or timeout.
Don’t use “Back” button>). After the user clicks the button on the error-message
form, he/she receives the actual form the application. This is the default behavior of
the application. However, you can change it if you set the CheckFrame property of
the HTMLPage component to False. With this second solution, no page actuality
verification will be performed, and the developer will himself have see to it that the
above-described situation would not lead to incorrect program execution. We shall
discuss how this solution can be implemented later in the text.

The third solution is to prohibit the browser from caching the application’s pages.
This can be achieved by adding a “Cache-Control: no-cache” string to the HTTPAdd
property of the HTMLControl component. In response to a click on its “Back” button
the browser will then display a message stating that no data is available in the
cache memory and the user will have to access the application again for the current
form’s image (by clicking the “Reload” button). However, such a solution is not
always convenient.

Let us therefore go back and see how the second solution (allowing the user to click
the browser’s “Back” button without causing incorrect program execution) can be
implemented.

First, we must disable the form actuality verification feature by setting the
CheckFrame property of the HTMLPage component to False.

Second, we must keep a track of what kind of form has been sent in and act
accordingly. Indeed, there is a multitude of forms which require no additional actions
to be taken to ensure correct program execution without actuality verification. Forms
containing nothing but text and buttons or forms serving only for adding a record to
a database table (registration forms) are the obvious examples.

The most typical case requiring the developer to care about correct program execution
is an application that allows the user to view and modify (edit) certain table records.
In the way of an example, let us try and develop a single-form application designed
to display and edit records of the BIOLIFE table (see the BACKBTN example). To do
so, we must place on the new project’s form the THTMLControl, THTMLPage, T Table,
TDataSource, THTMLNavigator and THTMLHidden components and the
THTMLDBEdIit and THTMLLabel components (three of each), and tune these
components to the BIOLIFE table from the DBDEMOS database. At design time,
the project will appear as follows:

Figure 24. Project at Design Time

Next, we must set the CheckFrame property of the HTMLPage component to False.
For the program to execute correctly, we must ensure that no record other than the
one sent in by the user will be modified. To achieve this, we must not rely on the
current record, but rather identify the requisite record by its primary key (which will
be stored on the form in the Hidden field).

Whenever the form is sent out, we should save the value of its primary key in the
HTMLHidden1 component; when data is received from the user, we must go to the
requisite record based on its primary key.

The key value should be saved in the OnScript event handler of the HTMLPage
component:

procedure TForm1.HTMLPage1Script(Sender: TObject);
begin

HTMLHiddenl.Caption:=Tablel.FieldByName (“Species
No”) .AsString;

end;

We can use the OnUpdate event handler of the HTMLPage component to actually
go to the requisite record:

procedure TForml.HTMLPagelUpdate (Sender: TObject;
Valuelist: TStringList);

begin

Tablel.locate (“Species No”,
Valuelist.Values[“HTMLHiddenl”], [1]1):

end;

We can now compile our program and call it for execution from a browser, where it
will appear like this:

87

88

b HTML Service - Netscape

Fil= Edit Yiew Go Communicator Help
o] e

Category: ITriggeriish

Conmon Name: Itlmm Triggezfirh

Species Name: IBAll:i.ct-oidu conspicillum

Figure 25. Form’s View in Browser

While working in this program, the user may browse to the middle of the table with
the aid of the navigator buttons, click the “Back” button to go several records back,
edit a record field and then click the navigator’s corresponding button to have the
data saved. The program is guaranteed to save the data for the very record that the
user sees in his/her browser.

Of course, the developer of a real program must take other factors into account as
well (such as, for example, the possibility of another user deleting a certain record).
A multi-form application is a somewhat more complicated case. If the application
logic is such that the user is allowed to navigate to one of the available forms, input
certain data there and press a “save” button, then he/she must be able to do so
while working in a browser as well. However, the developer should in that case keep
track of what form the incoming data relates to, and post an error message to the
user if an exceptional situation occurs (for instance, if data for an already deleted
form is received).

To illustrate the above-said, let us make our previous sample program a bit more
complicated by adding a second form to it. Suppose we want this second form to
contain a memo field for the database records and be invoked by the click of a
button on the first form.

To achieve this, we must add the THTMLButton and THTMLHidden components to
the project’s first form, specify “Memo” in the button’s Caption property, and assign
“FormName” value to the Name property of the HTMLHidden component. At design
time, the first form of our project will appear as follows:

Figure 26. Modified Form 1

Clicking the “Memo” button will invoke the second form:

procedure TForml.HTMLButtonlClick (Sender: TObject) ;
begin
Form2. Show;

end;

On the second form we shall place the THTMLPage, THTMLDBMemo, THTMLButton
and THTMLHidden components:

© |&lso known az the big spotted tiggerfish.

. |Inhabits outer reef areas and feeds upon

- |crustaceans and mollusks by crughing them
- fwith powerful teeth. They are voracious

. |eaters, and divers report seeing the clown

* |triggerfish devour beds of pearl opsters.

Figure 27. Form 2 of the Project

We must also set the CheckFrame property of the HTMLPage 1 component to False,
change the name of the HTMLHidden component to FormName, tune HTMLDBMemo1

to the table’s NOTES field, and write a button click (“go back to first form”) event
handler:

procedure TForm2.HTMLButtonlClick (Sender: TObject) ;
begin

Close;

Forml. SetFocus;

end;

Next, we must implement the basic idea of our sample program, i.e. verify the name
of the form for which data has been received from the browser, and take the current
user to that form.

At this point, it would be appropriate to recess briefly and recall how a multiuser
application “learns” which form a given user is currently working with. When a new

89

90

user gets connected to the program a record describing that user’'s parameters is
created (whether it is a single-user or a multi-user application, the mechanism
remains basically the same). Access to these parameters can be gained via the
CurrentUser or Users properties of the HTMLControl component. The parameters
include a pointer to the instance of the current form opened for the user (ActiveForm).
It is this very parameter that we can employ to keep track of whether the current
form for the user is changed. Besides, the current form for the given user is accessible
in the HTMLControl component’s event handlers.

Returning to our example, we must see to it that information on the form’s name is
present in the page sent to the client (browser). To achieve this, we use the
THTMLHidden component named FormName on both of our forms. At first glance,
we could make the name assignment (i.e., assign the form’s name to the Caption
property) at design time. However, if an instance of the form is created at run time,
the name of that form will be determined dynamically, and might not coincide with
what had been specified at design time. Therefore in our case the form name
assignment will take place in the OnScript event handler of each form’s HTMLPage
components. For the first form:

procedure TForml.HTMLPagelScript (Sender: TObject) ;
begin

HTMLHiddenl.Caption:=Tablel.FieldByName (“Species
No”) .AsString;

FormName.Caption:=Name; // a new line

end;
For the second form:

procedure TForm2.HTMLPagelScript (Sender: TObject) ;
begin
FormName.Caption:=Name;

end;

At run time, the program will send forms along with information on their names to the
browser, and receive data from the browser along with the name of the destination
form for that data. Specifically, the data will contain a FormName=Form1 or
FormName=Form2 substring.

We should use the OnReceive event handler of the HTMLControl component for
verifying the form’s name and making a transition (and re-directing the data) to

another formin:

procedure TForml.HTMLControllReceive (Sender: TObject;
var Form: TForm;

UserID: Integer; var Data: string; var Action:
TReceiveAction) ;

var
s: string;
i: Integer;
begin
{does form has a name?}
if Pos (“FormName=",Data)<>0 then begin
{get form’s name}
s:='7;
i:=Pos (“FormName=",Data)+9;
while (i<=Length (Data))and(Datal[i]<>’&’)and
(Data[i]<>#13)and(data[i]<>#10) do begin
s:=s+Data[i];
Inc(i) ;
end;
{find form by its name}
if Form.Name<>s then
for i:=0 to Screen.FormCount-1 do
if Screen.Forms[i] .Name=s then begin
Form:=Screen.Forms[i];

Break;

91

92

end;
end;

end;

The parameters passed to the event handler include the Form parameter, which
identifies the active form for the user. We can change this parameter, thereby causing
the data to be re-directed to another form. The string-type Data parameter contains
a description of the form (with filled-in fields) sent by the browser. We parse this
string to extract