BAIKONUR
WEB APPLICATION
SERVER

201

ADMINISTRATION
GUIDE

BAIKONUR Server Administration

202

The parameters of BAIKONUR server can be changed either with the aid of the
ADMIN administration utility or by directly editing the server’'s system files. The
ADMIN utility is described in the “Getting Started” manual. The system files are
described in this guide.

NOTE. The ADMIN utility can be utilized to modify only a limited set of the server’s
editable parameters.

Since the mix of BAIKONUR server administration parameters is fairly extensive,
we recommend that you read the section of this guide devoted to the discussion of
setting options for various kinds of BAIKONUR server applications.

Starting Up and Stopping BAIKONUR Server

BAIKONUR ™ Web App Server can work under Windows 95 or Windows NT (versions
3.51and 4.0). If used in Windows 95 environment, BAIKONUR server can function
only as an application program. In Windows NT environment, BAIKONUR server
can function in one of two modes: as a conventional application program or as a
service. We recommend that you employ BAIKONUR as a Windows NT service,
because only this mode will allow you to control and manage user access rights to
system resources. The mode whereby BAIKONUR server runs as an application
software can be used for debugging various applications designed to run under
BAIKONUR control, as well as for Web site debugging purposes. Regardless of the
operating mode, you use one and the same executable file (BAIKONUR.EXE) to run
the server.

Starting Up and Stopping BAIKONUR Service

BAIKONUR service is installed automatically when you install the BAIKONUR Web

App Server software package. To run BAIKONUR in the service mode, open the
Control Panel and select the “Services” utility there. Find the line “Baikonur” in the
list of services and click the “Start” button — this will start BAIKONUR as a service.
To stop the service, simply click the “Stop” button.

You can also stop the service by closing its console window (if BAIKONUR'’s Log
messages are output to the console), preferably by pressing the Ctrl-C key
combination.

Initially, the service is started up manually. If you wish to have the service started up
automatically every time the operating system is re-booted, click the “Startup” button
in the “Services” utility, and check the “Automatic” option.

If you wish to remove the service from your system for some reason, run the program
BAIKONUR.EXE with a “—r” switch in the command line, or select the “Remove
Service” option.

To install BAIKONUR as a service, run the program BAIKONUR.EXE with a “-i”
switch in the command line, or select the “Install Service” option.

Starting BAIKONUR As An Application Program

To start BAIKONUR as a Windows 95 application program, select the “Baikonur for
Win’95” option or simply run the program BAIKONUR.EXE. If you work in
Windows NT, run the program BAIKONUR.EXE with a “-d” switch in the command
line, or select the “Debug Mode” option.

Objects Of Administration

The parameters of BAIKONUR server accessible for administration can be grouped
into several categories:

* server's internal parameters (which condition the way the server will be functioning)
¢ supported protocols

* sections (virtual servers)

¢ aliases

¢ clients (users)

¢ documenttypes

Server’s Internal Parameters

The internal parameters of BAIKONUR server determine its overall functional logic.
These parameters are specified in the [Baikonur] section of the BAIKONURL.INI file,
and can be divided into the following groups’.

System Directories and Files Settings
The following parameters help the server determine where to look for the system

libraries and system files: SystemDirectory, HomeDirectory, HomePage, AliasFile,
ClientsFile, and CertificateFile.

203

204

Log File Settings

The following parameters tell the server where (and how) to output its run-time
messages: LogFile, LogLevel, and LogDirectWrite.

Time-Related Parameters

The following parameters determine various kinds of timeouts and other time-related
events: TimeResolution, TimeClientlnactive, TimeClientDisactive,
ApplicationTimeOut, ApplicationStartTimeOut, and SessionTimeOut.

Quantitative Parameters

The following parameters determine the maximum allowable number of applications
that can concurrently run on the server, the maximum number of connections, the
size of send/receive buffers, etc.: Agents, Managers, MaxClientConnections,
MaxClientApplications, Applications, SocketRcvBuf, SocketSndBuf, and
MaxReceiveBuffer.

Supported Protocols

BAIKONUR server’s functionality can be expanded by connecting additional protocols
to it. Apart from the HTTP protocol, the version of BAIKONUR under discussion can
also support such protocols as FTP, Gopher and Finger. Auxiliary protocols are
made in the form of DLLs and may, if necessary, be added to the already available
protocols. The techniques employed to develop DLLs for new protocols are described
in detail in the manuals supplied with senior versions of BAIKONUR.

To add a new protocol to BAIKONUR server, you must specify the corresponding
settings in the [Baikonur.Protocol] section of the BAIKONUR.INI file, as shown in
the following example:

[Baikonur.Protocol]
http:80 = HTTP/1.0, HTTP10.DLL, _Parser, On

The above sample code denotes that the HT TP protocol parser is assigned to port 80,
that the version of this protocol is HTTP/1.0, that the DLL containing the _Parser
function is named HTTP10.DLL, and that the parser is active at startup.

A more detailed description of these parameters will be given later in the text (in the
section describing the BAIKONUR.INI file).

You can have one and the same protocol parser assigned to several ports, so that it
would “listen to” all of them. Thus, apart from port 80 (assigned to the HTTP protocol
by default), you can declare an additional HT TP port as follows:

[Baikonur.Protocol]
http:80 = HTTP/1.0, HTTP10.DLL, _Parser, On
http:8080 = HTTP/1.0, HTTP10.DLL, _Parser, On

The following example illustrates how the FTP protocol can be assigned to port 21:

ftp:21 = FTP/1.0, FTP.DLL, Parser, On

When making the assignment(s), see to its that only one protocol parser is assigned
to any given port.

The HTTP protocol can be supplemented with the SSL (Secure Sockets Layer) data
encryption mechanism. For this mechanism to function properly, you must (a) have
the SSL certificates file available, and (b) connect the protocol as shown in the
following example:

http:443 = HTTP/1.0, HTTP10.DLL, Parser, On, SSL

The path to the SSL certificates file is specified in the CertificateFile parameter of
the [Baikonur] section of the BAIKONUR.INI file.

Sections (Virtual Servers)

As can be understood from the foregoing paragraph, BAIKONUR has the capability
of supporting several protocols, which the user accesses through different ports.
However, the server can also be addressed in different ways (by using its symbolic
Internet address, the name of the host computer name in the local network, or the
numeric IP address). It would therefore be helpful if the server’s administrator could
somehow differentiate various name-port combinations, and could assign a unique
set of parameters (aliases, clients and file types) for each of them. If the administrator
wants to have a set of parameters defined for a certain name-port combination, he/
she must organize a new section (otherwise known as a virtual server) in the server
settings, and specify the necessary settings there.

We recommend that you define a separate section for at least every additional
protocol. In this way, you will be able to assign a separate home directory for each
of the sections. Otherwise, a situation may occur whereby HTTP and FTP would
provide access to one and the same directory, which is not always acceptable.
Virtual servers are defined with the help of the AliasSection (AliasSection0 |
AliasSectionF) parameter in the [Baikonur.Alias] section of the BAIKONUR.INI file.
For every virtual server in the BAIKONUR.INI file you must specify its name, address-
port combination, Administrator and Anonymous users (to be discussed later),
authorization scheme, server’s response to certain file type requests, and other
options. The set of aliases (to be discussed later) is specified in the aliases file.

In the way of an example, let us see how an FTP virtual server can be organized
(assuming that the FTP protocol is assigned to port 21).

First, we define a virtual server in the [Baikonur.Alias] section of the BAIKONUR.INI
file:

[Baikonur.Alias]

AliasSection=ftp section(:21)

The above declaration means that whenever an attempt is made to access it through
port 21 with the use of any address, the server will employ the settings specified for
the section named FTP_Section.

Next, we specify the server’s response to requests of certain file types (the type of
a file is determined by its extension) in the [Baikonur.Action] section of the
BAIKONUR.INI file:

205

206

[Baikonur.Action]

*.ftp section = , SendSource
ini.ftp section = , AccessDenied

The above declaration means that all files other than files with the INI extension will
be sent to the user. The comma to the right of the equals sign is essential (it
denotes that the optional Mime-Type parameter was omitted).

Then, we go the [Baikonur.Client] section to define the server’s clients and the logic
employed to access the server:

[Baikonur.Client]

section.ftp section = , *Guest id, Basic, On, On, Off,
Ooff

This definition means that the server is accessible to any Anonymous user
(corresponding to the Guest_ID user in the clients file — see below), and that the
Basic scheme will be used for user authentication (for details see the section
describing the BAIKONUR.INI file).

Next, we can specify the following in the aliases file (ALIAS.FIL):

[Alias.Section.ftp Section]
/ = D:\FTP\Public
info = c:\web\info

This means that a client accessing the server using the FTP protocol will have
access to the files located in the D:\FTP\Public directory (and its sub-directories).
You can define more than one alias in this section.

As far as the HTTP protocol is concerned, the settings of the [Baikonur.Client]
section are of considerable importance. In this section you specify whether or not
the user should supply a password to gain access to the server, and whether or not
the Cookies mechanism (important when working with applications) will be utilized.
For details refer to the description of the [Baikonur.Client] section of the BAIKONUR.INI
file.

Aliases

BAIKONUR Web server can provide its clients access to the resources (files and
programs) located in the server’s home directory and its sub-directories. The name
of this directory is specified with the aid of the HomeDirectory parameter in the
[Baikonur] section of the BAIKONUR.INI file.

However, in some cases you would want to allow clients to access resources located
in some other directory or even on a different (possibly network) drive. To enable you
to do so, we have incorporated a special “aliases mechanism” into BAIKONUR.
Every alias is made to correspond to a certain directory on the server’s disk or the
accessible network drive. The appropriate settings are specified in a special aliases
file (named ALIAS.FIL by default).

From the user’s viewpoint, an alias appears as a sub-directory of the server's home
directory. Thus, if you assign the alias info to the directory DANEWS\INFO, the user
would be able to access, say, the file INDEX.HTM by issuing a URL like http://
some_web/info/index.htm.

Itis good practice to assign unique aliases for each individual virtual server. Among
other things, this will allow you to organize, for example, two access areas on one
and the same server. With such an arrangement, the user accessing the server from
an outside world by its symbolic Internet address (such as www.demo.ru, for example)
could be taken to one home directory, but to a different directory if he/she accesses
the server from within the local network using the name assigned to the host computer
in that network (such as WebServ, for example). Thus, you can actually create two,
three or more virtual servers (public and corporate) on one and the same machine,
and arrange so (with the help of appropriate settings) that outside clients would have
no access to the corporate data.

If you specify no aliases for the virtual server, only the home directory (matching the
value of the HomeDirectory parameter of the BAIKONUR INI file’s [Baikonur] section)
will exist for it.

The following example illustrates how two virtual servers that use different sets of
aliases can be created.

First, we define two virtual servers in the [Baikonur.Alias] section of the BAIKONUR.INI
file:

[Baikonur.Aljias]

AljasSection = Public(www.demo.ru:80),
Corporate (WebServ:80)

Then, we specify aliases for the two sections in the
file ALIAS.FIL:

[Alias.Section.Public]

/ = c:\baikonur\home
[Alias.Section.Corporate]
/ = d:\Web\CorpInfo

The above demo specification means that a user accessing the server by the address
www.demo.ru will be taken to the home directory c:\baikonur\home, but to the
directory d:\Web\Corplnfo if he/she accesses the server using the address WebServ.
The aliases specified for one section of the server remain fully invisible when another
section is accessed. The same applies to BAIKONUR server’s default section.
Apart from the above-mentioned type of aliases there exist aliases of two more
types: name aliases and resource aliases. For more information on those refer to
the section describing the format of the aliases file.

207

208

Users

The users accessing BAIKONUR server (the server’s clients) may receive files from
and run various programs on the server. In many situations it is rather important to
determine what access rights a given user can have to files and programs and what
rights a program executed on user request on the server can have. The file access
rights restriction capability can be implemented only when BAIKONUR functions as
a Windows NT service (i.e., uses the Windows NT file system, or NTFS).

We again stress that only files from the home directory of BAIKONUR server and its
aliases (and their sub-directories) are “visible” to a user. It is these “visible” files for
which we can define specific users with specific access rights.

By restricting the access rights of different users to specific files we can deny free
access to certain files unless the user supplies a valid name and a password.

When And How User Access Rights Are Checked

In determining the rights of a client to request certain files and launch certain
application programs, BAIKONUR server makes use of the access rights of
Windows NT system users. This means that whenever it receives a request from an
external client, BAIKONUR server selects one of the system users to correspond to
the calling client. What specific system user is selected depends on the settings of
the clients file and on the name and password supplied by the external client.

In the general case, the way the rights of BAIKONUR server clients are determined
depends on the operating system used and the mode in which the server is operating,
and is accomplished as follows:

¢ when BAIKONUR is running under Windows 95, no check of user access rights
is performed,

¢ when BAIKONUR is running under Windows NT in the debug mode, the external
client and his/her programs are granted the rights of the user who had started
BAIKONUR,;

¢ when BAIKONUR is running under Windows NT as a service and the access
rights check option is disabled, the client (and the programs he/she invokes for
execution) are granted the rights of that service;

¢ when BAIKONUR is running under Windows NT as a service and the access

rights verification option is enabled, the client (and the programs he/she invokes
for execution) are granted the rights defined for that client in BAIKONUR’s clients
file (normally, the file CLIENTS.FIL).

Thus, if you want to have all its access rights restriction capabilities implemented,

your BAIKONUR server must run as a service in Windows NT (NTFS) environment.

The clients file specifies the names and passwords external to the server, along with

the names and passwords of Windows NT system users corresponding to them.

We shall discuss the clients file’s format later in this guide. For now, let us see how

BAIKONUR server is functioning as a Windows NT service when the Check Rights

option (see description of the CheckRights parameter) is enabled.

When a client makes an attempt to access the server, the following takes place.

First, the server checks the name and password, which the client has supplied in

the browser’s user authorization dialog form. This form is displayed if:

* anonymous entry to the server is prohibited (see description of the
AnonymousEntry parameter);

¢ the client has issued the SU command to the server;

¢ aprogram on the server has requested a password.

If anonymous entry to the server is enabled, the username and password will be
blank.

Next, BAIKONUR checks if there are non-blank name and password matching those
supplied by the client in the clients file (CLIENTS.FIL).

* If matching username and password are found, client-initiated programs are
granted the rights of the Windows NT system user corresponding to the given
username and password.

¢ If matching username and password are not found (or are blank), the external
client receives the rights of an Anonymous user, i.e., the Windows NT system
user defined as Anonymous (see below).

* Ifthe external client has logged on to the server as an Anonymous user and no
system user had been defined as Anonymous, the newcomer and his/her
programs receive the rights of a service.

* |f no match to the external username and/or password is found and the
AutoRegistration mode is disabled (see description of the AutoRegistration
parameter), the caller will be denied entry to the server.

Rights Of Users And Their Programs

Thus, we have outlined when and how the server performs verification of user access
rights.

Clients accessing BAIKONUR server can request files from and/or run programs on
it. However, the clients’ file access rights and the rights of the programs executed
on the server on their request differ.

A client-initiated program receives the rights of the system user specified in the
Token parameter of BAIKONUR server’s clients file (CLIENTS.FIL). If the name or
password supplied by the client does not match the Token parameter settings, the
program receives the rights of a BAIKONUR service.

An external client requesting a file receives the rights of the user group specified in
the Account parameter of BAIKONUR's clients file (CLIENTS.FIL). If the group name
is specified incorrectly or the CheckRights parameter is set to Off (signifying that
the rights verification option is disabled), the client receives the rights of a service.

Administrator And Anonymous

There two special kinds of users (Administrator and Anonymous) of BAIKONUR
server and each of its virtual sections. You can use the server settings to specify
which of the users defined in Windows NT system correspond to these users.

The client who logs on to the sever by specifying the same username and password
as those assigned to the Administrator is allowed to perform some additional functions

209

210

(for example, to shut down the server). If you specify a blank name for the
Administrator (or a name unknown to the system) in the settings, no one will be able
to log on to the server with the rights of its Administrator.

IMPORTANT. The Administrator possesses extended rights only with respect to
BAIKONUR server, but is treated as a conventional user by Windows NT.

All clients who log on to the server without specifying a username or password or
supply a username and password that are not listed in the clients file, are given the
rights of an Anonymous user (see below).

The Administrator and Anonymous are made to correspond to the users defined in
Windows NT system and listed in BAIKONUR'’s clients file. When the ADMIN utility
is employed, they are simply selected from the list of registered users.

AnonymousEntry And AutoRegistration
Combination

The AnonymousEntry and AutoRegistration parameters are specified for every
individual section (virtual server) of BAIKONUR server. Each of these parameters
can be set either to On (enabled) or Off (disabled). By using different combinations
of the AnonymousEntry and AutoRegistration parameters (in that order), you can
change the server’s user access rights verification logic as follows (assuming that
the Anonymous user is defined and exists in the system):

* On, On-the user may enter the server without supplying a name and password
or by supplying a non-existent name and password, and will receive the rights of
the Anonymous user (or, more precisely, the rights of the system user
corresponding to it); if the user supplies a valid name and password, he/she
receives the rights of the corresponding system user.

* On, Off—the user may enter the server without supplying a password, but his/
her rights will then be limited to those of the Anonymous user; or the user may
supply the name and password defined in the clients file, in which case he/she
will receive the rights of the corresponding system user; the input of an arbitrary
name/password combination is illegal.

* Off, On and On, Off — attempts to enter the server without supplying a valid
name/password combination are treated as illegal; the user must supply the
name and password exactly matching those specified in the clients file, in which
case he/she will receive the rights of the corresponding system user

CheckRights Parameter

The fairly straightforward access rights verification logic outlined above is supplemented
by yet another parameter that has a meaning for the NT file system. Referred to as
CheckRights, this parameters determines whether or not the rights of a client to
access some specific files will be checked. The file access rights are determined by
the Account parameter assigned to the given type of clients in BAIKONUR's clients
file.

Clients File

The format of the clients file will be described in detail later in this guide. At this
point, we shall merely discuss its purpose from the point of view of managing user
access rights.

The clients file establishes a correspondence between the external name and
password and Windows NT system user. In the general case, a client who enters
the server by supplying an external name/password combination matching that
specified in the clients file receives the same rights to access files and run programs
as the corresponding system user.

In addition to that, the clients file makes it possible to identify external clients by
their IP address rather than by the name/password combination alone (see description
of the clients file). This means that clients attempting to enter the server by supplying
identical name/password combinations but from different locations can be granted
different access rights. To accomplish this, each “external client - system user” pair
is assigned a unique identifier.

Cookies Mechanism

In situations when multiple clients work with applications, any Web server faces a
difficult problem of distinguishing between individual clients. At first glance, a client
can be non-ambiguously identified by his/her IP address. However, this is not quite
S0, because several clients belonging to a remote LAN may be working with Web
server via a proxy server. In such a case they will all have the same IP address, and
might well interfere with one another when attempting to access one and the same
application.

To distinguish between such clients, BAIKONUR utilizes the Cookies mechanism,
whereby BAIKONUR and the remote browser sort of “mutually agree” to add
information unique for a given client to the data they are exchanging.

This mechanism can be useful and important in situations when clients are working
with applications, but may cause problems in communicating with older browser
versions.

If there is no special need in using it (such as when clients do not use any applications
or it is sufficient to identify external clients by their IP address only), the Cookies
mechanism can be disabled by setting the Cookies parameter to Off.

The Cookies parameter exists for every section (virtual server) of the BAIKONUR
server employing the HTTP protocol.

File Types And Server’s Response

Clients have the right to request files of various types from the server (using different
client programs). The server’s response to such requests varies according to the
type of these files. Thus, the server will launch an executable (application) program
if a file with the EXE extension is requested, but will send an image to the client if
the latter requests a file with the extension GIF. In the general case, the way the
server reacts to incoming client requests can be grouped as follows:

211

212

* send file (SendSource)

* deny access (AccessDenied)

¢ run an application program (RunApplication)
¢ run CGl program (RunCGl)

* execute a server command (CL/)
You can make the server respond to certain file types in a specific way by appropriately
changing the settings of the [Baikonur.Action] section of the BAIKONURL.INI file.
The format of the [Baikonur.Action] section’s parameters will be discussed later, in
the section describing the structure of the BAIKONUR.INI file.

IMPORTANT. You cannot use the ADMIN utility supplied with this version of
BAIKONUR to alter the parameters of the [Baikonur.Action] section.
The type of a file is determined based on its extension. You can define the server’s
response to a file request for virtual servers and for individual aliases. The server
uses a specific-to-general algorithm to check file types. Thus, if the BAIKONUR.INI
file contains a record like

[Baikonur.Action]

ini = , AccessDenied

exe text/html, RunApplication
exe/cgi-bin = text/html, RunCGI

the server will send an “Access Denied” message to the client if the latter requests
any INI file, will run an executable program if an EXE file is requested, and will run a
program in the CGI mode when the client requests an EXE file via the CGI-BIN alias.
Let us consider another example of specifying the server's response to client requests.
Normally, the server is required to run an appropriate program when it receives a
HTTP request for an EXE file, but should send that same EXE file to the client (rather
than run the program) when it is requested using the FTP protocol. Therefore a
separate virtual server (named FTP_Serv, for example) is usually created to handle
FTP requests. The server’s response to different-protocol EXE-file requests can then
be specified as follows:

[Baikonur.Action]
exe = text/html, RunApplication
exe.FTP_Serv =, SendSource

There are two approaches to the use of the AccessDenied feature:

* “Anything that is not allowed is prohibited”. This approach requires that you
explicitly specify what files (and from where) a client is allowed to receive. The
BAIKONUR.INI file will then look something like this:

[Baikonur.Action]

* = , AccessDenied

* ftp = , SendSource

exe = text/html, RunApplication
exe/cgi-bin = text/html, RunCGI
htm = text/html, SendSource
html = text/html, SendSource

txt text/plain, SendSource
gif image/gif, SendSource
jpg = image/jpeg, SendSource
jpeg = image/jpeg, SendSource
xls = binary/excel, SendSource

* “Anything that is not prohibited is allowed”. This approach requires that you
explicitly specify what files a client is not allowed to receive. The BAIKONUR.INI
file will then look approximately as follows:

[Baikonur.Action]

* = , SendSource

exe = text/html, RunApplication
exe/cgi-bin = text/html, RunCGI
ini = , AccessDenied

fil = , AccessDenied

* These parameters will be described in greater detail later, in the section devoted
to the format of BAIKONUR'’s system files.

The format of the [Baikonur.Action] section allows you to do some tricks by arranging
so that when a request for a file of some specific type is received the server would
run an application which can itself decide what (if anything) should be sent to the
client. Specifically, BAIKONUR'’s ISAPI support capability is based on the use of
this trick: when it receives a request for a DLL file, the server runs a special program
that loads the ISAPI DLL, accesses its functions and returns the appropriate response.
Here is an example of how this is achieved:

[Baikonur.Action]
dll = , RunApplication, isapiter.exe, **?

The above declaration means that when a DLL file request is received (for instance,
like http://some_web/counter.dll?id=601&name=User_12), the server will run the
ISAPITER.EXE program using a command line in which the name of and path to the
requested DLL file and the request parameters will be specified (the string following
the question mark “?” in the URL).

Tasks And Settings Examples

It might be difficult for you to immediately grasp BAIKONUR server’s extensive
administration capabilities, especially as far as the management of client access
rights is concerned. To make things easier for you, let us consider some practical
examples. More detailed recommendations on how a BAIKONUR Web site can be
created and how its security can be ensured will be discussed later in this guide.

213

214

Default Settings

BAIKONUR is ready to perform its functions as a Web site server immediately after
installation. However, it is still desirable to make some changes to BAIKONUR'’s
default settings before you practically use it.

After installation, the server supports the HTTP, HTTPS, FTP, Gopher and Finger
protocols; the sections for the HTTP, FTP and Gopher protocols (and their home
directories) are created; the Administrator and Anonymous users for each of these
sections are defined (although the clients corresponding to them may not yet be
defined in your system); the clients have access to BAIKONUR demo applications
and several CGl and ISAPI examples; and the Yandex system is installed (in Russizn
version), although the documents are not indexed yet.

We recommend that you make the following changes to BAIKONUR server’s standard
operating mode (default) settings:

* replace the server's home page and remove the demo programs;

* remove the CGl and ISAPI program examples;

* disable all protocols you do not intend to use (for instance, HTTPS and Gopher);
¢ create a userin Windows NT and make it correspond to Anonymous;

* index documents for use with the Yandex system (in Russian version).

A Public Server

Suppose you want to build a Web site that will contain public-accessible information.
Access to the site is to be by the HTTP or FTP protocol. No other protocols is
planned to be used. The site may contain applications operating with SQL server
databases.

To achieve this, you must do the following:

* Disable (remove) all unused protocols, leaving only the HTTP (port 80) and FTP
(port 21).

* Create a Windows NT user (say, with the name WEB_USER and the password
WEB_PASS), place this user in the Users group, and check if that user will have
the right to launch database applications.

¢ Create the following record in the clients file (by editing it directly or using the
ADMIN utility for the purpose):

[Guest ID]
Name =
Password =
Token = WEB_USER:WEB PASS
Account = Users

* Change the [Baikonur.Client] section’s default settings as follows:

[Baikonur.Client]
AnonymousEntry = On

AutoRegistration = On
CheckRights = On
Cookies = On
Anonymous = *Guest ID

A Corporate Server

Suppose now that you wish to create a Web site, which no clients can access
unless they supply a certain valid username/password combination. Only the HTTP
protocol is planned to be used to address the site.

To achieve this, follow these steps:

¢ Disable (remove) all unused protocols, leaving only the HTTP (port 80).

* Create a Windows NT user (say, with the name WEB_USER and the password
WEB_PASS), place this user in the Users group, and check if that user will have
the right to launch database applications.

* Create Nrecords in the clients file for every registered client as illustrated below
(you can do it with the aid of the ADMIN utility):

[Smith.ID]
Name = Smith
Password = Djkrjd
Token = WEB USER:WEB_PASS
Account = Users

[Falkon.ID]
Name = Falkon
Password = Qwert
Token = WEB_USER:WEB PASS
Account = Users

* Change the [Baikonur.Client] section’s default settings as follows:

[Baikonur.Client]
AnonymousEntry = Off
CheckRights = On
Cookies = On

With these settings, the client will be queried for a username/password combination
when he/she first tries to log on to the server, and will be denied access to the server
information if a valid combination is not supplied.

A Combination (Public/Corporate) Server

This case is essentially a combination of the former two, whereby one and the same
a Web site contains both public and corporate information (and applications). This
situation calls for the use of sections (virtual servers). With this approach, you can
arrange so that public information would be accessible through one port (say, port 80),
while corporate information would be accessible through another port (say, port 8000).

215

216

All you basically need do to achieve this is to create a section corresponding to
port 8000 and deny access to it without a password, and leave port 80 as the default
one.

To do so, proceed as follows:

* Perform all the steps as for a public server.
* Add users like you did it for a corporate server.
¢ Create avirtual server for port 8000:

[Baikonur.Alias]
AliasSection = CorpServ (:8000)

[Baikonur.Client]
section.CorpServ=, , Basic, Off, Off, On, On

* Specify aliases for the new section in the ALIAS.FIL file, for example like this:

; corporate server’s home directory
[Alias.Section.Corp. Serv]
/ = d:\corporate\info

To enter your corporate server, the user will now have to specify (or click on the link
to) a URL of the form http://www.some_web.ru:8000/, and supply his/her name and
password.

Joint Use Of BAIKONUR And Other Web Servers

It may turn out that some Web server other than BAIKONUR (such as Microsoft's
IIS, for example) had already been chosen as your company’s standard Web server.
Even so, BAIKONUR can still be successfully employed as an application server.
You simply assign the HTTP protocol to an unused port, and it is this port that all
clients wishing to work with applications will be accessing BAIKONUR through.

If your company has had some experience in developing ISAPI logic for a MS IIS
server, BAIKONUR is again the most sensible choice for handling ISAPI tasks,
because the techniques it utilizes to work with ISAPI DLLs is safer from the point of
view of Web server security and stability.

Server’s Command Language

BAIKONUR server's command language is a set of standard pre-defined lexemes,
which the server interprets as commands to execute certain procedures.

In the HTTP protocol, the server commands are issued as part of the URL, for
example, like http://some_web/as.

Listed below are the commands accessible to all clients of the server.

* as- command to output a list of aliases on the
server,
* ts- command to output a list of active tasks in the

client’s current session (in HTML standard);
* application.! - command to terminate the application;

o I- command to terminate all applications;

* application.!?terminate - command to terminate the application
(terminate process);

¢ 1?terminate - command of forcibly terminate all applications;

* su- command to change the name of the server's
client;

¢ *exit - command to end the client’s current session;

¢ sl- command to output a list of sessions with

identical usernames but different IP addresses
(this command is accessible only to the clients
registered in Windows, and is inaccessible to
Anonymous users);

* echo - command to echo the input information.

The following commands are accessible only to the server's Administrator:

* *cs- command to output a list of the server’s clients;
* *addalias - command to add a new alias;

* *edalias - command to edit the alias;

* *addclient - command to register a new client;

¢ shutdown - command to shut down the server;

(* - notimplemented in current version).

Formats Of BAIKONUR'’s System Files

BAIKONUR server employs the following system files:
* initialization file (BAIKONUR.INI);

* aliases file (normally, ALIAS.FIL);

¢ clients file (normally, CLIENTS.FIL);

¢ SSL protocol certificates file (normally, CRTFCT.FIL).
The formats of these files are described below.

BAIKONUR Server Initialization File

The first thing that a BAIKONUR server does after it is started up is to read its
initialization file, where values of the server’s various parameters are stored. The
initialization file is located in Windows home directory and is named BAIKONURL.INI.

Purpose Of Initialization File

The following parameters of BAIKONUR server can be defined in its initialization file:

* the server’s system directory, i.e., the directory in which various service
components of the server (such as protocol DLLs) are located;

217

218

level of the server’s diagnostics (system-generated messages can be outputto a
file or to the console.).

You can also use the initialization file to:

determine the amount of diagnostic information to be output by your BAIKONUR
server;

assign a different name to the server’s log file and specify its type;

determine the timing parameters of connects and the degree of multisequencing
of requests;

determine the server's home directory and its home page;
determine the file describing the server’s virtual directories;

re-assign names and passwords of the server's Administrator and Anonymous
users;

determine the types of files that can be processed by the server, and specify the
way these files are to be processed.

Structure Of Initialization File

BAIKONUR server’s initialization file is a conventional Windows initialization file.
Normally, it consists of the following five sections:

[Baikonur] - basic parameters of the server,

[Baikonur.Protocol] - settings of the server’s ports;

[Baikonur.Alias] - settings for the system of virtual directories and re-
assignments (aliases);

[Baikonur.Action] - settings for the processed file types and handlers;

[Baikonur.Client] - settings for the access rights management system.

The [Baikonur] section must always be the first one in the initialization file.

Parameters of [Baikonur] Section

The [Baikonur] section of the initialization file is used to define the following

parameters of the server:
1. LogLevel parameter
determines the level of warning messages to be output to the log file;
2. LogFile parameter

determines the name and type the log file;
3. LogDlrectWrite parameter
determines the method to be used to output system messages to the log

file;
4. SystemDirectory parameter

declares the server’s system directory;
5. HomeDirectory parameter

declares the server’'s home directory;
6. HomePage parameter

declares the server's home page;
7. Dirlnfo parameter

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

specifies the name of the file with information on the FTP directory;
Agents parameter

determines the number of pending request handlers;

Managers parameter

determines the number of pending I/O handlers;

TimeResolution parameter

determines the time interval between successive server status checks;
TimeClientinactive parameter

determines the time interval during which an open but inactive connect to
a client may exist;

TimeClientDisactive parameter

determines the time interval during which the server is to keep trying to
send data to the client;

MaxClientConnections parameter

determines the maximum number of client connections that may be
concurrently opened;

MaxClientApplications parameter

determines the maximum number of active applications per client;
Applications parameter

determines the maximum number of applications that can be concurrently
active on the server;

Application TimeOut parameter

determines the time interval after the expiration of which the active
application is to receive a “timeout” signal,

ApplicationStart TimeQut parameter

determines the time interval during which the server must wait for a response
from the application being started and should not terminate its process;
PassiveDisable parameter

determines the method to be used to open a data transfer channel for an
FTP client;

Station parameter

declares the name of the server’s virtual workstation;

DeskTop parameter

declares the name of the server’s virtual desktop manager;
SocketNoDelay parameter

determines the data send delay mode to be used to generate a full IP
package;

SocketRcvBuf parameter

determines the size of the system’s IP package receive buffer;
SocketSndBuf parameter f

determines the size of the system’s IP package transmit buffer;
SessionTimeOut parameter t

determines the time interval after the expiration of which the non-active
client’s session is to be terminated;

ClientsFile parameter

declares the name of the file describing the system clients;
CertificateFile parameter

219

220

27.

determines the name of the file containing the server’'s SSL protocol
certificates;

MaxReceiveBuffer parameter

determines the maximum size of the first block of received data.

LoglLevel Parameter

The LogLevel parameter determines the level of warning messages to be output to
BAIKONUR's log file. This parameter must always precede the log file’s name and
type declaration (the LogFile parameter).

The following warning message levels are distinguished:

1 ’

10,

FatalError

fatal error messages; these are displayed onscreen in the form of a STOP
dialog box regardless of the log file settings; a fatal error results in
termination of the server.

CriticalError

critical error messages; a critical error is one that may make the system
inoperable.

Error

other error warning messages.

OK

message signifying that an operation has been successfully executed.
Warning

error or access rights violation message.

Message

messages output to the server’s log file by clients.

Application

messages output to the server’s log file by applications.

Debug

debug messages.

Debug1

design-time debug messages.

ALL

log all parameters.

All valid options in a parameter line should be comma-separated. If the ALL value is
specified and is followed by a list of messages, the latter will be not be output.
Example Syntax:

;output messages OK, FatalError and Message:
Loglevel = OK, FatalError, Message

;output all messages except OK and Message:
Loglevel = ALL, OK, message

LogFile Parameter

The LogFile parameter determines the type and name of the system log file. Two

logging methods are supported:

1. FILE - output to a hard disk file;

2. CON[SOLE] - output to the system console.

The log file's type and name should be comma-separated. The name of the file
specified for CONSOLE-type output is used as the console window’s header. If no
LogFile parameter is specified, only messages of the FatalErrorlevel are output to
the system console.

Example Syntax:

;do not create a log file
Loglevel =

;create log as a desktop console with “Baikonur” header
Loglevel = CON, Baikonur

;create log as a file named “Report. txt”
;in server’s default directory
Loglevel = FILE, Report.txt

NOTE. The CONSOLE file type should be used only when BAIKONUR server is
started up in the debug mode (with the switch “-d” in the command line) or when it is
started up by a user manually as a service and the service system option is set so
as to enable that service to communicate with the console.

LogDirectWrite Parameter

The LogDirectWrite parameter determines the method to be used to output system
messages to the log file. The default method is parallel output of messages to the
log file with the help of request handlers. The default value of this parameter is Off.
Example Syntax:

LogDirectWrite = On

SystemDirectory Parameter

The SystemDirectory parameter determines the directory containing BAIKONUR
server's service components, such as libraries of the server administrator and libraries
of the server-supported protocols. Once this parameter is declared, the directory
defined in it becomes BAIKONUR'’s current system directory, with the result that
the latter becomes the “default” directory for all subsequent file declarations in the
server’s NI file.

Example Syntax:

SystemDirectory = d:\Baikonur\Sys

The above declaration means that all the file names mentioned in the INI file will be
searched for in the directory Baikonur\Sys on disk d:

HomeDirectory Parameter

221

222

The HomeDirectory parameter determines the server’s home directory, i.e., the
directory which the resource files will be read from in situations when no directory is
specified in the URL.

Example Syntax:

HomeDirectory = d:\Baikonur\HOME
The above declaration means that when a URL like http://www.baikonur/advert.htm
is received, the file advert. htm will be searched for in the directory d:\BaikonunHOME.

HomePage Parameter

The HomePage parameter determines the name of the file to be loaded by default,
i.e., the name of the file which the server will address in situations when the client
tries to access a directory or an alias without explicitly specifying the name of the
requested resource.

Example Syntax:

HomePage = Home.htm

The above declaration means that when the server receives a URL like http://
www.baikonur.com/, the latter will be parsed as http://www.baikonur.com/Home.htm,
and the client will see the page Home.htm.

Dirinfo Parameter

The Dirinfo parameter determines the name of the file containing information on FTP
directories. When a directory is viewed, this file will be loaded by default after the
directory’s header.

The default value of the parameter is dirinfo.

Example Syntax:

DirInfo = readme. txt

Agents Parameter

The Agents parameter determines the number of pre-launched active threads (referred
to as IP agents hereinafter) designed to service the tasks related to the handling of
client requests and requests to output information to the log file.

The minimum number of IP agents is 2; the maximum number is 64.

Example Syntax:

Agents = 16

Managers Parameter

The Managers parameter determines the number of pre-launched active threads

(referred to as IP managers hereinafter) designed to service the I/O operations through
currently open connects to clients.

The minimum value of the parameter is 2; the maximum value is 64.

Example Syntax:

Managers = 16

TimeResolution Parameter

The TimeResolution parameter determines the time rate at which to run the server
status monitoring procedure (designed to check how long the open connects are
being used, how long the clients are working with the server, as well as the server’s
other time-related parameters).

The value of this parameter is specified in milliseconds. The minimum value is limited
to 20 milliseconds; the maximum value is unlimited.

Example Syntax:

TimeResolution = 5000

TimeClientlnactive Parameter

The TimeClientlnactive parameter determines the time interval during which the
connect to a client may exist pending the arrival of a request, or how long the
connect may be kept alive after a request is processed (i.e., till the arrival of a new
request in situations when the connect is of the Keep-Alive type).

The value of this parameter is specified in seconds.

Example Syntax:

TimeClientInactive = 120

TimeClientDisactive Parameter

The TimeClientDisactive parameter determines the time interval during which the
server is to keep trying to send data to the client with whom it has a normal connect.
TimeClientDisactive is counted from the instant of the most recent successive attempt
to send a portion of data to the client.

The value of this parameter is specified in seconds.

Example Syntax:

TimeClientDisactive = 120

MaxClientConnections Parameter

The MaxClientConnections parameter determines the maximum number of open
connections to one client that may concurrently exist on the server.
Example Syntax:

MaxClientConnections = 5

223

224

MaxClientApplications Parameter

The MaxClientApplications parameter determines the maximum number of active
applications per client. Shared applications are counted on a per-client basis.
Example Syntax:

MaxClientApplications = 15

Applications Parameter

The Applications parameter determines the maximum number of applications that
can be concurrently active on the server. Shared applications are counted as a
single application for all the clients.

Example Syntax:

Applications = 60

SessionTimeOut Parameter

The SessionTimeOut parameter determines the time interval that must expire before
the client session that has no active connects or running applications shall be
terminated by the server.

SessionTimeOut is counted from the instant of the most recent activity of the client
with respect to the server. The value of this parameter is specified in seconds. The
minimum value is 60; the maximum value is 3600.

Example Syntax:

SessionTimeOut = 300

ApplicationTimeOut Parameter

The ApplicationTime Out parameter determines the time interval after the expiration
of which the active application is to receive an “application timeout” signal.
ApplicationTimeOut is counted from the instant of the most recent activity of the
application with respect to the server, and is specified in seconds.

Example Syntax:

ApplicationTimeOut = 120

ApplicationStartTimeOut Parameter

The ApplicationStartTimeOut parameter determines the time interval during which
the server must wait for a response from the application being started and should
not terminate the application process if the client issues an
application_name.!?terminate command.

The value of this parameter is specified in seconds.

Example Syntax:

ApplicationStartTimeOut = 120

PassiveDisable Parameter

The PassiveDisable parameter determines the method to be used to open a data
transfer channel foran FTP client (i.e., it enables or disables the server's FTP service
passive mode). By default, this parameter is turned off (implying that the service
passive mode is enabled).

Example Syntax:

PassiveDisable = Off

Station Parameter

The Station parameter determines the name of the server’s virtual workstation (i.e.,
the name of the station on which the server manager window will be opened to
execute applications in the service mode).

The default name of the workstation is BaikStaO0.

Example Syntax:

Station = BaikStal

Desktop Parameter

The Desktop parameter determines the name of the server’s virtual desktop manager
to execute applications in the service mode.

The default name of the desktop manager is Workshop.

Example Syntax:

Desktop = Workshop

SocketNoDelay Parameter

The SocketNoDelay parameter determines whether or not the data send delay mode
is to be used to generate a full IP package using the Nagle algorithm. The default
value of this parameter is On (implying that the Nagle algorithm is not used).
Example Syntax:

SocketNoDelay = On
SocketRcvBuffer Parameter
The SocketRcvBuffer parameter determines the size of the system’s IP package

receive buffer. The default value of this parameter is 8192.
Example Syntax:

225

226

SocketRcvBuffer = 8192

SocketSndBuffer Parameter

The SocketSndBuffer parameter determines the size of the system’s IP package
send buffer. The default value of this parameter is 8192.
Example Syntax:

SocketSndBuffer = 8192

ClientsFile Parameter

The ClientsFile parameter declares the name of the file containing the coded names
of the server’s clients, paths to the their home directories, and information needed to
keep a session log. The clients file is created and updated by the server every time
aclient is registered on the server.

Example Syntax:

ClientsFile = c:\winnt40\system\userscfg.fil

CertificateFile Parameter

The CertificateFile parameter determines the name of the file containing the server’s
SSL certificates.
Example Syntax:

CertificateFile = c:\winnt40\system\crtfct.fil

Parameters of [Baikonur.Protocol] Section

The [Baikonur.Protocol] section of the initialization file is used to declare the ports,
libraries and parameters of the protocols used by the server.

The general format of the declaration is as follows (optional parameters are enclosed
in square brackets]:

protocol-specifying part of URL:port =
protocol name and version, dll name,

protocol parser name,

[port _activity at startupl], [security code],
[security scheme], [client identification_scheme],
[administration capability]

In this declaration:

protocol-specifying_part_of URL

is the abbreviation defining the name of the protocol (for example: http, ftp);

port

is the decimal value of the port assigned for the protocol (for example: 80 for http, or
21 for ftp);

protocol_name_and_version

is the name and version of the protocol (for example: HTTP/1.0);

dil_name

is the name of the DLL file containing the protocol parser. If the path to it is omitted,
the file is searched for in the directory specified in the SystemDirectory parameter;
[port_activity_at_startup]

determines whether or not the port is to be listened to at startup; valid value is On or
Off. the default value is On;

[security_scheme]

is the port access security scheme at transport level (for example: SSL);
[client_identification_scheme]

is the scheme employed to identify the client by the port at protocol level (for example:
Basic); the default value is Basic;

[administration_capability]

determines whether or not administration of the server can be performed through the
given port; valid value is On or Off, the default value is On;

Example Syntax:

http:80=HTTP/1.0,HTTPlO.DLL,_Parser
http:8080=HTTP/1.0,HTTPlO.DLL,_Parser,Yes,,Basic,Yes
https:443=HTTPS/l.O,HTTPlO.DLL,_Parser,Yes,SSL,Basic,Yes

ftp:23=FTP/1.0,ftp.dll, FTPParser
Here is an example of how a restricted-access SSL port can be organized:

[Baikonur]

CertificateFile = c:\winnt\system\security\server.pen

[Baikonur.Protocol]

https:443=HTTPS/l.O,HTTPlO.DLL,_Parser,Yes,SSL,Basic,Yes

NOTE. You can use different ports (or even several ports per protocol) and
combinations thereof with libraries and protocol parser functions.

The need to carefully describe the supported protocol(s) in the server’s initialization
file stems from the fact that BAIKONUR Web App Server has a special feature
known as “dynamic protocol switching” capability. This capability makes it possible
to connect similar-level file transfer protocols (such as http, ftp, smtp, nmtp, etc.) to
a BAIKONUR server.

227

228

To have a new protocol connected to the server, it is essential to correctly specify
the corresponding parameters of that protocol and its parser function. When the
server receives a URL request, the part of the URL string following the protocol name
(acronym) goes to the parser function for further parsing.

The procedures employed to develop new protocols and connect them to the system
are described in the documentation supplied with senior versions of BAIKONUR.
The version under discussion merely allows you to connect any protocols developed
with the aid of the tools available in BAIKONUR’s senior versions.

Parameters of [Baikonur.Alias] Section

The [Baikonur.Alias] section of the initialization file is where the server’s directory
system parameters and substitute file names (aliases) are specified.

AliasTranslation Parameter

The AliasTranslation parameter is used to enable or disable the alias translation
feature. By default, this feature is enabled (On).
Example Syntax:

AliasTranslation = On

AliasFile Parameter

The AliasFile parameter declares the name of the file describing the server’s alias
system. By default, this file is searched for in BAIKONUR’s system directory. The
format of the aliases file will be discussed later in the text.

Example Syntax:

AliasFile = alias.fil

AliasSections Parameter

(AliasSection, AliasSection0-AliasSection9, AliasSectionA-AliasSectionF)’
The AliasSections parameter declares the names of the systems of aliases for the
server’s sections (otherwise called virtual servers).

A section name is a string of 0 to 16 characters containing no blanks or commas.
Each name declared in a section belongs to that section and its corresponding list
of aliases in the AliasFile file. Each section can be linked to a list of comma-separated
“server_name:server_port” declarations. If the port is not specified, the section for
the given server name will be associated with any port. If the server name is omitted,
then the section will be associated with the given port.

The algorithm employed to search for and determine the necessary section is as
follows.

if server name is declared, then

{

search for section by server name and valid port
if the section is not found, then
search for section by server name and default port

}

if section is not found, then

search for section without server name and valid
port
if section is not found, then

search for section without server name and default
port
if section is not found, then

return default section

return thus found section
The general syntax of the AliasSections parameter is as follows:

AliasSections = [section_ name]
([server name]: [port name]

e, -« .« 0y AL, .. 1
Example Syntax:

AliasSection = HTTP_ Server (www.baikonur.demo.ru
80, www.demo.ru : 80) , HTTP CorporateServer
(baikonur : 80 , localhost : 80) FTP_Server (: 21),
anyserver (anyserver:, Default Server (:)

NOTE. The section name should also be taken into account in file type declarati
(see below).

[Baikonur.Action] Section

ons

The [Baikonur.Action] section is where we declare the processed file types, specify

handlers to process files of these types, and set up their parameters.

File Type Declarations In [Baikonur.Action] Section

The type of a file and the method to be employed to process it while servicing a

request are determined by the server based on the file’s extension specified in
request, or the results of interpretation of the appropriate alias.

the

There exist the following file action identifiers which the server is capable of

interpreting:

AccessDenied

deny access to resource;

SendSource

send out static resource;

RunApplication

run application using the BAIKONUR server interface;

229

230

RunCGI

run application using the CGl interface;

CLI

use file extension for generating a server command.

The general format of a file type declaration is as follows (optional parameters are
enclosed in square brackets):

file extension [. section_name] [/alias] = MIME-type,
file action_identifiers [, handler program name]
[,handler program_switches]

In this declaration:

file_extension

string denoting the file name’s extension (for example: txt or html); the extension
string should contain no dots, blank or special characters; blank characters, if any,
are replaced with the percent character (“%”);

section_name

is the name of the server’s section within which this declaration is valid;

alias

is the auxiliary identifier string (protocol-dependent); it is interpreted as the name of
the alias for the HTTP protocol;

MIME-type

denotes the file’s MIME-type (for example: text/plain or text/html);
file_action_identifiers

identify the actions to be performed with the file; these identifiers are taken from the
list of valid identifiers (for example: SendSource or RunApplication);
handler_program_name

is the name of the handler program, i.e., the program that must be activated on the
server when a file of the given type is accessed (for example: myhttp.exe);
handler_program_switches

are the auxiliary switches for the handler program, i.e., a program execution mode
string to be appended to the handler program’s command line as its first parameter
every time a request for the given resource is received.

Remarks On File Extension Declarations

A file extension in the form of a single asterisk (“*”) is used to denote (a)_the action
which the server must perform when the client attempts to address a file of an
undeclared type, or (b)_the MIME-type, which the server should automatically assign
to the file if its extension is unknown. The inclusion of a handler name and its
switches makes the server run the program designed to handle unknown extensions.
When the extension (“*") is declared for one of its sections, the server limits
interpretation of the extensions to within the given section.

Remarks On Handler Program Declarations

You can use some special characters to declare handler programs, including:

denotes a file name without extension; when this character is included in
the declaration, the name of the file (without extension) and its directory

path are passed to the handler program’s command line;

denotes a file name with extension; when this character is included in the
declaration, the name of the file complete with its extension and directory

path are passed to the handler program’s command line;

denotes a parameter; when this character is included in the declaration,
the parameter specified in the request (i.e., the string following the “?”
character in the URL) is passed to the handler program’s command line.

For example, the declaration wap=text/plain, runapplication, *.exe will make the
server run the program program.exe when an attempt is made to access the resource
program.wap.
And another example. If we make the declaration app=text/plain, runapplication,
processit.exe, *, a call to the resource Xproc.app will make the server run the program

processit.exe” with path/Xproc as the command line’s first parameter.

Notes On Use of Directory Paths In Handler Name
Declarations

* If no directory path is specified in the handler name, the server will run the program

using the directory (or its alias) specified in the resource locator.

* Aliases are interpreted by the server before it interprets the handler programs.

Example Syntax:

;the following declaration will make the server
;run BAIKONUR applications
exe = , RunApplication

;with the following declaration, the server
;will run CGI applications

;when request is made from CGI-BIN alias
exe/cgi-bin = , RunCGI

;the following declaration will make the server
;post an “Access Denied” message to the client
;whenever he/she tries to access an .INI file
ini = , AccessDenied

;with the following declaration, the server
;will be allowed to send .INI files to clients
ini = text/plain, SendSource

231

232

Parameters Of [Baikonur.Client] Section

The [Baikonur.Client] section serves to declare the basic parameters employed to
authenticate clients and verify their access rights.

AuthenticationScheme Parameter

The AuthenticationScheme parameter determines the default client authentication
scheme.

Example Syntax:
AuthenticationScheme = Basic

NOTE. Inits currentversion, BAIKONUR supports only one client authentication
scheme known as Basic. The AuthenticationScheme parameter has been introduced
to permit future add-ons.

AnonymousEntry Parameter

The AnonymousEntry parameter is employed to enable or disable the server’s
anonymous client entry mode.

When this mode is enabled, any anonymous client will be able to request and
receive information from the server without supplying a username and a password.
With this arrangement, the system will treat every new client as having the name
defined in the Anonymous parameter (see below).

If the AnonymousEntry mode is disabled, the server will query every new client for a
valid name/password combination before granting him/her access to the server's
resources.

The default value of the AnonymousEntry parameter is On (enabled).

Example Syntax:

;anonymous entry is enabled (default setting)
AnonymousEntry = On

;the following declaration disables anonymous entry
AnonymousEntry = Off

AutoRegistration Parameter

The AutoRegistration parameter is employed to enable or disable automatic
registration of new clients on the server.

When the AutoRegistration mode is enabled, any anonymous client will be allowed
to register on the server with the access rights and under the name declared in the
Anonymous parameter.

The name supplied by the client in the browser’s user authentication dialog will
actually be treated as the name of a separate session of an Anonymous client.

If the AutoRegistration mode is disabled, only the users registered in Windows NT
system will be allowed access to the server’s resources.
The default value of the AutoRegistration parameter is On (enabled).

Example Syntax:

;automatic registration is enabled (default setting)
AutoRegistration = On

;automatic registration is disabled
AutoRegistration = Off

CheckRights Parameter

Depending on its setting, the CheckRights parameter enables or disables verification
of the rights of users to access files at the operating system level. By default, the
CheckRights mode is enabled when the server runs under Windows NT, is always
disabled when the server runs under Windows 95, and is also disabled when the
server is used in the debug mode.

Example Syntax:

;user access rights verification is enabled
CheckRights = On

;user access rights verification is disabled
CheckRights = Off

Administrator Parameter

The Administrator parameter declares the name and password of the server
administrator. Note that the administrator name and password are never explicitly
specified in the server’s initialization file. Instead, the latter contains a text string in
which both the name and the password are encrypted. In situations when the server
is required to support several user authentication schemes, a string encrypted with
the use of a different algorithm may be assigned to the Administrator parameter.
There are two basic Administrator declaration formats:
1. Explicit declaration of the administrator's name and password encrypted
with the use of the Base64 algorithm:
Administrator = <Basic-Cookie>
2. Declaration of the administrator's name and password via reference to the client’'s
ID in the ClientsFile parameter:
Administrator = *<client_ID>
where client_ID is the ID of the client or section in the clients file.
The default name and password of the administrator are “Administrator” and
“Baikonur”, respectively.
To alter the administrator’'s name and password encrypted with the use of the Base64

233

234

algorithm, use the “Make COOKIE” utility (MkCookie.exe) that comes with
BAIKONUR, and substitute the resulting value for <Basic-Cookie> in the Administrator
parameter.

NOTE. DO NOT use colon (“:”) in client names. REMEMBER that client names
and passwords are CASE-SENSITIVE.

Example Syntax:

Administrator OWxhZGRpbjpPcGVUIFNl1c2Ft

Administrator = *ADMIN ID

The first of the above Administrator parameter values has been obtained by copying
the string of characters from the “Basic-Cookie[24]” line of the MkCookie.exe utility
(ref. Figure 1); in this case, the name of

* Additional section names were introduced because lines in the alias file have but
a limited length.
the server's administrator has been changed to “Aladdin” and assigned the password
“Open Sesam’.

Boaloe Q0 1 O D00 Lpevlin Leckoelicies.

ller'™==2” “1achitstnare

1Teer 2Tamc: Aladdia

Teagmrab s Opoa 302k

Fomr Taota[BD OO R EGR L P VW TP A2 L
L'ezgs EX b ootk

Figure 1. MkCookie.exe Utility’s Sample Dialog

Anonymous Parameter

The Anonymous parameter declares the default name and password of the server’s

client (anonymous user).

There are two basic formats of the Anonymous declaration:

1. Explicit declaration of the anonymous client’'s name and password encrypted
with the use of the Base64 algorithm:

Anonymous = <Basic-Cookie>

2. Declaration of the anonymous client’s name and password via reference to the
client’s ID in the ClientsFile parameter:

Anonymous = *<client_ID>

where client_ID is the ID of the client or section in the clients file.

By default, anonymous clients are assigned the name “Anonymous” and no

password.

To alter the anonymous client’'s name encrypted with the use of the Base64 algorithm,

use the “Make COOKIE” utility (MkCookie.exe) that comes with BAIKONUR, and

substitute the value it returns for <Basic-Cookie> in the Anonymous parameter.

NOTE. DO NOT use colon (*:”) in client names. REMEMBER that client names

and passwords are CASE-SENSITIVE.

Example Syntax:

Anonymous = Tm9uYW11O1NObyBweWF0JyB1dG11Z292

Anonymous = *GUEST_ ID

The value of Anonymous parameter can be obtained by copying the string of
characters from the “Basic-Cookie[32]” line of the MkCookie.exe utility, as shown in
the sample dialog in Figure 2. Here, the name of the server’s anonymous client has
been changed to “Noname” and assigned the password “Sto pyat’ utiugov’. Once
declared, this username/password combination will verified every time a new client
first accesses the server from his/her browser.

Make Sl 15D Mpevien Tshnlopiss,

Jdons e T an cleot aare.

How Moo, ootz

P, Bl pogal’ ol

Zagc- s G2 Tond e vy LD U bor L Fmear e 0w 1318 Ll CFLLACZHD

—PFir =ET L enil -

Figure 2. MkCookie.exe Utility’s Sample Dialog

Section Parameter

The Section parameter is used to specify the server’s settings for a specific section.
The general syntax for the Section parameter declaration is as follows:

Section.section name = administrator,
anonymous_client name 64, scheme,
anonym entry, autoregistr, check rights

In this declaration:
section_ name

is the name of the server’'s section (similar to the AliasSection parameter of the
[Baikonur.Alias] section);

administrator

denotes the name and password of the server administrator encrypted with the use
of the Base64 algorithm, or reference to the section’s administrator declared in the
ClientsFile parameter (similar to the Administrator parameter);
anonymous_client_name_64

denotes the name and password of the section’s anonymous client encrypted with
the use of the Base64 algorithm, or the corresponding reference to the ClientsFile
parameter (similar to the Anonymous parameter);

scheme

is the scheme employed to authenticate the server’s clients (similar to the
AuthenticationScheme parameter);

anonym_entry

enables or disables anonymous entry of clients to this section of the server (similar
to the AnonymousEntry parameter);

autoregistr

235

236

enables or disables automatic registration of new clients on the server (similar to the
AutoRegistration parameter);

check_rights

enables or disables verification of clients’ file access rights at the operating system
level (similar to the CheckRights parameter);

Example 1
Declaration with the use of the Base64 encryption algorithm:

Section.HTTP CorporateServer = QWxhZGRpbjpPcGVuIFNlc2Ft,
TmO9uYW1101NObyBweWF0JyB1dG11Z2292, Basic, No, Yes, Yes

Example 2
Declaration with the use of references:

Section.HTTP CorporateServer = *admin id, *anonymous_id,
Basic, No, Yes, Yes

Example 3
Registration of anonymous clients is disabled:

Section.HTTP CorporateServer = *admin id, *anonymous_id,
Basic, No, Yes, Yes

Example 4
Registration of anonymous clients is disabled:

Section.HTTP CorporateServer = QWxhZGRpbjpPcGVuIFNlc2Ft,
TmOuYW1101NObyBweWF0JyB1dG11Z292, Basic, No, Yes, Yes

Example 5
No administrator is declared for the section - section administrator functions are
disabled:

Section.HTTP CorporateServer = ,
TmO9uYW1101NObyBweWF0JyB1dG11Z2292, Basic, Yes, Yes, Yes

Example 6

Neither administrator nor anonymous client is declared for the section - section
administrator functions are disabled; password is always requested; the
anonym_entry parameter is ignored:

Section.HTTP_ SecureServer = , , Basic, Yes, Yes, Yes
Aliases File
The server’s aliases file makes it possible to define virtual directories for the server
and assign virtual names for its resources, as well as re-assign the server's home

directory and its home page.
BAIKONUR uses aliases of the following three basic types:

¢ directory alias;

* resource alias;

* name alias.
Directory Alias

The directory alias mechanism enables you to substitute a certain name (alias) for
any directory named according to the accepted Windows directory naming
conventions, and subsequently use that alias to access the corresponding resource
on the server.

Example 1

The directory alias declared as news=d:\public\newspapers\news will allow the
clients to receive the file sports.html located in the directory
\public\newspapers\news on the server disk d: by issuing the URL http://web/
news/sports.html from their browsers.

Example 2

The directory alias declaration news=public\newspapers\news will allow the clients
to receive the file sports.html from the sub-directory \public\newspapers\news of
the server’s home directory by issuing the URL http://web/news/sports.html from
their browsers.

Resource Alias

The resource alias mechanism enables you to substitute a certain name (alias) for
any server resource named according to the accepted Windows file haming
conventions, and subsequently use this alias to access that resource on the server
(as well other resources in the same directory).

While functionally similar to a directory alias, a resource alias also allows you to re-
define the default name of a resource (specified in the HomePage parameter).

Example 1

The alias declared as news=d:\public\newspapers\news\sports.html will allow
the clients to receive the file sports.html located in the directory
\public\newspapers\news on the server disk d: by issuing the URL http://web/
news from their browsers. Other files located in that directory will then be also
accessible via the same alias, for example: http://web/news/records.htm.

Example 2

The alias declaration news=public\newspapers\news\sports.html will allow the
clients to receive the file sports.html from the sub-directory
\public\newspapers\news of the server's home directory by issuing the URL http:/
Iweb/news from their browsers. Other files located in that sub-directory will then be
also accessible via the same alias, for example: http://web/news/records.htm.

237

238

Name Alias

The name alias mechanism enables you to substitute a certain name (alias) for any
file named according to the accepted Windows file nhaming conventions, and
subsequently use this alias to access that file on the server.

In its effect, a name alias is equivalent to a straightforward substitution of a different
name for the name of the file requested in the URL.

Every name alias should open with an asterisk (*) to distinguish it from aliases of
other types.

Example 1

The alias declaration *sports.html=sports.exe allows you to re-define the name
sports.html in the directory or the alias specified in the URL and equate it to the
name sports.exe. With this arrangement, the server will run the application program
sports.exe when it receives a URL that includes the string public/sports.html.

Example 2

The alias declaration *sports.html=web_app\sports.exe allows you to re-define
the name sports.html and equate it to the file name sports.exe in the sub-directory
web_app of the directory defined by the HomeDirectory parameter or by another
alias specified in the URL. With such an arrangement, the server will run the
application d:\Baikonur\web_app\sports.exe whenever the file sports.html is
requested (provided that the server’'s home directory has been defined as
d:\Baikonur), and will run a program from the subdirectory web_app of the directory
public when public/sports.html is specified in the URL.

Example 3

By declaring the alias *sports.html=c:\web_applications\sports.exe, you can re-
define the name sports.html and equate it to the file name
c:\web_applications\sports.exe. Then, an attempt to request the file sports.html
will make the server run the application c:\web_applications\sports.exe, but will
lead to a name conflict if a request like public/sports.html is issued.

Format Of Aliases File

The format of the aliases file is similar to that of standard Windows initialization
files, and consists of several sections that define aliases for each individual section
(virtual server) of the BAIKONUR server.

The general format of the aliases file is as follows:

[Alias.Section [.section_ name]]
alias name = link

where

section_name

specifies the name of the section in the initialization file; this name must be equivalent
to the section name declared in the AliasSections parameter of the [Baikonur.Alias]
section of BAIKONUR’s initialization file (BAIKONUR.INI);

alias_name

specifies the name of the alias; this name may include any characters allowable by
URL naming conventions; all blank characters should be replaced with the percent
character (“%”), and the percent character proper should be replaced with the double
percent character (“%%”); the opening asterisk (“*”) in the alias name serves to
indicate that this is a file name alias, and is omitted from the name when the server
parses the aliases file; during this process, backslash characters (“\") are converted
to slash characters (“/”), and a single slash (/") is interpreted as the alias for the
server’'s home directory (see description of the AliasHome parameter); any opening
and closing slash (/") or backslash (“\’) characters are ignored and excluded from
the alias name;

link

specifies the path to the directory, file, or re-defined name; the file and directory
names in the link should have the same format as Windows file names; the names
of files located on other workstations of the network are not allowed to be used
unless network-mapped disks are available;

When parsing the aliases file, the server checks whether or not any aliases have
been defined for the server. If no matching directory or file is found, the alias name is
ignored, and a corresponding error message is output to the Log file. The availability
of name aliases on the server is not checked unless a direct reference to a file is
made.

If the alias link opens with a link to a disk root directory (the slash character “/”), the
default system disk (defined in the HomeDirectory parameter) is assumed. If the
opening slash is missing, then the disk and directory defined in the HomeDirectory
parameter are assumed. If the names of the server's home directory and its home
page have been changed in the aliases file, the interpretation of the alias links
relative to the HomeDirectory settings changes immediately after the server's home
directory and its home page are re-defined.

Alias Definition Examples

;Default section aliases
[Alias.Section]

pub = c:\public

appl = d:\web\applications

;FTP aliases

;FTP section should be defined in BAIKONUR. INI
[Alias.Section.FTP]

/ = c:\ftp\public

info = c:\ftp\info

download = d:\pub\download

BAIKONUR Clients File

From the point of view of BAIKONUR system, a client (user) is an object described
by a set of mandatory and auxiliary attributes. Descriptions of the system clients
are stored in a special fixed-format file, which is read and parsed when necessary.
By editing individual records in this file, the system administrator can control the

239

240

server’s response to the requests of both individual clients and groups of clients
(through the use of templates). For instance, the administrator can specify a “mailbox”
or alogon directory for each individual client.

Clients File Format

The attributes of a client are recorded on separate lines. A line may contain several
similar-purpose attributes, but they should be comma-separated.

A comments line may begin with any non-alphabetic character.

The user ID should be unique.

“[“user_id"]’
#mandatory parameters

“name” W=/ username

“password” “=" password

“account” “=" Guests “,” Power Users “,” “@”
194.87.*% . *

;7 N@” 194.88.10-20.*

#optional parameters
“token” W=/ Guest:

#auxiliary parameters
“property” “=" string

Aclient normally supplies his/fher name and password when requested by the browser.
Since itis quite possible that several clients might use identical username/password
combinations, the “account’ field is employed to verify the clients’ access rights to
the file system resources and to identify clients by their IP addresses in situations
when their names coincide. This line contains a list of identifiers for the operating
system’s user groups which a client attempting to access a file will be identified as
belonging to. BAIKONUR temporarily “adds” such a client to these groups.

The administrator can utilize standard tools (“WinFile” or “Cacls” in Windows NT, or
“‘chmod” in UNIX) to control and manage user access rights. Before sending the
contents of a file to the client’s display, BAIKONUR will check the ACL (Access
Control List) corresponding to that file in order to verify whether identifiers of the
groups specified in the “Account” field are listed there. If successful, BAIKONUR will
generate a common access mask and display the file’s contents, or return an error
message otherwise. One or several masks for the clients’ IP address can be added
to the list. Every mask should begin with the commercial “at” character (‘@”). The
addresses thus added to the ACL will be utilized for client identification purposes
only at the username/password verification phase.

If, for instance, the username and password are found to be valid, further search for
the client record will be performed based on his/her IP address. This makes it possible
to distinguish between “local”’ and “external” users and specify different server settings
for them.

In situations when the clients file may or should include several records on unnamed
users (clients that have no name and password), such records will be applied to

non-authorized users in accordance with the address masks. Such unnamed users
can be used by the registration program as a template prepared by the system
administrator. Suppose, for example, that the administrator has prepared several
non-authorized user templates for various groups of IP addresses. Now, a client
making a first attempt to access the server’s resources without specifying his/her
name and password will be checked against one of the non-authorized user templates
according to his/her IP address. If such a client wishes to specify his/her name, he/
she will have two options: either to supply the attributes of a client known to the
system, or else go through the registration procedure. In the latter case, the registration
procedure will modify the currently applied non-authorized user template (by adding
the new name and password, generating a corresponding unique identifier and,
possibly, verifying the IP mask), and will create a new record describing the newly
registered client.

Bulky as the above procedure may seem, it does ensure that the resulting record
will function satisfactorily until the administrator reviews the list of the newly registered
clients and makes appropriate corrections (if necessary).

The “token” field is employed for the purposes of authorization of user-initiated
processes. In the above example, the processes will be initiated by the user named
“Guest’, which should be “known” to the system. If the “token” field is omitted, the
user will be able to execute a task with the rights of a service, provided that he/she
has the right to invoke the task’s file for execution (these rights are determined by
the settings of the “account” field).

BAIKONUR Server Operating Modes

Depending on its settings and types of the operating and file systems, BAIKONUR
server can function in one of four operating modes. These modes are as follows:

1. Fully-fledged operating mode.

2. Functional mode.

3. Debug mode.

4. Personal operating mode.

The fully-fledged operating mode is possible only when BAIKONUR server is functioning
under control of operating system Windows NT 3.51 or above on disks with a file
system that supports verification of file access rights at the system user groups
level (such as the NTFS).

With BAIKONUR running in this mode, you can establish and control the rights of
clients to read, edit and delete the server’s resources down to an individual file,
based on specifications of the access rights of the system group which a given
client belongs to.

The functional operating mode can be implemented when BAIKONUR server is
functioning under control of operating system Windows NT 3.51 or above on disks
with a file system that supports verification of file access rights at the system level
(such as FAT).

In this mode of operation, verification of access rights to the server resources at the
operating system level is not supported. However, you can still exercise administration
of the clients’ access rights at the logical level by making use of Internet address
masks, properties of specific clients, and settings of the server’s alias system and
its resource utilization system (in much the same way as in the fully-fledged operating

241

242

mode).

When running in the debug mode, BAIKONUR does not allow you to control file
access rights at system level or use Internet address masks to control clients’
access rights. Besides, in this mode the rights of the tasks executing on the server
are limited to those of the server proper (thus, if the server functions as a system
service, its tasks will likewise have the rights of a service). BAIKONUR changes to
the debug mode in the following situations:

1. the server was started with the “-d” switch in the command line;

2. the server was started under control of Windows 95 operating system;

3. the file describing the server’s authorized clients (Clients.fil) was not declared,
was not found, or was incorrectly specified.

In the personal operating mode, there is no pre-defined way to access the server
from the outside world via Internet. However, applications that do support the extended
data exchange protocol can still execute calls both to another local application on
the server machine and to a remote application. Besides, such applications can
initiate the server’s static protocols to permit TCP/IP-access to the server.

Files Needed To Start BAIKONUR Server

The following files are required to start BAIKONUR server:

1. Server’s kernel file (Baikonur.exe).

2. Server’s administration tools library (BaikADM.dIl), which should be located in
the same directory as the Baikonur.exe file.

3. Server’sinitialization file (Baikonur.ini), which should be located in the home
directory of Windows operating system.

4. File describing the server’s registered clients (Clients fil).

5. File describing the system of aliases employed by the server (Alias. fil).

6. File(s) describing the protocol(s) supported by the server (one or more protocol
DLLs).

7. SSL certificates file (SERVER.PEM), if the server employs a privacy enhanced
mail protocol.

BAIKONUR will terminate the startup sequence if it fails to locate the BaikADM.dlI
file in the server’s startup directory or finds that its version is other than that of the
server. BAIKONUR will also terminate the startup sequence if it is unable to find the
server’s initialization file.

BAIKONUR Server Initialization Sequence

BAIKONUR initialization sequence begins with the server (a) allocating a memory
area in which to store its variables and pointers to the functions exported from the
server kernel, and (b) parsing the switches included in the startup command line,
identifying the operating system type, and determining the startup directory.

Once it determines the operating system type, the server switches to the debug
mode (if it runs in Windows 95 environment, the server does so regardless of whether
or not the “-d” switch was specified at startup). The startup directory becomes the
server’s default directory (i.e., the directory where the server will look for the aliases
file, the clients file and any additional DLLs until its system directory is specified).
After its variables are initialized to their default values and the administration library

(BaikADM.dII) is located, the server invokes the administration function ADM() from
that library, and passes to it an event flag signifying commencement of the server
initialization, as well as a pointer to the server’s data structure entry point.

The function ADM() compares the server’s version with that of the BaikADM.dlI
library.

If the versions are found to coincide, the function ADM() exports the log file write
function from the BaikADM.dll library, and attempts to locate and read the initialization
file Baikonur.ini.

If the versions are found to differ or the file Baikonur.ini could not be found, the
function ADM() terminates further execution, generates a corresponding error message
and returns a zero value to the calling function, with the result that server program
gets closed.

The server initialization file (Baikonur.ini) is searched for in Windows home directory
(i.e., the directory containing the kernel of Windows NT or Windows 95 operating
system).

The file Baikonur.ini is essentially a text file. Its pattern follows the standard format
accepted for Windows initialization files. That is, the file is divided into individual
sections. The name of each section starts from the beginning of a new line and is
enclosed in square brackets. Section parameters are separated from their
corresponding values by the equals sign (“="). The semicolon character (*;”) denotes
comments (i.e., anything contained between the comments character and the end
of the current line is treated as comments).

After the initialization file is opened, the function ADM() attempts to read and parse
its individual sections.

The first section in the Baikonur.ini file should be the [Baikonur] section, where
system settings for all subsequent sections of the file should be specified. In addition
to that, the [Baikonur] section is employed to specify such information as:

* types of messages to be output to the server’s Log file;
¢ type and name of the server’s Log file;

* server's system directory;

* server's home directory;

* name of the authorized clients file;

* name of the SSL certificates file.

Once the server’s initialization file has been read, the initializing function attempts
to locate and read the authorized clients file (Clients.fil), if the server runs in the
debug mode.

The file Clients.fil is searched for either in the server’s startup directory (this is also
called the server’s system directory, and can be re-assigned in the server initialization
file), or using the access path to the corresponding files explicitly specified in the
Baikonur.ini file.

If the file Clients fil is not found or none of the server clients is correctly declared
there, BAIKONUR will switch to the debug mode (in which any clients are allowed to
log on to and register with the server, and no verification of their file access rights is
performed).

After all accessible initializing information has been read, the function ADM()

243

244

terminates with a positive result, and control is returned to the server. Using the data
it receives, the server then attempts to initialize the system of supported protocols
in the following sequence:

* creates a window in which to receive messages related to the list of tasks being
serviced (task orders list);

* initializes the system’s TCP/IP sockets support library (winsock.dll);

* runs the declared number of task-executing threads (also called task handlers,
or agents);

* runs the declared number of I/O servicing threads (also called I/O handlers, or
managers);

* opens the protocol libraries and searches them for protocol parsers;

* generates orders to process requests arriving to the corresponding ports and
adds them to the tasks orders list.

If no protocols are declared in the Baikonur.ini file or no protocol library files are
found, or if all the declared protocol ports are already used in the system by other
programs, the server switches to the so called personal operating mode (in which it
will be accessible only to those local applications which support the extended data
exchange protocol).
After initialization is completed and the task servicing system is built, the server
again invokes the function ADM() from the Baikonur.dll library using a command line
parameter that signifies completion of the initialization process. When invoked with
such a parameter, the function ADM() determines the task and function of the system
timer, opens the file describing the system of aliases (Alias.fil), and attempts to
interpret it relative to the directory declared as the server’'s home directory.

If the file Alias.fil cannot be found or opened, there will exist only a root alias (coinciding
either with the server's home directory as it is declared in the [Baikonur] section of
the initialization file or, if no home directory is declared, with the system directory)
for all the server sections declared in the Baikonur.ini file.

Once it finishes reading the aliases file, the function ADM() terminates and returns
a corresponding code, which the server then uses to either switch to the active state
or shut down.

How To Organize Access To Server From Network

All you need do to organize access to the server from a network is to connect the
computer with Windows NT operating system (or Windows 95, although this is not
recommended) installed on it to Internet or your local network, install the BAIKONUR
software, and make the appropriate settings. This is practically all it takes to start
using BAIKONUR as a web server. If you also want to be able to develop BAIKONUR
applications, you will need Borland Delphi or Borland C++ Builder.

Contact Your ICP To Gain Access To Internet

To get your BAIKONUR Web server connected to Internet, contact your Internet
service provider (ISP). The provider will give you the IP address of your server, the
sub-network mask, and other essential attributes.

If you intend to employ BIAKONUR merely as an Intranet server in your local network,
there is no need to resort to the services of an Internet service provider, for you can
make all the necessary settings yourself.

Before You Install BAIKONUR

If you already have a suitable operating system (like Windows NT Workstation,
Windows NT Server or Windows 95) installed on your computer, you can install
BAIKONUR from the installation diskettes. Or you may prefer to copy the contents
of these diskettes to your hard disk and perform installation from there. If your
computer is already connected to Internet, information from your Web server will be
available to other Internet users immediately after you complete the installation
procedure and set up BAIKONUR’s directories and aliases as necessary. Normally,
most of the default settings are acceptable for your information to be readily accessible
to Internet/Intranet users without any further modifications.

This part of the guide describes general requirements to BAIKONUR installation and
explains how you can best configure your operating system in preparation to this
installation.

Requirements To Installation

To install BAIKONUR, you will need to have the following:

¢ Computer with a minimal configuration (sufficient to ensure proper functioning of
the operating system)

* Windows NT Workstation, version 3.51 or (optimally) 4.0, or Windows 95 (if you
work at home), of Windows NT Server 3.51 or4.0.

* Transmission Control Protocol/Internet Protocol (TCP/IP). This protocol is a
standard component of all the operating systems mentioned above. To set up
and configure the TCP/IP protocol, open the Network folder in the Control Panel.

* A floppy-disk drive (if you install BAIKONUR from diskettes) or a copy of
BAIKONUR's installation diskettes on your hard disk.

* Enough free space on your hard disk to accommodate all your BAIKONUR Web
server’s files and information and support its log files. We strongly recommend
that you use Windows NT File System (NTFS) to allocate the files used by
BAIKONUR.

To have your information published in Intranet, you will need to have the following:
* A network adapter card and a connection to your local network.

* A Windows Internet Name Service (WINS) or Domain Name System (DNS) server
installed on the Intranet computers. Although this step is optional, it does allow
the network clients to employ a friendly and easy-to-understand name system
instead of having to fiddle with numeric IP addresses.

To have your Web site published in Internet, you must do the following:

¢ Establish a connection with Internet and post the IP address supplied by your
Internet service provider (ISP).

245

246

* Registeryour IP address with the DNS. This step is optional, but it will allow your
clients to use a friendly and easy-to-understand name system rather than the
rather awkward numeric IP addressing technique. For example, demo.ru is the
registered domain name allocated to our Epsylon Technologies company in
Internet. Within this domain, we chose www.demo.ru to be the name of our World
Wide Web (WWW) server.

Most of ISPs can register a domain name for you.
Configuring Windows NT

You must configure the network settings of your Windows NT system so that your
Web server could work in the network. We recommend that you use more serious
security settings than those set by default. This is important if you want to preclude
attempts of an unauthorized access to your server.

Most of the settings we shall speak about below can be viewed and modified with
the help of the Network application program in the Control Panel.

Configuring TCP/IP Protocol

Install the TCP/IP protocol for your operating system and the necessary
communication utilities.

Thus, if you use a Dial-Up IP, you will need to install the utility for dialing to your
Internet service provider’s host machine. If you wish to make your computer accessible
via Internet, your service provider must allocate a dedicated IP address, a sub-
network mask and the gateway computer’s IP address for your server. By default, it
is assumed that the service provider's computer via which your server computer
receives all Internet traffic shall be the gateway computer.

NOTE. Ifany Internet services had already been installed on your computer, either
delete them or thoroughly study your BAIKONUR server’'s administration capabilities
to avoid possible conflicts. Although BAIKONUR server is compatible with other
vendors’ Internet software (such as Microsoft Information Server or Netscape
FastTrack Server) and can run concurrently with them on one and the same machine
without conflicts, this option requires careful configuration of the entire system on
your part.

Choose a domain name (also called host name) for your Web site. Of course, your
Web server can also be accessed by its IP address (for instance, like http://
192.177.55.12/default.htm), but it is much more convenient to do so using a registered
domain name (for example, like http://www.demo.ru/home.htm). Ask your Internet
service provider to register your domain name.

Configure your system so that your domain name would correspond to the IP address
of your computer. Once you do so, Internet users will be able to address your Web
server simply by entering your server’'s domain name in the Location field of their
browsers.

In Intranet, you may use both the DNS and WINS names for addressing your server.
However, your network should then include computers with the appropriate server
(DNS or WINS) installed on them, and the client computers should “know” the IP
address of that server to establish a connection. As an alternative to DNS and WINS
servers, you can use the file HOSTS or LMHOSTS, respectively.

To appropriately configure the TCP/IP protocols and make the name of your computer
correspond to its network address, use the Network application in the Control Panel.
In this part of the guide we discuss the basic requirements that virtually all Web
servers should met while working in a TCP/IP network.

Routing Programs and Security Tools

TCP/IP is a routable protocol, which means that every part of the information exchange
system has a specific node address in the network to which data is to be routed.
There exist specialized routing programs designed to connect two networks and
manage the exchange of packets between them. These routing programs verify the
destination address for each packet in one network and, should the addressee
happen to be in another network, route the packet to it.

The routing programs can be configured so that only certain packets would be allowed
to pass through the bridge between the networks. This process is called packet
screening. Packet screening can be used, for example, to deny outsiders access to
the internal computers and resources.

If you use a TCP/IP network, you most probably already have network routing
programs installed. In some case, the Internet service provider installs a routing
program between Internet and your workstation, and you can use that to screen the
incoming and outgoing packets. Please read the relevant documentation to learn
more on how to configure routing programs and similar network security tools.

247

