
i

User Manual for wxWindows 1.68: a portable C++ GUI toolkit

Julian Smart, Anthemion Software

October 1997

i

Contents

1. Introduction ...1
1.1. What is wxWindows? ...1

1.2. Why another cross-platform development tool?..1

1.3. wxWindows requirements ..3

1.4. Availability and location of wxWindows...4

1.5. Acknowledgments..4

2. Resource guide ...6
2.1. wxCLIPS..6

2.2. WinSock for wxWindows..6

2.3. GWX: DevGuide to wxWindows ...6

2.4. wxXPM ..6

2.5. CURSES port ..6

2.6. Imakefiles ..6

2.7. QDB database ...7

2.8. MEWEL ...7

2.9. wxWindows mailing list ..7

2.10. World Wide Web..8

3. Overview and comparison with other GUI models.......................................9
3.1. Windows..9

3.2. Dialog boxes..10

3.3. Menus ...10

3.4. Events ...11

3.5. Keyboard input ..12

3.6. Repainting of windows ...12

3.7. Scrolling...12

3.8. Printing ..13

3.9. Programmatic versus interactive GUI building ..13

3.10. Dimensions..14

3.11. Colour..14

3.12. On-line help ...15

3.13. User preferences ...15

3.14. Interprocess Communication..15

4. Multi-platform development with wxWindows..17
4.1. Code structure ...17

4.2. Include files..17

CONTENTS

ii

4.3. Libraries...18

4.4. Configuration ...18

4.5. Makefiles ...20

4.6. Windows-specific files..21

4.7. Memory models and memory allocation ...22

4.8. Dynamic Link Libraries...23

4.9. Conditional compilation..23

4.10. Building on-line help...23

4.11. C++ issues...24

4.12. File handling ..25

4.13. Large amounts of global data...25

5. Utilities supplied with wxWindows..27
5.1. wxBuilder...27

5.2. wxToolBar ...27

5.3. wxHelp ..27

5.4. hyText ...28

5.5. wxCLIPS..28

5.6. PrologIO ..29

5.7. Tex2RTF ...29

5.8. wxTreeLayout ..30

5.9. wxGraphLayout..30

5.10. wxImage..30

5.11. DIB ..30

5.12. rcParser...30

5.13. MFUTILS ...30

5.14. Colours ..30

6. Bugs and future directions...31
6.1. Bugs..31

6.2. Future directions ..34

7. Tutorial ...36
7.1. The demo programs...36

8. Programming strategies ...41
8.1. Strategies for reducing programming errors ...41

8.2. Strategies for portability ...41

8.3. Strategies for debugging ..41

9. Alphabetical class reference..44

CONTENTS

iii

9.1. wxApp: wxObject ...44

9.2. wxBitmap: wxObject...48

9.3. wxBrush: wxObject ..51

9.4. wxBrushList: wxList..53

9.5. wxButton: wxItem...54

9.6. wxButtonBar: wxToolBar..55

9.7. wxCanvas: wxWindow ...57

9.8. wxCanvasDC: wxDC..68

9.9. wxCheckBox: wxItem...68

9.10. wxChoice: wxItem..69

9.11. wxClassInfo ...72

9.12. wxClient: wxIPCObject...74

9.13. wxClipboard: wxObject...75

9.14. wxClipboardClient: wxObject..76

9.15. wxColour: wxObject ...76

9.16. wxColourData: wxObject..78

9.17. wxColourDatabase: wxObject ..79

9.18. wxColourDialog: wxDialogBox..80

9.19. wxColourMap: wxObject ..81

9.20. wxComboBox: wxItem..82

9.21. wxCommand: wxObject ...86

9.22. wxCommandEvent: wxEvent..88

9.23. wxCommandProcessor: wxObject..89

9.24. wxConnection: wxObject..91

9.25. wxCursor: wxBitmap ..94

9.26. wxDatabase: wxObject...96

9.27. wxDate: wxObject ..101

9.28. wxDC: wxObject ..108

9.29. wxDebugContext ...120

9.30. wxDebugStreamBuf: streambuf..123

9.31. wxDialogBox: wxPanel...123

9.32. wxDocChildFrame: wxFrame ...126

9.33. wxDocManager: wxEvtHandler ..128

9.34. wxDocParentFrame: wxFrame...134

9.35. wxDocTemplate: wxObject...135

9.36. wxDocument: wxEvtHandler ..140

9.37. wxEnhDialogBox: wxDialogBox..146

9.38. wxEvent: wxObject...149

9.39. wxEvtHandler: wxObject ..150

9.40. wxFileHistory: wxObject ...156

CONTENTS

iv

9.41. wxFont: wxObject ..158

9.42. wxFontData: wxObject ...160

9.43. wxFontDialog: wxDialogBox...162

9.44. wxFontList: wxList..163

9.45. wxFontNameDirectory: wxObject ...164

9.46. wxForm: wxObject ...166

9.47. wxFormItem: wxObject...172

9.48. wxFrame: wxWindow ...172

9.49. wxFunction ..180

9.50. wxGauge: wxItem ..180

9.51. wxGroupBox: wxItem ...182

9.52. wxIcon: wxBitmap ..183

9.53. wxHashTable: wxObject...185

9.54. wxHelpInstance: wxClient ..187

9.55. wxIndividualLayoutConstraint: wxObject ..189

9.56. wxIntPoint: wxObject..191

9.57. wxItem: wxWindow ..191

9.58. wxKeyEvent: wxEvent..193

9.59. wxLayoutConstraints: wxObject ...196

9.60. wxList: wxObject ..197

9.61. wxListBox: wxItem ...201

9.62. wxMemoryDC: wxCanvasDC ...205

9.63. wxMenu: wxWindow...206

9.64. wxMenuBar: wxWindow ...209

9.65. wxMessage: wxItem...211

9.66. wxMetaFile: wxObject ..212

9.67. wxMetaFileDC: wxDC ..213

9.68. wxMouseEvent: wxEvent ...214

9.69. wxMultiText: wxText...219

9.70. wxNode: wxObject ...221

9.71. wxObject..221

9.72. wxPageSetupData: wxObject...223

9.73. wxPageSetupDialog: wxDialogBox...227

9.74. wxPanel: wxCanvas...228

9.75. wxPanelDC: wxDC...235

9.76. wxPathList: wxList..235

9.77. wxPen: wxObject ...236

9.78. wxPenList: wxList ..239

9.79. wxPoint: wxObject ...240

9.80. wxPostScriptDC: wxDC..240

CONTENTS

v

9.81. wxPreviewCanvas: wxCanvas..241

9.82. wxPreviewControlBar: wxPanel..241

9.83. wxPreviewFrame: wxFrame ...244

9.84. wxPrintData: wxObject ...245

9.85. wxPrintDialog: wxDialogBox...248

9.86. wxPrinter: wxObject ...249

9.87. wxPrinterDC: wxDC ...250

9.88. wxPrintout: wxObject ...251

9.89. wxPrintPreview: wxObject ..253

9.90. wxQueryCol: wxObject...256

9.91. wxQueryField: wxObject ..259

9.92. wxRadioBox: wxItem..260

9.93. wxRadioButton: wxItem..263

9.94. wxRecordSet: wxObject ...264

9.95. wxScreenDC: wxCanvasDC...275

9.96. wxScrollBar: wxItem...276

9.97. wxServer: wxIPCObject ...277

9.98. wxSlider: wxItem..278

9.99. wxSplitterWindow: wxCanvas...280

9.100. wxString: wxObject ..286

9.101. wxStringList: wxList..297

9.102. wxText: wxItem..299

9.103. wxTextWindow: wxWindow ..302

9.104. wxTimer: wxObject...307

9.105. wxToolBar: wxPanel ..308

9.106. wxTypeTree: wxList ...313

9.107. wxUpdateIterator: wxObject ...314

9.108. wxView: wxEvtHandler...315

9.109. wxWindow: wxObject ...319

10. Functions ...328
10.1. File functions ...328

10.2. String functions ..332

10.3. Dialog functions ...333

10.4. GDI functions...335

10.5. System event functions ..336

10.6. Printer settings...338

10.7. Clipboard functions ..340

10.8. Miscellaneous functions ...342

10.9. Macros...352

CONTENTS

vi

10.10. wxWindows resource functions ..355

11. Classes by category..359
11.1. Managed windows ...359

11.2. Subwindows...359

11.3. Common dialogs..359

11.4. Panel items..359

11.5. Window layout ...360

11.6. Device contexts ...360

11.7. Graphics device interface...360

11.8. Events ...361

11.9. Data structures ..361

11.10. Run-time class information system...361

11.11. Debugging features..361

11.12. Interprocess communication...362

11.13. Document/view framework ...362

11.14. Printing framework ...362

11.15. Database classes...363

11.16. Miscellaneous ..363

11.17. wxString member functions ..363

12. Topic overviews ..367
12.1. Window styles..367

12.2. Run time class information overview ..370

12.3. Document/view overview..372

12.4. Printing overview..377

12.5. Interprocess communication overview..378

12.6. Font overview ..381

12.7. Device context overview...383

12.8. wxApp overview...383

12.9. Bitmaps overview...384

12.10. Dialog box overview...385

12.11. Common dialogs overview ...385

12.12. Constraints overview..388

12.13. Event handling overview ..390

12.14. Toolbar overview..391

12.15. Database classes overview..393

12.16. Debugging overview...397

12.17. wxString overview ..399

12.18. Writing a wxWindows application: a rough guide ..413

12.19. The wxWindows resource system ..414

CONTENTS

vii

12.20. Notes on using the reference ...419

12.21. wxSplitterWindow overview..420

References...423

Index...425

viii

Copyright notice

Copyright (c) 1996 Artificial Intelligence Applications Institute, The University of Edinburgh

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice, author statement
and this permission notice appear in all copies of this software and related documentation.

THE SOFTWARE IS PROVIDED "AS-IS'' AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL THE ARTIFICIAL INTELLIGENCE APPLICATIONS INSTITUTE OR THE
UNIVERSITY OF EDINBURGH BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

1

1. Introduction

1.1. What is wxWindows?

wxWindows is a class library for C++ providing GUI (Graphical User Interface) and other facilities
on more than one platform. It currently supports subsets of Open Look (XView), Motif and MS
Windows (including Windows NT). It contains around 60 classes, with 650 public functions.

wxWindows was originally developed at the Artificial Intelligence Applications Institute, University
of Edinburgh, for internal use on a medium-sized project: a hypertext-based knowledge-
acquisition and diagramming tool called HARDY. wxWindows has been released into the public
domain in the hope that others will also find it useful.

This manual discusses wxWindows in the context of multi-platform development.

Please note that in the following, "MS Windows" often refers to all platforms related to Microsoft
Windows, including 16-bit and 32-bit variants, unless otherwise stated. All trademarks are
acknowledged.

1.2. Why another cross-platform development tool?

wxWindows was developed to provide a cheap and flexible way to maximize investment in GUI
application development. While a number of commercial class libraries already exist for cross-
platform development (such as CommonView and XVT++), none met all of the following criteria:

1. low price
2. source availability
3. simplicity of programming
4. support for GCC (GNU C++)
5. support for interprocess communication

As public domain software and a project open to everyone, wxWindows has benefited from
comments, ideas, bug fixes, enhancements and the sheer enthusiasm of users, especially via the
Internet. This gives wxWindows a certain advantage over its commercial brothers, and a
robustness against the transience of one individual or company. This openness and availability of
source code is especially important when the future of thousands of lines of application code may
depend upon the longevity of the underlying class library. wxWindows is likely to evolve to allow
more sophisticated GUI use on an increasing number of platforms.

In writing wxWindows, completeness has inevitably been traded for portability and simplicity of
programming. For projects which do not need uncompromisingly polished interfaces, this tradeoff
seems well worthwhile given the productivity benefits.

wxWindows currently maps to four native APIs: XView (Open Look), Motif, MS Windows and
Windows NT. Under UNIX, wxWindows has been tested most thoroughly on Sun workstations,
but users have confirmed that it compiles on other machines (including some running UNIX
System V). This covers a very large proportion of machines in use today. An Apple Macintosh
version is being worked on by an external contributor, and an early demonstrator is expected
around September 1994.

In addition to GUI needs, wxWindows also supports a subset of DDE (Dynamic Data Exchange)
on both the PC and UNIX. A simple object-oriented model of clients, servers and connections is
used, making it easy to write programs which communicate synchronously. Under Windows,
other non-wxWindows programs may still communicate with wxWindows programs and vice
versa; under UNIX, non-wxWindows programs just have to conform to a simple protocol when

CHAPTER 1

2

communicating via sockets with wxWindows programs.

On the PC, the tested compilers for wxWindows are Microsoft C/C++ Version 7, Visual C++ 1.5,
Visual C++ 2.0, Borland C++ 4.x, Watcom C++ 10.5 (WIN32 mode). Makefiles for some of these
are provided.

Under UNIX, Sun C++, GNU C++ (GCC) and AT&T C++ and others are known to work with
wxWindows. See also Requirements (page 3).

The importance of using a platform-independent class library cannot be overstated, since GUI
application development is very time-consuming, and sustained popularity of particular GUIs
cannot be guaranteed. Code can very quickly become obsolete if it addresses the wrong platform
or audience. wxWindows helps to insulate the programmer from these winds of change.
Although wxWindows may not be suitable for every application, it provides access to most of the
functionality a GUI program normally requires, plus some extras such as form construction,
interprocess communication and PostScript output, and can of course be extended as needs
dictate. As a bonus, it provides an arguably cleaner interface to XView, Motif and MS Windows
than the native APIs. Programmers may find it worthwhile to use wxWindows even if they are
developing on only one platform.

Here is a summary of some of the advantages of wxWindows:

• Low cost (free, in fact!)
• You get the source.
• Several example programs.
• Over 200 pages of printable and on-line documentation.
• Simple-to-use, object-oriented API.
• No more messing with arcane X window calls under XView or Motif.
• Graphics calls include splines, polylines, rounded rectangles, etc.
• XView-style panel item layout, plus a constraint-based layout option.
• Print/preview and document/view architectures.
• Status line facility.
• Easy, object-oriented interprocess comms (DDE subset) under UNIX and MS Windows.
• Encapsulated PostScript generation under UNIX, normal MS Windows printing on the

PC.
• Virtually automatic MDI support under Windows.
• Can be used to create DLLs under Windows, dynamic libraries on the Sun.
• Support for MS Windows printer and file common dialogs, with equivalents for UNIX.
• Under MS Windows, support for creating metafiles and copying them to the clipboard.
• Programmatic form facility for building form-like screens fast, with constraints on values.
• Hypertext help facility, with an API for invocation from applications.
• wxBuilder for building simple interfaces interactively, and generating C++ code.

And here are some of the important downsides, so you can assess wxWindows's applicability to
your needs:

• No commercial support (but Internet support can be better!)
• XView-style restrictions on parent-child relationships (though these are being relaxed for

non-XView platforms)
• Minimal colourmap support.
• No OLE-2 support as yet.

Figure 1 shows a demo application (described in the tutorial chapter) running under X.

CHAPTER 1

3

Figure 2 shows the demo application running under Microsoft Windows 3.1.

Figure 1: Demo program running under X

Figure 2: Demo program running under Windows 3.1

1.3. wxWindows requirements

To make use of wxWindows, you currently need one or both of the following setups.

(a) PC:

CHAPTER 1

4

1. A 386SX or higher PC running MS Windows or Windows NT.
2. Microsoft C/C++ version 7 or above, or Borland C++ version 3.1 (other compilers may

work).
3. At least 10 MB of disk space.

(b) UNIX:

1. GNU C++ version 2.1 or later, or compatible compiler (such as Sun C++ or AT&T C++)
2. A Sun or other workstation supporting GNU C++ and either XView 3.x or Motif 1.2.x
3. At least 20 MB of disk space.

1.4. Availability and location of wxWindows

wxWindows is currently available from the Artificial Intelligence Applications Institute by
anonymous FTP. FTP to:

ftp.aiai.ed.ac.uk/pub/packages/wxwin

1.5. Acknowledgments

Thanks are due to the AIAI for being willing to release wxWindows into the public domain, and to
my wife Harriet Smart for her patience while I worked on wxWindows after hours.

The Internet has been an essential prop when coming up against tricky XView, Motif and MS
Windows problems. Thanks to those who answered my queries or submitted bug fixes and
enhancements; wxWindows is very much a team effort.

Hermann Dunkel contributed XPM support; Arthur Seaton wrote the memory checking code; Olaf
Klein and Patrick Halke wrote the ODBC classes; Harri Pasanen and Robin Dunn wrote
wxPython and contributed to the wxExtend library.

Markus Holzem write the excellent Xt port. Jonathan Tonberg, Bill Hale, Cecil Coupe, Thomaso
Paoletti, Thomas Fettig, and others slaved away writing the Mac port. Keith Gary Boyce ported
wxWindows to the free GNU-WIN32 compiler, refusing to give up when I suggested taking
shortcuts.

Many thanks also to: Timothy Peters, Jamshid Afshar, Patrick Albert, C. Buckley, Robin Corbet,
Harco de Hilster, Josep Fortiana, Torsten Liermann, Tatu Männistö, Ian Perrigo, Giordano
Pezzoli, Petr Smilauer, Neil Smith, Kari Systä, Jyrki Tuomi, Edward Zimmermann, Ian Brown, and
many others.

'Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van Eijndhoven of
Eindhoven University of Technology. The code has been used in wxGraphLayout with his
permission.

I also acknowledge the author of XFIG, the excellent UNIX drawing tool, from the source of which
I have pinched some spline drawing code. His copyright is included below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify, distribute,
and sell this software and its documentation for any purpose is hereby granted without fee,
provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of M.I.T. not
be used in advertising or publicity pertaining to distribution of the software without specific, written
prior permission. M.I.T. makes no representations about the suitability of this software for any

CHAPTER 1

5

purpose. It is provided "as is'' without express or implied warranty.

wxCLIPS (now distributed separately) builds on NASA's CLIPS expert system shell, a paradigm
of portability and a wonderful piece of (nearly) free software.

6

2. Resource guide

This is a list of other sources of information and software related to wxWindows. For information
of supplementary libraries in the wxWindows distribution, see Utilities (page 27).

2.1. wxCLIPS

wxCLIPS is distributed separately from wxWindows. It is available from the /pub/wxclips directory
of the AIAI ftp site; CLIPS2C, a partial CLIPS to C++ converter, will be made available at the
same location.

2.2. WinSock for wxWindows

Giordano Pezzoli has implemented a WinSock version of the wxWindows DDE implementation.
This code enables client-server applications to be written linking UNIX and PC platforms.

It is available in the /pub/wxwin/contrib directory of the AIAI ftp site. as wxsocket.tar.Z or
wxsocket.zip. Note that this is not necessarily the most up-to-date version.

2.3. GWX: DevGuide to wxWindows

This is a Sun DevGuide to wxWindows generator. It is available in the /pub/wxwin/contrib
directory of the AIAI ftp site, as gwx10.zip. Note that this is not necessarily the most up-to-date
version.

2.4. wxXPM

This package, adapted for wxWindows use by Hermann Dunkel, adds the ability for wxWindows
programs to read in XPM colour bitmaps under both X and Windows. There's a neat little
animation demo, and a large selection of colour pixmaps.

It is available in the /pub/packages/wxwin/tools directory of the AIAI ftp site, in wxxpm, and from
1.61 on, in the main wxWindows distribution itself.

From wxWindows 1.61, support for using wxXPM is built into the wxBitmap class (see the class
reference). There is also a Windows-hosted tool, xpmshow.exe, for showing and converting
between XPM and BMP files.

By default, support for wxXPM is switched off. Edit wx_setup.h to enable wxXPM support.

2.5. CURSES port

Harco de Hilster is working on a CURSES port of wxWindows. A beta is available in the
/pub/packages/wxwin/contrib directory of the AIAI ftp site, as wxcurs.tar.gz. Note that this is not
necessarily the most up-to-date version.

2.6. Imakefiles

Imakefiles are highly flexible in dealing with different sites and configurations. It has been
suggested that wxWindows makefiles should be Imakefiles. Perhaps one day!

Meanwhile, Patrick Albert's Imake kit is in /pub/packages/wxwin/contrib as imake.zip. Note that it
is not up to date with respect to wxWindows, but should give a head start in using Imakefiles.

CHAPTER 2

7

2.7. QDB database

QDB is a user-contributed database that can read and write DBASE files. As the author points
out, the interface has not had much time spent on it. However, it could be a good basis for a
student project.

QDB is available in the /pub/packages/wxwin/contrib directory of the AIAI ftp site as qdb.zip. The
author, Dave Curtis, can be contacted at dcurtis@hgmp.mrc.ac.uk.

2.8. MEWEL

MEWEL is a commercial library from Magma that allows Windows source code to be compiled for
DOS graphics, DOS text and OS/2 text mode. Magma use wxWindows as one of their
demonstrations; a beta of version 1.50 apparently compiled with no modifications.

See below for contact information.

 The MEWEL Window System
Portable User Interface Library for Text and Graphics and Microsoft
Windows

Magma Systems
15 Bodwell Terrace
Millburn, New Jersey 07041
(201) 912-0192 (voice)
(201) 912-0668 (24 hour BBS, USR HST Dual Standard, 9600-1200 baud, N-
8-1)
(201) 912-0103 (fax for orders only)

CIS : 75300,2062. To get to our conference, GO MAGMA.
BIX : magma. Our conference is the 'magma' conference.
Internet : 75300.2062@compuserve.com (preferred) or magma@bix.com.

Thank you very much for expressing your interest in Magma Systems'
MEWEL
user interface library. MEWEL 4.0 gives your application complete
portability
between Microsoft Windows, DOS text, DOS graphics, OS/2 text, UNIX
text,
VMS text, and soon, OSF Motif. Since MEWEL's API is compatible with the
standard Microsoft WIndows API, you can easily port programs between
Win-
dows and any of the environments which MEWEL supports, even if you
already
have existing Windows programs.

Programmers can develop new stand-alone applications using MEWEL, or
can port
their existing Windows applications to any of the platforms which MEWEL
supports.

2.9. wxWindows mailing list

There are discussion and announcements mailing lists for users or potential users of wxWindows.
Mail one of the following addresses to subscribe to the relevant list. These lists are automated.
Send a message with the message body:

CHAPTER 2

8

 subscribe which-list [your-mail-address]

 or

 unsubscribe which-list [your-mail-address]

where which-list is wxwin-users or wxwin-announce, and your-mail-address is your regular email
address if you need to specify it explicitly. To get help on the syntax, send a message with 'help'
in the message body.

If there is a problem, please mail Timothy Peters (tim.peters@nene.ac.uk).

• email wxwin-users-request@babbage.eng.nene.ac.uk to subscribe to wxwin-users
discussion list

• email wxwin-announce-request@babbage.eng.nene.ac.uk to subscribe to wxwin-
announce mailing list

General discussions take place on wxwin-users; wxwin-announce is for people preferring lower
bandwidth, and I will always send announcements to wxwin-users as well as wxwin-announce.
So there's not usually a need to subscribe to both.

2.10. World Wide Web

The wxWindows home page is at:

 http://web.ukonline.co.uk/julian.smart/wxwin

If you wish to set up a local HTML version of the wxWindows documentation, to be viewed with
Mosaic in preference to wxHelp, you can compile Tex2RTF in order to produce the HTML files
from the LaTeX sources. The target 'html' exists in the makefiles for most packages in the
wxWindows toolset, although they will need to be edited to copy the resulting HTML files to a
sensible place.

9

3. Overview and comparison with other GUI models

wxWindows takes elements of other GUI APIs, and adds some elements of its own. Of course, it
cannot hope to cover every (or even one) native API completely. The following sections discuss
different GUI models and compare these with what wxWindows provides.

3.1. Windows

An application presents the user primarily with a series of windows. A window can be made up of
a frame with one or more subwindows. This is like the XView model, rather than Motif or MS
Windows where child windows may be nested to any depth. The frame/subwindow method was
chosen since XView required it, and because it is a useful simplifying assumption, imposing few
restrictions in practise. However, from version 1.61, wxWindows relaxes some of these
restrictions for platforms that allow it. Text windows and canvases may be placed on a panel
under Windows and Motif, and under Windows, Motif and XView wxPanel is a subclass of
wxCanvas, inheriting most of its properties including the ability to draw to a device context. Work
is underway to simulate subwindow nesting under XView.

Note that the splitting of canvas views (as in the Open Look standard and some other platforms)
is not allowed in wxWindows. It is envisaged that this will be eventually be introduced into
wxWindows.

A frame window may be parentless or a child of another frame, and may be iconized. It may have
a menu bar, a row of pull-down menus along the top of the frame. Subwindows within a frame
come in three varieties: the panel, canvas and text subwindow. A panel is used for buttons, lists
and other such user input items, while a canvas is used for drawing graphics such as lines and
shapes. Panel items pass high-level notification of user interaction to the program, whereas any
interaction with objects on a canvas must be programmed at a lower level.

In MS Windows, canvases need to be painted using a handle to a 'device context'. The purpose
of this is to enable the same code to draw into a number of different devices, such as printers,
windows, bitmaps and metafiles. wxWindows also has the notion of a device context, but most
drawing commands may also be directly issued to a canvas for convenience. An application
which implements a function to draw into the base device context, wxDC will be able to pass any
device context object to this drawing function, including wxPostScriptDC,
wxCanvasDC,wxMetaFileDC, and wxMemoryDC.

wxWindows defines several objects required for drawing on canvases: colours, fonts, pens and
brushes. Neither XView nor Motif provides pens and brushes, which in MS Windows allow the
selection of different predefined 'drawing tools' with certain characteristics (line thickness, colour,
fill style etc.). Normally in X there is a limited range of fonts (scaleable fonts are a recent
addition), while in MS Windows an infinite selection of sizes is available thanks to the scaleable
TrueType font system. Under XView and Motif, wxWindows chooses the closest matching font.

Recent releases of wxWindows remove some of the limitations of the panel/canvas separation,
and now wxPanel inherits from wxCanvas, and has its own panel device context for drawing
graphics on. XView does not directly support this model but wxWindows uses lower-level X calls
to implement the functionality.

3.1.1. MDI versus SDI

In MS Windows, a popular technique is to use the MDI (Multiple Document Interface) style, where
the application window has a number of iconizable document windows which fit within it. This can
save clutter on the desktop since iconizing or moving the parent window iconizes or moves all the

CHAPTER 3

10

child windows. MDI contrasts with SDI (Single Document Interface) in which windows are not
constrained within one parent window, and normal practice is to run one instance of the
application per document. Since wxWindows uses the large model, and large model programs
may be limited to one instance at a time (unless only one data segment is used), it makes sense
to offer MDI support. See Memory Models (page 22).

I have decided to include largely automatic, albeit relatively inflexible, support for MDI for these
reasons:

• Since it is likely that wxWindows programmers are writing for multiple platforms, and
only MS Windows supports MDI, they will not wish to spend much or any time
implementing MDI features.

• The difference between writing MDI and SDI applications has been reduced to almost
zero so even the beginner can easily produce MDI programs.

• What wxWindows's auto-MDI cannot handle is hardly worth the extra effort anyway.

In wxWindows, one argument of the frame constructor is used to indicate whether the frame is an
SDI frame, an MDI parent frame or an MDI child frame. The default is to create an SDI frame.
Once MDI frames are created, everything else is automatic, including appending the usual
Window menu option, and moving a child menu to the parent frame when the child frame is
activated. The choice of menu items for an MDI child frame will differ slightly, usually including
menus (such as Quit) which would normally be on the main SDI window, but this only requires a
small amount of extra application code.

An MDI toolbar is supported from release 1.61, by using the wxFrame::SetToolBar member
function.

The demo program mdi shows how a program can easily be made switchable between SDI and
MDI - use the -mdi command switch for MDI operation.

3.2. Dialog boxes

A dialog box is like a panel, with an implicit frame surrounding it. A dialog box may be modal (no
other window in this application is active and the calling program flow is suspended) or
modeless(any window may be interacted with and control returns immediately to the program).
With dialog boxes, creation of separate frames and panels is not necessary, and under MS
Windows, additional functionality is added 'for free', such as tabbing between items. Any panel
item may be attached to a dialog box since wxDialogBox is derived from the wxPanel.

Note that under MS Windows, modal dialogs have to be emulated using modeless dialogs and a
message loop. This is because MS Windows expects the contents of a modal dialog to be loaded
from a resource file or created on receiving a dialog initialization message. This is too restrictive
for wxWindows, where any window may be created and possibly displayed before its contents are
created.

Standard dialogs are provided for printer settings, file selection, short messages, single-line text
string entry and scrolling single-selection lists.

3.3. Menus

Menus are used in menu bars and popup menus. A menu bar is a sequence of pull-down
command menus near the top of the window, usually with a File menu as the first menu. In MS
Windows and Motif, the menu bar is a standard user interface component. Under XView,

CHAPTER 3

11

wxWindows must simulate a menu bar with a series of menu buttons. Under wxWindows for Motif
and MS Windows, but not XView, placing and ampersand before a letter in a menu name causes
it to be underscored and interpreted as a keyboard shortcut. Under XView such underscores are
ignored. The Motif version of wxWindows automatically right-justifies the help menu, if there is
one.

Menu items are identified by integer identifiers, and for menu bars, when a menu item is selected,
the parent frame is notified using the OnMenuCommand member. For popup menus, a callback
function is executed.

3.4. Events

In XView and Motif, events (such as resizing, painting, mouse clicks, button presses) are handled
by a rather arbitrary collection of optional XView and Xlib callbacks. In MS Windows, events are
messages which are handled by a window procedure, or ignored.

In wxWindows, an application's GUI objects mostly receive events by wxWindows calling user-
overridable handlers, such as OnEvent, OnChar and OnSize. Frames can receive OnClose
events from the window manager (X) or system control menu (MS Windows). These events are
handled by the application by deriving new frame classes and overriding the event-handling
member functions.

Panel item notification has to be handled rather differently. In MS Windows, all panel item events
(such as a button press) are sent to the parent window (requiring large case statements to
differentiate the events), and all window events are sent to the relevant window. In XView and
Motif, different types of callback function have to be defined, depending on the event.

In wxWindows, panel items have optional callback functions, but there is only one callback type:
the function takes the object and a command event structure. The class derivation approach
cannot be extended to panel items since it does not make sense to derive a new class for every
individual panel item created.

From wxWindows 1.61, panel items that do not have callbacks defined for them use their parent
panel (or dialog box) to notify events, via the OnCommand virtual member function. This is
essential when loading dialogs and panels from resources, since callback functions cannot be
specified in a resource file. So in such cases, the programmer must derive a new panel or dialog
class in order to override this member function and intercept events. The panel item calling the
function can be identified by giving each panel item a unique name, and using
wxWindow::GetName inside the OnCommand function.

From wxWindows 1.62, all window classes derive from wxEvtHandler, and a window's event
handler, which defaults to point to itself, can be changed without the need for deriving a new
class. This decoupling of event handling code from the window object itself makes it possible to
override behaviour, perhaps temporarily; example applications might be dialog editors and on-line
tutorial systems that need to intercept user input. It also gives another method of handling panel
item input, by setting an event handler object for the panel item or panel item's parent.

3.4.1. The wxWindows event system

From Version 1.5, wxWindows has its own event system. Event classes are derived from the
abstract base class wxEvent (which used to serve as a holder for canvas and panel item events).
An event classencapsulates a range of similar event types. For example, the instances of the
wxMouseEvent class may be generated for a number of event types such as
wxEVENT_TYPE_LEFT_DOWN.

CHAPTER 3

12

There are several motivations for having an explicit representation for events.

Firstly, encapsulating events in structures makes sense compared with passing an event handler
a large number of arguments.

Secondly, user input events may be simulated by sending events; this can be used for
automating GUI testing, and events could (in theory) be stored for later playback.

Thirdly, event handlers can be installed by programs or 'meta-programs' which want to override or
examine program behaviour. For example, special-needs access code could be written to enable
GUI events to be expressed to the user in a non-graphical form. Or, a meta-program could
examine the dialog structure of a running application and output a skeleton help file
corresponding to the application's hierarchy of menus and dialogs, taking some of the donkey
work out of preparing on-line help.

Note that this event system has nothing to do with the decoupling of windowing and event-
handling classes using wxEvtHandler. However, both systems can allow interception of user
input, albeit by different mechanisms.

The event system is meant to be user-extensible so that any GUI-related or application-specific
events may be defined and used in a consistent way. However, it is not yet completed and
documented, and it is expected to evolve over the next few releases. The eventual aim is an
event system which is comprehensive enough to enable wxWindows programs to be tested
automatically using scripts (possibly using NASA's CLIPS as the scripting language -- see CLIPS
(page 28)).

3.5. Keyboard input

From Version 1.5, wxWindows defines platform-independent constants for most common keys,
including function and cursor keys. The virtual keycodes for standard ASCII characters are the
ASCII codes themselves, unlike under Windows. Key presses are sent to the OnChar member of
a window with a wxKeyEvent argument, which can be used to determine the state of the shift
and control keys as well as finding the virtual key code of the depressed key.

The wxCanvas class has a default OnChar handler which scrolls the canvas using the cursor
keys. From version 1.61, wxPanel receives OnChar events, and wxTextWindow receives OnChar
events under Motif and Windows.

3.6. Repainting of windows

All windows except for the canvas are repainted by the system. The canvas requires a paint
message handler to be defined (and therefore canvas derivation is obligatory). Under XView and
Motif, wxWindows allows a canvas to be retained if desired, which means that fewer paint
messages are received and scrolling is fast. The Motif implementation has a slight overhead in
that drawing must be done both to the canvas and to the backing pixmap, but this is usually made
up for by the speed of repainting.

The repaint procedure will obviously be written in such a way that the minimum amount of work
needs to be done (for example, positions of objects on a canvas are only recalculated when the
positions change).

See Scrolling (page 12) for more information on repainting and scrolling.

3.7. Scrolling

CHAPTER 3

13

Scrolling can be a tricky subject for a novice GUI programmer to tackle. The MS Windows API
ensures that the suffering is as acute as possible by requiring the application to program the
scrollbar behaviour, to check the scrollbar positions on repainting, and to reposition the scroll bars
on window resizing. XView has the decency to provide a canvas event with coordinates that
reflect what the scrollbars are doing. In wxWindows, the XView approach is taken, so that all the
programmer has to do is to create scrollbars with a given scroll length and increment, and the
repaint procedure automatically reflects scrollbar positions. Obviously this simple approach can
be inefficient if the canvas doesn't know what is actually in view, so the application can get the
current view in order to limit the amount of repainting required.

It is possible to tell a wxWindows canvas to be retained (though this only has an effect in XView
and Motif). In this case no repaint events will happen when scrolling since the system remembers
what was drawn and simply moves a bitmap around.

Under MS Windows, wxWindows scrolls the bits of the canvas around when the user generates a
scroll event, so the canvas does not need to be cleared and only the damaged areas need be
repainted---so all the application need do is redraw the whole image, and scrolling will appear to
be relatively smooth. This is the case in the hello.exe demo.

However, there are times when we can't allow the system to scroll the bits of the image, for
example when a scroll increment will result in an unpredictable actual movement of the image.
This is true for wxHelp, since scrolling is in terms of lines, and lines vary in height. If we left it up
to wxWindows to scroll without clearing the screen, the text would then overlay some of the
previous screen since the old and new images will probably not exactly match.

In the wxHelp application (see wxHelp (page 27)) the horizontal direction is scrolled in terms of
pixels, not character widths, and so wxWindows can be left to scroll the image smoothly, without
having to clear before repainting. This kind of control is avilable by using
wxCanvas::EnableScrolling.

Scrolling panels are not implemented in wxWindows, and are not in general desirable in user
interfaces.

From wxWindows 1.62, an OnScroll member may be overridden to allow and application deal
directly will scroll events. The default wxCanvas::OnScroll member implements the current
scrolling behaviour.

3.8. Printing

Printing in MS Windows is relatively easy, since all drawing is done to a 'device context' which
could equally well be associated with a printer as with a window. MS Windows handles the
plethora of printer types that abound in the PC environment. In X under UNIX, the standard is
PostScript; X, XView and Motif provide no help at all. The solution adopted in wxWindow is to use
a device context for canvases and printers, with MS Windows printing supported on the PC and
an Encapsulated PostScript driver provided under X. Thus graphic code may be extremely
generic - the same piece of code can draw to MS Windows screens of all types, to X windows,
and to hundreds of different printers.

3.9. Programmatic versus interactive GUI building

Interactive tools for rapidly building GUIs are popular, and wxWindows has a simple screen
painter and code generator called wxBuilder. wxBuilder can optionally generate wxWindows
resource files (suffix .WXR) which helps to separate out detailed GUI specification from the code.

CHAPTER 3

14

A different solution is taken by GWX (page 6) which translates DevGuide files into wxWindows
code, which has the advantages and disadvantages on relying on a third party GUI-building tool.
It is also possible to translate some Windows .RC files into wxBuilder menus and dialog boxes,
although the quality of the translation varies from good (with most menu bar definitions) to poor
(for most dialogs).

It is not always possible to build GUI components interactively: the 'what you see is all you get'
syndrome. When complex repositioning of items depending on window size is required, then GUI
builders cannot be relied upon.

Using a toolkit with geometry management may be no panacea, either; for example, the Motif
constraint algorithm is difficult to understand and much experimentation is necessary to make
things work. The approach taken by wxWindows is in keeping with the main goal of simplicity:
wxWindows has the ability to create panel items from left to right, top to bottom with appropriate
horizontal and vertical spacing; or the programmer may position the panel items explicitly. The
first method gives resolution and font independence, and is less fiddly, and the second method
may be used for tidying up a display for a specific platform.

From wxWindows 1.62, there is a facility for simple constraint-based window layout, using the
wxLayoutConstraints class. This can be a more powerful alternative to left-to-right panel item
positioning, and is a good method for laying out subwindows without the need to right a complex
OnSize member function.

Recent improvements to wxWindows opens the prospect of wxWindows-based 'visual' editing
tools: panels and dialog boxes can be switched into user-interface edit mode, enabling panel
items to be dragged and sized, and panel mouse clicks intercepted. Since this functionality is built
in, it becomes relatively straightforward to construct dialog editors in any language linked to
wxWindows.

3.10. Dimensions

The graphics origin is always the top left hand corner of a window. Dimensions are a problem in a
multi-platform application, since display and character widths will change from machine to
machine, even more so than for different PC display boards. At the moment wxWindows uses
pixels; MS Windows tackles the problem by using 'dialog units' based on the size of the standard
system font. To avoid this problem when creating panel items, wxWindows provides automatic
left to right, top to bottom item layout (similar to XView), in addition to absolute positioning, in
which case, portability is up to the discretion of the programmer.

A canvas has a mapping mode associated with it, which determines the meaning of dimensions
in subsequent graphics operations. Drawing may be done using various units including mm, 1/10
mm, pixels and points. Mapping modes other than pixels cannot be relied upon, however; future
versions of wxWindows may support mapping modes better, and allow a change of graphics
origin.

3.11. Colour

The presence of a monochrome screen can be detected so the application can change its use of
colour accordingly. Currently, wxWindows tries to choose appropriate pen and brush colours for a
monochrome display. To override this behaviour, set the device context Colour member to TRUE
and choose custom colours for drawing graphics.

The Colours (page 30) utility can be useful for displaying colours and their names.

Colourmaps (or palettes) are supported only for colourmaps that have been created by platform-

CHAPTER 3

15

specific utilities such as the DIB and wxImage utilties. So you can associate a colourmap with a
window or device context, but functions to create and manipulate colourmaps are lacking. Future
versions of wxWindows should improve upon colourmap handling.

3.12. On-line help

Most modern GUI applications have on-line hypertext help. In MS Windows, help is normally
supplied in binary files which are read by an external program, which is itself accessed from
within the application using Microsoft-supplied function calls. XView has provisions for simple
context sensitive help, but no equivalent of the MS Windows browseable help.

From version 1.30, wxWindows comes with wxHelp, a hypertext help system which may be
invoked from wxWindows applications. However, a wxWindows program may specify that under
MS Windows, WinHelp should be used instead of wxHelp. wxHelp may be seen as a 'last resort'
if the GUI system does not have a native help facility.

Please see wxHelp (page 27) and the separate wxHelp manual for further details.

wxWindows programmers may wish to follow the example of the wxWindows documentation, and
prepare their manuals in a LaTeX form. The supplied Tex2RTF (page 29) utility may then be used
to generate online help in a variety of paper and on-line hypertext formats, including wxHelp and
Windows Help.

3.13. User preferences

In both X and Windows, there are mechanisms for handling user preferences, or resources.
Under X, there is a global .Xdefaults file plus inidividual application defaults files. Under Windows,
either win.ini or application specific .ini files are used.

wxWindows unifies these with wxGetResource and wxWriteResource functions: section, entry,
value and file arguments may be specified.

In X, a section is the first word in a resource specification; in Windows, this is enclosed in square
brackets on a line of its own. In X, an entry is taken to mean the rest of a resource specification,
and in Windows this is a name followed by an equals character. The value is an arbitrary string in
both cases, although wxWindows overloads the resource functions for commonly used types.

If the resource filename is omitted, the main resource file is assumed (.Xdefaults or win.ini).
Under X, if an application class (wxApp::wx_class) has been defined, it is appended to the string
/usr/lib/X11/app-defaults/ to try to find an applications default file when merging all resource
databases.

3.14. Interprocess Communication

3.14.1. What wxWindows has

Interprocess communication (IPC) has always been a tricky area, and the plethora of techniques
on different platforms has not helped. Microsoft has laid down several standards for IPC under
MS Windows, the most established (if long in the tooth) being Dynamic Data Exchange (DDE).
DDE is the basis for wxWindows's IPC capability: the same, simple, object-oriented interface is
provided for a subset of DDE under both Windows on the PC, and under XView and Motif on
UNIX. The UNIX version is implemented using sockets, and allows processes on the same or
different machines to talk to each other.

CHAPTER 3

16

The benefits of wxWindows's DDE package are twofold: much greater simplicity compared with
raw DDE and UNIX sockets; and the considerable advantage of keeping to platform-
independence even in this notoriously platform-dependent area. Currently only synchronous
transactions are handled; a later version of wxWindows may support asynchronous transactions
also.

A user-contributed package is available that replaces the wxWindows implementation of DDE
with a WinSock implementation, to allow communication between Windows and UNIX. The API of
that package is identical to the one described in this manual. The WinSock implementation will
probably soon be incorporated into wxWindows.

See the overview of DDE (page 378) for more detailed information.

17

4. Multi-platform development with wxWindows

This chapter describes the practical details of using wxWindows. Please see the file install.txt for
up-to-date installation instructions, and changes.txt for differences between versions.

4.1. Code structure

Since version 1.50, the files have been split as much as possible into command and platform-
specific code. The include and src directories each have a base directory for the common
code, plus a directory for each platform, currently msw and x. Because much X functionality is
shared, the Motif and XView versions are contained in the same files, separated by conditional
compilation statements. This structure should make it easy both to implement support for new
platforms, and to edit the existing code.

In order to provide separate out the base functionality from the platform-specific functionality,
each wxWindows class is composed of two classes: a base for the common code with prefix
wxb, and a derived class for the platform with prefix wx. Base files have a wb_ prefix whilst
platform-specific files (or files which neverhave corresponding platform-specific code) have a wx_
prefix.

For example, the wxCanvas class is declared for each platform, and derives from wxbCanvas.
The relevant files for this class may therefore be found as follows:

include\base\wb_canvs.h
include\msw\wx_canvs.h
include\x\wx_canvs.h
src\base\wb_canvs.cpp
src\msw\wx_canvs.cpp
src\x\wx_canvs.cpp

Each wx_ header file includes the corresponding wb_ header file.

4.2. Include files

The main include file is "wx.h"; this includes the most commonly used modules of wxWindows.

To save on compilation time, include only those header files relevant to the source file. If you are
using precompiled headers, you should include the following section before any other includes:

// For compilers that support precompilation, includes "wx.h".
#include "wx_prec.h"

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP
... include minimum set of files necessary here ...
#endif

... now your other include files ...

The file "wx_prec.h" includes "wx.h". Although this incantation may seem quirky, it is in fact
the end result of a lot of experimentation, and several Windows compilers to use precompilation
(those tested are Microsoft Visual C++, Borland C++ and Watcom C++).

CHAPTER 4

18

Borland precompilation is largely automatic. Visual C++ requires specification of "wx_prec.h"
as the file to use for precompilation. Watcom C++ is automatic apart from the specification of the
.pch file. Watcom C++ is strange in requiring the precompiled header to be used only for object
files compiled in the same directory as that in which the precompiled header was created.
Therefore, the wxWindows Watcom C++ makefiles go through hoops deleting and recreating a
single precompiled header file for each module, thus preventing an accumulation of many multi-
megabyte .pch files.

4.3. Libraries

Under UNIX, use the library libwx_ol.a (XView) or libwx_motif.a (Motif). Under Windows, use the
library wx.lib for stand-alone Windows applications, or wxdll.lib for creating DLLs.

4.4. Configuration

The following lists the options configurable in the file include/base/wx_setup.h. Some
settings are a matter of taste, some help with platform-specific problems, and others can be set to
minimize the size of the library.

4.4.1. General features

ENHANCED_FONTS Define to be 1 to have pre-defined fonts in wxEnhDialogBox.
USE_BUTTONBAR If 1, the wxButtonBar class is compiled.
USE_CLIPBOARD If 1, clipboard code is compiled (Windows only).
USE_CONSTRAINTS If 1, the constaint-based window layout system is compiled.
USE_DOC_VIEW_ARCHITECTURE If 1, wxDocument, wxView and related classes are

compiled.
USE_DRAG_AND_DROP If 1, drag and drop code is compiled (Windows only).
USE_DYNAMIC_CLASSES If 1, the run-time class macros and classes are compiled.

Recommended, and necessary for the document/view framework.
USE_ENHANCED_DIALOG If 1, wxEnhDialogBox code is compiled.
USE_EXTENDED_STATICS If 1, wxStaticItem code is compiled for enhanced panel

decorative items. Not rigorously tested, and not documented.
USE_HELP If 1, interface to help system is compiled.
USE_FORM If 1, wxForm code is compiled.
USE_GAUGE If 1, the wxGauge class compiled.
USE_GLOBAL_MEMORY_OPERATORS If 1, redefines global new and delete operators

to be compatible with the extended arguments of the debugging wxObject new
and delete operators. If this causes problems for your compiler, set to 0.

USE_GNU_WXSTRINGIf 1, the enhanced GNU wxString and regular expression class are
compiled in place of the normal wxString class. See contrib/wxstring for details.

USE_IMAGE_LOADING_IN_MSW Use code in utils/dib to allow dynamic .BMP loading
under MS Windows.

USE_IMAGE_LOADING_IN_X Use code in utils/image to allow dynamic .BMP/.GIF loading
under X.

USE_RESOURCE_LOADING_IN_MSWUse code in utils/rcparser to allow dynamic .ICO/.CUR
loading under MS Windows.

USE_IPC If 1, interprocess communication code is compiled.
USE_MEMORY_TRACING If 1, enables debugging versions of wxObject::new and

wxObject::delete if the value of DEBUG is defined to more than 0.
USE_METAFILE If 1, Windows Metafile code is compiled.
USE_PANEL_IN_PANEL If 1, experimental panel-in-panel code is used for common dialog

boxes. Not recommended, since tab traversal can suffer.

CHAPTER 4

19

USE_POSTSCRIPT If 1, PostScript code is compiled.
USE_POSTSCRIPT_ARCHITECTURE_IN_MSW Set to 1 to enable the printing

architecture to make use of either native Windows printing facilities, or the
wxPostScriptDC class depending on the wxApp::SetPrintMode setting.

USE_PRINTING_ARCHITECTURE If 1, wxPrinter, wxPrintout and related classes are
compiled for the print/preview framework.

USE_RESOURCES If 1, win.ini or .Xdefaults-style resource read/write code is compiled.
USE_SCROLLBAR If 1, wxScrollBar class is compiled. Not rigorously tested, and not

documented.
USE_SPLINES If 1, spline code is compiled.
USE_TOOLBARIf 1, the wxToolBar class is compiled.
USE_TYPEDEFS If 1, a typedef will be used for wxPoint instead of a class declaration, to

reduce overhead and avoid a Microsoft C++ memory bug.
USE_VLBOX If 1, wxVirtListBox code is compiled for a virtual listbox item. Not rigorously

tested, and not documented.
USE_WX_RESOURCES If 1, wxWindows resource file (.WXR) code is compiled.
USE_XFIG_SPLINE_CODE If 1, XFig-derived code is used for spline drawing. If 0, AIAI code

is used, which is slower.
USE_XPM_IN_X If 1, XPM (colour pixmap) facilities will be compiled and used in

wxBitmap under X.
USE_XPM_IN_MSW If 1, XPM (colour pixmap) facilities will be compiled and used in

wxBitmap under MS Windows.
WXGARBAGE_COLLECTION_ON If 1, wxWindows is made compatible with a experimental

garbage collector (needs MrEd distribution). Not recommended for general use.

4.4.2. X features

DEFAULT_FILE_SELECTOR_SIZE Let Motif choose the size of XmFileSelectionBox.
Otherwise, size is 500x600.

PIXEL0_DISABLE Define to disallow allocation of pixel 0 (wxXOR problem).
USE_GADGETS Use gadgets where possible rather than Widgets for items. Default is to

use Gadgets.
USE_BUTTON_GADGET Use gadgets for buttons. This can intefere with default button

selection, so the default is zero.
USE_NOTICES Under XView, use Notice package where possible instead of normal dialog

boxes.
wxFSB_WIDTH Width of file selector box, if fixed.
wxFSB_HEIGHT Height of file selector box, if fixed.

4.4.3. Windows and NT features

CTL3D It is recommended that CTL3D is used under Windows, since the 3D effects are
good-looking and will be standard with Windows 4.0. If you want to use it and
don't already have CTL3D installed, copy the files in contrib/ctl3d to appropriate
places (ctl3dv2.lib/ctl3d32.lib into your compiler lib directory, ctl3d.h into an
include directory, and ctl3dv2.dll into windows/system). You may need to find a
compiler-specific version of ctl3dv2.lib or ctl3d32.lib. Define CTL3D to be 1 in
wx_setup.h and link your executables with ctl3dv2.lib or ctl3d32.lib.

If both CTL3D and FAFA are set to 1, then all controls except wxButton will use
CTL3D and have 3D appearances. wxButton will have the ability to use bitmaps.

CHAPTER 4

20

This is the recommended configuration.
FAFA_LIB Define this to be 1 if you wish to use the Fafa enhanced control library (in the

contrib directory). The Fafa library is mandatory for use of bitmap buttons.

An application using the Fafa library must include fafa.rc in the its RC file.
Otherwise, some controls will not show up.

Windows 95 update: dialogs can be marked with the Win95 3D look by specifying the
DS_3DLOOK. But this doesn't apply to panels. Although WS_EX_CLIENTEDGE
could be used to provide 3D controls without the need for CTL3D, the required
changes have so far only been applied to wxWindows 2.0. So for now, CTL3D is
still required for Windows 95 applications.EDITABLE_TEXT_WINDOW If 1,
allow ONLY an editable wxTextWindow and compile out the large-file support.
That is, always use the standard EDIT control. Defaults to 0.

USE_COMMON_DIALOGS If 0, disables common dialogs. Defaults to 1; would rarely be
changed.

USE_GREY_BACKGROUND If 1, will use grey for panel and dialog backgrounds (Julian
Smart's preferred setting). Grey is used by CTL3D anyway. If this is set to 0 and
USE_FAFA is set to 1, you may see unsatisfactory display of some control
backgrounds.

If both CTL3D and FAFA are set to 1, then all controls except wxButton will use
CTL3D and have 3D appearances. wxButton will have the ability to use bitmaps.
This is the recommended configuration.

USE_KEYBOARD_HOOK If 1, sends OnCharHook message to wxApp and active
wxWindow classes.

USE_ITSY_BITSY If 1, compiles in code to support tiny window titlebars.
USE_BITMAP_MESSAGE If 1, compiles bitmap support for wxMessage using the FAFA

library.
USE_ODBC If 1, compiles wxDatabase and wxRecordSet classes for ODBC access.

Requires sql.h, sqlext.h files if set to 1 (see topic on database support).

4.5. Makefiles

At the moment there is no attempt to make UNIX makefiles and PC makefiles compatible, i.e. one
makefile is required for each environment.

Sample makefiles for UNIX (suffix .UNX), MS C++ (suffix .DOS and .NT), Borland C++ (.BCC)
and Symantec C++ (.SC) are included for the library, demos and utilities. The NT, Borland and
Symantec makefiles cannot be guaranteed to be up-to-date since the author does not have these
compilers.

The controlling makefile for wxWindows is in the platform-specific directory, such as src/msw or
src/x. This makefile will recursively execute the makefile in src/base.

4.5.1. Windows makefiles

For Microsoft C++, normally it is only necessary to type nmake -f makefile.dos (or an alias
or batch file which does this). By default, binaries are made with debugging information, and no
optimization. Use FINAL=1 on the command line to remove debugging information (this only
really necessary at the link stage), and DLL=1 to make a DLL version of the library, if building a
library.

CHAPTER 4

21

4.5.2. UNIX makefiles

All makefiles have the targets xview, motif and hp.

xview builds an Sun Open Look version of the library, motifbuilds a Sun Motif version, and hp
builds a Motif version for HP workstations.

Remove object files, executables and libraries for the current module with the clean_ol and
clean_motif and clean_hp targets.

It is possible to maintain simultaneous Motif and Open Look versions of an application, since
object files are kept in separate directories (objects_ol and objects_motif).

Debugging information is included by default; you may add DEBUG= as an argument to make to
compile without it, or use the UNIX stripcommand to remove debugging information from an
executable.

Important note: Most compiler flags are kept centrally in src/make.env, which is included by all
other makefiles. This is the file to edit to tailor wxWindows compilation to your environment.

4.6. Windows-specific files

wxWindows application compilation under MS Windows requires at least two extra files, resource
and module definition files.

4.6.1. Resource file

The least that must be defined in the Windows resource file (extension RC) is the following
statement:

rcinclude wx.rc

which includes essential internal wxWindows definitions. The resource script may also contain
references to icons, cursors, etc., for example:

wxicon icon wx.ico

The icon can then be referenced by name when creating a frame icon. See the MS Windows
SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable for icons
(such as the Program Manager) find your application icon first.

4.6.2. Module definition file

A module definition file (extension DEF) looks like the following:

NAME Hello
DESCRIPTION 'Hello'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE PRELOAD MOVEABLE DISCARDABLE

CHAPTER 4

22

DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 8192

The only lines which will usually have to be changed per application are NAME and
DESCRIPTION.

4.7. Memory models and memory allocation

Under UNIX, memory allocation isn't a problem. Under Windows, the only really viable way to go
is to use the large model, which uses the global heap instead of the local heap for memory
allocation. Unless more than one read-write data segment is used (see large data (page 25)
below), large model programs may still have multiple instances under MS C/C++ 7. Microsoft give
the following guidelines for producing multiple-instance large model programs:

• Do not use /ND to name extra data segments unless the segment is READONLY.
• Use the .DEF file to mark extra data segments READONLY.
• Do not use __far or FAR to mark data items.
• Use /PACKDATA to combine data segments.
• Use /Gt65500 /Gx to force all data into the default data segment.

Even with the single-instance limitation, the productivity benefit is worth it in the majority of cases.
Note that some other multi-platform class libraries also have this restriction. (If more than one
instance really is required, create several copies of the program with different names.)

Having chosen the large model, just use C++ 'new', 'delete' (and if necessary 'malloc' and 'free')
in the normal way. The only restrictions now encountered are a maximum of 64 KB for a single
program segment and for a single data item, unless huge model is selected.

For Borland users, use the data threshold switch, and the following is also recommended:

• Check "Automatic Far Data Segments"
• Check "Put Constant Strings into Code Segment"

See also the Frequently Asked Questions document for further details on using Borland with
wxWindows.

4.7.1. Allocating and deleting wxWindows objects

In general, classes derived from wxWindow must dynamically allocated with new and deleted with
delete. If you delete a window, all of its children and descendants will be automatically deleted, so
you don't need to delete these descendants explicitly.

Don't statically create a window unless you know that the window cannot be deleted dynamically.
Modal dialogs, such as those used in the dialogs sample, can usually be created statically, if
you know that the OK or Cancel button does not destroy the dialog.

Most drawing objects, such as wxPen, wxBrush, wxFont, and wxBitmap, should be created
dynamically. They are cleaned up automatically on program exit. wxColourMap is an exception to
this rule (currently). In particular, do not attempt to create these objects globally before OnInit()
has a chance to be called, because wxWindows might not have done essential internal
initialisation (including creation of lists containing all instances of wxPen, wxBrush etc.)

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned up by

CHAPTER 4

23

wxWindows, make sure you delete the array explicitly before wxWindows has a chance to do so
on exit, since calling delete on array members will cause memory problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be shared
between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use. Windows is
particularly sensitive to this: so make sure you make calls like wxDC::SetPen(NULL) or
wxDC::SelectObject(NULL) before deleting a drawing object that may be in use. Code that
doesn't do this will probably work fine on some platforms, and then fail under Windows.

4.8. Dynamic Link Libraries

wxWindows may be used to produce DLLs which run under MS Windows. Note that this is not the
same thing as having wxWindows as a DLL, which is not currently possible. For Microsoft C++,
use the makefile with the argument DLL=1 to produce a version of the wxWindows library which
may be used in a DLL application. There is a bug in Microsoft C++ which makes the compiler
complain about returned floats, which goes away when the /Os option is used, which is why that
flag is set in the makefile.

For making wxWindows as a Sun dynamic library, there are comments in the UNIX makefile for
the appropriate flags for AT&T C++. Sorry, I haven't investigated the flags needed for other
compilers.

4.9. Conditional compilation

One of the purposes of wxWindows is to reduce the need for conditional compilation in source
code, which can be messy and confusing to follow. However, sometimes it is necessary to
incorporate platform-specific features (such as metafile use under MS Windows). The following
identifiers may be used for this purpose, along with any user-supplied ones:

• wx_x - for code which should work under any X toolkit

• wx_xview - for code which should work under XView only

• wx_motif - for code which should work under Motif only

• wx_msw - for code which should work under Microsoft Windows only

For example:

 ...
#ifdef wx_x
 (void)wxMessageBox("Sorry, metafiles not available under X.");
#endif
#ifdef wx_msw
 wxMetaFileDC dc;
 DrawIt(dc);
 wxMetaFile *mf = dc.Close();
 mf->SetClipboard();
 delete mf;
#endif
 ...

4.10. Building on-line help

CHAPTER 4

24

wxWindows has its own help system from version 1.30: wxHelp. It can be used to view the
wxWindows class library reference, and also to provide on-line help for your wxWindows
applications. The API, made accessible by including wx_help.h, allows you to load files and
display specific sections, using DDE to communicate between the application and wxHelp.

wxHelp files can be marked up by hand from ASCII files within wxHelp, or may be generated from
other files, as is the case with the wxWindows documentation.

From version 1.50, it is possible to use the platform-specific help system (e.g. WinHelp) instead of
wxHelp.

See install.txt, the wxHelp documentation (in utils/wxhelp/docs) and wxHelp (page
27) for further details.

4.11. C++ issues

There are cases where a C++ program will compile and run fine under one environment, and then
fail to compile using a different compiler. Some caveats are given below, from experience with the
GNU C++ compiler (GCC) and MS C/C++ compiler version 7.

4.11.1. Templates

wxWindows does not use templates for two main reasons: one, it is a notoriously unportable
feature, and two, the author is irrationally suspicious of them and prefers to use casts. More
compilers are now implementing templates, and so it will probably be safe to use them soon
without fear of portability problems.

4.11.2. Definition of constructors

Some compilers allows the user to omit constructor definitions where a parent class provides a
constructor with parameters. In Microsoft C++, all constructors with parameters must be defined
in the derived class, or the compiler cannot find the required constructor. This may mean defining
dummy constructors which call parent constructors, for example:

MyClass::MyClass(int x, int y):ParentClass(x, y)
{
}

This is not a problem where the constructor has no parameters.

4.11.3. Pointers to functions

Some compilers are clever in their matching of function pointer arguments to the declaration of
the function, and will not complain in the following case:

typedef void (*wxFunction) (wxObject&, wxCommandEvent&);
...
void mycallback(wxButton& button, wxCommandEvent& event);
...
wxButton button(parent, &mycallback, label, 100, 200);

CHAPTER 4

25

Since wxButton is derived from wxObject, the function mycallbackis a subtype of wxFunction. In
Microsoft C++, and most compilers with a high warning level set, the function is not an exact
match, and the compiler complains. The solution is to place a cast in front of the function address,
thus:

wxButton button(parent, (wxFunction)&mycallback, label, 100, 200);

4.11.4. Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled headers. This
can save a great deal of compiling time. The recommended approach is to precompile "wx.h'',
using this precompiled header for compiling both wxWindows itself and any wxWindows
applications. For Windows compilers, two dummy source files are provided (one for normal
applications and one for creating DLLs) to allow initial creation of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would normally be the
case. This means that changing a header file will cause more recompilations (in the case of
wxWindows, everything needs to be recompiled since everything includes"wx.h''!)

A related problem is that for compilers that don't have precompiled headers, including a lot of
header files slows down compilation considerably. For this reason, you will find (in the common X
and Windows parts of the library) conditional compilation that under UNIX, includes a minimal set
of headers; and when using Visual C++, includes wx.h. This should help provide the optimal
compilation for each compiler, although it is biassed towards the precompiled headers facility
available in Microsoft C++.

4.12. File handling

When building an application which may be used under different environments, one difficulty is
coping with documents which may be moved to different directories on other machines. Saving a
file which has pointers to full pathnames is going to be inherently unportable. One approach is to
store filenames on their own, with no directory information. The application searches through a
number of locally defined directories to find the file. To support this, the class wxPathList makes
adding directories and searching for files easy, and the global function FileNameFromPath
allows the application to strip off the filename from the path if the filename must be stored. This
has undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted UNIX filenames,
the best solution is to use DOS filenames for your application, and also for document filenames if
the user is likely to be switching platforms regularly. Obviously this latter choice is up to the
application user to decide. Some programs (such as YACC and LEX) generate filenames
incompatible with DOS; the best solution here is to have your UNIX makefile rename the
generated files to something more compatible before transferring the source to DOS. Transferring
DOS files to UNIX is no problem, of course, apart from EOL conversion for which there should be
a utility available (such as dos2unix).

See also the File Functions section of the reference manual for descriptions of miscellaneous file
handling functions.

4.13. Large amounts of global data

Under Windows, it is possible that the default data segment becomes too large (for example, a

CHAPTER 4

26

large number of small, global data items have been declared). This may be cured by using more
than one data segment. In Microsoft C++, specify the /Gt compiler option with a number
representing the data size threshold for putting data items in a separate segment. For example,
/Gt8.

The tradeoff is that using more than one data segment prevents you from having more than one
instance of the program running at a time (see Memory Models (page 22)). Large model
programs with one data segment may still have multiple instances.

A separate problem sometimes occurs when the linker complains about too many segments. This
can be cured by using the /SEG linker switch, for example /SEG:256.

For optimum Borland compilation, please the Frequently Asked Questions guide (docs/faq.txt,
docs/faq.ps and via the wxWindows WWW home page).

27

5. Utilities supplied with wxWindows

A number of 'extras' are supplied with wxWindows, to complement the GUI functionality in the
main class library. These are found below the utils directory and usually have their own source,
library and documentation directories. For larger user-contributed packages, see the directory
/pub/wxwin/contrib and Resource Guide (page 6).

5.1. wxBuilder

wxBuilder is a start at an interactive GUI builder for wxWindows applications. It allows the
developer to quickly construct a fair amount of the skeleton of a GUI program, before filling in the
details by hand. Presently wxBuilder runs best under Windows, but it will run under Motif as well.
The XView version is pending but there are problems with modal dialogs that need to be ironed
out.

wxBuilder is so far the largest freely-available program written in wxWindows, totalling about
16,000 lines, and so may be of interest as a sample application of reasonable complexity.
However, I don't make any claims about the C++ style or user interface aesthetics.

Please see the printed and on-line documentation for wxBuilder.

5.2. wxToolBar

wxToolBar implements a simple toolbar class, to help give wxWindows applications a more
graphical and intuitive look and feel. A wxToolBar is a canvas with bitmaps either arranged
automatically in rows and columns, or spaced explicitly by the application. Individual tools can be
toggle or non-toggle, and toggle tools may have a second bitmap to denote the on-state. Without
a second bitmap, a distinguishable on-state is supplied by wxToolBar. To supply further feedback
for the user, the application may override a member to intercept mouse movement over the tools,
typically using this to supply an explanatory string on the status line.

A toolbar can be made to exist in its own frame, or (for example) below the menu bar of the main
application window. Both these types are shown in the demo toolbar application
samples/toolbar/test.cpp. wxToolBar works under Motif, XView, Windows and NT.

New in wxWindows 1.61 is an adjunct to wxToolbar called wxButtonBar. This is almost identical
in use to wxToolBar, but is optimized to look and behave in a more sensible manner under
Windows, with 3D buttons that depress properly. Under X, behaviour is the same as for
wxToolBar.

Please refer to the class reference for further details.

5.3. wxHelp

wxHelp is a stand-alone program, written using wxWindows and hyText (page 28), for displaying
hypertext help. It is necessary since not all target systems (notably X in the guise of XView and
Motif) supply an adequate standard for on-line help. wxHelp is modelled on the MS Windows help
system, with contents, search and browse buttons, but does not reformat text to suit the size of
window, as WinHelp does, and its input files are uncompressed ASCII with some embedded font
commands and an .xlp extension. Most wxWindows documentation (user manuals and class
references) is supplied in wxHelp format, and also in Windows Help format.

Note that an application can be programmed to use Windows Help under MS Windows, and
wxHelp under X. An alternative help viewer under X is Mosaic, a World Wide Web viewer that
uses HTML as its native hypertext format. However, this is not currently integrated with

CHAPTER 5

28

wxWindows applications.

wxHelp works in two modes---edit and end-user. In edit mode, an ASCII file may be marked up
with different fonts and colours, and divided into sections. In end-user mode, no editing is
possible, and the user browses principally by clicking on highlighted blocks.

When an application invokes wxHelp, subsequent sections, blocks or files may be viewed using
the same instance of wxHelp since the two programs are linked using wxWindows interprocess
communication facilities. When the application exits, that application's instance of wxHelp may be
made to exit also. See the wxHelpInstance entry in the reference section for how an application
controls wxHelp.

5.4. hyText

This is the hypertext library used by wxHelp to show text with mixed fonts and colour, and
manipulate blocks of text. It is supplied in library form so it can be used by other applications (it is
in fact used by another application at AIAI).

See the separate manual and class reference for hyText.

5.5. wxCLIPS

C++ is all very well for applications that have to be fast, deliverable and, above all, written in C++.
But what about casual programmers, prototypers, and those who want something a little more
high-level?

Naturally, wxWindows, in collaboration with NASA, can supply the answer---wxCLIPS. CLIPS is
NASA's expert system shell consisting of a LISP-like functional language, a rule interpreter, an
object system, and the crucial characteristic of portability. It's implemented as a C library, can be
embedded in any C or C++ application with no royalty payments, and is free within the United
States, available at low cost elsewhere.

As a language, CLIPS has several advantages over C++. It requires no explicit memory
management, since it has garbage collection; it's interpreted, so no long compilations; and it has
a rule interpreter, useful for knowledge based system projects, or just occasional pattern
matching and searching. So it's useful for prototyping applications, or for non-C++ programmers.
From the C++ developer's point of view, it makes a great embedded language for user-extensible
applications.

wxCLIPS adds a library of GUI CLIPS functions to CLIPS; the intention is to cover all of
wxWindows functionality eventually, though presently, only the most important functionality is
covered. wxCLIPS comes as both a library and an executable, so it can be used straightaway to
develop GUI programs, and it can also be linked into applications to provide a built-in language.
Within AIAI, wxCLIPS has proven popular amongst students and professionals for rapid-
prototyping and customization.

A program called CLIPS2C has been written to translate a subset of CLIPS into C++, to combine
the advantages of interactive development with efficient delivery. CLIPS2C knows about the
wxCLIPS extensions.

See the wxCLIPS manual and NASA's CLIPS manuals for further details.

wxCLIPS and CLIPS2C are now distributed separately, to save space in the wxWindows
distribution. They are now available from the /pub/wxclips directory of AIAI's ftp site.

CHAPTER 5

29

5.6. PrologIO

Much of a programmer's time can be spent in writing and modifying code to load and save data
files. PrologIO is a utility that makes life easier, if your application's data needs look something
like the following:

• The data are complex, possibly involving linked records and nested lists.

• The application is under development, so the size and contents of each record are liable
to change.

• Backward compatibility of data files is required.

• Ability to read and edit data file is required.

• Speed of application development is important, and speed of data I/O is a lesser priority.

A PrologIO data file is an ASCII series of 'objects'. In fact, each object is a subset of the syntax
for a term in the Prolog language, and a PrologIO file can be read into Prolog with a single
command, but this is irrelevant for most purposes. Because these objects consist of a list of
attribute-value pairs, parsed by a YACC/LEX grammar, attributes can be removed from or added
to an object without 'breaking' the data format. A typical application will be written to deal with
missing attribute values, supplying defaults instead, and so data I/O can be very robust, even
though the application changes substantially over the months and years. Very old data files are
likely to be useable, even though many bells and whistles have been added to the application.

Since the file is ASCII, and readable, it is possible to edit the data file directly if something goes
wrong---a very useful fallback position. Also, one application's data file can be easily read by
another's, encouraging the separation of a complex application into a suite of smaller tools.

PrologIO supplies a number of classes to manipulate these objects and whole databases of
objects. A PrologIO database can be built up in memory and then dumped to a file with a single
statement, and conversely, a data file can be loaded into memory with a single statement, and
then picked apart.

Please refer to the separate PrologIO manual. wxBuilder (page 27) is a good example of a
program that makes extensive use of PrologIO, and the wxWindows resource system also relies
on it.

5.7. Tex2RTF

Supplied with wxWindows is a utility called Tex2RTF for converting LaTeX manuals to the
following formats:

wxHelp wxWindows help system format (XLP).

Linear RTF Rich Text Format suitable for importing into a word processor.

Windows Help RTF Rich Text Format suitable for compiling into a WinHelp HLP file with the
help compiler.

HTML HTML is the native format for Mosaic, the main hypertext viewer for the World Wide
Web. Since it is freely available it is a good candidate for being the wxWindows help
system under X, as an alternative to wxHelp.

CHAPTER 5

30

Tex2RTF is used for the wxWindows manuals and can be used independently by authors wishing
to create on-line and printed manuals from the same LaTeX source. Please see the separate
documentation for Tex2RTF.

5.8. wxTreeLayout

This is a simple class library for drawing trees in a reasonably pretty fashion. It provides only
minimal default drawing capabilities, since the algorithm is meant to be used for implementing
custom tree-based tools.

Directed graphs may also be drawn using this library, if cycles are removed before the nodes and
arcs are passed to the algorithm.

Tree displays are used in many applications: directory browsers, hypertext systems, class
browsers, and decision trees are a few possibilities.

See the separate manual and the directory utils/wxtree.

5.9. wxGraphLayout

The wxGraphLayout class is based on a tool called 'graphplace' by Dr. Jos T.J. van Eijndhoven of
Eindhoven University of Technology. Given a (possibly cyclic) directed graph, it does its best to
lay out the nodes in a sensible manner. There are many applications (such as diagramming)
where it is required to display a graph with no human intervention. Even if manual repositioning is
later required, this algorithm can make a good first attempt.

See the separate manual and the directory utils/wxgraph.

5.10. wxImage

This is a collection of GIF/BMP/XBM bitmap loading and displaying routines for X, which may be
used in conjunction with the Windows-only DIB (page 30) library for multi-platform bitmap display.

5.11. DIB

A Windows-only BMP loading and displaying library (see also wxImage (page 30) for an
equivalent for the X platform).

5.12. rcParser

This libary, written by Petr Smilauer, parses Windows resource files, bitmaps, icons and cursors.
The library is used in wxBuilder, but other applications may find uses for it. Sorry, there isn't much
documentation, but the header files and wxBuilder sources should supply a few clues.

5.13. MFUTILS

A very modest step towards reading Windows metafiles on the any platform. The ClockWorks
program, available from AIAI, demonstrates how extremely simple metafiles may be read and
displayed (in this case, to be used as clock hands).

5.14. Colours

A colour sampler for viewing colours and their names on each platform.

31

6. Bugs and future directions

6.1. Bugs

These are the known bugs (the contents of bugs.txt) plus a to-do list.

wxWindows Bug and To Do List

######################### BUGS ##########################

19/4/93 Version 1.40 (First version for Motif)
--

-- Haven't sorted out how to set default buttons without
 messing up tab traversal.

-- Probably need to set scrollbars to force an initial paint,
 or call wxCanvas::SetSize. If you set the scrollbars,
 it works fine.

-- No default colours. Works ok on monochrome though...

-- Too many repaint messages sent sometimes.

7/9/93 Version 1.50

-- Programmatic setting of multiple selections listboxes doesn't work
 (Motif 1.1).

-- Canvas doesn't work under Motif 1.2.

-- Colourmap still only producing a small number of colours - FIXED
(was
 using too small values for RGB values)

-- PostScript driver leaves something to be desired (espec. for
 Landscape mode).

-- Windows 3.1 canvas scrolling problem with large scale factor or some
 mapping modes: leaves streaks behind. Could be a rounding error with
 SetViewport...?

-- XView: closing of dialog boxes from the Window Manager not handled
 properly

16/11/93 Version 1.50 beta (h)

-- Motif 1.2.1 support added, but this bug (at least) remains: setting
 panel size doesn't seem to return correct size if there are panel
 items. So a Fit on a panel then a surrounding frame doesn't work
 properly. WORKAROUND: make frame and panel very big before placing
 items.

CHAPTER 6

32

-- Status line in Motif doesn't show separate regions for > 1 region.

-- No PostScript DrawArc, or documentation for it.

16/11/93 Version 1.50 beta (i)

-- Motif: listbox gets smaller when you add 1 or more items to it.
 WORKAROUND: Set the listbox size after appending, e.g.
 SetSize(-1, -1, 100 100)

-- Motif: Technicolour appears after a while on a canvas (HP only?)

-- Motif: XORing doesn't seem to work in colour

-- Panel-in-panel doesn't work for wxABSOLUTE_POSITIONING panels
 (Motif) or XView (at all)

-- In Windows, CTL3D and Fafa library seem to conflict (some items
don't
 appear on a panel if both are in operation). SOLUTION: I probably
 didn't include the fafa.rc file. This should make it work...

17/1/94 Version 1.50 beta (j)

-- In beta (i), users found that buttons in Motif were random
 sizes. Something to do with using gadgets??

-- Cured bad MDI bug that crashed application (and Windows) on exit.

-- Cured XView wxPanel::Fit bug.

-- wxFrame::Fit() doesn't seems to work for an MDI frame that is
 iconized. It has to be displayed first, which leads to messy
 screen redraws. Ugh. Is this a Windows problem, or wxWindows?
 I suspect the former.

17/10/94 Version 1.60

-- PopupMenu doesn't always work under Motif, for some reason.
 The workaround is to use FakePopupMenu.

-- Dialog box destruction isn't always vetoed when it should be
 under XView (Motif?)

-- Frames don't always position properly (some interaction with
 window managers?)

-- wxGetFirst/NextFile not implemented for Borland or NT

-- wxHelp and hyText refreshing is BAD, especially under Motif
 when sometimes the text doesn't appear at all.

CHAPTER 6

33

-- Under Motif, listboxes sometimes change size mysteriously.
 Cured (I think) in 1.62.

June 1995 version 1.62

-- OnSize events not sent in a consistent order across platforms.

-- When loading BMP or GIF into wxBitmap in X, depth not set.

-- wxbWindow::GetConstraints() (called by DeleteRelatedConstraints()
 and wxIndividualLayoutConstraint::ResetIfWin()) refer to windows
 that have been deleted. Perhaps windows are not always
 removed from the constraintsInvolvedIn list when deleted?
 CURED IN 1.65.

-- There still seems to be an interaction between GCC, wxWindows
 and Motif under HPUX, where the file selector causes a core
 dump. SEE FAQ FOR FIX.

-- wxCheckBox (and probably wxRadioBox) behave wrong under Motif:
 setting the value programmatically causes the callback to
 be invoked. This should be suppressed.

-- Under Windows, wxWin crashes when GDI resources run out
(insufficient
 checks for GDI function failures).

-- wxDebugMsg doesn't seem to work under WIN32s if the format string is
 complex (gives bizarre characters). Workaround: pass pure strings
 with no formatting (use e.g. sprintf instead).

December 1995 1.65

-- Cannot persuade XView to refresh dialog boxes properly: in the
 Dialog Editor, handles are not redrawn when the dialog is refreshed,
 although they *are* drawn when not within a window-manager-
originated
 OnPaint call.

-- For the above reason and others, Dialog Editor does not work for
 XView.

-- OnSet/KillFocus may not work for wxText in Motif.

-- XView (and possibly Motif) version of the wxChart library crashes
the
 X server. Probably some incorrect values are being passed to drawing
 primitives, which work OK under Windows but not under X.

-- Panel item text and background colouring is better under Windows
than it was, but
 not recently tested under Motif. Colouring doesn't work for wxButton
under
 Windows for some reason, and I don't know how to alter the

CHAPTER 6

34

foreground
 colour for panel items under Windows.
 There's confusion over what wxPanel::SetBackgroundColour and
 wxItem::SetBackgroundColour should do (should the former set the
 default for the latter? Not according to e.g.
wxButton::ChangeColor).
 Similarly for SetButtonColour: button or font colour?

-- Programmatic scrollbars in Windows don't quite behave
 right: they don't always scroll to full extent.

-- Modal dialogs don't behave themselves well in XView, still
 (do XView bug fixes help?) E.g. samples/dialogs.cc shows
 choice items not working. So wxColourDialog and wxFontDialog
 don't work in XView.

-- wxItem::OnEvent returns slightly wrong mouse coordinates for
 Motif: must be normalized to take into account position of item
 widget on its form widget.

-- wxResourceTable, wxItemResource, wxStaticItem, wxSizer and
 derivatives not documented.

-- I recently realized that there was a bug in the way I calculate
 font point sizes under MS Windows. This results in fonts that
 are the wrong size, compared with point sizes in other applications
 and most annoyingly, the Windows font selector common dialog.
 Ironically, the bug allowed good font matching between X and
 Windows, but when the bug is corrected, fonts of a given size show
 up differently between X and Windows. So at present you can either
 have fonts that are consistent between platforms, or ones that
 are consistent with other Windows applications, but not both.
 Set FONT_SIZE_COMPATIBILITY to 1 for compatibility with previous
 version of wxWindows, to 0 for compatibility with other Windows apps
 (especially if you will be using the Windows font selector dialog).

-- wxTextWindow::GetLastPosition appears not to work in WIN32 (Watcom),
 although it does for WIN16.

January 1997 1.66F

-- Popup menu bug in Motif now fixed by Torsten Schmale.

6.2. Future directions

These are addressed in a separate wxWindows planning document, available from AIAI and on
the wxWindows World Wide Web pages.

The plans include:

• document/view library;
• OLE-2 wrapper;
• Database connectivity;
• improved wxBuilder;
• integration with an existing networking toolkit;

CHAPTER 6

35

• multimedia widget (under construction);
• better makefiles and installation procedures;
• ports: those in progress include Mac, NeXT and OS/2.

As ever, the future of wxWindows is largely in the hands of its users, since no one person could
cope with supporting all platforms simultaneously. So, please don't be backward in coming
forward with project ideas and code contributions!

36

7. Tutorial

This short tutorial takes a look at some of the supplied demonstration programs. The tutorial is
incomplete and may be expanded in later releases.

7.1. The demo programs

7.1.1. A minimal wxWindows program

The best way to get a feel for how to use a tool is to see a small example. The supplied demo
'minimal' (source file minimal.cpp) shows a rudimentary wxWindows program. It has a main
window with a panel inside it, displaying a message. There is a menu bar with a File menu which
in turn has a Quit option, and the program has its own icon. Under MS Windows, the system
menu shows the usual options including Minimize, Maximize and Close, and under X, there is a
similar pull-down system menu provided by the current window manager. The window is
resizeable, and the panel automatically resizes to fit its parent.

Look at minimal.cpp.

/*
 * File: minimal.cpp
 * Purpose: Minimal wxWindows app
 * Author: Julian Smart
 * Created: 1993
 * Updated:
 * Copyright: (c) 1993, AIAI, University of Edinburgh
 */

/* static const char sccsid[] = "%W% %G%"; */

#ifdef __GNUG__
#pragma implementation
#pragma interface
#endif

// For compilers that support precompilation, includes "wx.h".
#include "wx_prec.h"

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP
#include "wx.h"
#endif

// Define a new application type
class MyApp: public wxApp
{ public:
 wxFrame *OnInit(void);
};

// Define a new frame type
class MyFrame: public wxFrame
{ public:

CHAPTER 7

37

 MyFrame(wxFrame *frame, char *title, int x, int y, int w, int h);
 void OnMenuCommand(int id);
};

// ID for the menu quit command
#define MINIMAL_QUIT 1

// This statement initializes the whole application and calls OnInit
MyApp myApp;

// A macro needed for some compilers (AIX) that need 'main' to be
defined
// in the application itself.
IMPLEMENT_WXWIN_MAIN

// `Main program' equivalent, creating windows and returning main app
frame
wxFrame *MyApp::OnInit(void)
{
 // Create the main frame window
 MyFrame *frame = new MyFrame(NULL, "Minimal wxWindows App", 50, 50,
400, 300);

 // Give it an icon
#ifdef wx_msw
 frame->SetIcon(new wxIcon("mondrian"));
#endif
#ifdef wx_x
 frame->SetIcon(new wxIcon("aiai.xbm"));
#endif

 // Make a menubar
 wxMenu *file_menu = new wxMenu;

 file_menu->Append(MINIMAL_QUIT, "Quit");
 wxMenuBar *menu_bar = new wxMenuBar;
 menu_bar->Append(file_menu, "File");
 frame->SetMenuBar(menu_bar);

 // Make a panel with a message
 wxPanel *panel = new wxPanel(frame, 0, 0, 400, 400);

 panel->SetLabelPosition(wxHORIZONTAL) ;
 wxMessage *msg = new wxMessage(panel, "Hello, this is a minimal
wxWindows program!", 5, 5);

 // Show the frame
 frame->Show(TRUE);

 // Return the main frame window
 return frame;
}

// My frame constructor
MyFrame::MyFrame(wxFrame *frame, char *title, int x, int y, int w, int
h):
 wxFrame(frame, title, x, y, w, h)

CHAPTER 7

38

{}

// Intercept menu commands
void MyFrame::OnMenuCommand(int id)
{
 switch (id) {
 case MINIMAL_QUIT:
 delete this;
 break;
 }
}

The statement #include "wx.h" provides the program with access to all the wxWindows
classes and functions.

The first class declaration, MyApp, declares a new application, overriding one member function
OnInit. This is an essential part of writing a wxWindows program, since OnInit is the equivalent
ofmain in a normal C++ program.

The class MyFrame declares a constructor, and a message handler for intercepting menu
commands.

The definition of the global variable myApp looks innocuous enough but this starts the whole
application going simply by being defined.

The OnInit MyApp member function does the initialization of the program. It creates a main
frame, sets the icon, creates a menu bar, a panel, and a panel item.

The MyFrame constructor may seem a little pointless, but it fulfils the requirements of C++ syntax
in defining the constructor in terms of its parent's constructor.

The OnMenuCommand definition intercepts menu commands for the main frame. If the option
chosen is Quit, the application terminates by deleting the main frame. Normally any other existing
frames should be deleted (subframes are deleted automatically); these calls are usually put in the
frame's OnClose handler so that a system-generated OnClose event will enable the program to
clean itself up first. System-generated OnClose events delete the main frame after
callingOnClose, so this should not be done from within OnClose.

7.1.2. More advanced features: the hello demo

The 'Hello wxWindows' demo (source files, hello.cpp and hello.h) shows off some more
wxWindows features. When run, two windows pop up. One is the 'main window', with two
subwindows - a panel containing various 'widgets', and a text window. The other contains a
canvas, drawing some simple shapes, and allowing the user to doodle on it by dragging with the
left mouse button. The canvas contents can be scaled and printed out, either to a printer
supported by Windows or to PostScript, writing to a file or invoking the printer directly. Under
Windows, the graphic may be copied to the clipboard as a metafile.

Both frames can be resized, and the subwindows will be resized in an appropriate manner. The
text subwindow can be scrolled; on the panel, a button can be pressed for the program to prompt
the user with text with which to set the status bar. Clicking on the list box writes a line of text into
the text window.

The File menu has options for selecting the 'mapping mode' (logical dimensions) used in drawing
graphics, a zoom option, and an option for loading a file into the text subwindow using a file

CHAPTER 7

39

selector tool.

The Timer menu allows the user to switch a timer on and off; when on, some text gets written to
the text subwindow every five seconds.

The Cursor menu enables the canvas cursor to be changed, and lets the potential wxWindows
programmer view the available standard cursors.

The About option of the Help menu pops up a dialog box with some information.

This represents a fair amount of GUI functionality for a relatively small program. This is because
wxWindows calls are high level (creating a working text window is a single call) and because an
object-oriented approach is taken, where much default functionality is provided.

Note also the lack of explicit coordinates or sizes in the panel item creation calls. This is the
preferred approach, leaving wxWindows to lay out the items from left to right and top to bottom,
with the user interjecting the occasional NewLine call. Explicit positioning is not recommended
since it is less device independent, but can be achieved by using more parameters to the creation
calls, or by using SetSize after an item has been created. Coordinates and sizes default to -1,
which tells wxWindows to choose appropriate positioning and sizing. In this example, the
windows are explicitly sized, but you may size a frame or panel to fit around its contents by calling
Fit.

MyFrame's OnSize member sizes each subwindow in proportion to the new size of the frame.
MyCanvas's OnPaint draws a couple of lines, a rectangle and a spline whenever the canvas
requires repainting (e.g. on creation, and when exposed). The OnEventmember checks for
mouse dragging, and draws a line from the last point to the current position. Scrolling the canvas
and subsequent repainting is handled automatically by wxWindows.

Finally, two callback functions demonstrate popping up dialog boxes, setting the status line, and
inserting text into a text window.

This demo can provide a template for your own application. Gradually modify it for your own
needs, and you will rapidly be writing portable X and MS Windows programs!

7.1.3. The MDI demo

As explained in the manual (see MDI versus SDI (page 9)), wxWindows takes an automated view
of Microsoft Windows's MDI (Multiple Document Interface) since it is a very platform-specific
feature. The special MDI 'Window' menu, allowing the user to switch between child windows, is
provided automatically, though without any accelerators and without a choice of position. Also,
instead of deriving frames from distinct classes for MDI versus SDI, the approach taken in
Microsoft's class library, wxWindows uses an option in the frame constructor to switch between
styles. This allows the programmer to delay the MDI/SDI decision, perhaps even providing a
command-line switch to let the user decide.

The mdi example program shows this run-time switching. Invoked without a command line
switch, it defaults to SDI. Invoked with the switch -mdi it runs as an MDI program, but only under
MS Windows.

There are a few extra considerations when programming an MDI applications. One is the choice
of menu items. An SDI program might have a main window and several child windows, where the
main window menu has options for quitting the program and other global matters, while child
window menus have child-specific options. In MDI, the child window menu visually replaces the
main window menu when activated, and so it must duplicate some main window menu options.

CHAPTER 7

40

One solution is to include logic to add extra menu items depending on whether MDI or SDI is
specified, as the mdi example does.

Also, for programs which must be both SDI and MDI (on non-MS Windows platforms SDI mode is
mandatory), the main window must not have subwindows (i.e. panels, canvases or text
subwindows) since the client area may be occupied with child MDI windows under MS Windows.

7.1.4. The IPC demo

The demo in the directory samples/ipc shows how processes may easily talks to each
other synchronously (i.e. when A sends a message to B, A waits for an answer). If you start
server, then client, a new window should appear on top of the server window, which
represents the connection between server and client. Quitting the client causes the connection to
be broken and this window to disappear.

To illustrate 'hot linking', click on the server's listbox. This sends an advise message to the client,
telling it to update its own listbox. The reverse is not true, however.

A client may request information from the server. Select the Requestmenu item from the client's
File menu. The window which pops up is created by the client and contains a message that the
server sent back.

Selecting Execute from the client's menu makes the server pop up a window. Normally this
would execute some command that the client wishes the server to run.

The Poke menu item sends a poke message to the server; normally this would insert some data
into the server's memory.

Interprocess communication in wxWindows uses a subset of DDE (Dynamic Data Exchange)
which is Microsoft's standard for low-level IPC under Windows. wxWindows gives you DDE under
UNIX as well as Windows, and makes it easier to program into the bargain by using an intuitive
object-oriented model of communication.

41

8. Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

8.1. Strategies for reducing programming errors

8.1.1. Use ASSERT

Although I haven't done this myself within wxWindows, it is good practice to use ASSERT
statements liberally, that check for conditions that should or should not hold, and print out
appropriate error messages. These can be compiled out of a non-debugging version of
wxWindows and your application. Using ASSERT is an example of 'defensive programming': it
can alert you to problems later on.

8.1.2. Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, I haven't
practised what I'm preaching, but I'm now trying to use wxString wherever possible. You can
reduce the possibility of memory leaks substantially, and it's much more convenient to use the
overloaded operators than functions such as strcmp. wxString won't add a significant overhead to
your program; the overhead is compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

8.2. Strategies for portability

8.2.1. Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very differently
sized panel items. Consider using the constraint system, although this can be complex to
program. If you needs are simple, the default relative positioning behaviour may be adequate
(using default position values and wxPanel::NewLine).

Alternatively, you could use alternative .wrc (wxWindows resource files) on different platforms,
with slightly different dimensions in each. Or space your panel items out to avoid problems.

8.2.2. Use wxWindows resource files

Use .wrc (wxWindows resource files) where possible, because they can be easily changed
independently of source code. Bitmap resources can be set up to load different kinds of bitmap
depending on platform (see the section on resource files).

8.3. Strategies for debugging

8.3.1. Positive thinking

It's common to blow up the problem in one's imagination, so that it seems to threaten weeks,
months or even years of work. The problem you face may seem insurmountable: but almost

CHAPTER 8

42

never is. Once you have been programming for some time, you will be able to remember similar
incidents that threw you into the depths of despair. But remember, you always solved the
problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an apparently
inordinate amount of time to solve. In the end, you will probably wonder why you worried so
much. That's not to say it isn't painful at the time. Try not to worry -- there are many more
important things in life.

8.3.2. Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits the
problem. If it is not possible to reduce a large and complex program to a very small program, then
try to ensure your code doesn't hide the problem (you may have attempted to minimize the
problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from functioning to
non-functioning state. This should give a clue to the problem. In some cases though, such as
memory leaks or wrong deallocation, this can still give totally spurious results!

8.3.3. Genetic mutation

If we had sophisticated genetic algorithm tools that could be applied to programming, we could
use them. Until then, a common -- if rather irrational -- technique is to just make arbitrary changes
to the code until something different happens. You may have an intuition why a change will make
a difference; otherwise, just try altering the order of code, comment lines out, anything to get over
an impasse. Obviously, this is usually a last resort.

8.3.4. Use a debugger

This sounds like facetious advice, but it's surprising how often people don't use a debugger. Often
it's an overhead to install or learn how to use a debugger, but it really is essential for anything but
the most trivial programs. Some platforms don't allow for debugging, such as WIN32s under
Windows 3.x. In this case, you might be advised to debug under 16-bit Windows and when you're
confident, compile for WIN32s. In fact WIN32s can be very strict about bad memory handling, so
testing out under WIN32s is a good thing to do even if you're not going to distribute this version.
(Unless you've got a good memory checking, utility, of course!) Tracking bugs under WIN32s can
involve a lot of debug message insertion and relinking, so make sure your compiler has a fast
linker (e.g. Watcom, Symantec).

8.3.5. Use tracing code

You can use wxDebugMsg statements (or the wxDebugStreamBuf class) to output to a
debugging window such as DBWIN under Windows, or standard error under X. If compiling in
DEBUG mode, you can use TRACE statements that will be compiled out of the final build of your
application.

Using tracing statements may be more convenient than using the debugger in some
circumstances (such as when your debugger doesn't support a lot of debugging code, or you
wish to print a bunch of variables).

CHAPTER 8

43

8.3.6. Use wxObject::Dump and the wxDebugContext class

It's good practice to implement the Dump member function for all classes derived from wxObject.
You can then make use of wxDebugContext to dump out information on all objects in the
program, if DEBUG is defined to be more than zero. You can use wxDebugContext to check for
memory leaks and corrupt memory. See the debugging topic in the reference manual for more
information.

8.3.7. Check Windows debug messages

Under Windows, it's worth running your program with DBWIN running or some other program that
shows Windows-generated debug messages. It's possible it'll show invalid handles being used.
You may have fun seeing what commercial programs cause these normally hidden errors!
Microsoft recommend using the debugging version of Windows, which shows up even more
problems. However, I doubt it's worth the hassle for most applications. wxWindows is designed to
minimize the possibility of such errors, but they can still happen occasionally, slipping through
unnoticed because they are not severe enough to cause a crash.

44

9. Alphabetical class reference

See also Writing a wxWindows application: a rough guide (page 413)

Notes on using the reference (page 419)
Guide to functions (page 328)

9.1. wxApp: wxObject

See also wxApp overview (page 383)

The wxApp class represents the application itself.

wxApp::wxApp

void wxApp(int language = wxLANGUAGE_ENGLISH)

Constructor. Called implicitly with a definition of a wxApp object.

The argument is a language identifier; this is an experimental feature and will be expanded and
documented in future versions.

wxApp::~wxApp

void ~wxApp(void)

Destructor. Will be called implicitly on program exit if the wxApp object is created on the stack.

wxApp::argc

int argc

Number of command line arguments (after environment-specific processing).

wxApp::argv

char ** argv

Command line arguments (after environment-specific processing).

wxApp::wx_class

char * wx_class

Currently used under Motif only, where the value is passed to XtOpenDisplay on initialization. Set
this member in the constructor of your derived wxApp class to give the application a name other
than the default "wxApp''.

CHAPTER 9

45

wxApp::work_proc

void * work_proc

Set this member to the address of a function that takes a pointer to wxApp. It will be called
whenever the system is idle and can be used to schedule background tasks.

wxApp::Dispatch

void Dispatch(void)

Dispatches the next event in the windowing system event queue. (MS Windows and Motif). See
also wxApp::Pending (page 47).

This can be used for programming event loops, e.g.

 while (app.Pending())
 Dispatch();

wxApp::GetAppName

char * GetAppName(void)

Returns the application name. wxWindows sets this to a reasonable default before calling
wxApp::OnInit, but the application can reset it at will.

wxApp::GetClassName

char * GetClassName(void)

Gets the class name of the application. The class name may be used in a platform specific
manner to refer to the application.

wxApp::GetExitOnDelete

Bool GetExitOnDelete(void)

Returns TRUE if the application will exit when the top-level window is deleted, FALSE otherwise.

wxApp::GetPrintMode

Bool GetPrintMode(void)

Returns the print mode: see SetPrintMode (page 48).

wxApp::GetTopWindow

wxWindow * GetTopWindow(void)

CHAPTER 9

46

Returns a pointer to the top window (as returned by wxApp::OnInit). This may return NULL if
called before the end of wxApp::OnInit.

wxApp::ExitMainLoop

void ExitMainLoop(void)

Call this to explicitly exit the main message (event) loop. You should normally exit the main loop
(and the application) by deleting the frame returned from wxApp::OnInit.

wxApp::Initialized

Bool Initialized(void)

Returns TRUE if the application has been initialized (i.e. if OnInit (page 46) has returned
successfully). This can be useful for error message routines to determine which method of output
is best for the current state of the program (some windowing systems may not like dialogs to pop
up before the main loop has been entered).

wxApp::MainLoop

int MainLoop(void)

Called by wxWindows on creation of the application. Override this if you wish to provide your own
(environment-dependent) main loop.

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

wxApp::OnExit

int OnExit(void)

Provide this member function for any processing which needs to be done as the application is
about to exit.

wxApp::OnCharHook

Bool OnCharHook(wxKeyEvent& ch)

This member is called (under Windows only) to allow the window to intercept keyboard events
before they are processed by child windows. The default implementation forwards the message
to the currently active window. The function should returns TRUE to indicate the character has
been processed, or FALSE to allow default processing.

See also wxKeyEvent (page 193), wxEvtHandler::OnChar (page 151),
wxEvtHandler::OnCharHook (page 152), wxDialogBox::OnCharHook (page 125).

wxApp::OnInit

CHAPTER 9

47

wxFrame * OnInit(void)

This must be provided by the application, and must create and return the application's main
window.

wxApp::Pending

Bool Pending(void)

Returns TRUE if unprocessed events are in the window system event queue (MS Windows and
Motif). See also wxApp::Dispatch (page 45).

wxApp::ProcessMessage

Bool ProcessMessage(MSG *msg)

Windows-only function for processing a message. This function is called from the main message
loop, checking for windows that may wish to process it. The function returns TRUE if the
message was processed, FALSE otherwise. If you use wxWindows with another class library with
its own message loop, you should make sure that this function is called to allow wxWindows to
receive messages. For example, to allow co-existance with the Microsoft Foundation Classes,
override the PreTranslateMessage function:

// Provide wxWindows message loop compatibility
BOOL CTheApp::PreTranslateMessage(MSG *msg)
{
 if (wxTheApp && wxTheApp->ProcessMessage(msg))
 return TRUE;
 else
 return CWinApp::PreTranslateMessage(msg);
}

wxApp::SetAppName

void SetAppName(char *name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWindows.

wxApp::SetClassName

void SetClassName(char *name)

Sets the class name of the application. This may be used in a platform specific manner to refer to
the application.

wxApp::SetExitOnDelete

void SetExitOnDelete(Bool flag)

CHAPTER 9

48

If flag is TRUE (the default), the application will exit when the top-level frame is deleted. If FALSE,
the application will continue to run.

Currently, setting this to FALSE only has an effect under Windows.

wxApp::SetPrintMode

void SetPrintMode(int mode)

Sets the print mode determining what printing facilities will be used by the printing framework.

• wxPRINT_WINDOWS: under Windows, use Windows printing (wxPrinterDC). This is the
default under Windows.

• wxPRINT_POSTSCRIPT: use PostScript printing (wxPostScriptDC). This is the default
for non-Windows platforms.

9.2. wxBitmap: wxObject

See also Overview (page 384)

This class encapsulates the concept of a platform-dependent bitmap, either monochrome or
colour.

wxBitmap::wxBitmap

void wxBitmap(char bits[], int width, int height
 int depth = 1)

Constructs a (usually monochrome) bitmap from an array of pixel values, under both X and
Windows.

void wxBitmap(int width, int height int depth = -1)

Constructs a new bitmap. If the final argument is omitted, the display depth of the screen is used.

void wxBitmap(char **bits)

Constructs a bitmap from pixmap (XPM) data, if wxWindows has been configured to incorporate
this feature.

To use this constructor, you must first include an XPM file. For example, assuming that the file
mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

...

wxBitmap *bitmap = new wxBitmap(mybitmap);

void wxBitmap(char *name, long flags)

Constructs a bitmap from a file or resource. name can refer to a resource name under MS

CHAPTER 9

49

Windows, or a filename under MS Windows and X.

Under Windows, flags defaults to wxBITMAP_TYPE_BMP_RESOURCE |
wxBITMAP_DISCARD_COLOURMAP. Under X, flags defaults to wxBITMAP_TYPE_XBM |
wxBITMAP_DISCARD_COLOURMAP.

The meaning of name is determined by the flags parameter which may be a bit list of
wxBITMAP_DISCARD_COLOURMAP (meaning the colourmap read, if any, should be thrown
away) and one of:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.
wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the resource database.
wxBITMAP_TYPE_GIF Load a GIF bitmap file.
wxBITMAP_TYPE_XBM Load an X bitmap file.
wxBITMAP_TYPE_XPM Load an XPM bitmap file.
wxBITMAP_TYPE_RESOURCELoad a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration. If all possible
wxWindows settings are used, the Windows platform supports BMP, BMP_RESOURCE,
XPM_DATA, and XPM. Under X, the available formats are BMP, GIF, XBM, and XPM.

wxBitmap::~wxBitmap

void ~wxBitmap(void)

Destroys the bitmap. The bitmap will be destroyed automatically by wxWindows when the
application exits.

wxBitmap::Create

void Create(int width, int height int depth = -1)

Creates a new bitmap. If the final argument is omitted, the display depth of the screen is used.

wxBitmap::GetColourMap

wxColourMap * GetColourMap(void)

Gets the associated colourmap (if any) which may have been loaded from a file or set for the
bitmap.

wxBitmap::GetDepth

int GetDepth(void)

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHeight

CHAPTER 9

50

int GetHeight(void)

Gets the height of the bitmap in pixels.

wxBitmap::GetWidth

int GetWidth(void)

Gets the width of the bitmap in pixels.

wxBitmap::LoadFile

Bool LoadFile(char *name, long flags)

Loads a bitmap from a file or resource. name can refer to a resource name under MS Windows,
or a filename under MS Windows and X.

The meaning of name is determined by the flags parameter which may be a bit list of
wxBITMAP_DISCARD_COLOURMAP (meaning the colourmap read, if any, should be thrown
away) and one of:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.
wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the resource database.
wxBITMAP_TYPE_GIF Load a GIF bitmap file.
wxBITMAP_TYPE_XBM Load an X bitmap file.
wxBITMAP_TYPE_XPM Load an XPM bitmap file.
wxBITMAP_TYPE_RESOURCELoad a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.

A colourmap may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using the
GetColourMap (page 49) member.

wxBitmap::Ok

Bool Ok(void)

Returns TRUE if the bitmap was successfully created.

wxBitmap::SaveFile

Bool SaveFile(char *name, int type, wxColourMap *cmap)

Saves a bitmap in the named file.

The type of saved is determined by the type parameter which may be one of:

wxBITMAP_TYPE_BMP Save a Windows bitmap file.
wxBITMAP_TYPE_GIF Save a GIF bitmap file.

CHAPTER 9

51

wxBITMAP_TYPE_XBM Save an X bitmap file.
wxBITMAP_TYPE_XPM Save an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.

If a colourmap is supplied, it may be used when saving the bitmap. If this parameter is NULL and
there is a colourmap associated with the bitmap, this internal colourmap may be used instead.

wxBitmap::SetColourMap

void SetColourMap(wxColourMap *cmap)

Sets the associated colourmap: it will be deleted in the wxBitmap destructor, so if you do not wish
it to be deleted automatically, reset the colourmap to NULL before the bitmap is deleted.

9.3. wxBrush: wxObject

A brush is a drawing tool for filling in areas. It is used for painting the background of rectangles,
ellipses, etc. It has a colour and a style.

The style may be one of:

• wxTRANSPARENT
• wxSOLID
• wxBDIAGONAL_HATCH
• wxCROSSDIAG_HATCH
• wxFDIAGONAL_HATCH
• wxCROSS_HATCH
• wxHORIZONTAL_HATCH
• wxVERTICAL_HATCH

On a monochrome display, the default behaviour is to show all brushes as white unless the colour
is really black. If you wish the policy to be 'all non-white colours are black', as with pens,
uncomment the piece of code documented in wxDC::SetBrush (page 117) in wx_dc.cpp.
Alternatively, set the Colour member of the device context to TRUE, and select appropriate
colours.

Do not initialize objects on the stack before the program commences, since other required
structures may not have been set up yet. Instead, define global pointers to objects and create
them in wxApp::OnInit (page 46) or when required.

An application may wish to create brushes with different characteristics dynamically, and there is
the consequent danger that a large number of duplicate brushes will be created. Therefore an
application may wish to get a pointer to a brush by using the global list of brushes
wxTheBrushList, and calling the member function FindOrCreateBrush. See wxBrushList (page
53) and wxDC (page 108).

wxBrush::wxBrush

void wxBrush(void)

void wxBrush(wxColour &colour, int style)

CHAPTER 9

52

void wxBrush(char *colour_name, int style)

Constructs a brush: uninitialized, initialized with an RGB colour and a style, or initialized using a
colour name and a style (see wxBrush::SetStyle (page 53)). If the named colour form is used, an
appropriate wxColour (page 76) structure is found in the colour database.

wxBrush::~wxBrush

void ~wxBrush(void)

Destructor, destroying the brush. Note that brushes should very rarely be deleted since windows
may contain pointers to them. All brushes will be deleted when the application terminates.

If you have to delete a brush, then callwxDC::SetBrush (page 117) with a NULL argument to
ensure that the old brush is restored, and the current brush is selected out of the device context.

wxBrush::GetColour

wxColour& GetColour(void)

Returns a reference to the brush colour.

wxBrush::GetStipple

wxBitmap * GetStipple(void)

Gets the stipple bitmap.

wxBrush::GetStyle

int GetStyle(void)

Returns the brush style, one of:

• wxTRANSPARENT
• wxSOLID
• wxBDIAGONAL_HATCH
• wxCROSSDIAG_HATCH
• wxFDIAGONAL_HATCH
• wxCROSS_HATCH
• wxHORIZONTAL_HATCH
• wxVERTICAL_HATCH

wxBrush::SetColour

void SetColour(wxColour &colour)

void SetColour(char *colour_name)

CHAPTER 9

53

void SetColour(int red, int green, int blue)

The brush's colour is changed to the given colour.

wxBrush::SetStipple

void SetStipple(wxBitmap *bitmap)

Sets the stipple bitmap.

Note that there is a big difference between stippling in X and Windows. On X, the stipple is a
mask between the wxBitmap and current colour. On Windows, the current colour is ignored, and
the bitmap colour is used. However, for pre-defined modes like wxCROSS_HATCH, the
behaviour is the same for both platforms.

wxBrush::SetStyle

void SetStyle(int style)

Sets the brush style, one of:

• wxTRANSPARENT
• wxSOLID
• wxBDIAGONAL_HATCH
• wxCROSSDIAG_HATCH
• wxFDIAGONAL_HATCH
• wxCROSS_HATCH
• wxHORIZONTAL_HATCH
• wxVERTICAL_HATCH

9.4. wxBrushList: wxList

A brush list is a list containing all brushes which have been created. There is only one instance of
this class: wxTheBrushList. Use this object to search for a previously created brush of the
desired type and create it if not already found. In some windowing systems, the brush may be a
scarce resource, so it is best to reuse old resources if possible. When an application finishes, all
brushes will be deleted and their resources freed, eliminating the possibility of 'memory leaks'.
See wxBrush (page 51).

wxBrushList::wxBrushList

void wxBrushList(void)

Constructor. The application should not construct its own brush list: use the object pointer
wxTheBrushList.

wxBrushList::AddBrush

void AddBrush(wxBrush *brush)

CHAPTER 9

54

Used by wxWindows to add a brush to the list, called in the brush constructor.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush(wxColour *colour, int style)

wxBrush * FindOrCreateBrush(char *colour_name, int style)

Finds a brush of the given specification, or creates one and adds it to the list. See
wxBrush::SetStyle (page 53) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

Used by wxWindows to remove a brush from the list.

9.5. wxButton: wxItem

A button is a panel item that contains a text string or bitmap, and is one of the commonest
elements of a GUI. It may be placed on a dialog box (page 123) or panel (page 228).

wxButton::wxButton

void wxButton(wxPanel *parent, wxFunction func, char *label,
 int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "button")

void wxButton(wxPanel *parent, wxFunction func, wxBitmap *wxBitmap,
 int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "button")

Constructor, creating and showing a button. The parent must be a valid panel or dialog box
pointer.

func may be NULL; otherwise it is used as the callback for the button. Note that the cast
(wxFunction) must be used when passing your callback function name, or the compiler may
complain that the function does not match the constructor declaration. See wxFunction (page
180).

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

If width or height are omitted (or are less than zero), an appropriate size will be used for the item.
The style parameter is reserved for future use. The name parameter is used to associate a name
with the item, allowing the application user to set Motif resource values for individual buttons.

If the first form is used, the label will be shown on the button. If the seond form is used, the
bitmap will be used.

CHAPTER 9

55

wxButton::~wxButton

void ~wxButton(void)

Destructor, destroying the button.

wxButton::Create

void Create(wxPanel *parent, wxFunction func, char *label,
 int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "button")

void Create(wxPanel *parent, wxFunction func, wxBitmap *wxBitmap,
 int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "button")

Button creation functions called by the button constructors. Call these when a derived button
class uses the zero-argument wxButtonconstructor, but can reuse the existing button creation
code. See wxButton::wxButton (page 54) for details.

wxButton::SetDefault

void SetDefault(void)

This sets the button to be the default item for the panel or dialog box. Under XView, the default
item is highlighted, and pressing the return key executes the callback for the item (but with no
visual feedback, and only if a text item does not have the focus).

Under MS Windows, only dialog box buttons respond to this function. As normal under MS
Windows and Motif, pressing return causes the default button to be depressed when the return
key is pressed. See also wxWindow::SetFocus (page 325) which sets the keyboard focus for
windows and text panel items, wxPanel::OnDefaultAction (page 231) and
wxPanel::GetDefaultItem (page 229).

Note that under Motif, calling this function immediately after creation of a button and before the
creation of other buttons will cause misalignment of the row of buttons, since default buttons are
larger. To get around this, call SetDefault after you have created a row of buttons: wxWindows
will then set the size of all buttons currently on the panel to the same size.

wxButton::SetLabel

void SetLabel(wxBitmap *label)

void SetLabel(char *label)

Sets the string or bitmap label for a button.

9.6. wxButtonBar: wxToolBar

See also Overview (page 392)

A wxButtonBar very similar to the wxToolBar (page 308), but is optimized for use under MS

CHAPTER 9

56

Windows, giving a more attractive appearance and better feedback. Include the file wx_bbar.h
to use this class.

See the comments in documentation for wxToolBar for functions such as CreateTools that have
are harmless when called for wxToolBar but have specific meaning for wxButtonBar under
Windows 95. CreateTools must be called under Windows for wxButtonBar.

Note: under Windows 95, a wxButtonBar cannot be moved to any position other than the top-left
of the frame. If this is a problem, you may wish to alter wx_bbar.h and wx_bbar.cpp to
compile the non-Windows 95 code instead.

wxButtonBar::wxButtonBar

void wxButtonBar(wxWindow *parent, int x = 0, int y = 0,
 int width = -1, int height = -1, long style = 0,
 int orientation = wxVERTICAL, int nRowsOrColumns = 1, char *name = "buttonBar")

Constructs a buttonbar panel (canvas under XView).

parent is a parent window, usually a wxFrame.

x, y set the position of the window.

width, height set the size of the window.

style is a bitlist, with no buttonbar specific flags at present.

orientation specifies a wxVERTICAL or wxHORIZONTAL orientation for laying out the buttonbar.
Must always be wxVERTICAL under Windows 95.

nRowsOrColumns specifies the number of rows or columns, whose meaning depends on
orientation. If laid out vertically, nRowsOrColumns specifies the number of rows to draw before
the next column is started; if horizontal, it refers to the number of columns to draw before the next
row is started. Under Windows 95, this value refers to the number of rows only.

name specifies a window name for the buttonbar.

wxButtonBar::GetDefaultButtonHeight

float GetDefaultButtonHeight(void)

Returns the real height of the button (bitmap height plus the extra for 3D effects).

wxButtonBar::GetDefaultButtonWidth

float GetDefaultButtonWidth(void)

Returns the real width of the button (bitmap width plus the extra for 3D effects).

wxButtonBar::SetDefaultSize

CHAPTER 9

57

void SetDefaultSize(float width, float height)

Sets the default size of the button bitmap. The default is 16x15 pixels.

9.7. wxCanvas: wxWindow

A canvas is a subwindow onto which graphics and text can be drawn, and mouse and keyboard
input can be intercepted. At present, panel items cannot be placed on a canvas.

To determine whether a canvas is colour or monochrome, test the canvas's device context
Colour boolean member variable.

When you draw onto a canvas, you are really drawing onto a device context (see wxDC (page
108), wxCanvasDC (page 68)). Although you can use the members of wxCanvas for drawing, it is
much better to get the device context from the canvas (see GetDC (page 61)) and draw into that.
Then, code which can draw into one device context can be reused for others, such as PostScript
or memory device contexts (see wxPostScriptDC (page 240) and wxMemoryDC (page 205)).

wxCanvas::wxCanvas

void wxCanvas(wxWindow *parent, int x = -1, int y = -1,
 int width = -1, int height = -1,
 long style = wxRETAINED, char *name = "canvas")

Constructor.

Under Windows and Motif, the parent can be either a frame or panel. Under XView, the parent
must be a frame.

The parameters x, y, width and heightcan be omitted on construction if the position and size will
later be set (for example by a application frame's OnSize callback, or if there is only one
subwindow for the frame, in which case the subwindow fills the frame).

The style parameter may be a combination (using the C++ bitwise 'or' operator) of the following
flags:

wxBORDER Gives the canvas a thin border (MS Windows and Motif only).
wxRETAINED Gives the canvas a wxWindows-implemented backing store, making repainting

much faster but at a potentially costly memory premium (XView and Motif only).

The name parameter is used to associate a name with the canvas, allowing the application user
to set Motif resources for individual canvases.

wxCanvas::~wxCanvas

void ~wxCanvas(void)

Destructor.

wxCanvas::AllowDoubleClick

CHAPTER 9

58

void AllowDoubleClick(int interval)

Allows or disables double click handling on a canvas (Motif, MS Windows). Specify a double-click
interval in milliseconds.

See also wxMouseEvent::ButtonDClick (page 216).

wxCanvas::BeginDrawing

void BeginDrawing(void)

Allows optimization of drawing code under MS Windows. Enclose drawing primitives between
BeginDrawing and EndDrawing calls.

wxCanvas::Clear

void Clear(void)

Clears the canvas (fills it with the current background brush).

wxCanvas::Create

void Create(wxWindow *parent, int x = -1, int y = -1,
 int width = -1, int height = -1,
 long style = wxRETAINED, char *name)

Creates the canvas for two-step construction. Derived classes should call or replace this function.
See wxCanvas::wxCanvas (page 57) for details.

wxCanvas::CrossHair

void CrossHair(float x, float y)

Displays a cross hair using the current pen. This is a vertical and horizontal line the height and
width of the canvas, centred on the given point.

wxCanvas::DestroyClippingRegion

void DestroyClippingRegion(void)

Destroys the current clipping region so that none of the canvas is clipped.

wxCanvas::DrawArc

void DrawArc(float x1, float y1, float x2, float y2, floatxc, floatyc)

Draws an arc, centred on (xc, yc), with starting point (x1, y1) and ending at (x2, y2). The current
pen is used for the outline and the current brush for filling the shape.

CHAPTER 9

59

wxCanvas::DrawEllipse

void DrawEllipse(float x, float y, float width,float height)

Draws an ellipse contained in the rectangle with the given top left corner, and with the given size.
The current pen is used for the outline and the current brush for filling the shape.

wxCanvas::DrawLine

void DrawLine(float x1, float y1, float x2,float y2)

Draws a line from the first point to the second. The current pen is used for drawing the line.

wxCanvas::DrawLines

void DrawLines(int n, wxPoint points[], float xoffset = 0, float yoffset = 0)

void DrawLines(wxList *points, float xoffset = 0, float yoffset = 0)

Draw lines using an array of points of size n, or list of pointers to points, adding the optional offset
coordinate. The current pen is used for drawing the lines. The programmer is responsible for
deleting the list of points.

wxCanvas::DrawPolygon

void DrawPolygon(int n, wxPoint points[], float xoffset = 0, float yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

void DrawPolygon(wxList *points, float xoffset = 0,float yoffset = 0, int fill_style =
wxODDEVEN_RULE)

Draw a filled polygon using an array of points of size n, or list of pointers to points, adding the
optional offset coordinate.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wxWINDING_RULE.

The current pen is used for drawing the outline, and the current brush for filling the shape. Using
a transparent brush suppresses filling. The programmer is responsible for deleting the list of
points.

Note that wxWindows automatically closes the first and last points.

wxCanvas::DrawPoint

void DrawPoint(float x, float y)

Draws a point using the current pen.

CHAPTER 9

60

wxCanvas::DrawRectangle

void DrawRectangle(float x, float y, float width, float height)

Draws a rectangle with the given top left corner, and with the given size. The current pen is used
for the outline and the current brush for filling the shape.

wxCanvas::DrawRoundedRectangle

void DrawRoundedRectangle(float x, float y, float width, float height, float radius = 20)

Draws a rectangle with the given top left corner, and with the given size. The corners are quarter-
circles using the given radius. The current pen is used for the outline and the current brush for
filling the shape.

If radius is positive, the value is assumed to be the radius of the rounded corner. If radius is
negative, the absolute value is assumed to be the proportion of the smallest dimension of the
rectangle. This means that the corner can be a sensible size relative to the size of the rectangle,
and also avoids the strange effects X produces when the corners are too big for the rectangle.

wxCanvas::DrawSpline

void DrawSpline(wxList *points)

Draws a spline between all given control points, using the current pen. Doesn't delete the wxList
and contents. The spline is drawn using a series of lines, using an algorithm taken from the X
drawing program 'XFIG'.

void DrawSpline(float x1, float y1, float x2, float y2, float x3, float y3)

Draws a three-point spline using the current pen.

wxCanvas::DrawText

void DrawText(char *text, float x, float y)

Draws a text string at the specified point, using the current text font, and the current text
foreground and background colours.

wxCanvas::EnableScrolling

void EnableScrolling(Bool xScrolling, Bool yScrolling)

Enable or disable Windows scrolling in the given direction, where in this context scrolling is the
physical transfer of bits up or down the screen when a scroll event occurs. If the application
scrolls by a variable amount (e.g. if there are different font sizes) then physical scrolling messes
up the display.

wxCanvas::EndDrawing

CHAPTER 9

61

void EndDrawing(void)

Allows optimization of drawing code under MS Windows. Enclose drawing primitives between
BeginDrawing and EndDrawing calls.

wxCanvas::FloodFill

void FloodFill(float x, float y, wxColour *colour, int style=wxFLOOD_SURFACE)

Flood fills the canvas starting from the given point, in the given colour, and using a style:

• wxFLOOD_SURFACE: the flooding occurs until a colour other than the given colour is
encountered.

• wxFLOOD_BORDER: the area to be flooded is bounded by the given colour.

Note: this function is available in MS Windows only.

wxCanvas::GetDC

wxCanvasDC * GetDC(void)

Get a pointer to the canvas's device context. See wxDC (page 108)and wxCanvasDC (page 68).

wxCanvas::GetScrollPage

int GetScrollPage(int orient)

Returns the lines per page of the scrollbar. Pass wxHORIZONTAL or wxVERTICAL to indicate
the scrollbar whose lines per page value is to be returned.

wxCanvas::GetScrollPixelsPerUnit

void GetScrollPixelsPerUnit(int *x_unit, int *y_unit)

Get the number of pixels per scroll unit (line), in each direction, as set by
wxCanvas::SetScrollbars (page 66). A value of zero indicates no scrolling in that direction.

wxCanvas::GetScrollPos

int GetScrollPos(int orient)

Returns position (in scroll units) of a scrollbar. Pass wxHORIZONTAL or wxVERTICAL to indicate
the scrollbar whose position is to be returned.

wxCanvas::GetScrollRange

int GetScrollRange(int orient)

Returns the maximum position of the scrollbar, in scroll units. Pass wxHORIZONTAL or

CHAPTER 9

62

wxVERTICAL to indicate the scrollbar whose range is to be returned.

wxCanvas::GetScrollUnitsPerPage

void GetScrollUnitsPerPage(int *x_page, int *y_page)

Get the number of units per page, in each direction, as set by wxCanvas::SetScrollbars (page
66). A value of zero indicates no scrolling in that direction.

wxCanvas::GetVirtualSize

w

void GetVirtualSize(int *x, int *y)

Gets the size in device units of the scrollable canvas area (as opposed to the client size, which is
the area of the canvas currently visible).

Use wxDC::DeviceToLogicalX (page 109) and wxDC::DeviceToLogicalY (page 109)to translate
these units to logical units.

wxCanvas::IntDrawLine

void IntDrawLine(int x1, int y1, int x2,int y2)

Draws a line from the first point to the second. The current pen is used for drawing the line.

wxCanvas::IntDrawLines

void IntDrawLines(int n, wxIntPoint points[], int xoffset = 0, int yoffset = 0)

Draw lines using an array of points of size n. The current pen is used for drawing the lines. The
programmer is responsible for deleting the list of points.

wxCanvas::IsRetained

Bool IsRetained(void)

TRUE if the canvas has a backing bitmap.

wxCanvas::OnChar

void OnChar(wxKeyEvent& event)

This default handler interprets cursor key movement and scrolls the canvas accordingly.
Override the function to change this behaviour.

The member keyCode contains the key pressed.

CHAPTER 9

63

See wxEvtHandler::OnChar (page 151) for more details.

wxCanvas::OnEvent

void OnEvent(wxMouseEvent& event)

Sent to the canvas when the user has initiated an event with the mouse. Derive your own class to
handle this message. See wxCanvas::OnChar (page 62) for character events, and also
wxMouseEvent (page 214) for how to access event information.

wxCanvas::OnPaint

void OnPaint(void)

Sent to the canvas when the canvas must be refreshed. Derive your own class to handle this
message.

You can optimize painting by retrieving the rectangles that have been damaged and only
repainting these. The rectangles are in terms of the client area, and are unscrolled, so you will
need to do some calculations using the current view position to obtain logical, scrolled units.

Here is an example of using the wxUpdateIterator (page 314) class:

// Called when canvas needs to be repainted.
void MyCanvas::OnPaint(void)
{
 // Speeds up drawing under Windows.
 GetDC()->BeginDrawing();
 wxCanvasDC *canvdc = GetDC();

 // Find Out where the window is scrolled to
 int vbX,vbY; // Top left corner of client
 ViewStart(&vbX,&vbY);

 int vX,vY,vW,vH; // Dimensions of client area in
pixels
 wxUpdateIterator upd(this); // get the update rect list

 while (upd)
 {
 vX = upd.GetX();
 vY = upd.GetY();
 vW = upd.GetW();
 vH = upd.GetH();

 // Alternatively we can do this:
 // wxRectangle rect;
 // upd.GetRect(&rect);

 // Repaint this rectangle
 <some code>

 upd ++ ;
 }

CHAPTER 9

64

 GetDC()->EndDrawing();
}

wxCanvas::OnScroll

void OnScroll(wxCommandEvent& event)

Override this function to intercept scroll events. This member function implements the default
scroll behaviour. If you do not call the default function, you will have to manage all scrolling
behaviour including drawing the canvas contents at an appropriate position relative to the
scrollbar.

The commandInt member of wxCommandEvent is the position of the scrollbar. The macro
WXSCROLLPOS(event) may be used to access or set this member.

The extraLong member of wxCommandEvent is wxHORIZONTAL or wxVERTICAL. The macro
WXSCROLLORIENT(event) may be used to access or set this member.

The eventType member of wxCommandEvent will be one of:

wxEVENT_TYPE_SCROLL_LINEDOWN Called when the scrollbar is incremented by a
line, by clicking on the bottom arrow of a vertical scrollbar or right-hand arrow of
a horizontal scrollbar.

wxEVENT_TYPE_SCROLL_LINEUP Called when the scrollbar is decremented by a line, by
clicking on the top arrow of a vertical scrollbar or left-hand arrow of a horizontal
scrollbar.

wxEVENT_TYPE_SCROLL_PAGEDOWN Called when the scrollbar is incremented by a
page.

wxEVENT_TYPE_SCROLL_PAGEUP Called when the scrollbar is decremented by a page.
wxEVENT_TYPE_SCROLL_TOP Called when the scrollbar is set to the top.
wxEVENT_TYPE_SCROLL_BOTTOM Called when the scrollbar is set to the bottom.
wxEVENT_TYPE_SCROLL_THUMBTRACK Called when the the scrollbar is being dragged.

Note that not all these messages will be received on a given platform. For example, under XView,
only the thumbtrack event is ever generated, and so unless the application keeps track of where
the scrollbar was previously, some scrolling optimisations are not possible.

Under Windows and Motif, all messages may be generated.

wxCanvas::Scroll

void Scroll(int x_pos, int y_pos)

Scrolls a canvas so the view start is at the given point. The positions are in scroll units, not pixels,
so to convert to pixels you will have to multiply by the number of pixels per scroll increment. If
either parameter is -1, that position will be ignored (no change in that direction).

See also wxCanvas::SetScrollbars (page 66).

wxCanvas::SetBackground

CHAPTER 9

65

void SetBackground(wxBrush *brush)

Sets the current background brush for the canvas, used for the pixels between dotted or dashed
lines. The brush should not be deleted while being used by a canvas. All brushes are deleted
automatically when the application terminates.

See also wxBrush (page 51).

wxCanvas::SetClippingRegion

void SetClippingRegion(float x, float y, float width, float height)

Sets the clipping region for the canvas. The clipping region is a rectangular area to which drawing
is restricted. Possible uses for the clipping region are for clipping text or for speeding up canvas
redraws when only a known area of the screen is damaged.

See also wxCanvas::DestroyClippingRegion (page 58).

wxCanvas::SetBrush

void SetBrush(wxBrush *brush)

Sets the current brush for the canvas. The brush is not copied, so you should not delete the
brush unless the canvas pen has been set to another brush, or to NULL. Note that all pens and
brushes are automatically deleted when the program is exited.

See also wxBrush (page 51).

wxCanvas::SetFont

void SetFont(wxFont *font)

Sets the current font for the canvas. The font is not copied, so you should not delete the font
unless the canvas pen has been set to another font, or to NULL.

See also wxFont (page 158), wxCanvas::DrawText (page 60).

wxCanvas::SetLogicalFunction

void SetLogicalFunction(int function)

Sets the current logical function for the canvas. This determines how a source pixel (from a pen
or brush colour, or source device context if using wxDC::Blit (page 108)) combines with a
destination pixel in the current device context.

The possible values and their meaning in terms of source and destination pixel values are as
follows:

wxAND src AND dst
wxAND_INVERT (NOT src) AND dst
wxAND_REVERSE src AND (NOT dst)

CHAPTER 9

66

wxCLEAR 0
wxCOPY src
wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst
wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst
wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1
wxSRC_INVERT NOT src
wxSRC_AND AND src (MS Windows Blit only: equivalent to
SRCAND)
wxSRC_OR OR src (MS Windows Blit only: equivalent to
SRCPAINT)
wxXOR src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine the
current colour and the background using a logical operation. wxXOR is commonly used for
drawing rubber bands or moving outlines, since drawing twice reverts to the original colour.

wxCanvas::SetPen

void SetPen(wxPen *pen)

Sets the current pen for the canvas. The pen is not copied, so you should not delete the pen
unless the canvas pen has been set to another pen, or to NULL. Note that all pens and brushes
are automatically deleted when the program is exited.

See also wxPen (page 237).

wxCanvas::SetScrollbars

void SetScrollbars(int horiz_pixels, int vert_pixels, int x_length, int y_length,
 int x_page, int y_page, int x_pos = 0, int y_pos = 0)

Sets up vertical and/or horizontal scrollbars. The first pair of parameters give the number of pixels
per 'scroll step', i.e. amount moved when the up or down scroll arrows are pressed. The second
pair gives the length of scrollbar in scroll steps, which effectively sets the size of the 'virtual
canvas'. The third pair gives the number of scroll steps in a 'page', i.e. amount moved when
pressing above or below the scrollbar control, or using page up/page down.

x_pos and y_pos optionally specify a position to scroll to immediately.

Either x_length y_length can be zero to specify no scrollbar.

For example, the following gives a canvas horizontal and vertical scrollbars with 20 pixels per
scroll step, a size of 50 steps (1000 pixels) in each direction, and 4 steps (80 pixels) to a page.

canvas->SetScrollbars(20, 20, 50, 50, 4, 4);

See also wxCanvas::EnableScrolling (page 60), wxCanvas::GetScrollUnitsPerPage (page 62),
wxCanvas::GetVirtualSize (page 62).

CHAPTER 9

67

wxCanvas::SetScrollPage

void SetScrollPage(int orient, int page)

Sets the lines per page for a scrollbar. Pass wxHORIZONTAL or wxVERTICAL to indicate the
scrollbar whose lines per page is to be set.

wxCanvas::SetScrollPos

void SetScrollPos(int orient, int pos)

Sets the position (in scroll units) of a scrollbar. Pass wxHORIZONTAL or wxVERTICAL to
indicate the scrollbar whose position is to be set.

wxCanvas::SetScrollRange

void SetScrollRange(int orient, int range)

Sets the maximum position (in scroll units) of a scrollbar. Pass wxHORIZONTAL or wxVERTICAL
to indicate the scrollbar whose range is to be set.

wxCanvas::SetTextBackground

void SetTextBackground(wxColour *colour)

Sets the current text background colour for the canvas. The colour is copied by this function. See
also wxCanvas::SetTextForeground (page 67).

wxCanvas::SetTextForeground

void SetTextForeground(wxColour *colour)

Sets the current text foreground colour for the canvas. The colour is copied by this function. See
also wxCanvas::SetTextBackground (page 67).

wxCanvas::ViewStart

void ViewStart(int *x, int * y)

Get the position at which the visible portion of the canvas starts. If either of the scrollbars is not at
the home position, x and/or y will be greater than zero. Combined with wxWindow::GetClientSize
(page 321), the application can use this function to efficiently redraw only the visible portion of the
canvas. The positions are in logical scroll units, not pixels, so to convert to pixels you will have to
multiply by the number of pixels per scroll increment.

See also wxCanvas::SetScrollbars (page 66).

CHAPTER 9

68

wxCanvas::WarpPointer

void WarpPointer(int x, int y)

Moves the pointer to the given position on the canvas.

9.8. wxCanvasDC: wxDC

A canvas device context is automatically created when a canvas is created. It can be retrieved
from a canvas with wxCanvas::GetDC (page 61) and then drawn into. See wxDC (page 108) for
further information on device contexts.

wxCanvasDC::wxCanvasDC

void wxCanvasDC(wxCanvas *canvas)

Constructor for internal use only.

wxCanvasDC::GetClippingBox

void wxCanvasDC(float *x, float *y, float *width, float *height)

Gets the current rectangular clipping region.

9.9. wxCheckBox: wxItem

A checkbox is a labelled box which is either on (checkmark is visible) or off (no checkmark).

wxCheckBox::wxCheckBox

void wxCheckBox(void)

Constructor, used when deriving from this class.

void wxCheckBox(wxPanel *parent, wxFunction func, char *label,
int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "checkBox")

void wxCheckBox(wxPanel *parent, wxFunction func, wxBitmap *bitmap,
int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "checkBox")

Constructor, creating and showing a checkbox.

func may be NULL; otherwise it is used as the callback for the check box. Note that the cast
(wxFunction) must be used when passing your callback function name, or the compiler may
complain that the function does not match the constructor declaration.

In the second form, if label is non-NULL, it is used as the label for the checkbox. In the third form,
a bitmap is provided instead of a text label.

The parameters x and y are used to specify an absolute position, or a position after the previous

CHAPTER 9

69

panel item if omitted or default.

If width or height are omitted (or are less than zero), an appropriate size will be used for the
check box.

The style parameter is reserved for future use.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual checkboxes.

wxCheckBox::~wxCheckBox

void ~wxCheckBox(void)

Destructor, destroying the checkbox.

wxCheckBox::Create

Bool Create(wxPanel *parent, wxFunction func, char *label,
int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "checkBox")

Bool Create(wxPanel *parent, wxFunction func, char *bitmap,
int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "checkBox")

Creates the checkbox for two-step construction. Derived classes should call or replace this
function. See wxCheckBox::wxCheckBox (page 68) for details.

wxCheckBox::GetValue

Bool GetValue(void)

Gets the state of the checkbox, TRUE if it is checked, FALSE otherwise.

wxCheckBox::SetLabel

void SetLabel(wxBitmap *label)

Sets the bitmap for a bitmap checkbox.

wxCheckBox::SetValue

void SetValue(Bool state)

Sets the checkbox to the given state: if the state is TRUE, the check is on, otherwise it is off.

9.10. wxChoice: wxItem

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection is visible

CHAPTER 9

70

until the user pulls down the menu of choices. Under XView and Motif, all selections are visible
when the menu is displayed. Under MS Windows, a scrolling list is displayed when the user
wants to change the selection. Note that under XView, creating a choice item with a large number
of strings takes a long time due to the inefficiency of Sun's implementation of the XView choice
item.

See also wxListBox (page 201).

wxChoice::wxChoice

void wxChoice(void)

Constructor, for use by derived classes.

void wxChoice(wxPanel *parent, wxFunction func, char *label,
int x = -1, int y = -1, int width = -1, int height = -1,
int n, char *choices[],
 long style = 0, char *name = "choice")

Constructor, creating and showing a choice.

func may be NULL; otherwise it is used as the callback for the choice. Note that the cast
(wxFunction) must be used when passing your callback function name, or the compiler may
complain that the function does not match the constructor declaration.

If label is non-NULL, it is used as the label for the choice item.

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

If width or height are omitted (or are less than zero), an appropriate size will be used for the
choice.

n is the number of possible choices, and choices is an array of strings of size n. wxWindows
allocates its own memory for these strings so the calling program must deallocate the array itself.

The style parameter is a bitlist of the following:

wxFIXED_LENGTH Allows the values of a column of items to be left-aligned. Create an item
with this style, and pad out your labels with spaces to the same length. The item
labels will initially created with a string of identical characters, positioning all the
values at the same x-position. Then the real label is restored.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual choice items.

wxChoice::~wxChoice

void ~wxChoice(void)

Destructor, destroying the choice item.

CHAPTER 9

71

wxChoice::Append

void Append(char * item)

Adds the item to the end of the choice item. item must be deallocated by the calling program, i.e.
wxWindows makes its own copy.

wxChoice::Clear

void Clear(void)

Clears the strings from the choice item. Under XView, this is done by deleting and reconstructing
the item, but it doesn't redisplay properly until the user refreshes the window.

wxChoice::Create

Bool Create(wxPanel *parent, wxFunction func, char *label,
int x = -1, int y = -1, int width = -1, int height = -1, int n, char *choices[]
 long style = 0, char *name = "choice")

Creates the choice for two-step construction. Derived classes should call or replace this function.
See wxChoice::wxChoice (page 70) for further details.

wxChoice::FindString

int FindString(char *s)

Finds a choice matching the given string, returning the position if found, or -1 if not found.

wxChoice::GetColumns

int GetColumns(void)

Gets the number of columns in this choice item.

This is implemented for XView and Motif only.

wxChoice::GetSelection

int GetSelection(void)

Gets the id (position) of the selected string.

wxChoice::GetString

char * GetString(int n)

CHAPTER 9

72

Returns a temporary pointer to the string at position n.

wxChoice::GetStringSelection

char * GetStringSelection(void)

Gets the selected string. This must be copied by the calling program if long term use is to be
made of it.

wxChoice::Number

int Number(void)

Returns the number of strings in the choice item.

wxChoice::SetColumns

void SetColumns(int n = 1)

Sets the number of columns in this choice item.

This is implemented for XView and Motif only.

wxChoice::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position.

wxChoice::SetStringSelection

void SetStringSelection(char * s)

Sets the choice by passing the desired string.

wxChoice::GetString

char * GetString(int n)

Returns a temporary pointer to the string at position n.

9.11. wxClassInfo

See also Overview (page 371)

This class stores meta-information about classes. Instances of this class are not generally
defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS.

CHAPTER 9

73

wxClassInfo::wxClassInfo

void wxClassInfo(char *className, char *baseClass1, char *baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this class, so
there is no need to create such objects explicitly in an application.

wxClassInfo::CreateObject

wxObject * CreateObject(void)

Creates an object of the appropriate kind. Returns NULL if the class has not been declared
dynamically createable (typically, it's an abstract class).

wxClassInfo::FindClass

static wxClassInfo * FindClass(char *name)

Finds the wxClassInfo object for a class of the given string name.

wxClassInfo::GetBaseClassName1

char * GetBaseClassName1(void)

Returns the name of the first base class (NULL if none).

wxClassInfo::GetBaseClassName2

char * GetBaseClassName2(void)

Returns the name of the second base class (NULL if none).

wxClassInfo::GetClassName

char * GetClassName(void)

Returns the string form of the class name.

wxClassInfo::GetSize

int GetSize(void)

Returns the size of the class.

CHAPTER 9

74

wxClassInfo::InitializeClasses

static void InitializeClasses(void)

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in base
wxWindows library initialization.

wxClassInfo::IsKindOf

Bool IsKindOf(wxClassInfo *info)

Returns TRUE if this class is a kind of (inherits from) the given class.

9.12. wxClient: wxIPCObject

See also Interprocess communications overview (page 378)

A wxClient object represents the client part of a client-server DDE (Dynamic Data Exchange)
conversation (available in bothWindows and UNIX).

To create a client which can communicate with a suitable server, you need to derive a class from
wxConnection and another from wxClient. The custom wxConnection class will intercept
communications in a 'conversation' with a server, and the custom wxServer is required so that a
user-overriden wxClient::OnMakeConnection (page 74) member can return a wxConnection of
the required class, when a connection is made.

See also wxServer (page 277), wxConnection (page 91), the chapter on interprocess
communication in the user manual, and the programs in samples/ipc.

wxClient::wxClient

void wxClient(void)

Constructs a client object.

wxClient::MakeConnection

wxConnection * MakeConnection(char *host, char *service, char *topic)

Tries to make a connection with a server specified by the host (machine name under UNIX,
ignored under Windows), service name (must contain an integer port number under UNIX), and
topic string. If the server allows a connection, a wxConnection object will be returned. The type of
wxConnection returned can be altered by overriding the wxClient::OnMakeConnection (page 74)
member to return your own derived connection object.

wxClient::OnMakeConnection

wxConnection * OnMakeConnection(void)

The type of wxConnection (page 91) returned from a wxClient::MakeConnection (page 74) call
can be altered by deriving the OnMakeConnection member to return your own derived

CHAPTER 9

75

connection object. By default, an ordinary wxConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to intercept
messages initiated by the server, such as wxConnection::OnAdvise (page 92). You may also
want to store application-specific data in instances of the new class.

wxClient::ValidHost

Bool ValidHost(char *host)

Returns TRUE if this is a valid host name, FALSE otherwise. This always returns TRUE under
MS Windows.

9.13. wxClipboard: wxObject

There is one wxClipboard object referenced by the pointer wxTheClipboard, initialized by calling
wxInitClipboard (page 348). Under X, clipboard manipulation must be done by using this class,
and such code will work under MS Windows also. Under MS Windows, you have the alternative
of using the normal clipboard functions.

The documentation for this class will be expanded in due course. At present, wxClipboard is only
used in the wxMediaWindow add-on library.

See also wxClipboardClient (page 76), wxInitClipboard (page 348).

wxClipboard::GetClipboardClient

wxClipboardClient * GetClipboardClient(void)

Get the clipboard client directly. Will be NULL if clipboard data is a string, or if some other
application owns the clipboard. This can be useful for shortcutting data translation, if the
clipboard user can check for a specific client.

wxClipboard::GetClipboardData

char * GetClipboardData(char *format, long *length, long time)

Get data from the clipboard.

wxClipboard::GetClipboardString

char * GetClipboardString(long time)

Get the data from the clipboard in the format "TEXT".

wxClipboard::SetClipboardClient

void SetClipboardClient(wxClipboardClient *client, long time)

Set the clipboard data owner.

CHAPTER 9

76

wxClipboard::SetClipboardString

void SetClipboardString(char *data, long time)

Set the clipboard string; does not require a client.

9.14. wxClipboardClient: wxObject

Implemented under X and MS Windows, a clipboard client holds data belonging to the clipboard.
For plain text, a client is not necessary.

wxClipboardClient is an abstract class for which the virtual functions BeingReplaced and GetData
must be overridden.

See also wxClipboard (page 75), wxInitClipboard (page 348).

wxClipboardClient::formats

wxStringList formats

This list should be filled in with strings indicating the formats this client can provide. Almost all
clients will provide"TEXT". Format names should be 4 characters long, so things will work out on
the Macintosh.

wxClipboardClient::BeingReplaced

void BeingReplaced(void)

This method is called when the client is losing the selection.

wxClipboardClient::GetData

char * GetData(char *format, long *size)

This method is called when someone wants the data this client is supplying to the clipboard.

format is a string indicating the format of the data - one of the strings from the "formats" list.

size should be filled with the size of the resulting data. In the case of text, size does not count the
NULL terminator.

9.15. wxColour: wxObject

A colour is an object representing a Red, Green, Blue (RGB) combination of primary colours, and
is used to determine drawing colours. See the entry for wxColourDatabase (page 79) for how a
pointer to a predefined, named colour may be returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

CHAPTER 9

77

wxColour::wxColour

void wxColour(char red, char green, char blue)

void wxColour(char * colour_name)

Construct a colour object from the RGB values or using a colour name (uses
wxTheColourDatabase).

wxColour::operator =

wxColour& operator =(wxColour& src)

Assignment from source to destination colour.

wxColour::Blue

unsigned char Blue(void)

Returns the blue intensity.

wxColour::Get

void Get(char * red, char * green, char * blue)

Gets the RGB values---pass pointers to three char variables.

wxColour::Green

unsigned char Green(void)

Returns the green intensity.

wxColour::Ok

Bool Ok(void)

Returns TRUE if the colour object is valid.

wxColour::Red

unsigned char Red(void)

Returns the red intensity.

wxColour::Set

CHAPTER 9

78

void Set(char red, char green, char blue)

Sets the RGB value.

9.16. wxColourData: wxObject

See also wxColourDialog overview (page 386)

This class holds a variety of information related to colour dialogs.

wxColourData::wxColourData

void wxColourData(void)

Constructor. Initializes the custom colours to white, the dataColour member to black, and the
chooseFull member to TRUE.

wxColourData::~wxColourData

void ~wxColourData(void)

Destructor.

wxColourData::GetChooseFull

Bool GetChooseFull(void)

Under Windows, determines whether the Windows colour dialog will display the full dialog with
custom colour selection controls. Has no meaning under other platforms.

The default value is TRUE.

wxColourData::GetColour

wxColour& GetColour(void)

Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour(int i)

Gets the ith custom colour associated with the colour dialog. i should be an integer between 0
and 15.

The default custom colours are all white.

CHAPTER 9

79

wxColourData::SetChooseFull

void SetChooseFull(Bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom colour
selection controls. Under other platforms, has no effect.

The default value is TRUE.

wxColourData::SetColour

void SetColour(wxColour& colour)

Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

void SetColour(int i, wxColour& colour)

Sets the ith custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are all white.

wxColourData::operator =

void operator =(const wxColourData& data)

Assingment operator for the colour data.

9.17. wxColourDatabase: wxObject

wxWindows maintains a database of standard RGB colours for a predefined set of named colours
(such as "BLACK'', "LIGHT GREY''). The application may add to this set if desired by using
Append. There is only one instance of this class: wxTheColourDatabase.

The colours in the standard database are as follows:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN, DARK
ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM GREY,
FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN YELLOW,
INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE, LIME GREEN,
MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE, MEDIUM FOREST GREEN,
MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM SEA GREEN, MEDIUM SLATE BLUE,
MEDIUM SPRING GREEN, MEDIUM TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE,
NAVY, ORANGE, ORANGE RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED,
SALMON, SEA GREEN, SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE,
TAN, THISTLE, TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW
GREEN.

CHAPTER 9

80

wxWindows' colour handling under XView and Motif prior to Version 1.50 was poor, due to a bug
in the code which allocates colours. This has now been fixed and a greater range of colours may
be allocated. However, if a very wide range of colours is used in an application, wxWindows may
still fail to allocate a colour, so it is best to choose a fixed number of colours, pens or brushes
rather than allocate colours when needed.

See also wxColour (page 76).

wxColourDatabase::wxColourDatabase

void wxColourDatabase(void)

Constructs the colour database. Should not need to be used by an application.

wxColourDatabase::FindColour

wxColour * FindColour(char *colour_name)

Finds a colour given the name. Returns NULL if not found.

wxColourDatabase::FindName

char * FindName(wxColour& colour)

Finds a colour name given the colour. Returns NULL if not found.

wxColourDatabase::Initialize

void Initialize(void)

Initializes the database with a number of stock colours. Called by wxWindows on start-up.

9.18. wxColourDialog: wxDialogBox

See also Overview (page 386)

This class represents the colour chooser dialog. This is available under Motif and Windows.
Under XView there seem to be some problems, probably related to modal dialogs.

wxColourDialog::wxColourDialog

void wxColourDialog(wxWindow *parent, wxColourData *data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data, which will
be copied to the colour dialog's colour data.

wxColourDialog::~wxColourDialog

CHAPTER 9

81

void ~wxColourDialog(void)

Destructor.

wxColourDialog::GetColourData

wxColourData& GetColourData(void)

Returns the colour data (page 78) associated with the colour dialog.

wxColourDialog::Show

Bool Show(Bool flag)

Shows the dialog, returning TRUE if the user pressed Ok, and FALSE otherwise.

9.19. wxColourMap: wxObject

Colourmap functionality is incomplete, and will be extended in the future. Currently, colourmaps
may be returned from some wxWindows libraries that load bitmaps (e.g. wxImage, DIB). To
display a bitmap, its colourmap should normally be set for that window.

There are some strict rules for colourmap useage. A colourmap should never be deleted before
being deselected from a window or device context (although it may be used for several windows
and device contexts simultaneously). So, call wxDC::SetColourMap (page 117) with a NULL
argument to make sure that its original (probably system) colourmap is restored.

If you are relying on wxWindows to clean up your bitmaps on program exit, then you must be
extra vigilant about cleaning up colourmaps before bitmaps (and windows) are deleted. So it may
not be an option to use global objects, where you cannot be sure of the order that C++ destroys
objects; use dynamically created and destroyed objects instead.

wxColourMap::wxColourMap

void wxColourMap(void)

Constructor.

wxColourMap::~wxColourMap

void ~wxColourMap(void)

Destructor.

If you have to delete the colourmap (for example, you are creating a lot of them), then call
wxDC::SetColourMap (page 117) with a NULL argument to ensure that the old colourmap is
restored, and the current colourmap is selected out of the device context.

wxColourMap::Create

CHAPTER 9

82

Bool Create(const int n, const char *red,
 const char *green, const char *blue)

Creates a colourmap from arrays of size n, one for each red, blue or green component.
Implemented only under Windows.

9.20. wxComboBox: wxItem

A combobox is like a combination of an edit control and a listbox. It can be displayed as static list
with editable or read-only text field; or a drop-down list with text field; or a drop-down list without a
text field.

A combobox permits a single selection only.

Combobox elements are numbered from zero.

See also wxChoice (page 69), wxListBox (page 201).

The callback function specified for the combobox item will be called for the following events:

• wxEVENT_TYPE_COMBOBOX_COMMAND (the selection has changed)

Note: this is an experimental panel item, and is implemented for Windows and Motif only. There
are some problems with the Motif implementation, which uses a contributed widget.

wxComboBox::wxComboBox

void wxComboBox(void)

Constructor, for deriving classes.

void wxComboBox(wxPanel *parent, wxFunction func, char *label, char *value = "", int x = -1,
int y = -1, int width = -1, int height = -1, int n, char *choices[], long style = 0, char *name =
"comboBox")

Constructor, creating and showing a combobox.

func may be NULL; otherwise it is used as the callback for the combobox. Note that the cast
(wxFunction) must be used when passing your callback function name, or the compiler may
complain that the function does not match the constructor declaration.

If label is non-NULL, it will be used as the combobox label.

value is the value to place in the edit field.

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

If width or height are omitted (or are less than zero), an appropriate size will be used for the
combobox.

n is the number of possible choices, and choices is an array of strings of size n. wxWindows
allocates its own memory for these strings so the calling program must deallocate the array itself.

CHAPTER 9

83

style is a bit list of some of the following.

wxCB_SIMPLE Creates a combobox with a permanently displayed list.
wxCB_DROPDOWN Creates a combobox with a drop-down list.
wxCB_READONLY Creates a combo box consisting of a drop-down list and static text item

displaying the current selection.
wxCB_SORT Sorts the entries in the list alphabetically (Windows only).

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual comboboxes.

wxComboBox::~wxComboBox

void ~wxComboBox(void)

Destructor, destroying the combobox.

wxComboBox::Append

void Append(char * item)

Adds the item to the end of the combobox. item must be deallocated by the calling program, i.e.
wxWindows makes its own copy.

void Append(char * item, char *client_data)

Adds the item to the end of the combobox, associating the given data with the item. item must be
deallocated by the calling program.

wxComboBox::Clear

void Clear(void)

Clears all strings from the combobox.

wxComboBox::Create

Bool Create(wxPanel *parent, wxFunction func, char *label,
 char *value = "", int x = -1, int y = -1,
 int width = -1, int height = -1, int n, char *choices[],
 long style = 0, char *name = "comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace this
function. See wxComboBox::wxComboBox (page 82) for further details.

wxComboBox::Copy

void Copy(void)

CHAPTER 9

84

Copies the selected text to the clipboard under Motif and MS Windows.

wxComboBox::Cut

void Cut(void)

Copies the selected text to the clipboard and removes the selection. Windows and Motif only.

wxComboBox::Delete

void Delete(int n)

Delete the nth element in the combobox.

wxComboBox::Deselect

void Deselect(int n)

Deselects the given item in the combobox.

wxComboBox::FindString

int FindString(int char *s)

Finds a choice matching the given string, returning the position if found, or -1 if not found.

wxComboBox::GetClientData

char * GetClientData(int n)

Returns a pointer to the client data associated with the given item (if any).

wxComboBox::GetInsertionPoint

long GetInsertionPoint(void)

Returns the insertion point. Windows and Motif only.

wxComboBox::GetLastPosition

long GetLastPosition(void)

Returns the last position in the text field. Windows and Motif only.

wxComboBox::GetSelection

CHAPTER 9

85

int GetSelection(void)

Gets the id (position) of the selected string.

wxComboBox::GetString

char * GetString(int n)

Returns a temporary pointer to the string at position n.

wxComboBox::GetStringSelection

char * GetStringSelection(void)

Gets the selected string - for single selection comboboxes only. This must be copied by the
calling program if long term use is to be made of it.

wxComboBox::GetValue

char * GetValue(void)

Gets a pointer to the current value. Copy this for long-term use.

wxComboBox::Number

int Number(void)

Returns the number of items in the combobox list.

wxComboBox::Paste

void Paste(void)

Pastes text from the clipboard to the text item. Windows and Motif only.

wxComboBox::Remove

void Remove(long from, long to)

Removes the text between the two positions. Windows and Motif only.

wxComboBox::SetClientData

void SetClientData(int n, char *data)

Associates the given client data pointer with the given item.

CHAPTER 9

86

wxComboBox::Replace

void Replace(long from, long to, char *value)

Replaces the text between two positions with the given text. Windows and Motif only.

wxComboBox::SetInsertionPoint

void SetInsertionPoint(long pos)

Sets the insertion point. Windows only.

wxComboBox::SetInsertionPointEnd

void SetInsertionPointEnd(void)

Sets the insertion point at the end of the text item. Windows and Motif only.

wxComboBox::SetSelection

void SetSelection(int n, Bool select = TRUE)

Selects or deselects the given item.

void SetSelection(long from, long to)

Selects the text between the two positions. Windows and Motif only.

wxComboBox::SetValue

void SetValue(char * value)

Sets the text for the editable field. value must be deallocated by the calling program.

9.21. wxCommand: wxObject

See also Overview (page 375)

wxCommand is a base class for modelling an application command, which is an action usually
performed by selecting a menu item, pressing a toolbar button or any other means provided by
the application to change the data or view.

wxCommand::wxCommand

void wxCommand(Bool canUndo = FALSE, char *name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class and call this
constructor from your own constructor.

CHAPTER 9

87

canUndo tells the command processor whether this command is undo-able. You can achieve the
same functionality by overriding the CanUndo member function (if for example the criteria for
undoability is context-dependant).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

void ~wxCommand(void)

Destructor.

wxCommand::CanUndo

Bool CanUndo(void)

Returns TRUE if the command can be undone, FALSE otherwise.

wxCommand::Do

Bool Do(void)

Override this member function to execute the appropriate action when called. Return TRUE to
indicate that the action has taken place, FALSE otherwise. Returning FALSE will indicate to the
command processor that the action is not undoable and should not be added to the command
history.

wxCommand::GetName

char * GetName(void)

Returns the command name.

wxCommand::Undo

Bool Undo(void)

Override this member function to un-execute a previous Do. Return TRUE to indicate that the
action has taken place, FALSE otherwise. Returning FALSE will indicate to the command
processor that the action is not redoable and no change should be made to the command history.

How you implement this command is totally application dependent, but typical strategies include:

• Perform an inverse operation on the last modified piece of data in the document. When
redone, a copy of data stored in command is pasted back or some operation reapplied.
This relies on the fact that you know the ordering of Undos; the user can never Undo at
an arbitrary position in the command history.

• Restore the entire document state (perhaps using document transactioning). Potentially

CHAPTER 9

88

very inefficient, but possibly easier to code if the user interface and data are complex,
and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the drawing.

9.22. wxCommandEvent: wxEvent

This event class contains information about panel item command events. It is passed to
wxFunction (page 180) panel item callbacks. It can also be constructed by an application and
used with wxSendEvent (page 338) to simulate a user command in a panel item.

wxCommandEvent::clientData

char * clientData

Contains a pointer to client data for listboxes and choices, if the event was a selection.

wxCommandEvent::commandInt

int commandInt

Contains an integer identifier corresponding to a listbox, choice or radiobox selection (only if the
event was a selection, not a deselection), or a Boolean value representing the value of a
checkbox.

wxCommandEvent::commandString

char * commandString

Contains a string corresponding to a listbox or choice selection.

wxCommandEvent::extraLong

long extraLong

Extra information. If the event comes from a listbox selection, it is a Boolean determining whether
the event was a selection (TRUE) or a deselection (FALSE). A listbox deselection only occurs for
multiple-selection boxes, and in this case the index and string values are indeterminate and the
listbox must be examined by the application.

wxCommandEvent::wxCommandEvent

void wxCommandEvent(WXTYPE commandEventType)

Constructor. commandEventType may be one of the following:

• wxEVENT_TYPE_BUTTON_COMMAND
• wxEVENT_TYPE_CHECKBOX_COMMAND
• wxEVENT_TYPE_CHOICE_COMMAND

CHAPTER 9

89

• wxEVENT_TYPE_LISTBOX_COMMAND
• wxEVENT_TYPE_LISTBOX_DCLICK_COMMAND
• wxEVENT_TYPE_TEXT_COMMAND
• wxEVENT_TYPE_TEXT_ENTER_COMMAND
• wxEVENT_TYPE_MULTITEXT_COMMAND
• wxEVENT_TYPE_MENU_COMMAND
• wxEVENT_TYPE_SLIDER_COMMAND
• wxEVENT_TYPE_RADIOBOX_COMMAND
• wxEVENT_TYPE_SET_FOCUS
• wxEVENT_TYPE_KILL_FOCUS

wxCommandEvent::Checked

Bool Checked(void)

Returns TRUE or FALSE for a checkbox selection event.

wxCommandEvent::GetClientData

char * GetClientData(void)

Returns client data pointer for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetSelection

int GetSelection(void)

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

char * GetString(void)

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsSelection

Bool IsSelection(void)

For a listbox or choice event, returns TRUE if it is a selection, FALSE if it is a deselection.

9.23. wxCommandProcessor: wxObject

See also Overview (page 376)

wxCommandProcessor is a class that maintains a history of wxCommands, with undo/redo
functionality built-in. Derive a new class from this if you want different behaviour.

CHAPTER 9

90

wxCommandProcessor::wxCommandProcessor

void wxCommandProcessor(int maxCommands = 100)

Constructor.

maxCommands defaults to a rather arbitrary 100, but can be set from 1 to any integer. If your
wxCommand classes store a lot of data, you may wish the limit the number of commands stored
to a smaller number.

wxCommandProcessor::~wxCommandProcessor

void ~wxCommandProcessor(void)

Destructor.

wxCommandProcessor::CanUndo

Bool CanUndo(void)

Returns TRUE if the currently-active command can be undone, FALSE otherwise.

wxCommandProcessor::ClearCommands

void ClearCommands(void)

Deletes all the commands in the list and sets the current command pointer to NULL.

wxCommandProcessor::Do

Bool Do(void)

Executes (redoes) the current command (the command that has just been undone if any).

wxCommandProcessor::GetCommands

wxList& GetCommands(void)

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands(void)

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

CHAPTER 9

91

wxMenu * GetEditMenu(void)

Returns the edit menu associated with the command processor.

wxCommandProcessor::Initialize

void Initialize(void)

Initializes the command processor, setting the current command to the last in the list (if any), and
updating the edit menu (if one has been specified).

wxCommandProcessor::SetEditMenu

void SetEditMenu(wxMenu *menu)

Tells the command processor to update the Undo and Redo items on this menu as appropriate.
Set this to NULL if the menu is about to be destroyed and command operations may still be
performed, or the command processor may try to access an invalid pointer.

wxCommandProcessor::Submit

Bool Submit(wxCommand *command, Bool storeIt)

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command; if it succeeds, the command is stored in the history
list, and the associated edit menu (if any) updated appropriately. If it fails, the command is
deleted immediately. Once Submit has been called, the passed command should not be deleted
directly by the application.

storeIt indicates whether the successful command should be stored in the history list.

wxCommandProcessor::Undo

Bool Undo(void)

Undoes the command just executed.

9.24. wxConnection: wxObject

See also Interprocess communications overview (page 378)

A wxConnection object represents the connection between a client and a server. It can be
created by making a connection using a wxClient (page 74) object, or by the acceptance of a
connection by a wxServer (page 277) object. The bulk of a DDE (Dynamic Data Exchange)
conversation (available in both Windows and UNIX) is controlled by calling members in a
wxConnection object or by overriding its members.

An application should normally derive a new connection class from wxConnection, in order to
override the communication event handlers to do something interesting.

CHAPTER 9

92

See also wxClient (page 74), wxServer (page 277).

wxConnection::wxConnection

void wxConnection(void)

void wxConnection(char *buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived from
wxConnection, then the constructor should not be called directly, since the default connection
object will be provided on requesting (or accepting) a connection. However, if the user defines his
or her own derived connection object, the wxServer::OnAcceptConnection (page 278) and/or
wxClient::OnMakeConnection (page 74) members should be replaced by functions which
construct the new connection object. If the arguments of the wxConnection constructor are void,
then a default buffer is associated with the connection. Otherwise, the programmer must provide
a a buffer and size of the buffer for the connection object to use in transactions.

wxConnection::Advise

Bool Advise(char *item, char *data, int size = -1, int format = wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated with the
given item. Causes the client connection's wxConnection::OnAdvise (page 92)member to be
called. Returns TRUE if successful.

wxConnection::Execute

Bool Execute(char *data, int size = -1,int format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used to transfer
arbitrary data to the server (similar to wxConnection::Poke (page 93) in that respect). Causes the
server connection's wxConnection::OnExecute (page 93) member to be called. Returns TRUE if
successful.

wxConnection::Disconnect

Bool Disconnect(void)

Called by the client or server application to disconnect from the other program; it causes the
wxConnection::OnDisconnect (page 93) message to be sent to the corresponding connection
object in the other program. The default behaviour of OnDisconnect is to delete the connection,
but the calling application must explicitly delete its side of the connection having called
Disconnect. Returns TRUE if successful.

wxConnection::OnAdvise

Bool OnAdvise(char *topic, char *item, char *data, int size, int format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

CHAPTER 9

93

wxConnection::OnDisconnect

Bool OnDisconnect(void)

Message sent to the client or server application when the other application notifies it to delete the
connection. Default behaviour is to delete the connection object.

wxConnection::OnExecute

Bool OnExecute(char *topic, char *data, int size, int format)

Message sent to the server application when the client notifies it to execute the given data. Note
that there is no item associated with this message.

wxConnection::OnPoke

Bool OnPoke(char *topic, char *item, char *data, int size, int format)

Message sent to the server application when the client notifies it to accept the given data.

wxConnection::OnRequest

char * OnRequest(char *topic, char *item, int *size, int format)

Message sent to the server application when the client calls wxConnection::Request (page 94).
The server should respond by returning a character string from OnRequest, or NULL to indicate
no data.

wxConnection::OnStartAdvise

Bool OnStartAdvise(char *topic, char *item)

Message sent to the server application by the client, when the client wishes to start an 'advise
loop' for the given topic and item. The server can refuse to participate by returning FALSE.

wxConnection::OnStopAdvise

Bool OnStopAdvise(char *topic, char *item)

Message sent to the server application by the client, when the client wishes to stop an 'advise
loop' for the given topic and item. The server can refuse to stop the advise loop by returning
FALSE, although this doesn't have much meaning in practice.

wxConnection::Poke

Bool Poke(char *item, char *data, int size = -1, int format = wxCF_TEXT)

CHAPTER 9

94

Called by the client application to poke data into the server. Can be used to transfer arbitrary data
to the server. Causes the server connection's wxConnection::OnPoke (page 93) member to be
called. Returns TRUE if successful.

wxConnection::Request

char * Request(char *item, int *size, int format = wxCF_TEXT)

Called by the client application to request data from the server. Causes the server connection's
wxConnection::OnRequest (page 93) member to be called. Returns a character string (actually a
pointer to the connection's buffer) if successful, NULL otherwise.

wxConnection::StartAdvise

Bool StartAdvise(char *item)

Called by the client application to ask if an advise loop can be started with the server. Causes the
server connection's wxConnection::OnStartAdvise (page 93) member to be called. Returns TRUE
if the server okays it, FALSE otherwise.

wxConnection::StopAdvise

Bool StopAdvise(char *item)

Called by the client application to ask if an advise loop can be stopped. Causes the server
connection's wxConnection::OnStopAdvise (page 93) member to be called. Returns TRUE if the
server okays it, FALSE otherwise.

9.25. wxCursor: wxBitmap

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a picture
that might indicate the interpretation of a mouse click. As with icons, cursors in X and MS
Windows are created in a different manner. Therefore, separate cursors will be created for the
different environments. Platform-specific methods for creating a wxCursor object are catered
for, and this is an occasion where conditional compilation will probably be required (see wxIcon
(page 183) for an example).

A single cursor object may be used in many windows (any subwindow type). The wxWindows
convention is to set the cursor for a window, as in X, rather than to set it globally as in MS
Windows, although a global ::wxSetCursor (page 336) is also available for MS Windows use.

Run the hello demo program to see what stock cursors are available.

wxCursor::wxCursor

void wxCursor(void)

Default constructor.

void wxCursor(short bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1, char

CHAPTER 9

95

*maskBits=NULL)

Construct a cursor by passing an array of bits (XView and Motif only). maskBits is used only
under Motif.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image (values
ignored under XView).

void wxCursor(char *cursorName, long flags, int hotSpotX=0, int hotSpotY=0)

Construct a cursor by passing a string resource name or filename. Under Motif, flags defaults to
wxBITMAP_TYPE_XBM | wxBITMAP_DISCARD_COLOURMAP. Under Windows, it defaults to
wxBITMAP_TYPE_CUR_RESOURCE | wxBITMAP_DISCARD_COLOURMAP.

hotSpotX and hotSpotY are currently only used under Windows when loading from an icon file, to
specify the cursor hotspot relative to the top left of the image.

Under X, the permitted cursor types in the flags bitlist are:

wxBITMAP_TYPE_XBM Load an X bitmap file.

Under Windows, the permitted types are:

wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h).

wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as specified in the .rc file).
wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if

USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h). Specify
hotSpotX and hotSpotY.

void wxCursor(int id)

Create a cursor by passing a stock cursor id. The following stock cursor ids may be used:

• wxCURSOR_ARROW
• wxCURSOR_BULLSEYE
• wxCURSOR_CHAR
• wxCURSOR_CROSS
• wxCURSOR_HAND
• wxCURSOR_IBEAM
• wxCURSOR_LEFT_BUTTON
• wxCURSOR_MAGNIFIER
• wxCURSOR_MIDDLE_BUTTON
• wxCURSOR_NO_ENTRY
• wxCURSOR_PAINT_BRUSH
• wxCURSOR_PENCIL
• wxCURSOR_POINT_LEFT
• wxCURSOR_POINT_RIGHT
• wxCURSOR_QUESTION_ARROW
• wxCURSOR_RIGHT_BUTTON
• wxCURSOR_SIZENESW
• wxCURSOR_SIZENS
• wxCURSOR_SIZENWSE

CHAPTER 9

96

• wxCURSOR_SIZEWE
• wxCURSOR_SIZING
• wxCURSOR_SPRAYCAN
• wxCURSOR_WAIT
• wxCURSOR_WATCH

wxCursor::~wxCursor

void ~wxCursor(void)

Destroys the cursor. Unlike an icon, a cursor can be reused for more than one window, and does
not get destroyed when the window is destroyed. wxWindows destroys all cursors on application
exit.

9.26. wxDatabase: wxObject

See also Overview (page 394)

Every database object represents an ODBC connection. The connection may be closed and
reopened.

wxDatabase::wxDatabase

void wxDatabase(void)

Constructor. The constructor of the first wxDatabase instance of an application initializes the
ODBC manager.

wxDatabase::~wxDatabase

void ~wxDatabase(void)

Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

wxDatabase::BeginTrans

Bool BeginTrans(void)

Not implemented.

wxDatabase::Cancel

void Cancel(void)

Not implemented.

CHAPTER 9

97

wxDatabase::CanTransact

Bool CanTransact(void) Not implemented.

wxDatabase::CanUpdate

Bool CanUpdate(void)

Not implemented.

wxDatabase::Close

Bool Close(void)

Resets the statement handles of any associated wxRecordSet objects, and disconnects from the
current data source.

wxDatabase::CommitTrans

Bool CommitTrans(void)

Commits previous transactions. Not implemented.

wxDatabase::ErrorOccured

Bool ErrorOccured(void)

Returns TRUE if the last action caused an error.

wxDatabase::ErrorSnapshot

void ErrorSnapshot(HSTMT statement = SQL_NULL_HSTMT)

This function will be called whenever an ODBC error occured. It stores the error related
information returned by ODBC. If a statement handle of the concerning ODBC action is available
it should be passed to the function.

wxDatabase::GetDatabaseName

char * GetDatabaseName(void)

Returns the name of the database associated with the current connection.

wxDatabase::GetDataSource

char * GetDataSource(void)

CHAPTER 9

98

Returns the name of the connected data source.
wxDatabase::GetErrorClass

char * GetErrorClass(void)

Returns the error class of the last error. The error class consists of five characters where the first
two characters contain the class and the other three characters contain the subclass of the ODBC
error. See ODBC documentation for further details.

wxDatabase::GetErrorCode

wxRETCODE GetErrorCode(void)

Returns the error code of the last ODBC function call. This will be one of:

SQL_ERROR General error.
SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESSThe call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can be obtained

from the ODBC manager.

wxDatabase::GetErrorMessage

char * GetErrorMessage(void) Returns the last error message returned by the ODBC
manager.

wxDatabase::GetErrorNumber

long GetErrorNumber(void)

Returns the last native error. A native error is an ODBC driver dependent error number.

wxDatabase::GetHDBC

HDBC GetHDBC(void)

Returns the current ODBC database handle.

wxDatabase::GetHENV

HENV GetHENV(void)

Returns the ODBC environment handle.
wxDatabase::GetInfo

Bool GetInfo(long infoType, long *buf)

CHAPTER 9

99

Bool GetInfo(long infoType, char *buf, int bufSize=-1)

Returns requested information. The return value is TRUE if successful, FALSE otherwise.

infoType is an ODBC identifier specifying the type of information to be returned.

buf is a character or long integer pointer to storage which must be allocated by the application,
and which will contain the information if the function is successful.

bufSize is the size of the character buffer. A value of -1 indicates that the size should be
computed by the GetInfo function.

wxDatabase::GetPassword

char * GetPassword(void)

Returns the password of the current user.

wxDatabase::GetUsername

char * GetUsername(void)

Returns the current username.

wxDatabase::GetODBCVersionFloat

float GetODBCVersionFloat(Bool implementation=TRUE)

Returns the version of ODBC in floating point format, e.g. 2.50.

implementation should be TRUE to get the DLL version, or FALSE to get the version defined in
the sql.h header file.

This function can return the value 0.0 if the header version number is not defined (for early
versions of ODBC).

wxDatabase::GetODBCVersionString

wxString GetODBCVersionString(Bool implementation=TRUE)

Returns the version of ODBC in string format, e.g. "02.50".

implementation should be TRUE to get the DLL version, or FALSE to get the version defined in
the sql.h header file.

This function can return the value "00.00" if the header version number is not defined (for early
versions of ODBC).

wxDatabase::InWaitForDataSource

CHAPTER 9

100

Bool InWaitForDataSource(void)

Not implemented.

wxDatabase::IsOpen

Bool IsOpen(void)

Returns TRUE if a connection is open.

wxDatabase::Open

Bool Open(char *datasource, Bool exclusive = FALSE, Bool readOnly = TRUE, char
*username = "ODBC", char *password = "")

Connect to a data source. datasource contains the name of the ODBC data source. The
parameters exclusive and readOnly are not used.

wxDatabase::OnSetOptions

void OnSetOptions(wxRecordSet *recordSet)

Not implemented.
wxDatabase::OnWaitForDataSource

void OnWaitForDataSource(Bool stillExecuting)

Not implemented.

wxDatabase::RollbackTrans

Bool RollbackTrans(void)

Sends a rollback to the ODBC driver. Not implemented.

wxDatabase::SetDataSource

void SetDataSource(char *s)

Sets the name of the data source. Not implemented.
wxDatabase::SetLoginTimeout

void SetLoginTimeout(long seconds)

Sets the time to wait for an user login. Not implemented.
wxDatabase::SetPassword

void SetPassword(char *s)

CHAPTER 9

101

Sets the password of the current user. Not implemented.

wxDatabase::SetSynchronousMode

void SetSynchronousMode(Bool synchronous)

Toggles between synchronous and asynchronous mode. Currently only synchronous mode is
supported, so this function has no effect.

wxDatabase::SetQueryTimeout

void SetQueryTimeout(long seconds)

Sets the time to wait for a response to a query. Not implemented.
wxDatabase::SetUsername

void SetUsername(char *s)

Sets the name of the current user. Not implemented.

9.27. wxDate: wxObject

A class for manipulating dates.

wxDate::wxDate

void wxDate(void)

Default constructor.

void wxDate(wxDate& date)

Copy constructor.

void wxDate(const int month, const int day, const int year)

Constructor.

month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

void wxDate(const long julian)

Constructor taking an integer representing the Julian date. This is the number of days since 1st
January 4713 B.C., so to convert from the number of days since 1st January 1901, construct a
date for 1/1/1901, and add the number of days.

void wxDate(const char *date)

CHAPTER 9

102

Constructor taking a string representing a date. This must be either the string TODAY, or of the
form MM/DD/YYYY or MM-DD-YYYY. For example:

 wxDate date("11/26/1966");

wxDate::~wxDate

void ~wxDate(void)

Destructor.

wxDate::AddMonths

wxDate& AddMonths(int months=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::AddWeeks

wxDate& AddWeeks(int weeks=1)

Adds the given number of weeks to the date, returning a reference to 'this'.

wxDate::AddYears

wxDate& AddYears(int years=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::FormatDate

char * FormatDate(const int type=-1) const

Formats the date according to type if not -1, or according to the current display type if -1.

type can be -1 or one of:

wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style: DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY, MONTH, YEAR.

The return value is a pointer to a statically-allocated character string.

wxDate::GetDay

CHAPTER 9

103

int GetDay(void) const

Returns the numeric day (in the range 1 to 31).

wxDate::GetDayOfWeek

int GetDayOfWeek(void) const

Returns the integer day of the week (in the range 1 to 7).

wxDate::GetDayOfWeekName

char * GetDayOfWeekName(void)

Returns the name of the day of week. Do not delete the storage returned.

wxDate::GetDayOfYear

long GetDayOfYear(void) const

Returns the day of the year (from 1 to 365).

wxDate::GetDaysInMonth

int GetDaysInMonth(void) const

Returns the number of days in the month (in the range 1 to 31).

wxDate::GetFirstDayOfMonth

int GetFirstDayOfMonth(void) const

Returns the day of week that is first in the month (in the range 1 to 7).

wxDate::GetJulianDate

long GetJulianDate(void) const

Returns the Julian date.

wxDate::GetMonth

int GetMonth(void) const

Returns the month number (in the range 1 to 12).

CHAPTER 9

104

wxDate::GetMonthEnd

wxDate GetMonthEnd(void)

Returns the date representing the last day of the month.

wxDate::GetMonthName

char * GetMonthName(void)

Returns the name of the month. Do not delete the returned storage.

wxDate::GetMonthStart

wxDate GetMonthStart(void)

Returns the date representing the first day of the month.

wxDate::GetWeekOfMonth

int GetWeekOfMonth(void)

Returns the week of month (in the range 1 to 6).

wxDate::GetWeekOfYear

int GetWeekOfYear(void)

Returns the week of year (in the range 1 to 52).

wxDate::GetYear

int GetYear(void) const

Returns the year as an integer (such as '1995').

wxDate::GetYearEnd

wxDate GetYearEnd(void)

Returns the date representing the last day of the year.

wxDate::GetYearStart

wxDate GetYearStart(void)

Returns the date representing the first day of the year.

CHAPTER 9

105

wxDate::IsLeapYear

Bool IsLeapYear(void) const

Returns TRUE if the year of this date is a leap year.

wxDate::Set

wxDate& Set(void)

Sets the date to current system date, returning a reference to 'this'.

wxDate& Set(long julian)

Sets the date to the given Julian date, returning a reference to 'this'.

wxDate& Set(int month, int day, int year)

Sets the date to the given date, returning a reference to 'this'.

month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

wxDate::SetFormat

void SetFormat(const int format)

Sets the current format type.

format can be -1 or one of:

wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style: DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY, MONTH, YEAR.

wxDate::SetOption

int SetOption(const int option, const Bool enable=TRUE)

Enables or disables an option for formatting. option may be one of:

wxNO_CENTURY The century is not formatted.
wxDATE_ABBR Month and day names are abbreviated to 3 characters when formatting.

CHAPTER 9

106

wxDate::operator char *

 operator char *(void)

Conversion operator, to convert wxDate to char * by calling FormatDate.

wxDate::operator +

wxDate operator +(const long i)

wxDate operator +(const int i)

Adds an integer number of days to the date, returning a date.

wxDate::operator -

wxDate operator -(const long i)

wxDate operator -(const int i)

Subtracts an integer number of days from the date, returning a date.

long operator -(const wxDate& date)

Subtracts one date from another, return the number of intervening days.

wxDate::operator +=

wxDate& operator +=(const long i)

Postfix operator: adds an integer number of days to the date, returning a reference to 'this' date.

wxDate::operator -=

wxDate& operator -=(const long i)

Postfix operator: subtracts an integer number of days from the date, returning a reference to 'this'
date.

wxDate::operator ++

wxDate& operator ++(void)

Increments the date (postfix or prefix).

wxDate::operator --

CHAPTER 9

107

wxDate& operator --(void)

Decrements the date (postfix or prefix).

wxDate::operator <

friend Bool operator <(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is earlier than date2.

wxDate::operator <=

friend Bool operator <=(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is earlier than or equal to date2.

wxDate::operator >

friend Bool operator >(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is later than date2.

wxDate::operator >=

friend Bool operator >=(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is later than or equal to date2.

wxDate::operator ==

friend Bool operator ==(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is equal to date2.

wxDate::operator !=

friend Bool operator !=(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is not equal to date2.

wxDate::operator <<

friend ostream& operator <<(ostream& os, const wxDate& date)

Function to output a wxDate to an ostream.

CHAPTER 9

108

9.28. wxDC: wxObject

See also Overview (page 383)

A wxDC is a device context onto which graphics and text can be drawn. It is intended to represent
a number of output devices in a generic way, so a canvas has a device context and a printer also
has a device context. In this way, the same piece of code may write to a number of different
devices, if the device context is used as a parameter.

Derived types of wxDC have documentation for specific features only, so refer to this section for
most device context information.

wxDC::wxDC

void wxDC(void)

Constructor.

wxDC::~wxDC

void ~wxDC(void)

Destructor.

wxDC::BeginDrawing

void BeginDrawing(void)

Allows optimization of drawing code under MS Windows. Enclose drawing primitives between
BeginDrawing and EndDrawing calls.

Drawing to a wxDialogBox panel device context outside of a system-generated OnPaint event
requires this pair of calls to enclose drawing code. This is because a Windows dialog box does
not have a retained device context associated with it, and selections such as pen and brush
settings would be lost if the device context were obtained and released for each drawing
operation.

wxDC::Blit

Bool Blit(float xdest, float ydest, float width, float height,
 wxDC *source, float xsrc, float ysrc, int logical_func, Bool transparent = FALSE)

Copy from a source DC to this DC, specifying the destination coordinates, size of area to copy,
source DC, source coordinates, and logical function (see wxDC::SetLogicalFunction (page 118)).
See wxMemoryDC (page 205) for typical usage.

If transparent is TRUE and source is a wxMemoryDC with a transparent bitmap selected into it,
the function will draw the source transparently. At present, the only way to create a transparent
bitmap is to load a transparent XPM.

There is partial support for Blit in wxPostScriptDC, under X.

CHAPTER 9

109

wxDC::Clear

void Clear(void)

Clears the device context using the current background brush.

wxDC::CrossHair

void CrossHair(float x, float y)

Displays a cross hair using the current pen. This is a vertical and horizontal line the height and
width of the canvas, centred on the given point.

wxDC::DestroyClippingRegion

void DestroyClippingRegion(void)

Destroys the current clipping region so that none of the DC is clipped. See also
wxDC::SetClippingRegion (page 117).

wxDC::DeviceToLogicalX

float DeviceToLogicalX(int x)

Convert device X coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalXRel

float DeviceToLogicalXRel(int x)

Convert device X coordinate to relative logical coordinate, using the current mapping mode. Use
this function for converting a width, for example.

wxDC::DeviceToLogicalY

float DeviceToLogicalY(int y)

Converts device Y coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalYRel

float DeviceToLogicalYRel(int y)

Convert device Y coordinate to relative logical coordinate, using the current mapping mode. Use
this function for converting a height, for example.

CHAPTER 9

110

wxDC::DrawArc

void DrawArc(float x1, float y1, float x2, float y2, floatxc, floatyc)

Draws an arc, centred on (xc, yc), with starting point (x1, y1) and ending at (x2, y2). The current
pen is used for the outline and the current brush for filling the shape.

wxDC::DrawEllipse

void DrawEllipse(float x, float y, float width, float height)

Draws an ellipse contained in the rectangle with the given top left corner, and with the given size.
The current pen is used for the outline and the current brush for filling the shape.

wxDC::DrawEllipticArc

void DrawEllipticArc(float x, float y, float width, float height, floatstart, floatend)

Draws an arc of an ellipse. The current pen is used for drawing the arc and the current brush is
used for drawing the pie. This function is currently only available for X canvas and PostScript
device contexts.

x and y specify the x and y coordinates of the upper-left corner of the rectangle that contains the
ellipse.

width and height specify the width and height of the rectangle that contains the ellipse.

start and end specify the start and end of the arc relative to the three-o'clock position from the
center of the rectangle. Angles are specified in degrees (360 is a complete circle). Positive values
mean counter-clockwise motion. If start is equal to end, a complete ellipse will be drawn.

wxDC::DrawIcon

void DrawIcon(wxIcon *icon, float x, float y)

Draw an icon on the display (does nothing if the device context is PostScript). This can be the
simplest way of drawing bitmaps on a canvas.

wxDC::DrawLine

void DrawLine(float x1, float y1, float x2, float y2)

Draws a line from the first point to the second. The current pen is used for drawing the line.

wxDC::DrawLines

void DrawLines(int n, wxPoint points[], float xoffset = 0, float yoffset = 0)

void DrawLines(wxList *points, float xoffset = 0, float yoffset = 0)

CHAPTER 9

111

Draws lines using an array of points of size n, or list of pointers to points, adding the optional
offset coordinate. The current pen is used for drawing the lines. The programmer is responsible
for deleting the list of points.

wxDC::DrawPolygon

void DrawPolygon(int n, wxPoint points[], float xoffset = 0, float yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

void DrawPolygon(wxList *points, float xoffset = 0, float yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

Draws a filled polygon using an array of points of size n, or list of pointers to points, adding the
optional offset coordinate.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wxWINDING_RULE.

The current pen is used for drawing the outline, and the current brush for filling the shape. Using
a transparent brush suppresses filling. The programmer is responsible for deleting the list of
points.

Note that wxWindows automatically closes the first and last points.

wxDC::DrawPoint

void DrawPoint(float x, float y)

Draws a point using the current pen.

wxDC::DrawRectangle

void DrawRectangle(float x, float y, float width, float height)

Draws a rectangle with the given top left corner, and with the given size. The current pen is used
for the outline and the current brush for filling the shape.

wxDC::DrawRoundedRectangle

void DrawRoundedRectangle(float x, float y, float width, float height, float radius = 20)

Draws a rectangle with the given top left corner, and with the given size. The corners are quarter-
circles using the given radius. The current pen is used for the outline and the current brush for
filling the shape.

If radius is positive, the value is assumed to be the radius of the rounded corner. If radius is
negative, the absolute value is assumed to be the proportion of the smallest dimension of the
rectangle. This means that the corner can be a sensible size relative to the size of the rectangle,
and also avoids the strange effects X produces when the corners are too big for the rectangle.

CHAPTER 9

112

wxDC::DrawSpline

void DrawSpline(wxList *points)

Draws a spline between all given control points, using the current pen. Doesn't delete the wxList
and contents. The spline is drawn using a series of lines, using an algorithm taken from the X
drawing program 'XFIG'.

void DrawSpline(float x1, float y1, float x2, float y2, float x3, float y3)

Draws a three-point spline using the current pen.

wxDC::DrawText

void DrawText(char *text, float x, float y)

Draws a text string at the specified point, using the current text font, and the current text
foreground and background colours.

The coordinates refer to the top-left corner of the rectangle bounding the string. See
wxDC::GetTextExtent (page 115) for how to get the dimensions of a text string, which can be
used to position the text more precisely.

wxDC::EndDoc

void EndDoc(void)

Ends a document (only relevant when outputting to a printer).

wxDC::EndDrawing

void EndDrawing(void)

Allows optimization of drawing code under MS Windows. Enclose drawing primitives between
BeginDrawing and EndDrawing calls.

wxDC::EndPage

void EndPage(void)

Ends a document page (only relevant when outputting to a printer).

wxDC::FloodFill

void FloodFill(float x, float y, wxColour *colour, int style=wxFLOOD_SURFACE)

Flood fills the device context starting from the given point, in the given colour, and using a style:

• wxFLOOD_SURFACE: the flooding occurs until a colour other than the given colour is

CHAPTER 9

113

encountered.
• wxFLOOD_BORDER: the area to be flooded is bounded by the given colour.

Note: this function is available in MS Windows only.

wxDC::GetBackground

wxBrush * GetBackground(void)

Gets the brush used for painting the background (see wxDC::SetBackground (page 117)).

wxDC::GetBrush

wxBrush * GetBrush(void)

Gets the current brush (see wxDC::SetBrush (page 117)).

wxDC::GetCharHeight

float GetCharHeight(void)

Gets the character height of the currently set font.

wxDC::GetCharWidth

float GetCharWidth(void)

Gets the average character width of the currently set font.

wxCanvas::GetClippingBox

void GetClippingBox(float *x, float *y, float *width, float *height)

Gets the rectangle surrounding the current clipping region.

wxDC::GetFont

wxFont * GetFont(void)

Gets the current font (see wxDC::SetFont (page 118)).

wxDC::GetLogicalFunction

int GetLogicalFunction(void)

Gets the current logical function (see wxDC::SetLogicalFunction (page 118)).

CHAPTER 9

114

wxDC::GetMapMode

int GetMapMode(void)

Gets the mapping mode for the device context (see wxDC::SetMapMode (page 118)).

wxDC::GetOptimization

Bool GetOptimization(void)

Returns TRUE if device context optimization is on. See wxDC::SetOptimization (page 119) for
details.

wxDC::GetPen

wxPen * GetPen(void)

Gets the current pen (see wxDC::SetPen (page 119)).

wxDC::GetPixel

Bool GetPixel(float x, float y, wxColour *colour)

Sets colour to the colour at the specified location. Windows only; an X implementation is being
worked on. Not available for wxPostScriptDC or wxMetaFileDC.

wxDC::GetSize

void GetSize(float *width, float *height)

For a PostScript device context, this gets the maximum size of graphics drawn so far on the
device context.

For a Windows printer device context, this gets the horizontal and vertical resolution. It can be
used to scale graphics to fit the page when using a Windows printer device context. For example,
if maxX and maxY represent the maximum horizontal and vertical 'pixel' values used in your
application, the following code will scale the graphic to fit on the printer page:

 float w, h;
 dc.GetSize(&w, &h);
 float scaleX=(float)(maxX/w);
 float scaleY=(float)(maxY/h);
 dc.SetUserScale(min(scaleX,scaleY),min(scaleX,scaleY));

wxDC::GetTextBackground

wxColour& GetTextBackground(void)

Gets the current text background colour (see wxDC::SetTextBackground (page 119)).

CHAPTER 9

115

wxDC::GetTextExtent

void GetTextExtent(char *string, float *w, float *h,
 float *descent = NULL, float *externalLeading = NULL, wxFont *font = NULL)

Gets the dimensions of the string using the currently selected font. string is the text string to
measure, w and h are the total width and height respectively, descent is the dimension from the
baseline of the font to the bottom of the descender, and externalLeading is any extra vertical
space added to the font by the font designer (usually is zero).

The optional parameter font specifies an alternative to the currently selected font: but note that
this does not yet work under Windows, so you need to set a font for the device context first.

See also wxFont (page 158), wxDC::SetFont (page 118).

wxDC::GetTextForeground

wxColour& GetTextForeground(void)

Gets the current text foreground colour (see wxDC::SetTextForeground (page 119)).

wxDC::IntDrawLine

void IntDrawLine(int x1, int y1, int x2,int y2)

Draws a line from the first point to the second. The current pen is used for drawing the line.

wxDC::IntDrawLines

void IntDrawLines(int n, wxIntPoint points[], int xoffset = 0, int yoffset = 0)

Draw lines using an array of points of size n. The current pen is used for drawing the lines. The
programmer is responsible for deleting the list of points.

wxDC::LogicalToDeviceX

int LogicalToDeviceX(float x)

Converts logical X coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceXRel

int LogicalToDeviceXRel(float x)

Converts logical X coordinate to relative device coordinate, using the current mapping mode. Use
this for converting a width, for example.

CHAPTER 9

116

wxDC::LogicalToDeviceY

int LogicalToDeviceY(float y)

Converts logical Y coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceYRel

int LogicalToDeviceYRel(float y)

Converts logical Y coordinate to relative device coordinate, using the current mapping mode. Use
this for converting a height, for example.

wxDC::MaxX

float MaxX(void)

Gets the maximum horizontal extent used in drawing commands so far.

wxDC::MaxY

float MaxY(void)

Gets the maximum vertical extent used in drawing commands so far.

wxDC::MinX

float MinX(void)

Gets the minimum horizontal extent used in drawing commands so far.

wxDC::MinY

float MinY(void)

Gets the minimum vertical extent used in drawing commands so far.

wxDC::Ok

Bool Ok(void)

Returns TRUE if the DC is ok to use.

wxDC::SetDeviceOrigin

void SetDeviceOrigin(float x, float y)

CHAPTER 9

117

Sets the device origin (i.e., the origin in pixels after scaling has been applied).

This function may be useful in Windows printing operations for placing a graphic on a page.

wxDC::SetBackground

void SetBackground(wxBrush *brush)

Sets the current background brush for the DC. Do not delete the brush; it will be deleted
automatically when the application terminates.

wxDC::SetBackgroundMode

void SetBackgroundMode(int mode)

mode may be one of wxSOLID and wxTRANSPARENT. This setting determines whether text will
be drawn with a background colour or not.

wxDC::SetClippingRegion

void SetClippingRegion(float x, float y, float width, float height)

Sets the clipping region for the DC. The clipping region is a rectangular area to which drawing is
restricted. Possible uses for the clipping region are for clipping text or for speeding up canvas
redraws when only a known area of the screen is damaged.

See also wxDC::DestroyClippingRegion (page 109).

wxDC::SetColourMap

void SetColourMap(wxColourMap *colourMap)

If this is a canvas DC or memory DC, assigns the given colourmap to the window or bitmap
associated with the DC. If the argument is NULL, the current colourmap is selected out of the
device context, and the original colourmap restored, allowing the current colourmap to be
destroyed safely.

See wxColourMap (page 81) for further details.

wxDC::SetBrush

void SetBrush(wxBrush *brush)

Sets the current brush for the DC. The brush is not copied, so you should not delete the brush
unless the DC pen has been set to another brush, or to NULL. Note that all pens and brushes are
automatically deleted when the program is exited.

If the argument is NULL, the current brush is selected out of the device context, and the original
brush restored, allowing the current brush to be destroyed safely.

CHAPTER 9

118

See also wxBrush (page 51).

wxDC::SetFont

void SetFont(wxFont *font)

Sets the current font for the DC. The font is not copied, so you should not delete the font unless
the DC pen has been set to another font, or to NULL.

If the argument is NULL, the current font is selected out of the device context, and the original
font restored, allowing the current font to be destroyed safely.

See also wxFont (page 158).

wxDC::SetLogicalFunction

void SetLogicalFunction(int function)

Sets the current logical function for the canvas. This determines how a source pixel (from a pen
or brush colour, or source device context if using wxDC::Blit (page 108)) combines with a
destination pixel in the current device context.

The possible values and their meaning in terms of source and destination pixel values are as
follows:

wxAND src AND dst
wxAND_INVERT (NOT src) AND dst
wxAND_REVERSE src AND (NOT dst)
wxCLEAR 0
wxCOPY src
wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst
wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst
wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1
wxSRC_INVERT NOT src
wxXOR src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine the
current colour and the background using a logical operation. wxXOR is commonly used for
drawing rubber bands or moving outlines, since drawing twice reverts to the original colour.

wxDC::SetMapMode

void SetMapMode(int int)

The mapping mode of the device context defines the unit of measurement used to convert logical
units to device units. Note that in X, text drawing isn't handled consistently with the mapping

CHAPTER 9

119

mode; a font is always specified in point size. However, setting the user scale (see
wxDC::SetUserScale (page 120)) scales the text appropriately. In Windows, scaleable TrueType
fonts are always used; in X, results depend on availability of fonts, but usually a reasonable
match is found.

Note that the coordinate origin should ideally be selectable, but for now is always at the top left of
the screen/printer.

Drawing to a Windows printer device context under UNIX uses the current mapping mode, but
mapping mode is currently ignored for PostScript output.

The mapping mode can be one of the following:

MM_TWIPS Each logical unit is 1/20 of a point, or 1/1440 of an inch.
MM_POINTS Each logical unit is a point, or 1/72 of an inch.
MM_METRIC Each logical unit is 1 mm.
MM_LOMETRICEach logical unit is 1/10 of a mm.
MM_TEXT Each logical unit is 1 pixel.

wxDC::SetOptimization

void SetOptimization(Bool optimize)

If optimize is TRUE (the default), this function sets optimization mode on. This currently means
that under X, the device context will not try to set a pen or brush property if it is known to be set
already. This approach can fall down if non-wxWindows code is using the same device context or
window, for example when the window is a panel on which the windowing system draws panel
items. The wxWindows device context 'memory' will now be out of step with reality.

Setting optimization off, drawing, then setting it back on again, is a trick that must occasionally be
employed.

wxDC::SetPen

void SetPen(wxPen *pen)

Sets the current pen for the DC. The pen is not copied, so you should not delete the pen unless
the DC pen has been set to another pen, or to NULL. Note that all pens and brushes are
automatically deleted when the program is exited.

If the argument is NULL, the current pen is selected out of the device context, and the original
pen restored, allowing the current pen to be destroyed safely.

wxDC::SetTextBackground

void SetTextBackground(wxColour *colour)

Sets the current text background colour for the DC.

wxDC::SetTextForeground

CHAPTER 9

120

void SetTextForeground(wxColour *colour)

Sets the current text foreground colour for the DC.

wxDC::SetUserScale

void SetUserScale(float x_scale, floaty_scale)

Sets the user scaling factor, useful for applications which require 'zooming'.

wxDC::StartDoc

Bool StartDoc(char *message)

Starts a document (only relevant when outputting to a printer). Message is a message to show
whilst printing.

wxDC::StartPage

Bool StartPage(void)

Starts a document page (only relevant when outputting to a printer).

9.29. wxDebugContext

See also Overview (page 398)

A class for performing various debugging and memory tracing operations. Full functionality (such
as printing out objects currently allocated) is only present in a debugging build of wxWindows, i.e.
if the DEBUG symbol is defined and non-zero. wxDebugContext and related functions and
macros can be compiled out by setting USE_DEBUG_CONTEXT to 0 is wx_setup.h

wxDebugContext::Check

int Check(void)

Checks the memory blocks for errors, starting from the currently set checkpoint. Returns the
number of errors, so a value of zero represents success.

Returns -1 if an error was detected that prevents further checking.

wxDebugContext::Dump

Bool Dump(void)

Performs a memory dump from the currently set checkpoint, writing to the current debug stream.
Calls the Dump member function for each wxObject derived instance.

CHAPTER 9

121

wxDebugContext::GetCheckPrevious

Bool GetCheckPrevious(void)

Returns TRUE if the memory allocator checks all previous memory blocks for errors. By default,
this is FALSE since it slows down execution considerably.

wxDebugContext::GetDebugMode

Bool GetDebugMode(void)

Returns TRUE if debug mode is on. If debug mode is on, the wxObject new and delete operators
store or use information about memory allocation. Otherwise, a straight malloc and free will be
performed by these operators.

wxDebugContext::GetLevel

int GetLevel(void)

Gets the debug level (default 1). The debug level is used by the wxTraceLevel function and the
WXTRACELEVEL macro to specify how detailed the trace information is; setting a different level
will only have an effect if trace statements in the application specify a value other than one.

wxDebugContext::GetStream

ostream& GetStream(void)

Returns the output stream associated with the debug context.

wxDebugContext::GetStreamBuf

streambuf * GetStreamBuf(void)

Returns a pointer to the output stream buffer associated with the debug context. There may not
necessarily be a stream buffer if the stream has been set by the user.

wxDebugContext::HasStream

Bool HasStream(void)

Returns TRUE if there is a stream currently associated with the debug context.

wxDebugContext::PrintClasses

Bool PrintClasses(void)

Prints a list of the classes declared in this application, giving derivation and whether instances of
this class can be dynamically created.

CHAPTER 9

122

wxDebugContext::PrintStatistics

Bool PrintStatistics(Bool detailed = TRUE)

Performs a statistics analysis from the currently set checkpoint, writing to the current debug
stream. The number of object and non-object allocations is printed, together with the total size.

If detailed is TRUE, the function will also print how many objects of each class have been
allocated, and the space taken by these class instances.

wxDebugContext::SetCheckpoint

void SetCheckpoint(Bool all = FALSE)

Sets the current checkpoint: Dump and PrintStatistics operations will be performed from this point
on. This allows you to ignore allocations that have been performed up to this point.

If all is TRUE, the checkpoint is reset to include all memory allocations since the program started.

wxDebugContext::SetDebugMode

void SetDebugMode(Bool debug)

Sets the debug mode on or off. If debug mode is on, the wxObject new and delete operators store
or use information about memory allocation. Otherwise, a straight malloc and free will be
performed by these operators.

By default, debug mode is on if DEBUG is non-zero. If the application uses this function, it should
make sure that all object memory allocated is deallocated with the same value of debug mode.
Otherwise, the delete operator might try to look for memory information that does not exist.

wxDebugContext::SetFile

Bool SetFile(char *filename)

Sets the current debug file and creates a stream. This will delete any existing stream and stream
buffer. By default, the debug context stream outputs to the debugger (Windows) or standard error
(other platforms).

wxDebugContext::SetLevel

void SetLevel(int level)

Sets the debug level (default 1). The debug level is used by the wxTraceLevel function and the
WXTRACELEVEL macro to specify how detailed the trace information is; setting a different level
will only have an effect if trace statements in the application specify a value other than one.

wxDebugContext::SetCheckPrevious

CHAPTER 9

123

void SetCheckPrevious(Bool check)

Tells the memory allocator to check all previous memory blocks for errors. By default, this is
FALSE since it slows down execution considerably.

wxDebugContext::SetStandardError

Bool SetStandardError(void)

Sets the debugging stream to be the debugger (Windows) or standard error (other platforms).
This is the default setting. The existing stream will be flushed and deleted.

wxDebugContext::SetStream

void SetStream(ostream *stream, streambuf *streamBuf = NULL)

Sets the stream and optionally, stream buffer associated with the debug context. This operation
flushes and deletes the existing stream (and stream buffer if any).

Do not set this to NULL.

9.30. wxDebugStreamBuf: streambuf

This class allows you to treat debugging output in a similar (stream-based) fashion on different
platforms. Under Windows, an ostream constructed with this buffer outputs to the debugger, or
other program that intercepts debugging output. On other platforms, the output goes to standard
error (cerr).

For example:

 wxDebugStreamBuf streamBuf;
 ostream stream(&streamBuf);

 stream << "Hello world!" << endl;

9.31. wxDialogBox: wxPanel

See also Overview (page 385)

A dialog box is similar to a panel, in that it is a window which can be used for placing panel items,
with the following exceptions:

1. A surrounding frame is implicitly created.
2. Extra functionality is automatically given to the dialog box, such as tabbing between

items (currently Windows only).
3. If the dialog box is modal, the calling program is blocked until the dialog box is

dismissed.

See also wxPanel (page 228) and wxWindow (page 319) for inherited member functions.

wxDialogBox::wxDialogBox

CHAPTER 9

124

void wxDialogBox(wxWindow *parent, char *title,Bool modal=FALSE,
 int x=300, int y=300, int width=500, int height=500,
 long style = wxDEFAULT_DIALOG_STYLE,
 char *name = "dialogBox")

Constructor. The parent of the dialog box can be NULL, a frame or a dialog box.

If title is non-NULL, it is placed on the window frame.

If modal is TRUE, the dialog box will wait to be dismissed (using Show(FALSE)) before returning
control to the calling program.

The style parameter may be a combination of the following, using the bitwise 'or' operator:

wxCAPTION Puts a caption on the dialog box (Motif only).
wxDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION, wxSYSTEM_MENU

and wxTHICK_FRAME
wxRESIZE_BORDER Display a resizeable frame around the window (Motif only).
wxSYSTEM_MENU Display a system menu (Motif only).
wxTHICK_FRAME Display a thick frame around the window (Motif only).
wxUSER_COLOURS Under Windows, overrides standard control processing to allow setting of

the dialog box background colour.
wxVSCROLL Give the dialog box a vertical scrollbar (XView only).

Note that none take effect under Windows, only wxVSCROLL works under XView, and for Motif
the MWM (the Motif Window Manager) should be running for any to work.

The name parameter is used to associate a name with the window, allowing the application user
to set Motif resource values for individual dialog boxes.

wxDialogBox::~wxDialogBox

void ~wxDialogBox(void)

Destructor. Deletes any panel items before deleting the physical window.

wxDialogBox::Centre

void Centre(int direction = wxBOTH)

Centres the dialog box on the display. The parameter may be wxHORIZONTAL, wxVERTICAL or
wxBOTH.

wxDialogBox::Create

void Create(wxFrame *parent, char *title,Bool modal=FALSE,
 int x=300, int y=300, int width=500, int height=500,
 long style = = wxDEFAULT_DIALOG_STYLE,
 char *name = "dialogBox")

CHAPTER 9

125

Used for two-step dialog box construction. See wxDialogBox::wxDialogBox (page 123) for details.

wxDialogBox::GetTitle

char * GetTitle(void)

Gets a temporary pointer to the title of the dialog box.

wxDialogBox::Iconize

void Iconize(Bool iconize)

If TRUE, iconizes the dialog box; if FALSE, shows and restores it. Note that in Windows,
iconization has no effect since dialog boxes cannot be iconized. However, applications may need
to explicitly restore dialog boxes under XView and Motif which have user-iconizable frames, and
under Windows calling Iconize(FALSE) will bring the window to the front, as does
Show(TRUE).

wxDialogBox::Iconized

Bool Iconized(void)

Returns TRUE if the dialog box is iconized. Always returns FALSE under Windows for the
reasons given above.

wxDialogBox::IsModal

Bool IsModal(void)

Returns TRUE if the dialog box is modal, FALSE otherwise.

wxDialogBox::OnCharHook

Bool OnCharHook(wxKeyEvent& ch)

This member is called (under Windows only) to allow the window to intercept keyboard events
before they are processed by child windows. The window receives this event from the default
wxApp::OnCharHook (page 46) member function if the window (frame or dialog box) is active.
The function should returns TRUE to indicate the character has been processed, or FALSE to
allow default processing. The default implementation for wxWindow returns FALSE, but the
wxDialogBox implementation checks for WXK_ESCAPE, calls OnClose and if this returns TRUE,
deletes the dialog box.

See also wxKeyEvent (page 193), wxEvtHandler::OnChar (page 151),
wxEvtHandler::OnCharHook (page 152).

wxDialogBox::SetModal

CHAPTER 9

126

void SetModal(Bool flag)

Allows the programmer to specify whether the dialog box is modal (wxDialogBox::Show blocks
control until the dialog is hidden) or modeless (control returns immediately).

wxDialogBox::SetTitle

void SetTitle(char * title)

Sets the title of the dialog box.

wxDialogBox::Show

Bool Show(Bool show)

If show is TRUE, the dialog box is shown and brought to the front; otherwise the box is hidden. If
show is FALSE and the dialog is modal, control is returned to the calling program.

9.32. wxDocChildFrame: wxFrame

See also Document/view overview (page 372)

The wxDocChildFrame class provides a default frame for displaying documents on separate
windows.

The class is part of the document/view framework supported by wxWindows, and cooperates with
the wxView (page 315), wxDocument (page 140), wxDocManager (page 128) and
wxDocTemplate (page 135) classes.

See the example application in samples/docview.

wxDocChildFrame::childDocument

wxDocument * childDocument

The document associated with the frame.

wxDocChildFrame::childView

wxView * childView

The view associated with the frame.

wxDocChildFrame::wxDocChildFrame

void wxDocChildFrame(wxDocument *doc, wxView *view, wxFrame *parent, char *title, int x,
int y, int width, int height, long style, char *name)

Constructor.

CHAPTER 9

127

wxDocChildFrame::~wxDocChildFrame

void ~wxDocChildFrame(void)

Destructor.

wxDocChildFrame::GetDocument

wxDocument * GetDocument(void)

Returns the document associated with this frame.

wxDocChildFrame::GetView

wxView * GetView(void)

Returns the view associated with this frame.

wxDocChildFrame::OnActivate

void OnActivate(Bool active)

Sets the currently active view to be the frame's view. You may need to override (but still call) this
function in order to set the keyboard focus for your subwindow.

wxDocChildFrame::OnClose

Bool OnClose(void)

Closes and deletes the current view and document.

wxDocChildFrame::OnMenuCommand

void OnMenuCommand(int cmd)

Passes menu commands to the parent frame (assumed to be a wxDocParentFrame).

wxDocChildFrame::SetDocument

void SetDocument(wxDocument *doc)

Sets the document for this frame.

wxDocChildFrame::SetView

void SetView(wxView *view)

CHAPTER 9

128

Sets the view for this frame.

9.33. wxDocManager: wxEvtHandler

See also Overview (page 375)

The wxDocManager class is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (page 315), wxDocument (page 140) and wxDocTemplate (page
135) classes.

wxDocManager::currentView

wxView * currentView

The currently active view.

wxDocManager::defaultDocumentNameCounter

int defaultDocumentNameCounter

Stores the integer to be used for the next default document name.

wxDocManager::fileHistory

wxFileHistory * fileHistory

A pointer to an instance of wxFileHistory (page 156), which manages the history of recently-
visited files on the File menu.

wxDocManager::maxDocsOpen

int maxDocsOpen

Stores the maximum number of documents that can be opened before existing documents are
closed. By default, this is 10,000.

wxDocManager::mnDocs

wxList mnDocs

A list of all documents.

wxDocManager::mnFlags

long mnFlags

Stores the flags passed to the constructor.

CHAPTER 9

129

wxDocManager::mnTemplates

wxList mnTemplates

A list of all document templates.

wxDocManager::wxDocManager

void wxDocManager(long flags = wxDEFAULT_DOCMAN_FLAGS, Bool initialize = TRUE)

Constructor. Create a document manager instance dynamically near the start of your application
before doing any document or view operations.

flags is currently unused.

If initialize is TRUE, the Initialize (page 132) function will be called to create a default history list
object. If you derive from wxDocManager, you may wish to call the base constructor with FALSE,
and then call Initialize in your own constructor, to allow your own Initialize or OnCreateFileHistory
functions to be called.

wxDocManager::~wxDocManager

void ~wxDocManager(void)

Destructor.

wxDocManager::ActivateView

void ActivateView(wxView *doc, Bool activate, Bool deleting)

Sets the current view.

wxDocManager::AddDocument

void AddDocument(wxDocument *doc)

Adds the document to the list of documents.

wxDocManager::AddFileToHistory

void AddFileToHistory(char *filename)

Adds a file to the file history list, if we have a pointer to an appropriate file menu.

wxDocManager::AssociateTemplate

CHAPTER 9

130

void AssociateTemplate(wxDocTemplate *temp)

Adds the template to the document manager's template list.

wxDocManager::CreateDocument

wxDocument * CreateDocument(char *path, long flags)

Creates a new document in a manner determined by the flags parameter, which can be:

• wxDOC_NEW Creates a fresh document.
• wxDOC_SILENT Silently loads the given document file.

If wxDOC_NEW is present, a new document will be created and returned, possibly after asking
the user for a template to use if there is more than one document template. If wxDOC_SILENT is
present, a new document will be created and the given file loaded into it. If neither of these flags
is present, the user will be presented with a file selector for the file to load, and the template to
use will be determined by the extension (Windows) or by popping up a template choice list (other
platforms).

If the maximum number of documents has been reached, this function will delete the oldest
currently loaded document before creating a new one.

wxDocManager::CreateView

wxView * CreateView(wxDocument *doc, long flags)

Creates a new view for the given document. If more than one view is allowed for the document
(by virtue of multiple templates mentioning the same document type), a choice of view is
presented to the user.

wxDocManager::DisassociateTemplate

void DisassociateTemplate(wxDocTemplate *temp)

Removes the template from the list of templates.

wxDocManager::FileHistoryLoad

void FileHistoryLoad(char *resourceFile, char *sectionName)

Loads the file history from a resource file, using the given section. This must be called explicitly
by the application.

wxDocManager::FileHistorySave

void FileHistorySave(char *resourceFile, char *sectionName)

Saves the file history into a resource file, using the given section. This must be called explicitly by
the application.

CHAPTER 9

131

wxDocManager::FileHistoryUseMenu

void FileHistoryUseMenu(wxMenu *menu)

Use this menu for appending recently-visited document filenames, for convenient access. Calling
this function with a valid menu pointer enables the history list functionality.

wxDocManager::FindTemplateForPath

wxDocTemplate * FindTemplateForPath(char *path)

Given a path, try to find template that matches the extension. This is only an approximate method
of finding a template for creating a document.

wxDocManager::GetCurrentDocument

wxDocument * GetCurrentDocument(void)

Returns the document associated with the currently active view (if any).

wxDocManager::GetCurrentView

wxView * GetCurrentView(void)

Returns the currently active view

wxDocManager::GetDocuments

wxList& GetDocuments(void)

Returns a reference to the list of documents.

wxDocManager::GetFileHistory

wxFileHistory * GetFileHistory(void)

Returns a pointer to file history.

wxDocManager::GetMaxDocsOpen

int GetMaxDocsOpen(void)

Returns the number of documents that can be open simultaneously.

wxDocManager::GetNoHistoryFiles

CHAPTER 9

132

int GetNoHistoryFiles(void)

Returns the number of files currently stored in the file history.

wxDocManager::Initialize

Bool Initialize(void)

Initializes data; currently just calls OnCreateFileHistory. Some data cannot always be initialized in
the constructor because the programmer must be given the opportunity to override functionality. If
OnCreateFileHistory was called from the constructor, an overridden virtual OnCreateFileHistory
would not be called due to C++'s 'interesting' constructor semantics. In fact Initialize is called from
the wxDocManager constructor, but this can be vetoed by passing FALSE to the second
argument, allowing the derived class's constructor to call Initialize, possibly calling a different
OnCreateFileHistory from the default.

The bottom line: if you're not deriving from Initialize, forget it and construct wxDocManager with
no arguments.

wxDocManager::MakeDefaultName

Bool MakeDefaultName(char *buf)

Copies a suitable default name into buf. This is implemented by appending an integer counter to
the string unnamed and incrementing the counter.

wxDocManager::OnCreateFileHistory

wxFileHistory * OnCreateFileHistory(void)

A hook to allow a derived class to create a different type of file history. Called from Initialize (page
132).

wxDocManager::OnFileClose

void OnFileClose(void)

Closes and deletes the currently active document.

wxDocManager::OnFileNew

void OnFileNew(void)

Creates a document from a list of templates (if more than one template).

wxDocManager::OnFileOpen

void OnFileOpen(void)

CHAPTER 9

133

Creates a new document and reads in the selected file.

wxDocManager::OnFileSave

void OnFileSave(void)

Saves the current document by calling wxDocument::Save for the current document.

wxDocManager::OnFileSaveAs

void OnFileSaveAs(void)

Calls wxDocument::SaveAs for the current document.

wxDocManager::OnMenuCommand

void OnMenuCommand(int cmd)

Processes menu commands routed from child or parent frames. This deals with the following
predefined menu item identifiers:

• wxID_OPEN Creates a new document and opens a file into it.
• wxID_CLOSE Closes the current document.
• wxID_NEW Creates a new document.
• wxID_SAVE Saves the document.
• wxID_SAVE_AS Saves the document into a specified filename.

Unrecognized commands are routed to the currently active wxView's OnMenuCommand.

wxDocManager::RemoveDocument

void RemoveDocument(wxDocument *doc)

Removes the document from the list of documents.

wxDocManager::SelectDocumentPath

wxDocTemplate * SelectDocumentPath(wxDocTemplate **templates, int noTemplates, char
*path, char *bufSize, long flags, Bool save)

Under Windows, pops up a file selector with a list of filters corresponding to document templates.
The wxDocTemplate corresponding to the selected file's extension is returned.

On other platforms, if there is more than one document template a choice list is popped up,
followed by a file selector.

This function is used in wxDocManager::CreateDocument.

CHAPTER 9

134

wxDocManager::SelectDocumentType

wxDocTemplate * SelectDocumentType(wxDocTemplate **templates, int noTemplates)

Returns a document template by asking the user (if there is more than one template). This
function is used in wxDocManager::CreateDocument.

wxDocManager::SelectViewType

wxDocTemplate * SelectViewType(wxDocTemplate **templates, int noTemplates)

Returns a document template by asking the user (if there is more than one template), displaying a
list of valid views. This function is used in wxDocManager::CreateView. The dialog normally won't
appear because the array of templates only contains those relevant to the document in question,
and often there will only be one such.

wxDocManager::SetMaxDocsOpen

void SetMaxDocsOpen(int n)

Sets the maximum number of documents that can be open at a time. By default, this is 10,000. If
you set it to 1, existing documents will be saved and deleted when the user tries to open or create
a new one (similar to the behaviour of Windows Write, for example). Allowing multiple documents
gives behaviour more akin to MS Word and other Multiple Document Interface applications.

9.34. wxDocParentFrame: wxFrame

See also Document/view overview (page 372)

The wxDocParentFrame class provides a default top-level frame for applications using the
document/view framework.

It cooperates with the wxView (page 315), wxDocument (page 140), wxDocManager (page 128)
and wxDocTemplates (page 135) classes.

See the example application in samples/docview.

wxDocParentFrame::wxDocParentFrame

void wxDocParentFrame(wxFrame *parent, char *title, int x, int y, int width, int height, long
style, char *name)

Constructor.

wxDocParentFrame::~wxDocParentFrame

void ~wxDocParentFrame(void)

Destructor.

CHAPTER 9

135

wxDocParentFrame::OnClose

Bool OnClose(void)

Deletes all views and documents. If no user input cancelled the operation, the function returns
TRUE and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

Bool wxDocParentFrame::OnClose(void)
{
 // Delete all views and documents
 wxNode *node = docManager->GetDocuments().First();
 while (node)
 {
 wxDocument *doc = (wxDocument *)node->Data();
 wxNode *next = node->Next();

 if (!doc->Close())
 return FALSE;

 // Implicitly deletes the document when the last
 // view is removed (deleted)
 doc->DeleteAllViews();

 // Check document is deleted
 if (docManager->GetDocuments().Member(doc))
 delete doc;

 // This assumes that documents are not connected in
 // any way, i.e. deleting one document does NOT
 // delete another.
 node = next;
 }
 return TRUE;
}

wxDocParentFrame::OnMenuCommand

void OnMenuCommand(int cmd)

Processes the wxID_EXIT and wxID_FILEn (file history) commands. Other commands are routed
to wxDocManager::OnMenuCommand.

9.35. wxDocTemplate: wxObject

See also Overview (page 374)

The wxDocTemplate class is used to model the relationship between a document class and a
view class.

wxDocTemplate::tDefaultExt

CHAPTER 9

136

char * tDefaultExt

The default extension for files of this type.

wxDocTemplate::tDescription

char * tDescription

A short description of this template.

wxDocTemplate::tDirectory

char * tDirectory

The default directory for files of this type.

wxDocTemplate::tDocClassInfo

wxClassInfo * tDocClassInfo

Run-time class information that allows document instances to be constructed dynamically.

wxDocTemplate::tDocTypeName

char * tDocTypeName

The named type of the document associated with this template.

wxDocTemplate::tDocumentManager

wxDocTemplate * tDocumentManager

A pointer to the document manager for which this template was created.

wxDocTemplate::tFileFilter

char * tFileFilter

The file filter (such as *.txt) to be used in file selector dialogs.

wxDocTemplate::tFlags

long tFlags

The flags passed to the constructor.

CHAPTER 9

137

wxDocTemplate::tViewClassInfo

wxClassInfo * tViewClassInfo

Run-time class information that allows view instances to be constructed dynamically.

wxDocTemplate::tViewTypeName

char * tViewTypeName

The named type of the view associated with this template.

wxDocTemplate::wxDocTemplate

void wxDocTemplate(wxDocManager *manager, char *descr, char *filter, char *dir, char *ext,
char *docTypeName, char *viewTypeName, wxClassInfo *docClassInfo = NULL, wxClassInfo
*viewClassInfo = NULL, long flags = wxDEFAULT_TEMPLATE_FLAGS)

Constructor. Create instances dynamically near the start of your application after creating a
wxDocManager instance, and before doing any document or view operations.

manager is the document manager object which manages this template.

descr is a short description of what the template is for. This string will be displayed in the file filter
list of Windows file selectors.

filter is an appropriate file filter such as *.txt.

dir is the default directory to use for file selectors.

ext is the default file extension (such as txt).

docTypeName is a name that should be unique for a given type of document, used for gathering
a list of views relevant to a particular document.

viewTypeName is a name that should be unique for a given view.

docClassInfo is a pointer to the run-time document class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyDocumentClass). If this is not supplied, you will need to
derive a new wxDocTemplate class and override the CreateDocument member to return a new
document instance on demand.

viewClassInfo is a pointer to the run-time view class information as returned by the CLASSINFO
macro, e.g. CLASSINFO(MyViewClass). If this is not supplied, you will need to derive a new
wxDocTemplate class and override the CreateView member to return a new view instance on
demand.

flags is a bit list of the following:

• wxTEMPLATE_VISIBLE The template may be displayed to the user in dialogs.
• wxTEMPLATE_INVISIBLE The template may not be displayed to the user in dialogs.
• wxDEFAULT_TEMPLATE_FLAGS Defined as wxTEMPLATE_VISIBLE.

CHAPTER 9

138

wxDocTemplate::~wxDocTemplate

void ~wxDocTemplate(void)

Destructor.

wxDocTemplate::CreateDocument

wxDocument * CreateDocument(char *path, long flags = 0)

Creates a new instance of the associated document class. If you have not supplied a wxClassInfo
parameter to the template constructor, you will need to override this function to return an
appropriate document instance.

wxDocTemplate::CreateView

wxView * CreateView(wxDocument *doc, long flags = 0)

Creates a new instance of the associated view class. If you have not supplied a wxClassInfo
parameter to the template constructor, you will need to override this function to return an
appropriate view instance.

wxDocTemplate::GetDefaultExtension

char * GetDefaultExtension(void)

Returns the default file extension for the document data, as passed to the document template
constructor.

wxDocTemplate::GetDescription

char * GetDescription(void)

Returns the text description of this template, as passed to the document template constructor.

wxDocTemplate::GetDirectory

char * GetDirectory(void)

Returns the default directory, as passed to the document template constructor.

wxDocTemplate::GetDocumentManager

wxDocManager * GetDocumentManager(void)

Returns a pointer to the document manager instance for which this template was created.

CHAPTER 9

139

wxDocTemplate::GetDocumentName

char * GetDocumentName(void)

Returns the document type name, as passed to the document template constructor.

wxDocTemplate::GetFileFilter

char * GetFileFilter(void)

Returns the file filter, as passed to the document template constructor.

wxDocTemplate::GetFlags

long GetFlags(void)

Returns the flags, as passed to the document template constructor.

wxDocTemplate::GetViewName

char * GetViewName(void)

Returns the view type name, as passed to the document template constructor.

wxDocTemplate::IsVisible

Bool IsVisible(void)

Returns TRUE if the document template can be shown in user dialogs, FALSE otherwise.

wxDocTemplate::SetDefaultExtension

void SetDefaultExtension(char *ext)

Sets the default file extension.

wxDocTemplate::SetDescription

void SetDescription(char *descr)

Sets the template description.

wxDocTemplate::SetDirectory

void SetDirectory(char *dir)

CHAPTER 9

140

Sets the default directory.

wxDocTemplate::SetDocumentManager

void SetDocumentManager(wxDocManager *manager)

Sets the pointer to the document manager instance for which this template was created. Should
not be called by the application.

wxDocTemplate::SetFileFilter

void SetFileFilter(char *filter)

Sets the file filter.

wxDocTemplate::SetFlags

void SetFlags(long flags)

Sets the internal document template flags (see the constructor description for more details).

9.36. wxDocument: wxEvtHandler

See also Overview (page 373)

The document class can be used to model an application's file-based data. It is part of the
document/view framework supported by wxWindows, and cooperates with the wxView (page
315), wxDocTemplate (page 135) and wxDocManager (page 128) classes.

wxDocument::documentFile

char * documentFile

Filename associated with this document (NULL if none).

wxDocument::documentModified

Bool documentModified

TRUE if the document has been modified, FALSE otherwise.

wxDocument::documentTemplate

wxDocTemplate * documentTemplate

A pointer to the template from which this document was created.

CHAPTER 9

141

wxDocument::documentTitle

char * documentTitle

Document title (may be NULL). The document title is used for an associated frame (if any), and is
usually constructed by the framework from the filename.

wxDocument::documentTypeName

char * documentTypeName

The document type name given to the wxDocTemplate constructor, copied to this variable when
the document is created. If several document templates are created that use the same document
type, this variable is used in wxDocManager::CreateView to collate a list of alternative view types
that can be used on this kind of document. Do not change the value of this variable.

wxDocument::documentViews

wxList documentViews

List of wxView instances associated with this document.

wxDocument::wxDocument

void wxDocument(void)

Constructor. Define your own default constructor to initialize application-specific data.

wxDocument::~wxDocument

void ~wxDocument(void)

Destructor. Removes itself from the document manager.

wxDocument::AddView

Bool AddView(wxView *view)

If the view is not already in the list of views, adds the view and calls OnChangedViewList.

wxDocument::Close

Bool Close(void)

Closes the document, by calling OnSaveModified and then (if this returned TRUE)
OnCloseDocument. This does not normally delete the document object: use DeleteAllViews to do
this implicitly.

CHAPTER 9

142

wxDocument::DeleteAllViews

Bool DeleteAllViews(void)

Calls wxView::Close and deletes each view. Deleting the final view will implicitly delete the
document itself, because the wxView destructor calls RemoveView. This in turns calls
wxDocument::OnChangedViewList, whose default implemention is to save and delete the
document if no views exist.

wxDocument::GetCommandProcessor

wxCommandProcessor * GetCommandProcessor(void)

Returns a pointer to the command processor associated with this document.

See wxCommandProcessor (page 89).

wxDocument::GetDocumentTemplate

wxDocTemplate * GetDocumentTemplate(void)

Gets a pointer to the template that created the document.

wxDocument::GetDocumentManager

wxDocManager * GetDocumentManager(void)

Gets a pointer to the associated document manager.

wxDocument::GetDocumentName

char * GetDocumentName(void)

Gets the document type name for this document. See the comment for documentTypeName
(page 141).

wxDocument::GetDocumentWindow

wxWindow * GetDocumentWindow(void)

Intended to return a suitable window for using as a parent for document-related dialog boxes. By
default, uses the frame associated with the first view.

wxDocument::GetFilename

char * GetFilename(void)

CHAPTER 9

143

Gets the filename associated with this document, or NULL if none is associated.

wxDocument::GetFirstView

wxView * GetFirstView(void)

A convenience function to get the first view for a document, because in many cases a document
will only have a single view.

wxDocument::GetPrintableName

void GetPrintableName(char *name)

Copies a suitable document name into the supplied name buffer. The default function uses the
title, or if there is no title, uses the filename; or if no filename, the string unnamed.

wxDocument::GetTitle

char * GetTitle(void)

Gets the title for this document. The document title is used for an associated frame (if any), and is
usually constructed by the framework from the filename.

wxDocument::IsModified

Bool IsModified(void)

Returns TRUE if the document has been modified since the last save, FALSE otherwise. You
may need to override this if your document view maintains its own record of being modified (for
example if using wxTextWindow to view and edit the document).

See also Modify (page 143).

wxDocument::LoadObject

istream& LoadObject(istream& stream)

Override this function and call it from your own LoadObject before streaming your own data.
LoadObject is called by the framework automatically when the document contents need to be
loaded.

wxDocument::Modify

void IsModify(Bool modify)

Call with TRUE to mark the document as modified since the last save, FALSE otherwise. You
may need to override this if your document view maintains its own record of being modified (for
example if using wxTextWindow to view and edit the document).

CHAPTER 9

144

See also IsModified (page 143).

wxDocument::OnChangedViewList

void OnChangedViewList(void)

Called when a view is added to or deleted from this document. The default implementation saves
and deletes the document if no views exist (the last one has just been removed).

wxDocument::OnCloseDocument

Bool OnCloseDocument(void)

The default implementation calls DeleteContents (an empty implementation) sets the modified
flag to FALSE. Override this to supply additional behaviour when the document is closed with
Close.

wxDocument::OnCreate

Bool OnCreate(const char *path, long flags)

Called just after the document object is created to give it a chance to initialize itself. The default
implementation uses the template associated with the document to create an initial view. If this
function returns FALSE, the document is deleted.

wxDocument::OnCreateCommandProcessor

wxCommandProcessor * OnCreateCommandProcessor(void)

Override this function if you want a different (or no) command processor to be created when the
document is created. By default, it returns an instance of wxCommandProcessor.

See wxCommandProcessor (page 89).

wxDocument::OnNewDocument

Bool OnNewDocument(void)

The default implementation calls OnSaveModified and DeleteContents, makes a default title for
the document, and notifies the views that the filename (in fact, the title) has changed.

wxDocument::OnOpenDocument

Bool OnOpenDocument(char *filename)

Constructs an input file stream for the given filename (which must not be NULL), and calls
LoadObject. If LoadObject returns TRUE, the document is set to unmodified; otherwise, an error
message box is displayed. The document's views are notified that the filename has changed, to

CHAPTER 9

145

give windows an opportunity to update their titles. All of the document's views are then updated.

wxDocument::OnSaveDocument

Bool OnSaveDocument(char *filename)

Constructs an output file stream for the given filename (which must not be NULL), and calls
SaveObject. If SaveObject returns TRUE, the document is set to unmodified; otherwise, an error
message box is displayed.

wxDocument::OnSaveModified

Bool OnSaveModified(void)

If the document has been modified, prompts the user to ask if the changes should be changed. If
the user replies Yes, the Save function is called. If No, the document is marked as unmodified
and the function succeeds. If Cancel, the function fails.

wxDocument::RemoveView

Bool RemoveView(wxView *view)

Removes the view from the document's list of views, and calls OnChangedViewList.

wxDocument::Save

Bool Save(void)

Saves the document by calling OnSaveDocument if there is an associated filename, or SaveAs if
there is no filename.

wxDocument::SaveAs

Bool SaveAs(void)

Prompts the user for a file to save to, and then calls OnSaveDocument.

wxDocument::SaveObject

ostream& SaveObject(ostream& stream)

Override this function and call it from your own SaveObject before streaming your own data.
SaveObject is called by the framework automatically when the document contents need to be
saved.

wxDocument::SetCommandProcessor

CHAPTER 9

146

void SetCommandProcessor(wxCommandProcessor *processor)

Sets the command processor to be used for this document. The document will then be
responsible for its deletion. Normally you should not call this; override
OnCreateCommandProcessor instead.

See wxCommandProcessor (page 89).

wxDocument::SetDocumentName

void SetDocumentName(char *name)

Sets the document type name for this document. See the comment for documentTypeName
(page 141).

wxDocument::SetDocumentTemplate

void SetDocumentTemplate(wxDocTemplate *templ)

Sets the pointer to the template that created the document. Should only be called by the
framework.

wxDocument::SetFilename

void SetFilename(char *filename)

Sets the filename for this document. Usually called by the framework.

wxDocument::SetTitle

void SetTitle(char *title)

Sets the title for this document. The document title is used for an associated frame (if any), and is
usually constructed by the framework from the filename.

9.37. wxEnhDialogBox: wxDialogBox

wxEnDialogBox is derived from wxDialogBox (page 123).

The purpose of the wxEnhDialogBox class is to make it easy to provide a common look for all
dialog boxes of an application. The wxEnhDialogBox separates the dialog box into four areas:

• the pin area
• the user area
• the command area
• the status area

For now, these panels are tiled vertically, but in future there may a style flag to allow placement of
the command area to the right of the dialog, as is common in Windows applications.

The pin area is borrowed from the pushpin metaphor of XView, and can be disabled via a

CHAPTER 9

147

compilation flag. Again, a flag style is perhaps more judicious and may be implemented in future.

The user area is left free for the application programmer.

The command area contains command buttons which are centered automatically by the
wxEnhDialogBox::Fit (page 148) method.

The status area provides a way to display status messages, as in XView.

All areas can have distints fonts sets, currently controlled by a compilation flag. The pushpin can
be replaced by a Cancel button (automatically created) if WANT_CANCEL_BUTTON is defined
when compiling.

Warning: this class is pending revision and debugging. You may find it does not work as
advertised.

wxEnhDialogBox::wxEnhDialogBox

void wxEnhDialogBox(wxFrame *frame, char *title,
 Bool modal = FALSE, wxFunction fun = NULL, int space = -1,
 int x = 0, int y = 0, int width = 10, int height = 10,
 long style = wxENH_DEFAULT, char *name = "Shell")

Constructor. fun is called when the user dismiss the window by using the pin or the cancel button.
If space is greater than zero, it is used as panel horizontal spacing for the command area.

The style parameter may be a combination of the following, using the bitwise 'or' operator.

wxBOTTOM_COMMANDS Command buttons are on bottom of the dialog.
wxCANCEL_BUTTON_FIRST The cancel button is the first button.
wxCANCEL_BUTTON_LAST The cancel button is the last button.
wxCANCEL_BUTTON_SECOND The cancel button is the second button.
wxCAPTION Gives a caption to the dialog box.
wxENH_DEFAULT Equivalent to a combination of wxCAPTION, wxBOTTOM_COMMANDS,

wxSTATUS_FOOTER and wxNO_CANCEL_BUTTON.
wxNO_STATUS_FOOTER No status line is displayed.
wxNO_CANCEL No cancel button is displayed.
wxRIGHT_COMMANDS Command buttons are on the right hand side of the dialog.
wxSTATUS_FOOTER A status line is displayed at the bottom of the dialog.

wxEnhDialogBox::~wxEnhDialogBox

void ~wxEnhDialogBox(void)

Destructor.

wxEnhDialogBox::userPanel

wxPanel * userPanel

User application items must be created in this panel.

CHAPTER 9

148

wxEnhDialogBox::SetStatus

void SetStatus(char *label=NULL)

Display text in the staus area.

wxEnhDialogBox::AddCmd

wxButton * AddCmd(char *label, wxFunction fun=NULL,
 int tag = 0)

wxButton * AddCmd(wxBitmap *bitmap, wxFunction fun=NULL,
 int tag = 0)

Adds a command button in the command area, and returns its identifier. The client data part of
the button is initialized with tag. Buttons are aranged horizontally, from left to right. If
WANT_CANCEL_BUTTON is defined at compile time, a first button is automatically created, with
the label "Cancel''.

wxEnhDialogBox::GetCmd

wxButton * GetCmd(int n)

Returns the identifier of the nth wxButton in the command area (starting at 0).

wxEnhDialogBox::SetPin

void SetPin(Bool flag)

Set the pushpin to the given state. The state of the pushpin controls the way the ::Show() method
works. Usually, setting the pin to TRUE indicates an error. Please note that this works even if you
have compiled with WANT_CANCEL_BUTTON.

wxEnhDialogBox::Show

Bool Show(Bool show, Bool flag = FALSE)

Dismiss or popup the dialog box. If show is FALSE, the dialog box is dismissed only if the
pushpin current state is FALSE. If show is TRUE, the dialog box is popped, and the pushpin is
initialized in the state flag.

wxEnhDialogBox::Fit

void Fit(void)

Fits the dialog box to its contents, and centres command buttons in the command area. The
status area is created when Fit is called, so do not call SetStatus before fitting.

CHAPTER 9

149

9.38. wxEvent: wxObject

An event is a structure holding information about an event passed to a callback or member
function. wxEvent used to be a multipurpose event object, and is now an abstract base class for
events such as wxCommandEvent (page 88) (for panel item commands) and wxMouseEvent
(page 214) (for mouse events on windows).

wxEvent::wxEvent

void wxEvent(void)

Constructor. Should not need to be used by an application.

wxEvent::~wxEvent

void ~wxEvent(void)

Destructor. Should not need to be used by an application.

wxEvent::eventClass

WXTYPE eventClass

The C++ class of the event, such as wxTYPE_COMMAND_EVENT. A single class may have
many 'types'; it would be tedious to define a new C++ class for each type of similar event.

wxEvent::eventHandle

char * eventHandle

Handle of an underlying windowing system event handle, such as XEvent. Not guaranteed to be
instantiated.

wxEvent::eventObject

wxObject * eventObject

The object (usually a window) that the event was generated from, or should be sent to.

wxEvent::eventType

WXTYPE eventType

The type of the event, such as wxEVENT_TYPE_BUTTON_COMMAND.

wxEvent::GetEventClass

CHAPTER 9

150

WXTYPE GetEventClass(void)

Returns the identifier of the given event class, such as wxTYPE_MOUSE_EVENT.

wxEvent::GetEventObject

wxObject * GetEventObject(void)

Returns the object associated with the event, if any.

wxEvent::GetEventType

WXTYPE GetEventType(void)

Returns the identifier of the given event type, such as wxEVENT_TYPE_BUTTON_COMMAND.

wxEvent::GetObjectType

WXTYPE GetObjectType(void)

Returns the type of the object associated with the event, such as wxTYPE_BUTTON.

wxEvent::ReadEvent

pure virtual Bool ReadEvent(istream& stream)

Reads the event from the given input stream.

wxEvent::WriteEvent

pure virtual Bool WriteEvent(ostream& stream)

Writes the event to the given output stream.

9.39. wxEvtHandler: wxObject

See also Event handling overview (page 390)

A class that can handle events from the windowing system. wxWindow (and therefore all window
classes) are derived from this class.

wxEvtHandler::nextHandler

wxEvtHandler * nextHandler

Protected member variable pointing the next event handler in the chain.

CHAPTER 9

151

wxEvtHandler::previousHandler

wxEvtHandler * previousHandler

Protected member variable pointing the previous event handler in the chain.

wxEvtHandler::wxEvtHandler

void wxEvtHandler(void)

Constructor.

wxEvtHandler::~wxEvtHandler

void ~wxEvtHandler(void)

Destructor. If the handler is part of a chain, the destructor will unlink itself and restore the
previous and next handlers so that they point to each other.

wxEvtHandler::GetClientData

char * GetClientData(void)

Gets user-supplied client data. Normally, any extra data the programmer wishes to associate
with the object should be made available by deriving a new class with new data members.

wxEvtHandler::GetNextHandler

wxEvtHandler * GetNextHandler(void)

Gets the pointer to the next handler in the chain.

wxEvtHandler::GetPreviousHandler

wxEvtHandler * GetPreviousHandler(void)

Gets the pointer to the previous handler in the chain.

wxEvtHandler::OnActivate

void OnActivate(Bool active)

Called when a window is activated or deactivated (MS Windows only). If the window is being
activated, active is TRUE, else it is FALSE.

wxEvtHandler::OnChar

CHAPTER 9

152

void OnChar(wxKeyEvent& ch)

Sent to the window when the user has pressed a key. See wxKeyEvent (page 193) for details.

Note that the ASCII values do not have explicit key codes: they are passed as ASCII values.

See also wxEvtHandler::OnEvent (page 153) for mouse event notification. OnChar is currently
applicable to canvas and panel subwindows only. On some platforms, it may be implemented for
text subwindows (not XView).

wxEvtHandler::OnCharHook

Bool OnCharHook(wxKeyEvent& ch)

This member is called (under Windows only) to allow the window to intercept keyboard events
before they are processed by child windows. The window receives this event from the default
wxApp::OnCharHook (page 46) member function if the window (frame or dialog box) is active.
The function should returns TRUE to indicate the character has been processed, or FALSE to
allow default processing. The default implementation for wxWindow returns FALSE, but the
wxDialogBox implementation checks for WXK_ESCAPE and tries to close the dialog.

See also wxKeyEvent (page 193), wxEvtHandler::OnChar (page 151),
wxDialogBox::OnCharHook (page 125).

wxEvtHandler::OnCommand

void OnCommand(wxWindow &win, wxCommandEvent &event)

This member is called for panel items that do not have a callback function of their own.

wxEvtHandler::OnClose

Sent to the frame when the user has tried to close a managed window (i.e., a frame or dialog box)
using the window manager (X) or system menu (Windows). If TRUE is returned by OnClose, the
frame will be deleted by the system, otherwise the attempt will be ignored. Derive your own class
to handle this message; the default handler returns FALSE.

Bool OnClose(void)

wxEvtHandler::OnDefaultAction

void OnDefaultAction(wxItem *item)

Called when the user initiates the default action for a panel or dialog box, for example by double
clicking on a listbox. itemis the panel item which caused the default action. See
wxPanel::OnDefaultAction (page 231).

wxEvtHandler::OnDropFiles

void OnDropFiles(int n, char *files[], int x, int y)

CHAPTER 9

153

Under Windows, called when files have been dragged from the file manager to the window. files
is an array of n strings, and x and y give the mouse position where the drop occurred. The
window must have previously been enabled for dropping by calling wxWindow::DragAcceptFiles
(page 320).

wxEvtHandler::OnEvent

void OnEvent(wxMouseEvent& event)

Sent to the window when the user has initiated an event with the mouse. Derive your own class to
handle this message. So far, only relevant to the wxCanvas class. See wxEvtHandler::OnChar
(page 151) for character events, and also wxMouseEvent (page 214) for how to access event
information.

wxEvtHandler::OnItemEvent

void OnItemEvent(wxItem * item, wxMouseEvent & event)

Called in user-interface edit mode when a panel item receives a mouse event. The default
implementation manages panel item dragging and sizing.

See wxWindow::SetUserEditMode (page 327).

wxEvtHandler::OnItemLeftClick

void OnItemLeftClick(wxItem *item, int x, int y, int keys)

Called in user-interface edit mode when the user left-clicks on a panel item. The coordinates
(relative to the item) and a flag indicating shift and control key status are passed. keys is a bit list
of wxKEY_SHIFT and wxKEY_CTRL.

See also wxWindow::SetUserEditMode (page 327).

wxEvtHandler::OnItemMove

void OnItemMove(wxItem * item, int x, int y)

Called in user-interface edit mode when the item has been moved by the user.

See also wxWindow::SetUserEditMode (page 327).

wxEvtHandler::OnItemRightClick

void OnItemRightClick(wxItem *item, int x, int y, int keys)

Called in user-interface edit mode when the user right-clicks on a panel item. The coordinates
(relative to the item) and a flag indicating shift and control key status are passed. keys is a bit list
of wxKEY_SHIFT and wxKEY_CTRL.

CHAPTER 9

154

See also wxWindow::SetUserEditMode (page 327).

wxEvtHandler::OnItemSelect

void OnItemSelect(wxItem *item, Bool select)

Called when a window is selected or deselected. Currently applies only to panel items in user-
interface edit mode.

wxEvtHandler::OnItemSize

void OnItemSize(wxItem * item, int width, int height)

Called in user-interface edit mode when the item has been resized by the user.

See also wxWindow::SetUserEditMode (page 327).

wxEvtHandler::OnLeftClick

void OnLeftClick(int x, int y, int keys)

Called in user-interface edit mode when the user left-clicks on the panel background. The
coordinates and a flag indicating shift and control key status are passed. keys is a bit list of
wxKEY_SHIFT and wxKEY_CTRL.

See also wxWindow::SetUserEditMode (page 327).

wxEvtHandler::OnRightClick

void OnRightClick(int x, int y, int keys)

Called in user-interface edit mode when the user right-clicks on the panel background. The
coordinates and a flag indicating shift and control key status are passed. keys is a bit list of
wxKEY_SHIFT and wxKEY_CTRL.

See also wxWindow::SetUserEditMode (page 327).

wxEvtHandler::OnKillFocus

void OnKillFocus(void)

Called when a window's focus is being killed. There are many exceptions to this rule so be careful
when relying on it.

wxEvtHandler::OnMenuCommand

void OnMenuCommand(int id)

Sent to a frame window's event handler when an item on the window's menu has been chosen.

CHAPTER 9

155

Derive your own frame class to handle this message. See wxFrame::OnMenuCommand (page
176).

wxEvtHandler::OnMenuSelect

void OnMenuSelect(int id)

Sent to a frame's event handler when an item on the frame's menu has been selected (i.e. the
cursor is on the item, but the left button has not been released). Derive your own frame class to
handle this message. See wxFrame::OnMenuSelect (page 177).

wxEvtHandler::OnMove

void OnMove(int x, int y)

Called when a window is moved. Not currently implemented.

wxEvtHandler::OnPaint

void OnPaint(void)

Sent to the event handler when the window must be refreshed. Derive your own class to handle
this message. So far, only relevant to the wxCanvas and wxPanel classes.

wxEvtHandler::OnScroll

void OnScroll(wxCommandEvent& event)

Override this function to intercept scroll events. Only implemented for the wxCanvas class. See
wxCanvas::OnScroll (page 64).

wxEvtHandler::OnSelect

void OnSelect(Bool select)

Called when a window is selected or deselected. Currently applies only to panel items in user-
interface edit mode.

wxEvtHandler::OnSetFocus

void OnSetFocus(void)

Called when a window's focus is being set. There are many exceptions to this rule so be careful
when relying on it.

wxEvtHandler::OnSize

CHAPTER 9

156

void OnSize(int x, int y)

Sent to the event handler when the window has been resized. You may wish to use this for
frames to resize their child windows as appropriate. Derive your own class to handle this
message. Note that the size passed is of the whole window: call GetClientSize for the area which
may be used by the application.

wxEvtHandler::SetClientData

void SetClientData(char *data)

Sets user-supplied client data. Normally, any extra data the programmer wishes to associate with
the object should be made available by deriving a new class with new data members.

wxEvtHandler::SetNextHandler

void SetNextHandler(wxEvtHandler *handler)

Sets the pointer to the next handler.

wxEvtHandler::SetPreviousHandler

void SetPreviousHandler(wxEvtHandler *handler)

Sets the pointer to the previous handler.

9.40. wxFileHistory: wxObject

See also Overview (page 376)

The wxFileHistory encapsulates a user interface convenience, the list of most recently visited files
as shown on a menu (usually the File menu).

wxFileHistory::fileHistory

char ** fileHistory

A character array of strings corresponding to the most recently opened files.

wxFileHistory::fileHistoryN

int fileHistoryN

The number of files stored in the history array.

wxFileHistory::fileMaxFiles

int fileMaxFiles

CHAPTER 9

157

The maximum number of files to be stored and displayed on the menu.

wxFileHistory::fileMenu

wxMenu * fileMenu

The file menu used to display the file history list (if enabled).

wxFileHistory::wxFileHistory

void wxFileHistory(int maxFiles = 9)

Constructor. Pass the maximum number of files that should be stored and displayed.

wxFileHistory::~wxFileHistory

void ~wxFileHistory(void)

Destructor.

wxFileHistory::AddFileToHistory

void AddFileToHistory(char *filename)

Adds a file to the file history list, if the object has a pointer to an appropriate file menu.

wxFileHistory::FileHistoryLoad

void FileHistoryLoad(char *resourceFile, char *sectionName)

Loads the file history from a resource file, using the given section. This must be called explicitly
by the application.

wxFileHistory::FileHistorySave

void FileHistorySave(char *resourceFile, char *sectionName)

Saves the file history into a resource file, using the given section. This must be called explicitly by
the application.

wxFileHistory::FileHistoryUseMenu

void FileHistoryUseMenu(wxMenu *menu)

Use this menu for appending recently-visited document filenames, for convenient access. Calling
this function with a valid menu pointer enables the history list functionality.

CHAPTER 9

158

wxFileHistory::GetMaxFiles

int GetMaxFiles(void)

Returns the maximum number of files that can be stored.

wxFileHistory::GetNoHistoryFiles

int GetNoHistoryFiles(void)

Returns the number of files currently stored in the file history.

9.41. wxFont: wxObject

See also Overview (page 381)

A font is an object which determines the appearance of text, primarily when drawing text to a
canvas or device context.

wxFont::wxFont

void wxFont(void)

void wxFont(int point_size, int family, int style, int weight, Bool underline = FALSE, const char
*face_name = NULL)

Creates a font object. These are the arguments:

point_size This is the standard way of referring to text size.
family A 'family' of related font faces, giving a measure of independence from the

actual typefaces available on a computer. Supported families are:
wxDEFAULT, wxDECORATIVE, wxROMAN, wxSCRIPT, wxSWISS,
wxMODERN. wxMODERN is a fixed pitch font; the others are either fixed or
variable pitch.

style The value can be wxNORMAL, wxSLANT or wxITALIC.
weight The value can be wxNORMAL, wxLIGHT or wxBOLD.
underlining The value can be TRUE or FALSE (MS Windows only).
face_name An optional string specifying the actual typeface to be used. If NULL, a default

typeface will chosen based on the family.

If the desired font does not exist, the closest match will be chosen. Under XView, this may result
in a number of XView warnings during the matching process; these should be ignored, and will
only occur the first time wxWindows attempts to use an absent font in a given size. wxWindows
under Motif does the same thing, but silently. Under MS Windows, only scaleable TrueType fonts
are used.

Underlining only works under MS Windows at present.

See also wxDC::SetFont (page 118), wxDC::DrawText (page 112)and wxDC::GetTextExtent
(page 115).

CHAPTER 9

159

All fonts are automatically added to the global pointer wxTheFontList. Call
wxFontList::FindOrCreateFont (page 164) to return a previously-created font if possible.

wxFont::~wxFont

void ~wxFont(void)

Destroys a font object. Do not manually destroy a font which has been assigned to a canvas. All
GDI objects, including fonts, are automatically destroyed on program exit, so there is no danger
of memory leakage as in conventional Windows programming.

If you have to delete the font (for example, you are creating a lot of them), then call
wxDC::SetFont (page 118) with a NULL argument to ensure that the old font is restored, and the
current font is selected out of the device context.

wxFont::GetFaceName

char * GetFaceName(void)

Returns the typeface name associated with the font, or NULL if there is no typeface information.

wxFont::GetFamily

int GetFamily(void)

Gets the font family. See wxFont (page 158) for a list of valid family identifiers.

wxFont::GetFontId

int GetFontId(void)

Returns the font id, if the portable font system is in operation. See Font overview (page 381) for
further details.

wxFont::GetPointSize

int GetPointSize(void)

Gets the point size.

wxFont::GetStyle

int GetStyle(void)

Gets the font style. See wxFont (page 158) for a list of valid styles.

CHAPTER 9

160

wxFont::GetUnderlined

Bool GetUnderlined(void)

TRUE if the font is underlined.

wxFont::GetWeight

int GetWeight(void)

Gets the font weight. See wxFont (page 158) for a list of valid weight identifiers.

9.42. wxFontData: wxObject

See also wxFontDialog overview (page 387)

This class holds a variety of information related to font dialogs.

wxFontData::wxFontData

void wxFontData(void)

Constructor. Initializes fontColour to black, showHelp to black, allowSymbols to TRUE,
enableEffects to TRUE, initialFont to NULL, chosenFont to NULL, minSize to 0 and maxSize to 0.

wxFontData::~wxFontData

void ~wxFontData(void)

Destructor.

wxFontData::EnableEffects

void EnableEffects(Bool enable)

Enables or disables 'effects' under MS Windows only. This refers to the controls for manipulating
colour, strikeout and underline properties.

The default value is TRUE.

wxFontData::GetAllowSymbols

Bool GetAllowSymbols(void)

Under MS Windows, returns a flag determining whether symbol fonts can be selected. Has no
effect on other platforms.

The default value is TRUE.

CHAPTER 9

161

wxFontData::GetColour

wxColour& GetColour(void)

Gets the colour associated with the font dialog.

The default value is black.

wxFontData::GetChosenFont

wxFont * GetChosenFont(void)

Gets the font chosen by the user. If the user pressed OK (wxFontDialog::Show returned TRUE),
this returns a new font which is now 'owned' by the application, and should be deleted if not
required. If the user pressed Cancel (wxFontDialog::Show returned FALSE) or the colour dialog
has not been invoked yet, this will return NULL.

wxFontData::GetEnableEffects

Bool GetEnableEffects(void)

Determines whether 'effects' are enabled under Windows. This refers to the controls for
manipulating colour, strikeout and underline properties.

The default value is TRUE.

wxFontData::GetInitialFont

wxFont * GetInitialFont(void)

Gets the font that will be initially used by the font dialog. This should have previously been set by
the application.

wxFontData::GetShowHelp

Bool GetShowHelp(void)

Returns TRUE if the Help button will be shown (Windows only).

The default value is FALSE.

wxFontData::SetAllowSymbols

void SetAllowSymbols(Bool allowSymbols)

Under MS Windows, determines whether symbol fonts can be selected. Has no effect on other
platforms.

The default value is TRUE.

CHAPTER 9

162

wxFontData::SetChosenFont

void SetChosenFont(wxFont *font)

Sets the font that will be returned to the user (for internal use only).

wxFontData::SetColour

void SetColour(wxColour& colour)

Sets the colour that will be used for the font foreground colour.

The default colour is black.

wxFontData::SetInitialFont

void SetInitialFont(wxFont *font)

Sets the font that will be initially used by the font dialog.

wxFontData::SetRange

void SetRange(int min, int max)

Sets the valid range for the font point size (Windows only).

The default is 0, 0 (unrestricted range).

wxFontData::SetShowHelp

void SetShowHelp(Bool showHelp)

Determines whether the Help button will be displayed in the font dialog (Windows only).

The default value is FALSE.

wxFontData::operator =

void operator =(const wxFontData& data)

Assingment operator for the font data.

9.43. wxFontDialog: wxDialogBox

See also Overview (page 387)

This class represents the font chooser dialog.

CHAPTER 9

163

wxFontDialog is available under Motif and Windows. Under XView there seem to be some
problems, probably related to modal dialogs.

wxFontDialog::wxFontDialog

void wxFontDialog(wxWindow *parent, wxFontData *data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of font data, which will be
copied to the font dialog's font data.

wxFontDialog::~wxFontDialog

void ~wxFontDialog(void)

Destructor.

wxFontDialog::GetFontData

wxFontData& GetFontData(void)

Returns the font data (page 160) associated with the font dialog.

wxFontDialog::Show

Bool Show(Bool flag)

Shows the dialog, returning TRUE if the user pressed Ok, and FALSE otherwise.

If the user cancels the dialog (Show returns FALSE), no font will be created. If the user presses
OK (Show returns TRUE), a new wxFont will be created and stored in the font dialog's
wxFontData structure. Retrieve and delete this font if you do not wish to use it. Otherwise,
retrieve and use it.

9.44. wxFontList: wxList

A font list is a list containing all fonts which have been created. There is only one instance of this
class: wxTheFontList. Use this object to search for a previously created font of the desired type
and create it if not already found. In some windowing systems, the font may be a scarce
resource, so it is best to reuse old resources if possible. When an application finishes, all fonts
will be deleted and their resources freed, eliminating the possibility of 'memory leaks'.

wxFontList::wxFontList

void wxFontList(void)

Constructor. The application should not construct its own font list: use the object pointer
wxTheFontList.

CHAPTER 9

164

wxFontList::AddFont

void AddFont(wxFont *font)

Used by wxWindows to add a font to the list, called in the font constructor.

wxFontList::FindOrCreateFont

wxFont * FindOrCreateFont(int point_size, int family, int style, int weight, Bool underline =
FALSE, char *facename = NULL)

Finds a font of the given specification, or creates one and adds it to the list. See the wxFont
constructor (page 158) for details of the arguments.

wxFontList::RemoveFont

void RemoveFont(wxFont *font)

Used by wxWindows to remove a font from the list.

9.45. wxFontNameDirectory: wxObject

See also Overview (page 382)

There is a single instance of this class, called wxTheFontNameDirectory. Its purpose is to
manage font names and identifiers for the portable font system, which is mandatory under X and
optional under Windows.

wxFontNameDirectory::wxFontNameDirectory

void wxFontNameDirectory(void)

Constructor.

wxFontNameDirectory::~wxFontNameDirectory

void ~wxFontNameDirectory(void)

Destructor.

wxFontNameDirectory::FindOrCreateFontId

int FindOrCreateFontId(const char *name, int family)

Returns the font id for the given font name. If the name has not yet been used, the directory tries
to initialize the font using specifications from the resources. The given family id is used for the
new font if it is created and the resource does not specify a family id.

CHAPTER 9

165

wxFontNameDirectory::GetAFMName

char * GetAFMName(int fontId, int weight, int style)

Returns the AFM (Adobe Font Metric) filename for the font, with the path or extension.

wxFontNameDirectory::GetFamily

int GetFamily(int fontId)

Returns the family for the given font id.

wxFontNameDirectory::GetFontId

int GetFontId(const char *name)

Get the existing font id corresponding to the font name, or 0 if the name has not been initialized
previously.

wxFontNameDirectory::GetFontName

char * GetFontName(int fontId)

Returns the font name for the given font id.

wxFontNameDirectory::GetNewFontId

int GetNewFontId(void)

Generates a new font id for direct initialization of a font with Initialize.

wxFontNameDirectory::GetPostScriptName

char * GetPostScriptName(int fontId, int weight, int style)

Returns the real PostScript name for the font.

wxFontNameDirectory::GetScreenName

char * GetScreenName(int fontId, int weight, int style)

Returns the platform-specific screen name for the font.

wxFontNameDirectory::Initialize

void Initialize(int fontId, int family, const char *name)

CHAPTER 9

166

Initializes sets up a new font with the given font id, default family id and font name. Resource
specifications are read using this name.

9.46. wxForm: wxObject

9.46.1. The purpose of the form class

The wxForm provides form-like functionality, relieving the programmer of the tedium of defining all
the physical panel items and the callbacks handling out-of-range data. It allows the application
writer to write form dialogs quickly (albeit programmatically) with panel items being chosen
automatically according to the given constraints. The supplied form demo shows how succinct a
form definition can be. A form gets laid out from left to right; the programmer can intersperse new
lines and specify item sizes, but for brevity no more control is allowed.

A form does not presuppose a particular type of panel: any window derived from wxPanel may be
associated with a form, once the form has been built by adding form items. Also, a form reads
from and writes to any C++ variables in your program---just supply pointers to the variables, and
the form handles the rest.

9.46.2. Constraints on form items

Each item in a form may be supplied with zero or more constraints, where the range of possible
constraints depends on the data type, and the displayed panel item depends upon the data type
and the constraint(s) given. For example, a string form item with a list of possible strings as a
constraint will produce a list box on the panel; an integer form item with a range constraint will
result in a slider being displayed. The user may define his or her own constraint by passing a
function as a constraint which returns FALSE if the constraint was violated, TRUE otherwise. The
function should write an appropriate message into the buffer passed to it if the constraint was
violated.

9.46.3. Form appearance

Once displayed on a panel, a form shows Ok, Cancel, Update, Revert and Help buttons along the
top, with the user-supplied items below. When the user presses Ok, the form items are checked
for violation of constraints; if any violations are found, an appropriate error message is displayed
and the user must correct the mistake (or press Cancel, which leaves the item values as they
were after the last Update). Pressing Update also checks the constraints and updates the values,
but typically does not dismiss the dialog. Revert causes the displayed values to take on the
values at the last Update. Pressing Help cause the OnHelp member to be called, which by default
does nothing. By default, the OnOk and OnCancel messages dismiss and delete the dialog box
and form, but these may be overridden by the application (see below).

The display-type values which may be passed to a form-item creation function are as follows:

wxFORM_DEFAULT Let wxWindows choose a suitable panel item.
wxFORM_SINGLE_LIST Use a single-selection listbox. Default for string item with a one-

of constraint.
wxFORM_CHOICE Use a choice item.
wxFORM_CHECKBOX Use a checkbox. Default for boolean item.
wxFORM_TEXT Use a single-line text item. Default for floating point item, and for string and

integer items with no constraints.
wxFORM_MULTITEXT Use a multi-line text item.

CHAPTER 9

167

wxFORM_RADIOBOX Use a radiobox with a one-of constraint.
wxFORM_SLIDER Use a slider. Default for integer item with range constraint.

The wxFormItem and wxFormItemConstraint classes are not detailed in this manual since their
members do not need to be directly accessed by the user. Functions for creating form items and
constraints for passing to wxForm::Add are given in the next subsection.

9.46.4. Example

The following is an example of a form definition, taken from the form demo. Here, a new form
MyForm has been derived, and a new member EditForm has been defined to edit objects of the
type MyObject, given a panel to display it on.

void MyForm::EditForm(MyObject *object, wxPanel *panel)
{
 Add(wxMakeFormString("string 1", &(object->string1), wxFORM_DEFAULT,
 new
wxList(wxMakeConstraintFunction(MyConstraint), 0)));
 Add(wxMakeFormNewLine());

 Add(wxMakeFormString("string 2", &(object->string2), wxFORM_DEFAULT,
 new wxList(wxMakeConstraintStrings("One", "Two",
"Three", 0), 0)));
 Add(wxMakeFormString("string 3", &(object->string3), wxFORM_CHOICE,
 new wxList(wxMakeConstraintStrings("Pig", "Cow",
 "Aardvark", "Gorilla", 0), 0)));
 Add(wxMakeFormNewLine());
 Add(wxMakeFormShort("int 1", &(object->int1), wxFORM_DEFAULT,
 new wxList(wxMakeConstraintRange(0.0, 50.0),
0)));
 Add(wxMakeFormNewLine());

 Add(wxMakeFormFloat("float 1", &(object->float1), wxFORM_DEFAULT,
 new wxList(wxMakeConstraintRange(-100.0, 100.0),
0)));
 Add(wxMakeFormBool("bool 1", &(object->bool1)));
 Add(wxMakeFormNewLine());

 Add(wxMakeFormButton("Test button", (wxFunction)MyButtonProc));

 AssociatePanel(panel);
}

wxForm::wxForm

void wxForm(int useButtons = wxFORM_BUTTON_ALL,
 int placeButtons = wxFORM_BUTTON_AT_TOP)

Constructor. The value of useButtons determines which buttons are automatically created, and
must be a bit list of the following identifiers:

• wxFORM_BUTTON_OK
• wxFORM_BUTTON_CANCEL

CHAPTER 9

168

• wxFORM_BUTTON_HELP
• wxFORM_BUTTON_UPDATE
• wxFORM_BUTTON_REVERT
• wxFORM_BUTTON_ALL

wxFORM_BUTTON_ALL is the same as specifying all buttons except
wxFORM_BUTTON_HELP.

placeButtons may be used to specify whether the form buttons are placed the top or bottom of the
form, and may be one of:

• wxFORM_BUTTON_AT_TOP
• wxFORM_BUTTON_AT_BOTTOM

wxForm::~wxForm

void ~wxForm(void)

Destructor. Does not delete the associated panel or any panel items, but does delete all form
items.

wxForm::Add

void Add(wxFormItem *item, long id = -1)

Adds a form item to the form. If an id is given this is associated with the form item; otherwise a
new id is generated, by which the item may be identified later.

wxForm::AssociatePanel

void AssociatePanel(wxPanel *panel)

Associates the form with the given panel (or window derived from wxPanel, such as
wxDialogBox). This causes a number of items to be created on the panel using information from
the list of form items. The panel should be shown after this has been called.

wxForm::Delete

Bool Delete(long id)

Deletes the given form item by id. Returns TRUE if successful.

wxForm::FindItem

wxNode * FindItem(long id)

Given a form item id, returns a list node containing the form item.

CHAPTER 9

169

wxForm::IsEditable

Bool IsEditable(void)

Returns TRUE if the form can be edited.

wxForm::OnCancel

void OnCancel(void)

This member may be derived by the application. When the user presses the Cancel button, this is
called, allowing the application to take action. By default, OnCancel deletes the form and the
panel associated with it, probably the normal desired behaviour.

wxForm::OnHelp

void OnHelp(void)

This member may be derived by the application. When the user presses the Help button, this is
called, allowing the application to take action.

wxForm::OnOk

void OnOk(void)

This member may be derived by the application. When the user presses the OK button, this is
called, allowing the application to take action. By default, OnOk deletes the form and the panel
associated with it, probably the normal desired behaviour. Note that if any form item constraints
were violated when the user pressed OK, the member does not get called.

wxForm::OnRevert

void OnRevert(void)

This member may be derived by the application. When the user presses the Revert button, the
C++ form item variable values in effect before the last Update are restored. Then this member is
called, allowing the application to take further action.

wxForm::OnUpdate

void OnUpdate(void)

This member may be derived by the application. When the user presses the Update button, the
C++ form item variable values are updated to the values on the panel. Then this member is
called, allowing the application to take further action.

wxForm::RevertValues

CHAPTER 9

170

void RevertValues(void)

Internal function for displaying the C++ form item values in the displayed panel items. Should not
need to be called by the user.

wxForm::Set

Bool Set(long id, wxFormItem *item)

Given a form item id, replaces an existing item with that id with the given form item. Returns
TRUE if successful.

wxForm::SetEditable

void SetEditable(Bool id)

Sets the form to be editable (TRUE) or read-only (FALSE).

wxForm::UpdateValues

Bool UpdateValues(void)

Internal function for setting the C++ form item values to the values set in the panel items. Should
not need to be called by the user.

9.46.21. Functions for making form items and constraints

These functions make form items and their associated constraints for passing to wxForm::Add.

wxFormItem * wxMakeFormButton(char *label,wxFunction fun)

Makes a button with a conventional callback.

wxFormItem * wxMakeFormMessage(char *label)

Makes a message.

wxFormItem * wxMakeFormNewLine(void)

Adds a newline.

wxFormItem * wxMakeFormLong(char *label, long *var,
 int item_type = wxFORM_DEFAULT, wxList *constraints = NULL,
 char *help_string = NULL, int style = 0, int width = -1,
 int height = -1)

Makes a long integer form item, given a label, a pointer to the variable holding the value, an item
type, and a list of constraints (see below). style may be wxHORIZONTAL or wxVERTICAL (for
label orientation). help_string is currently not used.

wxFormItem * wxMakeFormShort(char *label, int *var,

CHAPTER 9

171

 int item_type = wxFORM_DEFAULT, wxList *constraints = NULL,
 char *help_string = NULL, int style = 0, int width = -1,
 int height = -1)

Makes an integer form item, given a label, a pointer to the variable holding the value, an item
type, and a list of constraints (see below). style may be wxHORIZONTAL or wxVERTICAL (for
label orientation). help_string is currently not used.

wxFormItem * wxMakeFormDouble(char *label, double *var,
 int item_type = wxFORM_DEFAULT, wxList *constraints = NULL,
 char *help_string = NULL, int style = 0, int width = -1,
 int height = -1)

wxFormItem * wxMakeFormFloat(char *label, float *var,
 int item_type = wxFORM_DEFAULT, wxList *constraints = NULL,
 char *help_string = NULL, int style = 0, int width = -1,
 int height = -1)

Makes a floating-point form item, given a label, a pointer to the variable holding the value, an item
type, and a list of constraints (see below). style may be wxHORIZONTAL or wxVERTICAL (for
label orientation). help_string is currently not used.

wxFormItem * wxMakeFormBool(char *label, Bool *var,
 int item_type = wxFORM_DEFAULT, wxList *constraints = NULL,
 char *help_string = NULL, int style = 0, int width = -1,
 int height = -1)

Makes a boolean form item, given a label, a pointer to the variable holding the value, an item
type, and a list of constraints (see below). style may be wxHORIZONTAL or wxVERTICAL (for
label orientation). help_string is currently not used.

wxFormItem * wxMakeFormString(char *label, char **var,
 int item_type = wxFORM_DEFAULT, wxList *constraints = NULL,
 char *help_string = NULL, int style = NULL, int width = -1,
 int height = -1)

Makes a string form item, given a label, a pointer to the variable holding the value, an item type,
and a list of constraints (see below). style may be wxHORIZONTAL or wxVERTICAL (for label
orientation). help_string is currently not used.

wxFormItemConstraint * wxMakeConstraintStrings(wxList *list)

Makes a constraint specifying that the value must be one of the strings given in the list.

wxFormItemConstraint * wxMakeConstraintStrings(char *first, ...)

Makes a constraint specifying that the value must be one of the strings given in the variable-
length argument list, terminated with a zero.

wxFormItemConstraint * wxMakeConstraintFunction(wxConstraintFunction func)

Makes a constraint with a function that gets called when the value is being checked. The function
should return FALSE if the constraint was violated, TRUE otherwise. The function should also
write an appropriate message into the buffer passed to it if the constraint was violated. The type
wxConstraintFunction is defined as follows:

CHAPTER 9

172

typedef Bool (*wxConstraintFunction)(int type, char *value, char *label, char *msg)

type is the type of the item, for instance wxFORM_STRING. value is the address of the variable
containing the value, and should be coerced to the correct type, except for wxFORM_STRING,
where no coercion is required.

wxFormItemConstraint * wxMakeConstraintRange(double lo, double hi)

Makes a range constraint; can be used for integer and floating point form items.

9.47. wxFormItem: wxObject

A form item is a data structure for representing a panel item (control, widget) in a form. It is
returned from wxMakeForm... function and normally you will not need a handle to it except to
pass it to wxForm::Add (page 168). However, you may wish to get the actual panel item from the
form item, for example to disable the panel item. In which case, save a handle to the form item,
then call (for example) wxFormItem::GetPanelItem (page 172) after you have associated the form
and the panel or dialog box.

wxFormItem::GetPanelItem

wxItem * GetPanelItem(void)

Gets the panel item for this form item. Must only be called after wxForm::AssociatePanel (page
168) has been called.

9.48. wxFrame: wxWindow

A frame is a window which contains subwindows of various kinds. It has a title bar and, optionally,
a menu bar, and a status line. Depending on the platform, the frame has further menus or
buttons relating to window movement, sizing, closing, etc. Most of these events are handled by
the host system without need for special handling by the application. However, the application
should normally define an wxFrame::OnClose (page 176) handler for the frame so that related
data and subwindows can be cleaned up.

A frame may contain the subwindows wxCanvas (page 57), wxPanel (page 228) and
wxTextWindow (page 302).

Some of the MS Windows issues of Multiple Document Interface (MDI) versus Single Document
Interface (SDI) frames are covered in the user manual.

If you wish to have a toolbar on an MDI parent frame, create the toolbar as normal (as a child of
the MDI frame), set the appropriate height for it, and call wxFrame::SetToolBar. wxWindows will
now manage the toolbar automatically. Note: SDI frame and MDI child frame toolbars must still
be managed by the application in an OnSize member function.

wxFrame::wxFrame

void wxFrame(wxFrame *parent, char *title, int x = -1, int y = -1,
 int width = -1, int height = -1,
 long style = wxSDI | wxDEFAULT_FRAME, char *name = "frame")

Constructor. The parent parameter can be NULL or an existing frame; if an existing frame is

CHAPTER 9

173

used under MS Windows, the child frame is always on top of the parent, and will be iconized
when the parent is iconized.

If title is non-NULL, it is placed on the window frame.

The style parameter may be a combination of the following, using the bitwise 'or' operator.

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxCAPTION Puts a caption on the frame (Windows and XView only).
wxDEFAULT_FRAME Defined as (wxMINIMIZE_BOX | wxMAXIMIZE_BOX |

wxTHICK_FRAME | wxSYSTEM_MENU | wxCAPTION).
wxMDI_CHILD Specifies a Windows MDI (multiple document interface) child frame.
wxMDI_PARENT Specifies a Windows MDI (multiple document interface) parent frame.
wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif only).
wxSDI Specifies a normal SDI (single document interface) frame.
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (Windows and Motif only).
wxTHICK_FRAME Displays a thick frame around the window (Windows and Motif only).
wxRESIZE_BORDER Displays a resizeable border around the window (Motif only).
wxTINY_CAPTION_HORIZ Under MS Windows, displays a small horizontal caption if

USE_ITSY_BITSY is set to 1 in wx_setup.h and the Microsoft ItsyBitsy library
has been compiled. Use instead of wxCAPTION.

wxTINY_CAPTION_VERT Under MS Windows, displays a small vertical caption if
USE_ITSY_BITSY is set to 1 in wx_setup.h and the Microsoft ItsyBitsy library
has been compiled. Use instead of wxCAPTION.

For Motif, the MWM (the Motif Window Manager) should be running for any styles to work
(otherwise all styles take effect).

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual windows.

See MDI versus SDI (page 9) for a discussion of how the MS Windows Multiple Document
Interface convention is supported..

wxFrame::~wxFrame

void ~wxFrame(void)

Destructor. Destroys all child windows and menu bar if present.

wxFrame::Centre

void Centre(int direction = wxBOTH)

Centres the frame on the display. The parameter may be wxHORIZONTAL, wxVERTICAL or
wxBOTH.

CHAPTER 9

174

wxFrame::Command

void Command(int id)

Simulate a menu command. id is the identifier for a menu item.

wxFrame::Create

void Create(wxFrame *parent, char *title, int x = -1, int y = -1,
 int width = -1, int height = -1,
 long style = wxSDI | wxDEFAULT_FRAME, char *name = "frame")

Used in two-step frame construction. See wxFrame::wxFrame (page 172) for further details.

wxFrame::CreateStatusLine

void CreateStatusLine(int number = 1)

Creates a status line at the bottom of the frame. The width of the status line is the whole width of
the frame (adjusted automatically when resizing), and the height and text size are chosen by the
host system.

The default is to create one field the width of the frame; specify a value between 1 and 5 to create
a multi-field status line.

See also wxFrame::SetStatusText (page 179).

wxFrame::Fit

void Fit(void)

Reize the frame to just fit around the subwindows. If a frame has only one subwindow, that
subwindow will be resized by the default wxFrame::OnSize (page 178) member to fit inside the
frame.

wxFrame::GetMenuBar

wxMenuBar * GetMenuBar(void)

Returns a pointer to the menubar currently associated with the frame (if any).

wxFrame::GetTitle

char * GetTitle(void)

Gets a temporary pointer to the frame title. SeewxFrame::SetTitle (page 179).

wxFrame::GetToolBar

CHAPTER 9

175

wxWindow * GetToolBar(void)

Under Windows only, gets the window to be used as a toolbar for this MDI parent window.

wxFrame::Iconize

void Iconize(Bool iconize)

If TRUE, iconizes the frame; if FALSE, shows and restores it.

wxFrame::Iconized

Bool Iconized(void)

Returns TRUE if the frame is iconized.

wxFrame::LoadAccelerators

void LoadAccelerators(char *resource)

Loads keyboard accelerators for this frame (Windows only). Accelerator tables map keystrokes
onto control and menu identifiers, so the programmer does not have to explicitly program this
correspondence.

See the hello demo (hello.cpp and hello.rc) for an example of accelerator usage. This is a
fragment from hello.rc:

#define HELLO_LOAD_FILE 111

menus_accel ACCELERATORS
{

"^L", HELLO_LOAD_FILE

}

If you call LoadAccelerators, you need to override wxFrame::OnActivate to do nothing.

wxFrame::Maximize

void Maximize(Bool maximize)

Maximizes the frame if maximize is TRUE, otherwise restores it (MS Windows only).

wxFrame::OnActivate

void OnActivate(Bool active)

Called when a window is activated or deactivated (MS Windows only). If the window is being

CHAPTER 9

176

activated, active is TRUE, else it is FALSE.

If you call wxFrame::LoadAccelerators, you need to override this function e.g.

 void OnActivate(Bool) {};

wxFrame::OnClose

Bool OnClose(void)

Sent to the frame when the user has tried to close the window using the window manager (X) or
system menu (Windows). If TRUE is returned by OnClose, the frame will be deleted by the
system, otherwise the attempt will be ignored. Derive your own class to handle this message; the
default handler returns FALSE.

This member is a good place to delete other frames which are conceptually or actually subframes
of this frame, since if all frames are not deleted, the application cannot exit. This is the top-level
OnClose handler for the 'hello' demo:

Bool MyFrame::OnClose(void)
{
 if (subframe)
 delete subframe;

 return TRUE;
}

When quitting the application from inside the application, for example from a menu item, call the
frame's OnClose member before deleting the frame. wxWindows then causes the application to
exit without further ado. For example:

// Intercept menu commands
void MyFrame::OnMenuCommand(int id)
{
 switch (id)
 {
 ...
 case HELLO_QUIT:
 {
 if (OnClose())
 delete this;
 break;
 }
 ...
 }
}

wxFrame::OnMenuCommand

void OnMenuCommand(int id)

Sent to the window when an item on the window's menu has been chosen. Derive your own
frame class to handle this message. For example:

CHAPTER 9

177

// Intercept menu commands
void MyFrame::OnMenuCommand(int id)
{
 switch (id)
 {
 case HELLO_LOAD_FILE:
 {
 char *s = wxFileSelector("Load text file", NULL, NULL, NULL,
"*.txt");
 if (s)
 frame->text_window->LoadFile(s);
 break;
 }
 case HELLO_QUIT:
 {
 if (OnClose())
 delete this;
 break;
 }
 case HELLO_PRINT_EPS:
 {
 wxPostScriptDC dc(NULL, TRUE);
 if (dc.Ok())
 {
 dc.StartDoc("Hello printout");
 dc.StartPage();
 Draw(dc, TRUE);
 dc.EndPage();
 dc.EndDoc();
 }
 break;
 }
 case HELLO_ABOUT:
 {
 (void)wxMessageBox("wxWindows GUI library demo", "About wxHello",
wxOK|wxCENTRE);
 break;
 }
 }
}

wxFrame::OnMenuSelect

void OnMenuSelect(int id)

Sent to the window when an item on the window's menu has been selected (i.e. the cursor is on
the item, but the left button has not been released). Derive your own frame class to handle this
message.

The default OnMenuSelect member puts the menu item help string on the status line, if a status
line has been created.

This function is called under MS Windows and Motif, but not XView.

CHAPTER 9

178

wxFrame::OnSize

void OnSize(int w, int h)

Called when the user or application resizes the frame. The parameters give the total size of the
frame. The default OnSize member looks for a single subwindow, and if one is found, resizes it to
fit inside the frame. Override this member if more complex behaviour is required (for example, if
there are several subwindows).

wxFrame::SetIcon

void SetIcon(wxIcon * icon)

Sets the icon for this frame, deleting any existing one. The icon is now 'owned' by the frame and
will be deleted on frame deletion, so do not delete the icon yourself.

Note an important difference between XView and MS Windows behaviour. In MS Windows, the
title of the frame is the icon label, wrapping if necessary for a long title. If the frame title changes,
the icon label changes. In XView, the icon label cannot be changed once the icon has been
associated with the frame. Also, there is no wrapping, and icon labels must therefore be short.

The best thing to do to accommodate both situations is to have the frame title set to a short string
when setting the icon. Then, set the frame title to the desired text. In XView, the icon will keep its
short text. In MS Windows, the longer (probably more meaningful) title will be shown.

Instead of using wxFrame::SetIcon under Windows, you can add the following lines to your MS
Windows resource file:

wxSTD_MDIPARENTFRAME ICON icon1.ico
wxSTD_MDICHILDFRAME ICON icon2.ico
wxSTD_FRAME ICON icon3.ico

where icon1.ico will be used for the MDI parent frame, and icon2.ico will be used for MDI child
frames, and icon3.ico will be used for non-MDI frames.

If these icons are not supplied, and wxFrame::SetIcon is not called either, then the following
defaults apply if you have included wx.rc.

wxDEFAULT_FRAME ICON std.ico
wxDEFAULT_MDIPARENTFRAME ICON mdi.ico
wxDEFAULT_MDICHILDFRAME ICON child.ico

You can replace std.ico, mdi.ico and child.ico with your own defaults for all your wxWindows
application. Currently they show the same icon.

Note: a wxWindows application linked with subsystem equal to 4.0 (i.e. marked as a Windows 95
application) doesn't respond properly to wxFrame::SetIcon. To work around this until a solution is
found, mark your program as a 3.5 application. This will also ensure that Windows provides small
icons for the application automatically.

See also wxIcon (page 183).

wxFrame::SetMenuBar

CHAPTER 9

179

void SetMenuBar(wxMenuBar *menuBar)

Tells the frame to show the given menu bar. If the frame is destroyed, the menu bar and its
menus will be destroyed also, so do not delete the menu bar explicitly (except by resetting the
frame's menu bar to another frame or NULL).

Under MS Windows, a call to wxFrame::OnSize is generated, so be sure to initialize data
members properly before calling SetMenuBar.

See also wxMenuBar (page 209), wxMenu (page 206).

wxFrame::SetStatusText

void SetStatusText(char * text, int number = 0)

Sets the status line text and redraws the status line. Use an empty (not NULL) string to clear the
status line. Optionally use number to specify a field in the status line, starting from zero and
consistent with the number of fields specified in wxFrame::CreateStatusLine (page 174).

wxFrame::SetStatusWidths

void SetStatusWidths(int n, int *widths)

Sets the widths of the fields in the status line. n must be the same used in CreateStatusLine
(page 174). widths must contain an array of n integers, each of which is a status field width in
pixels. A value of -1 indicates that the field is variable width; at least one field must be -1.

The widths of the variable fields are calculated from the total width of all fields, minus the sum of
widths of the non-variable fields, divided by the number of variable fields.

Windows only.

wxFrame::SetTitle

void SetTitle(char * title)

Sets the frame title. See wxFrame::GetTitle (page 174).

wxFrame::SetToolBar

void SetToolBar(wxWindow *toolbar)

Under Windows only, sets the window to be used as a toolbar for this MDI parent window. It is
necessary since wxWindows does not provide general functionality for application management
of an MDI client area.

When the frame is resized, the toolbar is resized to be the width of the frame client area, and the
toolbar height is kept the same.

The parent of the toolbar must be this frame, which must itself have been created as an MDI

CHAPTER 9

180

parent frame.

Please note that SDI frames and MDI child windows must have their toolbars managed by the
application.

wxFrame::StatusLineExists

Bool StatusLineExists(void)

Returns TRUE if the status line has previously been created. See wxFrame::CreateStatusLine
(page 174), wxFrame::SetStatusText (page 179).

9.49. wxFunction

The type of a panel item callback function.

wxFunction

typedef void (*wxFunction)(wxObject&, wxCommandEvent&)

The type of a panel item callback function. The first parameter is a reference to the object, and
the second is a command event structure. See wxItem (page 191), wxCommandEvent (page 88).

9.50. wxGauge: wxItem

A gauge is a horizontal or vertical bar which shows the progress of some operation, or perhaps
an amount of something.

Use SetValue (page 182) to set the value of the gauge. You can use wxItem::SetButtonColour
and wxItem::SetBackgroundColour to set the gauge value and background colours respectively.

Note that wxWindows support for wxGauge is off by default; to enable it, the file wx_setup.h
must be edited, and the gauge code in contrib/gauge (for Windows) and contrib/xmgauge
(for Motif) must be compiled.

wxGauge::wxGauge

void wxGauge(void)

Constructor, for deriving classes.

void wxGauge(wxPanel *parent, char *label,
 int range, int x = -1, int y = -1,
 int width = -1, int height = -1,
 long style = wxHORIZONTAL, char *name = "gauge")

Constructor, creating and showing a gauge.

If label is non-NULL, it will be used as the gauge label.

range is an integer specifying the number of units the guage is divided into.

CHAPTER 9

181

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

If width or height are omitted (or are less than zero), an appropriate size will be used for the
gauge.

style may be a bit list of the following:

wxGA_HORIZONTAL Creates a horizontal gauge.
wxGA_VERTICAL Creates a vertical gauge.
wxGA_PROGRESSBAR Under Windows 95, creates a horizontal progress bar.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual gauges.

wxGauge::~wxGauge

void ~wxGauge(void)

Destructor, destroying the gauge.

wxGauge::Create

Bool Create(wxPanel *parent, char *label,
 int range, int x = -1, int y = -1,
 int width = -1, int height = -1,
 long style = wxHORIZONTAL, char *name = "gauge")

Creates the gauge for two-step construction. Derived classes should call or replace this function.
See wxGauge::wxGauge (page 180) for further details.

wxGauge::GetBezelFace

int GetBezelFace(void)

Returns the width of the 3D bezel face.

wxGauge::GetRange

int GetRange(void)

Returns the maximum position of the gauge.

wxGauge::GetValue

int GetValue(void)

Returns the current position of the gauge.

CHAPTER 9

182

wxGauge::SetBezelFace

void SetBezelFace(int width)

Sets the 3D bezel face width.

wxGauge::SetRange

void SetRange(int range)

Sets the range of the gauge.

wxGauge::SetShadowWidth

void SetShadowWidth(int width)

Sets the 3D shadow width.

wxGauge::SetValue

void SetValue(int pos)

Sets the position of the gauge.

9.51. wxGroupBox: wxItem

A group box is a rectangle drawn around other panel items to denote a logical grouping of items.

Currently it is implemented for Windows and Motif only.

wxGroupBox::wxGroupBox

void wxGroupBox(void)

Constructor, for deriving classes.

void wxGroupBox(wxPanel *parent, char *label,
 int x = -1, int y = -1,
 int width = -1, int height = -1,
 long style = 0, char *name = "groupBox")

Constructor, creating and showing a group box.

If label is non-NULL, it will be used as the group box label.

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual group boxes.

CHAPTER 9

183

wxGroupBox::~wxGroupBox

void ~wxGroupBox(void)

Destructor, destroying the group box.

wxGroupBox::Create

Bool Create(wxPanel *parent, char *label,
 int x = -1, int y = -1,
 int width = -1, int height = -1,
 long style = 0, char *name = "groupBox")

Creates the group box for two-step construction. Derived classes should call or replace this
function. See wxGroupBox::wxGroupBox (page 182) for further details.

9.52. wxIcon: wxBitmap

An icon is a small rectangular bitmap usually used for denoting a minimized application. It is
optional (but desirable) to associate a pertinent icon with a frame. Obviously icons in X and MS
Windows are created in a different manner, and colour icons in X are difficult to arrange.
Therefore, separate icons will be created for the different environments. Platform-specific
methods for creating a wxIcon structure are catered for, and this is an occasion where
conditional compilation will probably be required.

Note that a new icon must be created for every time the icon is to be used for a new window. In
X, this will ensure that fresh X resources are allocated for this frame. In MS Windows, the icon will
not be reloaded if it has already been used. An icon allocated to a frame will be deleted when the
frame is deleted.

The following shows the conditional compilation required to define an icon in X and in MS
Windows. The alternative is to use the string version of the icon constructor, which loads a file
under X and a resource under MS Windows, but has the disadvantage of requiring the X icon file
to be available at run-time. If anyone can invent a scheme or macro which does the following
more elegantly and platform-independently, I'd like to see it!

#ifdef wx_x
#include "aiai.xbm"
#endif
#ifdef wx_msw
 wxIcon *icon = new wxIcon("aiai");
#endif
#ifdef wx_x
 wxIcon *icon = new wxIcon(aiai_bits, aiai_width, aiai_height);
#endif

See also wxDC::DrawIcon (page 110), wxBitmap (page 48).

wxIcon::wxIcon

void wxIcon(void)

CHAPTER 9

184

Default constructor.

void wxIcon(char ** data)

Construct an icon by specifying the bits in an included .XPM file (X only). Only available if
USE_XPM_IN_X is enabled in wx_setup.h.

void wxIcon(char bits[], int width, int height)

Construct an icon by specifying the bits in an included .XBM file (X only).

For example:

#ifdef wx_x
#include "aiai.xbm"
#endif

#ifdef wx_x
 test_icon = new wxIcon(aiai_bits, aiai_width, aiai_height);
#endif

void wxIcon(char *iconName, long flags)

Constructor. An icon can be created by passing an array of bits (X only) or by passing a string
name. icon_name refers to a filename in X, a resource name in MS Windows.

Construct a cursor by passing a string resource name or filename. Under Motif, flags defaults to
wxBITMAP_TYPE_XBM | wxBITMAP_DISCARD_COLOURMAP. Under Windows, it defaults to
wxBITMAP_TYPE_ICO_RESOURCE | wxBITMAP_DISCARD_COLOURMAP.

Under X, the permitted icon types in the flags bitlist are:

wxBITMAP_TYPE_BMP Load a Windows bitmap file (if USE_IMAGE_LOADING_IN_X is
enabled in wx_setup.h).

wxBITMAP_TYPE_GIF Load a GIF bitmap file (if USE_IMAGE_LOADING_IN_X is enabled in
wx_setup.h).

wxBITMAP_TYPE_XBM Load an X bitmap file.
wxBITMAP_TYPE_XPM Load an XPM (colour pixmap) file. Only available if

USE_XPM_IN_X is enabled in wx_setup.h.

Under Windows, the permitted types are:

wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW.

is enabled in wx_setup.h).wxBITMAP_TYPE_ICO_RESOURCE Load a Windows resource (as
specified in the .rc file).

wxIcon::~wxIcon

void ~wxIcon(void)

Destroys the icon. Do not explicitly delete an icon pointer which has been passed to a frame - the

CHAPTER 9

185

frame will delete the icon when it is destroyed. If assigning a new icon to a frame, the old icon will
be destroyed.

wxIcon::GetHeight

int GetHeight(void)

Returns the height of the icon.

wxIcon::GetWidth

int GetWidth(void)

Returns the width of the icon.

9.53. wxHashTable: wxObject

This class provides hash table functionality for wxWindows, and for an application if it wishes.
Data can be hashed on an integer or string key. Below is an example of using a hash table.

 wxHashTable table(KEY_STRING);

 wxPoint *point = new wxPoint(100, 200);
 table.Put("point 1", point);

 wxPoint *found_point = (wxPoint *)table.Get("point 1");

A hash table is implemented as an array of pointers to lists. When no data has been stored, the
hash table takes only a little more space than this array (default size is 1000). When a data item
is added, an integer is constructed from the integer or string key that is within the bounds of the
array. If the array element is NULL, a new (keyed) list is created for the element. Then the data
object is appended to the list, storing the key in case other data objects need to be stored in the
list also (when a 'collision' occurs).

Retrieval involves recalculating the array index from the key, and searching along the keyed list
for the data object whose stored key matches the passed key. Obviously this is quicker when
there are fewer collisions, so hashing will become inefficient if the number of items to be stored
greatly exceeds the size of the hash table.

See also wxList (page 197).

wxHashTable::wxHashTable

void wxHashTable(unsigned int key_type, int size = 1000)

Constructor. key_type is one of wxKEY_INTEGER, or wxKEY_STRING, and indicates what sort
of keying is required. size is optional.

wxHashTable::~wxHashTable

CHAPTER 9

186

void ~wxHashTable(void)

Destroys the hash table.

wxHashTable::BeginFind

void BeginFind(void)

The counterpart of Next. If the application wishes to iterate through all the data in the hash table,
it can call BeginFind and then loop on Next.

wxHashTable::Clear

void Clear(void)

Clears the hash table of all nodes (but as usual, doesn't delete user data).

wxHashTable::Delete

wxObject * Delete(long key)

wxObject * Delete(char * key)

Deletes entry in hash table and returns the user's data (if found).

wxHashTable::Get

wxObject * Get(long key)

wxObject * Get(char * key)

Gets data from the hash table, using an integer or string key (depending on which has table
constructor was used).

wxHashTable::MakeKey

long MakeKey(char *string)

Makes an integer key out of a string. An application may wish to make a key explicitly (for
instance when combining two data values to form a key).

wxHashTable::Next

wxNode * Next(void)

If the application wishes to iterate through all the data in the hash table, it can call BeginFind and
then loop on Next. This function returns a wxNode pointer (or NULL if there are no more nodes).
See the description for wxNode (page 221). The user will probably only wish to use

CHAPTER 9

187

thewxNode::Data function to retrieve the data; the node may also be deleted.

wxHashTable::Put

void Put(long key, wxObject *object)

void Put(char * key, wxObject *object)

Inserts data into the hash table, using an integer or string key (depending on which has table
constructor was used). The key string is copied and stored by the hash table implementation.

9.54. wxHelpInstance: wxClient

The wxHelpInstance class implements the interface by which applications may invoke wxHelp to
provide on-line help. Each instance of the class maintains one connection to an instance of
wxHelp which belongs to the application, and which is shut down when the Quit member of
wxHelpInstance is called (for example in the OnClose member of an application's main frame).
Under MS Windows, there is currently only one instance of wxHelp which is used by all
applications.

Since there is a DDE link between the two programs, each subsequent request to display a file or
section uses the existing instance of wxHelp, rather than starting a new instance each time.
wxHelp thus appears to the user to be an extension of the current application. wxHelp may also
be invoked independently of a client application.

Normally an application will create an instance of wxHelpInstance when it starts, and
immediately call Initialize to associate a filename with it. wxHelp will only get run, however, just
before the first call to display something. See the test program supplied with the wxHelp source.

Include the file wx_help.h to use this API, even if you have included wx.h.

If you give TRUE to the constructor, you can use the native help system where appropriate
(currently under Windows only). Omit the file extension to allow wxWindows to choose the
appropriate file for the platform.

wxHelpInstance::wxHelpInstance

void wxHelpInstance(Bool native)

Constructs a help instance object, but does not invoke wxHelp. If native is TRUE, tries to use the
native help system where possible (Windows Help under MS Windows, wxHelp on other
platforms).

wxHelpInstance::~wxHelpInstance

Destroys the help instance, closing down wxHelp for this application if it is running.

wxHelpInstance::Initialize

void Initialize(char *file, int server = -1)

CHAPTER 9

188

Initializes the help instance with a help filename, and optionally a server (socket) number (one is
chosen at random if this parameter is omitted). Does not invoke wxHelp. This must be called
directly after the help instance object is created and before any attempts to communicate with
wxHelp.

You may omit the file extension, and in fact this is recommended if you wish to support .xlp files
under X and .hlp under Windows.

wxHelpInstance::DisplayBlock

Bool DisplayBlock(long blockNo)

If wxHelp is not running, runs wxHelp and displays the file at the given block number. If using
Windows Help, displays the file at the given context number.

wxHelpInstance::DisplayContents

Bool DisplayContents(void)

If wxHelp is not running, runs wxHelp (or Windows Help) and displays the contents (the first
section of the file).

wxHelpInstance::DisplaySection

Bool DisplaySection(int sectionNo)

If wxHelp is not running, runs wxHelp and displays the given section. Sections are numbered
starting from 1, and section numbers may be viewed by running wxHelp in edit mode.

wxHelpInstance::KeywordSearch

Bool KeywordSearch(char *keyWord)

If wxHelp (or Windows Help) is not running, runs wxHelp (or Windows Help), and searches for
sections matching the given keyword. If one match is found, the file is displayed at this section. If
more than one match is found, the Search dialog is displayed with the matches (wxHelp) or the
first topic is displayed (Windows Help).

wxHelpInstance::LoadFile

Bool LoadFile(char *file = NULL)

If wxHelp (or Windows Help) is not running, runs wxHelp (or Windows Help), and loads the given
file. If the filename is not supplied or is NULL, the file specified in Initialize is used. If wxHelp is
already displaying the specified file, it will not be reloaded. This member function may be used
before each display call in case the user has opened another file.

wxHelpInstance::OnQuit

CHAPTER 9

189

Bool OnQuit(void)

Overridable member called when this application's wxHelp is quit (no effect if Windows Help is
being used instead).

wxHelpInstance::Quit

Bool Quit(void)

If wxHelp is running, quits wxHelp by disconnecting (no effect for Windows Help).

9.55. wxIndividualLayoutConstraint: wxObject

See also Overview and examples (page 388)

Objects of this class are stored in the wxIndividualLayoutConstraint class as one of eight possible
constraints that a window can be involved in.

Constraints are initially set to have the relationship wxUnconstrained, which means that their
values should be calculated by looking at known constraints.

See also wxLayoutConstraints (page 196), wxWindow::SetConstraints (page 325).

9.55.1. Edges and relationships

The wxEdge enumerated type specifies the type of edge or dimension of a window.

wxLeft The left edge.
wxTop The top edge.
wxRight The right edge.
wxBottom The bottom edge.
wxCentreX The x-coordinate of the centre of the window.
wxCentreY The y-coordinate of the centre of the window.

The wxRelationship enumerated type specifies the relationship that this edge or dimension has
with another specified edge or dimension. Normally, the user doesn't use these directly because
functions such as Below and RightOf are a convenience for using the more general Set function.

wxUnconstrained The edge or dimension is unconstrained (the default for edges.
wxAsIs The edge or dimension is to be taken from the current window position or size

(the default for dimensions.
wxAbove The edge should be above another edge.
wxBelow The edge should be below another edge.
wxLeftOf The edge should be to the left of another edge.
wxRightOf The edge should be to the right of another edge.
wxSameAs The edge or dimension should be the same as another edge or dimension.
wxPercentOf The edge or dimension should be a percentage of another edge or dimension.
wxAbsolute The edge or dimension should be a given absolute value.

wxIndividualLayoutConstraint::wxIndividualLayoutConstraint

CHAPTER 9

190

void wxIndividualLayoutConstraint(void)

Constructor. Not used by the end-user.

wxIndividualLayoutConstraint::Above

void Above(wxWindow *otherWin, int margin = 0)

Constrains this edge to be above the given window, with an optional margin. Implicitly, this is
relative to the top edge of the other window.

wxIndividualLayoutConstraint::Absolute

void Absolute(int value)

Constrains this edge or dimension to be the given absolute value.

wxIndividualLayoutConstraint::AsIs

void AsIs(void)

Sets this edge or constraint to be whatever the window's value is at the moment. If either of the
width and height constraints are as is, the window will not be resized, but moved instead. This is
important when considering panel items which are intended to have a default size, such as a
button, which may take its size from the size of the button label.

wxIndividualLayoutConstraint::Below

void Below(wxWindow *otherWin, int margin = 0)

Constrains this edge to be below the given window, with an optional margin. Implicitly, this is
relative to the bottom edge of the other window.

wxIndividualLayoutConstraint::Unconstrained

void Unconstrained(void)

Sets this edge or dimension to be unconstrained, that is, dependent on other edges and
dimensions from which this value can be deduced.

wxIndividualLayoutConstraint::LeftOf

void LeftOf(wxWindow *otherWin, int margin = 0)

Constrains this edge to be to the left of the given window, with an optional margin. Implicitly, this
is relative to the left edge of the other window.

CHAPTER 9

191

wxIndividualLayoutConstraint::PercentOf

void PercentOf(wxWindow *otherWin, wxEdge edge, int margin = 0)

Constrains this edge or dimension to be to a percentage of the given window, with an optional
margin.

wxIndividualLayoutConstraint::RightOf

void RightOf(wxWindow *otherWin, int margin = 0)

Constrains this edge to be to the right of the given window, with an optional margin. Implicitly, this
is relative to the right edge of the other window.

wxIndividualLayoutConstraint::SameAs

void SameAs(wxWindow *otherWin, wxEdge edge, int margin = 0)

Constrains this edge or dimension to be to the same as the edge of the given window, with an
optional margin.

wxIndividualLayoutConstraint::Set

void Set(wxRelationship rel, wxWindow *otherWin, wxEdge otherEdge, int value = 0, int
margin = 0)

Sets the properties of the constraint. Normally called by one of the convenience functions such as
Above, RightOf, SameAs.

9.56. wxIntPoint: wxObject

A wxIntPoint is a useful data structure for graphics operations. It contains integer point x and y
members. See also wxPoint (page 240) for a floating point version.

wxIntPoint::wxIntPoint

void wxIntPoint(void)

void wxIntPoint(int x, int y)

Create a point.

int x

int y

Members of the wxIntPoint object.

9.57. wxItem: wxWindow

CHAPTER 9

192

This is the base class for any widget or control which can be placed on a panel or dialog box.

The following styles may be used for any panel item:

wxFIXED_LENGTH The label of the item is created with a width proportional to the length of
the label string, regardless of proportional font in use. This allows alignment of
items if all items are given labels of the same length.

wxItem::Centre

void Centre(int direction = wxHORIZONTAL)

Centres the frame on the panel or dialog box. The parameter may be wxHORIZONTAL,
wxVERTICAL or wxBOTH.

You may still use Fit in conjunction with this call, but call Fit first before centring items.

wxItem::Command

void Command(wxCommandEvent event)

Simulate the effect of the user issuing a command to the item. See wxCommandEvent (page 88).

wxItem::GetBackgroundColour

wxColour * GetBackgroundColour(void)

Gets the item background colour.

wxItem::GetButtonColour

wxColour * GetButtonColour(void)

Gets the item button colour.

wxItem::GetLabelColour

wxColour * GetLabelColour(void)

Gets the item label colour.

wxItem::GetLabel

char * GetLabel(void)

Gets a temporary pointer to the item's label.

CHAPTER 9

193

wxItem::SetBackgroundColour

void SetBackgroundColour(wxColour& colour)

Sets the item background colour (Motif and Windows only).

wxItem::SetButtonColour

void SetButtonColour(wxColour& colour)

Specifies the default colour for drawing value text (Motif and Windows). wxButton items do not
respond to this setting under Windows.

wxItem::SetButtonFont

void SetButtonFont(wxFont *font)

Sets the item value font (not XView).

wxItem::SetLabel

void SetLabel(char *label)

Sets the item's label. A copy of the label is taken.

wxItem::SetLabelColour

void SetLabelColour(wxColour& colour)

Sets the item label's colour (Motif and Windows only).

wxItem::SetLabelFont

void SetLabelFont(wxFont *font)

Sets the item label font (not XView).

9.58. wxKeyEvent: wxEvent

This event class contains information about key events. See wxCanvas::OnChar (page 62).

wxKeyEvent::controlDown

Bool controlDown

Returns TRUE if control is pressed down.

CHAPTER 9

194

wxKeyEvent::keyCode

long keyCode

Virtual keycode. An enumerated type, one of:

 WXK_BACK = 8
 WXK_TAB = 9
 WXK_RETURN = 13
 WXK_ESCAPE = 27
 WXK_SPACE = 32
 WXK_DELETE = 127

 WXK_START = 300
 WXK_LBUTTON
 WXK_RBUTTON
 WXK_CANCEL
 WXK_MBUTTON
 WXK_CLEAR
 WXK_SHIFT
 WXK_CONTROL
 WXK_MENU
 WXK_PAUSE
 WXK_CAPITAL
 WXK_PRIOR
 WXK_NEXT
 WXK_END
 WXK_HOME
 WXK_LEFT
 WXK_UP
 WXK_RIGHT
 WXK_DOWN
 WXK_SELECT
 WXK_PRINT
 WXK_EXECUTE
 WXK_SNAPSHOT
 WXK_INSERT
 WXK_HELP
 WXK_NUMPAD0
 WXK_NUMPAD1
 WXK_NUMPAD2
 WXK_NUMPAD3
 WXK_NUMPAD4
 WXK_NUMPAD5
 WXK_NUMPAD6
 WXK_NUMPAD7
 WXK_NUMPAD8
 WXK_NUMPAD9
 WXK_MULTIPLY
 WXK_ADD
 WXK_SEPARATOR
 WXK_SUBTRACT
 WXK_DECIMAL
 WXK_DIVIDE
 WXK_F1

CHAPTER 9

195

 WXK_F2
 WXK_F3
 WXK_F4
 WXK_F5
 WXK_F6
 WXK_F7
 WXK_F8
 WXK_F9
 WXK_F10
 WXK_F11
 WXK_F12
 WXK_F13
 WXK_F14
 WXK_F15
 WXK_F16
 WXK_F17
 WXK_F18
 WXK_F19
 WXK_F20
 WXK_F21
 WXK_F22
 WXK_F23
 WXK_F24
 WXK_NUMLOCK
 WXK_SCROLL

wxKeyEvent::shiftDown

Bool shiftDown

Returns TRUE if shift is pressed down.

wxKeyEvent::wxKeyEvent

void wxKeyEvent(WXTYPE keyEventType)

Constructor. Currently, the only valid event type is wxEVENT_TYPE_CHAR.

wxKeyEvent::ControlDown

Bool ControlDown(void)

Returns TRUE if the control key was down at the time of the key event.

wxKeyEvent::KeyCode

long KeyCode(void)

Returns the virtual key code. ASCII events return normal ASCII values, while non-ASCII events
return values such as WXK_LEFT for the left cursor key. See wx_defs.h for a full list of the
virtual key codes.

CHAPTER 9

196

wxKeyEvent::Position

void Position(float *x, float *y)

Obtains the position at which the key was pressed.

wxKeyEvent::ShiftDown

Bool ShiftDown(void)

Returns TRUE if the shift key was down at the time of the key event.

9.59. wxLayoutConstraints: wxObject

See also Overview and examples (page 388)

Objects of this class can be associated with a window to define its layout constraints, with respect
to siblings or its parent.

The class consists of the following eight constraints of class wxIndividualLayoutConstraint, some
or all of which should be accessed directly to set the appropriate constraints.

• left: represents the left hand edge of the window
• right: represents the right hand edge of the window
• top: represents the top edge of the window
• bottom: represents the bottom edge of the window
• width: represents the width of the window
• height: represents the height of the window
• centreX: represents the horizontal centre point of the window
• centreY: represents the vertical centre point of the window

Most constraints are initially set to have the relationship wxUnconstrained, which means that their
values should be calculated by looking at known constraints. The exceptions are width and
height, which are set to wxAsIs to ensure that if the user does not specify a constraint, the
existing width and height will be used, to be compatible with panel items which often have take a
default size. If the constraint is wxAsIs, the dimension will not be changed.

See also wxIndividualLayoutConstraint (page 189), wxWindow::SetConstraints (page 325).

wxLayoutConstraints::wxLayoutConstraints

void wxLayoutConstraints(void)

Constructor.

wxLayoutConstraints::bottom

wxIndividualLayoutConstraint bottom

CHAPTER 9

197

Constraint for the bottom edge.

wxLayoutConstraints::centreX

wxIndividualLayoutConstraint centreX

Constraint for the horizontal centre point.

wxLayoutConstraints::centreY

wxIndividualLayoutConstraint centreY

Constraint for the vertical centre point.

wxLayoutConstraints::height

wxIndividualLayoutConstraint height

Constraint for the height.

wxLayoutConstraints::left

wxIndividualLayoutConstraint left

Constraint for the left-hand edge.

wxLayoutConstraints::right

wxIndividualLayoutConstraint right

Constraint for the right-hand edge.

wxLayoutConstraints::top

wxIndividualLayoutConstraint top

Constraint for the top edge.

wxLayoutConstraints::width

wxIndividualLayoutConstraint width

Constraint for the width.

9.60. wxList: wxObject

This class provides linked list functionality for wxWindows, and for an application if it wishes.

CHAPTER 9

198

Depending on the form of constructor used, a list can be keyed on integer or string keys to
provide a primitive look-up ability. See wxHashTable (page 185) for a faster method of storage
when random access is required.

It is very common to iterate on a list as follows:

 ...
 wxPoint *point1 = new wxPoint(100, 100);
 wxPoint *point2 = new wxPoint(200, 200);

 wxList SomeList;
 SomeList.Append(point1);
 SomeList.Append(point2);

 ...

 wxNode *node = SomeList.First();
 while (node)
 {
 wxPoint *point = (wxPoint *)node->Data();
 ...
 node = node->Next();
 }

To delete nodes in a list as the list is being traversed, replace

 ...
 node = node->Next();
 ...

with

 ...
 delete point;
 delete node;
 node = SomeList.First();
 ...

See wxNode (page 221) for members that retrieve the data associated with a node, and
members for getting to the next or previous node.

Note that a cast is required when retrieving the data from a node. Although a node is defined to
store objects of type wxObject and derived types, other types (such as char *) may be used with
appropriate casting.

wxList::wxList

void wxList(void)

void wxList(unsigned int key_type)

void wxList(int n, wxObject *objects[])

void wxList(wxObject *object, ...)

CHAPTER 9

199

Constructors. key_type is one of wxKEY_NONE, wxKEY_INTEGER, or wxKEY_STRING, and
indicates what sort of keying is required (if any).

objects is an array of n objects with which to initialize the list.

The variable-length argument list constructor must be supplied with a terminating NULL.

wxList::~wxList

void ~wxList(void)

Destroys list. Also destroys any remaining nodes, but does not destroy client data held in the
nodes.

wxList::Append

wxNode * Append(wxObject *object)

wxNode * Append(long key, wxObject *object)

wxNode * Append(char *key, wxObject *object)

Appends a new wxNode to the end of the list and puts a pointer to the object in the node. The
last two forms store a key with the object for later retrieval using the key. The new node is
returned in each case.

The key string is copied and stored by the list implementation.

wxList::Clear

void Clear(void)

Clears the list (but does not delete the client data stored with each node).

wxList::DeleteContents

void DeleteContents(Bool destroy)

If destroy is TRUE, instructs the list to call delete on the client contents of a node whenever the
node is destroyed. The default is FALSE.

wxList::DeleteNode

Bool DeleteNode(wxNode *node)

Deletes the given node from the list, returning TRUE if successful.

wxList::DeleteObject

CHAPTER 9

200

Bool DeleteObject(wxObject *object)

Finds the given client object and deletes the appropriate node from the list, returning TRUE if
successful. The application must delete the actual object separately.

wxList::Find

wxNode * Find(long key)

wxNode * Find(char *key)

Returns the node whose stored key matches key. Use on a keyed list only.

wxList::First

wxNode * First(void)

Returns the first node in the list (NULL if the list is empty).

wxList::Insert

wxNode * Insert(wxObject *object)

Insert object at front of list.

wxNode * Insert(wxNode *position, wxObject *object)

Insert object before position.

wxList::Last

wxNode * Last(void)

Returns the last node in the list (NULL if the list is empty).

wxList::Member

wxNode * Member(wxObject *object)

Returns the node associated with object if it is in the list, NULL otherwise.

wxList::Nth

wxNode * Nth(int n)

Returns the nth node in the list, indexing from zero (NULL if the list is empty or the nth node could
not be found).

CHAPTER 9

201

wxList::Number

int Number(void)

Returns the number of elements in the list.

wxList::Sort

void Sort(wxSortCompareFunction compfunc)

 // Type of compare function for list sort operation (as in 'qsort')
 typedef int (*wxSortCompareFunction)(const void *elem1, const void
*elem2);

Allows the sorting of arbitrary lists by giving a function to compare two list elements. We use the
system qsort function for the actual sorting process. The sort function receives pointers to
wxObject pointers (wxObject **), so be careful to dereference appropriately.

Example:

 int listcompare(const void *arg1, const void *arg2)
 {
 return(compare(**(wxString **)arg1, // use the wxString
'compare'
 **(wxString **)arg2)); // function
 }

 void main()
 {
 wxList list;

 list.Append(new wxString("DEF"));
 list.Append(new wxString("GHI"));
 list.Append(new wxString("ABC"));
 list.Sort(listcompare);
 }

9.61. wxListBox: wxItem

A listbox is used to select one or more of a list of strings. The strings are displayed in a scrolling
box, with the selected string(s) marked in reverse video. A listbox can be single selection (if an
item is selected, the previous selection is removed) or multiple selection (clicking an item toggles
the item on or off independently of other selections).

List box elements are numbered from zero.

A listbox callback gets an event wxEVENT_TYPE_LISTBOX_COMMAND for single clicks, and
wxEVENT_TYPE_LISTBOX_DCLICK_COMMAND for double clicks. Another way of intercepting
double clicks is to override wxPanel::OnDefaultAction (page 231).

Please note that under XView, the height of a listbox cannot be set accurately, since internally,
the number of rows must be used to set the height. So it is unlikely that the value returned by
GetSize will be the same as passed to SetSize.

CHAPTER 9

202

See also wxChoice (page 69).

wxListBox::wxListBox

void wxListBox(void)

Constructor, for deriving classes.

void wxListBox(wxPanel *parent, wxFunction func, char *label,
 Bool multiple_selection = wxSINGLE, int x = -1, int y = -1,
 int width = -1, int height = -1, int n, char *choices[],
 long style = 0, char *name = "listBox")

Constructor, creating and showing a list box.

func may be NULL; otherwise it is used as the callback for the list box. Note that the cast
(wxFunction) must be used when passing your callback function name, or the compiler may
complain that the function does not match the constructor declaration.

If label is non-NULL, it will be used as the listbox label.

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

If width or height are omitted (or are less than zero), an appropriate size will be used for the list
box.

n is the number of possible choices, and choices is an array of strings of size n. wxWindows
allocates its own memory for these strings so the calling program must deallocate the array itself.

multiple_selection is a bit list of some of the following:

wxSINGLE Single-selection list.
wxMULTIPLE Multiple-selection list.
wxEXTENDED Extended-selection list (Motif and Windows).

style is a bit list of some of the following. Note that style should now be used for all listbox styles,
in preference to using the multiple_selection argument. However, the styles in multiple_selection
still work for backward compatibility.

wxNEEDED_SB Create scrollbars if needed.
wxLB_NEEDED_SB Same as wxNEEDED_SB.
wxALWAYS_SB Create scrollbars immediately.
wxLB_ALWAYS_SB Same as wxALWAYS_LB.
wxLB_SINGLE Single-selection list.
wxLB_MULTIPLE Multiple-selection list.
wxLB_EXTENDED Extended-selection list (Motif and Windows).
wxHSCROLL Create horizontal scrollbar if contents are too wide (Windows only).
wxFIXED_LENGTH Allows the values of a column of items to be left-aligned. Create an item

with this style, and pad out your labels with spaces to the same length. The item
labels will initially created with a string of identical characters, positioning all the
values at the same x-position. Then the real label is restored.

CHAPTER 9

203

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual listboxes.

wxListBox::~wxListBox

void ~wxListBox(void)

Destructor, destroying the list box.

wxListBox::Append

void Append(char * item)

Adds the item to the end of the list box. item must be deallocated by the calling program, i.e.
wxWindows makes its own copy.

void Append(char * item, char *client_data)

Adds the item to the end of the list box, associating the given data with the item. item must be
deallocated by the calling program.

wxListBox::Clear

void Clear(void)

Clears all strings from the list box.

wxListBox::Create

Bool Create(wxPanel *parent, wxFunction func, char *label,
 Bool multiple_selection = FALSE, int x = -1, int y = -1,
 int width = -1, int height = -1, int n, char *choices[],
 long style = 0, char *name = "listBox")

Creates the listbox for two-step construction. Derived classes should call or replace this function.
See wxListBox::wxListBox (page 202) for further details.

wxListBox::Delete

void Delete(int n)

Delete the nth element in the list box.

wxListBox::Deselect

void Deselect(int n)

Deselects the given item in the list box.

CHAPTER 9

204

wxListBox::FindString

int FindString(int char *s)

Finds a choice matching the given string, returning the position if found, or -1 if not found.

wxListBox::GetClientData

char * GetClientData(int n)

Returns a pointer to the client data associated with the given item (if any).

wxListBox::GetSelection

int GetSelection(void)

Gets the id (position) of the selected string - for single selection list boxes only.

wxListBox::GetSelections

int GetSelections(int **selections)

Gets an array containing the positions of the selected strings. The number of selections is
returned. Pass a pointer to an integer array, and do not deallocate the returned array.

wxListBox::GetString

char * GetString(int n)

Returns a temporary pointer to the string at position n.

wxListBox::GetStringSelection

char * GetStringSelection(void)

Gets the selected string - for single selection list boxes only. This must be copied by the calling
program if long term use is to be made of it.

wxListBox::Number

int Number(void)

Returns the number of items in the listbox.

wxListBox::Selected

CHAPTER 9

205

Bool Selected(int n)

Returns TRUE if the given item is selected, FALSE otherwise.

wxListBox::Set

void Set(int n, char *choices[], char *clientData[] = NULL)

Clears the list box and adds the given strings. Deallocate the array from the calling program after
this function has been called.

wxListBox::SetClientData

void SetClientData(int n, char *data)

Associates the given client data pointer with the given item.

wxListBox::SetFirstItem

void SetFirstItem(int n)

void SetFirstItem(char *item)

Set the specified item to be the first visible item (not XView).

wxListBox::SetSelection

void SetSelection(int n, Bool select = TRUE)

Selects or deselects the given item.

wxListBox::SetString

void SetString(int n, char * s)

Sets the value of the given string.

wxListBox::SetStringSelection

void SetStringSelection(char * s)

Sets the choice by passing the desired string.

9.62. wxMemoryDC: wxCanvasDC

A memory device context provides a means to draw graphics onto a bitmap.

A bitmap must be selected into the new memory DC before it may be used for anything. Typical

CHAPTER 9

206

usage is as follows:

 // Create a memory DC
 wxMemoryDC temp_dc;
 temp_dc.SelectObject(test_bitmap);

 // We can now draw into the memory DC...
 // Copy from this DC to another DC.
 old_dc.Blit(250, 50, BITMAP_WIDTH, BITMAP_HEIGHT, temp_dc, 0, 0);

Note that the memory DC must be deleted before a bitmap can be reselected into another
memory DC.

See also wxBitmap (page 48), wxDC (page 108), wxCanvasDC (page 68).

wxMemoryDC::wxMemoryDC

void wxMemoryDC(void)

Constructs a new memory device context.

void wxMemoryDC(wxCanvasDC *oldDC)

Constructs a new memory device context with similar attributes to the given canvas device
context.

Use the Ok member to test whether the constructor was successful in creating a useable device
context. Don't forget to select a bitmap into the DC before drawing on it.

wxMemoryDC::SelectObject

void SelectObject(wxBitmap *bitmap)

Selects the given bitmap into the device context, to use as the memory bitmap. Selecting the
bitmap into a memory DC allows you to draw into the DC (and therefore the bitmap) and also to
use Blit to copy the bitmap to a canvas. For this purpose, you may find wxDC::DrawIcon (page
110) easier to use instead.

If the argument is NULL, the current bitmap is selected out of the device context, and the original
bitmap restored, allowing the current bitmap to be destroyed safely.

9.63. wxMenu: wxWindow

A menu is a popup (or pull down) list of items, one of which may be selected before the menu
goes away (clicking elsewhere dismisses the menu). Menus may be used to construct either
menu bars or popup menus.

A menu item has an integer ID associated with it which can be used to identify the selection, or to
change the menu item in some way.

See also wxFrame::OnMenuCommand (page 176) and wxWindow::PopupMenu (page 324).

CHAPTER 9

207

wxMenu::wxMenu

void wxMenu(char *title = NULL, wxFunction func = NULL)

The first argument is presently ignored. The second argument is a callback function if the menu
is used as a popup using wxWindow::PopupMenu (page 324).

wxMenu::~wxMenu

void ~wxMenu(void)

Destructor, destroying the menu.

wxMenu::Append

void Append(int id, char * item, char *helpString = NULL, Bool checkable = FALSE)

void Append(int id, char * item, wxMenu *submenu, char *helpString = NULL)

Adds the item to the end of the menu. item must be deallocated by the calling program. If the
second form is used, the given menu will be a pullright submenu (must be created already). From
version 1.50k, this can be used dynamically, i.e. after initial creation of a menu or menubar.

Each form can take an optional help string, which can be accessed using
wxMenu::GetHelpString. The default wxFrame::OnMenuSelect member uses this help string
to give help on the menu item currently under the cursor.

See the hello.cpp demo for an example of using Append dynamically to implement a file
history facility. See also wxMenu::SetLabel (page 209).

wxMenu::AppendSeparator

void AppendSeparator(void)

Adds a separator to the end of the menu. Under XView, this appears as a space.

wxMenu::Break

void Break(void)

Inserts a break in a menu, causing the next appended item to appear in a new column.

wxMenu::Check

void Check(int id, Bool flag)

If flag is TRUE, checks the given menu item, else unchecks it.

CHAPTER 9

208

wxMenu::Checked

Bool Checked(int id)

Returns TRUE if the given menu item is currently checked, FALSE otherwise.

wxMenu::Enable

void Enable(int id, Bool flag)

If flag is TRUE, enables the given menu item, else disables it (greys it). MS Windows, Motif,
XView.

wxMenu::FindItem

int FindItem(char *itemString)

Finds the menu item id for a menu item string, or -1 if none found. Any special menu codes are
stripped out of source and target strings before matching.

wxMenu::FindItemForId

wxMenuItem * FindItemForId(int itemId)

Finds the menu item object associated with the given menu item identifier, returning NULL if not
found.

wxMenu::GetHelpString

char * GetHelpString(int itemId)

Gets a temporary pointer to the help string associated with the menu item identifer (or NULL if
there is no help string or the item was not found).

wxMenu::GetLabel

char * GetLabel(int id)

Gets a temporary pointer to the label of the given menu item; copy this for long-term use. id is the
identifier given to wxMenu::Append (page 207).

wxMenu::GetTitle

char * GetTitle(void)

Gets a temporary pointer to the title of the menu.

CHAPTER 9

209

wxMenu::SetHelpString

void SetHelpString(int itemId, char *helpString)

Sets the help string associated with the menu item identifer.

wxMenu::SetLabel

void SetLabel(int id, char *label)

Sets the label of the given menu item (using the identifier used to append the item to the menu).

See the hello.cpp demo for an example of using this command to implement a file history
facility. See also wxMenu::Append (page 207).

wxMenu::SetTitle

void SetTitle(char *title)

Sets the title of the menu.

9.64. wxMenuBar: wxWindow

A menu bar is a series of menus accessible from the top of a frame. Selecting a title pulls down a
menu; selecting a menu item causes a MenuSelection message to be passed to the frame with
the menu item integer id as the only argument.

wxMenuBar::wxMenuBar

void wxMenuBar(void)

void wxMenuBar(int n, wxMenu *menus[], char *titles[])

Construct a menu bar. In the second form, the calling program must have created an array of
menus and an array of titles. Do not use the submenus again after this call.

wxMenuBar::~wxMenuBar

void ~wxMenuBar(void)

Destructor, destroying the menu bar and removing it from the parent frame (if any).

wxMenuBar::Append

void Append(wxMenu *menu, char *title)

Adds the item to the end of the menu bar. Do not use menu after this call: it will be deallocated by
wxWindows.

CHAPTER 9

210

wxMenuBar::Check

void Check(int id, Bool flag)

If flag is TRUE, checks the given menu item, else unchecks it. MS Windows, Motif only. Only use
this when the menu bar has been associated with a frame; otherwise, use the wxMenu equivalent
call.

wxMenuBar::Checked

Bool Checked(int id)

Returns TRUE if the given menu item is currently checked, FALSE otherwise.

wxMenuBar::Enable

void Enable(int id, Bool flag)

If flag is TRUE, enables the given menu item, else disables it (greys it). MS Windows, Motif only.
Only use this when the menu bar has been associated with a frame; otherwise, use the wxMenu
equivalent call.

wxMenuBar::EnableTop

void EnableTop(int pos, Bool flag)

If flag is TRUE, enables the menu at the given position, else disables it (greys it). Only use this
when the menu bar has been associated with a frame.

wxMenuBar::FindMenuItem

int FindMenuItem(char *menuString, char *itemString)

Finds the menu item id for a menu name/menu item string pair, or -1 if none found. Any special
menu codes are stripped out of source and target strings before matching.

wxMenuBar::FindItemById

wxMenuItem * FindItemById(int itemId)

Finds the menu item object associated with the given menu item identifier, returning NULL if not
found.

wxMenuBar::GetHelpString

char * GetHelpString(int itemId)

CHAPTER 9

211

Gets the help string associated with the menu item identifer (or NULL if there is no help string or
the item was not found).

wxMenuBar::GetLabel

char * GetLabel(int itemId)

Returns a temporary pointer to the label of the given menu item. Use only after the menubar has
been associated with a frame with wxFrame::SetMenuBar.

wxMenuBar::GetLabelTop

char * GetLabelTop(int pos)

Returns a temporary pointer to the label of the given top-level menu. pos is the position of a menu
on the menu bar. Use only after the menubar has been associated with a frame with
wxFrame::SetMenuBar.

wxMenuBar::SetHelpString

void SetHelpString(int itemId, char *helpString)

Sets the help string associated with the menu item identifer.

wxMenuBar::SetLabel

void SetLabel(int itemId, char *label)

Sets the label of the given menu item. Use only after the menubar has been associated with a
frame with wxFrame::SetMenuBar.

wxMenuBar::SetLabelTop

void SetLabelTop(int pos, char *label)

Sets the label of the given top-level menu. pos is the position of a menu on the menu bar. Use
only after the menubar has been associated with a frame with wxFrame::SetMenuBar.

9.65. wxMessage: wxItem

A message is a simple line of text which may be displayed in a panel. It does not respond to
mouse clicks.

wxMessage::wxMessage

void wxMessage(void)

Constructor, used for deriving classes.

CHAPTER 9

212

void wxMessage(wxPanel *panel, char *message, int x = -1, int y = -1,
 long style = 0, char *name = "message")

void wxMessage(wxPanel *panel, char *message, int x, int y,
 int x, int y, long style, char *name)

void wxMessage(wxPanel *panel, wxBitmap *bitmap, int x = -1, int y = -1,
 long style = 0, char *name = "message")

void wxMessage(wxPanel *panel, wxBitmap *bitmap, int x, int y,
 int x, int y, long style, char *name)

Creates and displays a simple text message. message is the initial value of the message.

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual message items.

wxMessage::~wxMessage

void ~wxMessage(void)

Destroys the message.

wxMessage::Create

Bool Create(wxPanel *panel, char *message, int x = -1, int y = -1,
 int width = -1, int height = -1, long style = 0, char *name = "message")

Bool Create(wxPanel *panel, wxBitmap *bitmap, int x = -1, int y = -1,
 int width = -1, int height = -1, long style = 0, char *name = "message")

Creates the message for two-step construction. Derived classes should call or replace this
function. See wxMessage::wxMessage (page 211)for further details.

9.66. wxMetaFile: wxObject

A wxMetaFile represents the MS Windows metafile object, so metafile operations have no effect
in X. In wxWindows, only sufficient functionality has been provided for copying a graphic to the
clipboard; this may be extended in a future version. Presently, the only way of creating a metafile
is to use a wxMetafileDC.

wxMetaFile::wxMetaFile

void wxMetaFile(char *filename = NULL)

Constructor. If a filename is given, the Windows disk metafile is read in. Check whether this was
performed successfully by using the wxMetaFile::Ok (page 213) member.

CHAPTER 9

213

wxMetaFile::~wxMetaFile

void ~wxMetaFile(void)

Destructor.

wxMetaFile::Ok

Bool Ok(void)

Returns TRUE if the metafile is valid.

wxMetaFile::Play

Bool Play(wxDC *dc)

Plays the metafile into the given device context, returning TRUE if successful.

wxMetaFile::SetClipboard

Bool SetClipboard(int width = 0, int height = 0)

Passes the metafile data to the clipboard. The metafile can no longer be used for anything, but
the wxMetaFile object must still be destroyed by the application.

Below is a example of metafle, metafile device context and clipboard use from the hello.cpp
example. Note the way the metafile dimensions are passed to the clipboard, making use of the
device context's ability to keep track of the maximum extent of drawing commands.

 wxMetaFileDC dc;
 if (dc.Ok())
 {
 Draw(dc, FALSE);
 wxMetaFile *mf = dc.Close();
 if (mf)
 {
 Bool success = mf->SetClipboard((int)(dc.MaxX() + 10),
(int)(dc.MaxY() + 10));
 delete mf;
 }
 }

9.67. wxMetaFileDC: wxDC

This is a type of device context that allows a metafile object to be created (Windows only), and
has most of the characteristics of a normal wxDC. The wxMetaFileDC::Close (page 214) member
must be called after drawing into the device context, to return a metafile. The only purpose for this
at present is to allow the metafile to be copied to the clipboard (see wxMetaFile (page 212)).

Adding metafile capability to an application should be easy if you already write to a wxDC; simply
pass the wxMetaFileDC to your drawing function instead. You may wish to conditionally compile

CHAPTER 9

214

this code so it is not compiled under X (although no harm will result if you leave it in).

Note that a metafile saved to disk is in standard Windows metafile format, and cannot be
imported into most applications. To make it importable, call the function
::wxMakeMetaFilePlaceable (page 336) after closing your disk-based metafile device context.

wxMetaFileDC::wxMetaFileDC

void wxMetaFileDC(char *filename = NULL)

Constructor. If no filename is passed, the metafile is created in memory.

wxMetaFileDC::~wxMetaFileDC

void ~wxMetaFileDC(void)

Destructor.

wxMetaFileDC::Close

wxMetaFile * Close(void)

This must be called after the device context is finished with. A metafile is returned, and ownership
of it passes to the calling application (so it should be destroyed explicitly).

9.68. wxMouseEvent: wxEvent

This event class contains information about mouse events, particularly events received by
canvases. See wxCanvas::OnEvent (page 63).

wxMouseEvent::controlDown

Bool controlDown

TRUE if control key is pressed down.

wxMouseEvent::leftDown

Bool leftDown

TRUE if the left mouse button is currently pressed down.

wxMouseEvent::middleDown

Bool middleDown

TRUE if the middle mouse button is currently pressed down.

CHAPTER 9

215

wxMouseEvent::rightDown

Bool rightDown

TRUE if the right mouse button is currently pressed down.

wxMouseEvent::leftDown

Bool leftDown

TRUE if the left mouse button is currently pressed down.

wxMouseEvent::shiftDown

Bool shiftDown

TRUE if shift is pressed down.

wxMouseEvent::x

float x

X-coordinate of the event.

wxMouseEvent::y

float y

Y-coordinate of the event.

wxMouseEvent::wxMouseEvent

void wxMouseEvent(WXTYPE mouseEventType)

Constructor. Valid event types are:

• wxEVENT_TYPE_ENTER_WINDOW
• wxEVENT_TYPE_LEAVE_WINDOW
• wxEVENT_TYPE_LEFT_DOWN
• wxEVENT_TYPE_LEFT_UP
• wxEVENT_TYPE_LEFT_DCLICK
• wxEVENT_TYPE_MIDDLE_DOWN
• wxEVENT_TYPE_MIDDLE_UP
• wxEVENT_TYPE_MIDDLE_DCLICK
• wxEVENT_TYPE_RIGHT_DOWN
• wxEVENT_TYPE_RIGHT_UP
• wxEVENT_TYPE_RIGHT_DCLICK
• wxEVENT_TYPE_MOTION

CHAPTER 9

216

Note that double clicks in canvases are only processed if you call wxWindow::SetDoubleClick
(page 325) with a value of TRUE.

wxMouseEvent::Button

Bool Button(int button)

Returns TRUE if the identified mouse button is changing state. Valid values of button are 1, 2 or 3
for left, middle and right buttons respectively.

Not all mice have middle buttons so a portable application should avoid this one.

wxMouseEvent::ButtonDClick

Bool ButtonDClick(int but = -1)

If the argument is omitted, this returns TRUE if the event was a mouse double click event.
Otherwise the argument specifies which double click event was generated (1, 2 or 3 for left,
middle and right buttons respectively).

Under MS Windows, a double click always follows a down-up sequence. On the other supported
platforms (WIN32, Motif, but not XView) the double click event occurs on its own. See also
wxCanvas::AllowDoubleClick (page 57).

wxMouseEvent::ButtonDown

Bool ButtonDown(int but = -1)

If the argument is omitted, this returns TRUE if the event was a mouse button down event.
Otherwise the argument specifies which button-down event was generated (1, 2 or 3 for left,
middle and right buttons respectively).

wxMouseEvent::ButtonUp

Bool ButtonUp(int but = -1)

If the argument is omitted, this returns TRUE if the event was a mouse button up event.
Otherwise the argument specifies which button-up event was generated (1, 2 or 3 for left, middle
and right buttons respectively).

wxMouseEvent::ControlDown

Bool ControlDown(void)

Returns TRUE if the control key was down at the time of the event.

wxMouseEvent::Dragging

CHAPTER 9

217

Bool Dragging(void)

Returns TRUE if this was a dragging event (motion while a button is depressed).

wxMouseEvent::Entering

Bool Entering(void)

Returns TRUE if the mouse was entering the canvas (MS Windows and Motif).

See also wxMouseEvent::Leaving (page 217).

wxMouseEvent::IsButton

Bool IsButton(void)

Returns TRUE if the event was a mouse button event (not necessarily a button down event - that
may be tested using ButtonDown).

wxMouseEvent::Leaving

Bool Leaving(void)

Returns TRUE if the mouse was leaving the canvas (MS Windows and Motif).

See also wxMouseEvent::Entering (page 217).

wxMouseEvent::LeftDClick

Bool LeftDClick(void)

Returns TRUE if the event was a left double click.

wxMouseEvent::LeftDown

Bool LeftDown(void)

Returns TRUE if the left mouse button changed to down.

wxMouseEvent::LeftIsDown

Bool LeftIsDown(void)

Returns TRUE if the left mouse button is currently down, independent of the current event type.

wxMouseEvent::LeftUp

CHAPTER 9

218

Bool LeftUp(void)

Returns TRUE if the left mouse button changed to up.

wxMouseEvent::MiddleDClick

Bool MiddleDClick(void)

Returns TRUE if the event was a middle double click.

wxMouseEvent::MiddleDown

Bool MiddleDown(void)

Returns TRUE if the middle mouse button changed to down.

wxMouseEvent::MiddleIsDown

Bool MiddleIsDown(void)

Returns TRUE if the middle mouse button is currently down, independent of the current event
type.

wxMouseEvent::MiddleUp

Bool MiddleUp(void)

Returns TRUE if the middle mouse button changed to up.

wxMouseEvent::Moving

Bool Moving(void)

Returns TRUE if this was a motion event (no buttons depressed).

wxMouseEvent::Position

void Position(float *x, float *y)

Sets *x and *y to the position at which the event occurred. If the window is a canvas, the position
is converted to logical units (according to the current mapping mode) with scrolling taken into
account. To get back to device units (for example to calculate where on the screen to place a
dialog box associated with a canvas mouse event), use wxDC::LogicalToDeviceX and
wxDC::LogicalToDeviceY.

For example, the following code calculates screen pixel coordinates from the frame position,
canvas view start (assuming the canvas is the only subwindow on the frame and therefore at the
top left of it), and the logical event position. A menu is popped up at the position where the mouse
click occurred. (Note that the application should also check that the dialog box will be visible on

CHAPTER 9

219

the screen, since the click could have occurred near the screen edge!)

float event_x, event_y;
event.Position(&event_x, &event_y);
frame->GetPosition(&x, &y);
canvas->ViewStart(&x1, &y1);
int mouse_x = (int)(canvas->GetDC()->LogicalToDeviceX(event_x + x -
x1);
int mouse_y = (int)(canvas->GetDC()->LogicalToDeviceY(event_y + y -
y1);

char *choice = wxGetSingleChoice("Menu", "Pick a node action",
 no_choices, choices, frame, mouse_x,
mouse_y);

wxMouseEvent::RightDClick

Bool RightDClick(void)

Returns TRUE if the event was a right double click.

wxMouseEvent::RightDown

Bool RightDown(void)

Returns TRUE if the right mouse button changed to down.

wxMouseEvent::RightIsDown

Bool RightIsDown(void)

Returns TRUE if the right mouse button is currently down, independent of the current event type.

wxMouseEvent::RightUp

Bool RightUp(void)

Returns TRUE if the right mouse button changed to up.

wxMouseEvent::ShiftDown

Bool ShiftDown(void)

Returns TRUE if the shift key was down at the time of the event.

9.69. wxMultiText: wxText

Members as for wxText, but allowing multiple lines of text.

The style parameter can be a bit list of the following:

CHAPTER 9

220

wxHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical
scrollbar is displayed, and lines will be wrapped. This parameter is ignored
under XView.

wxTE_READONLY The text is read-only (not XView).
wxFIXED_LENGTH Allows the values of a column of items to be left-aligned. Create an item

with this style, and pad out your labels with spaces to the same length. The item
labels will initially created with a string of identical characters, positioning all the
values at the same x-position. Then the real label is restored.

wxMultiText::GetLineLength

int GetLineLength(long lineNo)

Returns the number of characters in the given line. Windows and Motif only.

wxMultiText::GetLineText

int GetLineText(long lineNo, char *buf)

Copies the text at the given line into buf, returning the number of characters copied. Windows and
Motif only.

wxMultiText::GetNumberOfLines

long GetNumberOfLines(void)

Returns the number of lines. Windows and Motif only.

wxMultiText::GetValue

char * GetValue(void)

void GetValue(char *buffer, intbufferSize)

The first form gets a temporary pointer to the current value; copy this for long-term use. The
second form copies the value into a buffer, for situations where a lot of text is returned (more than
the capacity of the small buffer used for the first form - about 1000 characters).

wxMultiText::PositionToXY

void PositionToXY(long pos, long x, long y)

Converts index position to character and line position. Windows and Motif only.

wxMultiText::ShowPosition

void ShowPosition(long pos)

CHAPTER 9

221

Scrolls the text so that pos is visible. Windows and Motif only.

wxMultiText::XYToPosition

long XYToPosition(long x, long y)

Converts character and line position to index position. Windows and Motif only.

9.70. wxNode: wxObject

A node structure used in linked lists (see wxList (page 197)).

wxNode::Data

wxObject * Data(void)

Retrieves the client data pointer associated with the node. This will have to be cast to the correct
type.

wxNode::Next

wxNode * Next(void)

Retrieves the next node (NULL if at end of list).

wxNode::Previous

wxNode * Previous(void)

Retrieves the previous node (NULL if at start of list).

wxNode::SetData

void SetData(wxObject *data)

Sets the data associated with the node (usually the pointer will have been set when the node was
created).

9.71. wxObject

This is the root class of all wxWindows classes. It declares a virtual destructor which ensures that
destructors get called for all derived class objects where necessary.

From wxWindows 1.62, wxObject is the hub of a dynamic object creation scheme, enabling a
program to create instances of a class only knowing its string class name, and to query the class
hierarchy.

See also wxClassInfo (page 72).

CHAPTER 9

222

wxObject::__type

WXTYPE __type

OBSOLETE MEMBER. Please see the run time class information (page 370) for an alternative
type system.

Data member used for storing dynamic type information. Most wxWindows classes set this
member to an appropriate type, which may be overridden in derived classes. Optionally set this in
your constructor. The type may be checked using ::wxSubType (page 350).

Note the double underscore prefixing this name, in order to minimize clashes with application
code. There is no accessor function for this member, and its scope is public.

See also wxTypeTree (page 313).

NOTE: This typing scheme will soon become obsolete since there is now a better system using
DECLARE... and IMPLEMENT... macros to register run-time type information.

wxObject::Dump

void Dump(ostream& stream)

A virtual function that should be redefined by derived classes to allow dumping of memory states.
Currently wxWindows does not define Dump for derived classes, but programmers may wish to
use it for their own applications. Be sure to call the Dump member of the class's base class to
allow all information to be dumped.

The implementation of this function just writes the class name of the object. If DEBUG is
undefined or zero, the implementation is empty.

wxObject::GetClassInfo

wxClassInfo * GetClassInfo(void)

This virtual function is redefined for every class that requires run-time type information.

wxObject::IsKindOf

Bool IsKindOf(wxClassInfo *info)

Determines whether this class is a subclass of (or the same class as) the given class. E.g.:

 Bool tmp = obj->IsKindOf(CLASSINFO(wxFrame));

wxObject::LoadObject

istream& LoadObject(istream& stream)

CHAPTER 9

223

The basis for a future persistent storage scheme.

wxObject::SaveObject

ostream& SaveObject(istream& stream)

The basis for a future persistent storage scheme.

wxObject::operator new

void * new(size_t size, char *filename = NULL, int lineNum = 0)

The new operator is defined for debugging versions of the library only, when the identifier DEBUG
is defined and is more than zero. It takes over memory allocation, allowing wxDebugContext
operations.

wxObject::operator delete

void delete(void buf)

The delete operator is defined for debugging versions of the library only, when the identifier
DEBUG is defined and is more than zero. It takes over memory deallocation, allowing
wxDebugContext operations.

9.72. wxPageSetupData: wxObject

This class holds a variety of information related to wxPageSetupDialog (page 227).

wxPageSetupData::wxPageSetupData

void wxPageSetupData(void)

Constructor.

wxPageSetupData::~wxPageSetupData

void ~wxPageSetupData(void)

Destructor.

wxPageSetupData::EnableHelp

void EnableHelp(Bool flag)

Enables or disables the 'Help' button (Windows only).

wxPageSetupData::EnableMargins

CHAPTER 9

224

void EnableMargins(Bool flag)

Enables or disables the margin controls (Windows only).

wxPageSetupData::EnableOrientation

void EnableOrientation(Bool flag)

Enables or disables the orientation control (Windows only).

wxPageSetupData::EnablePaper

void EnablePaper(Bool flag)

Enables or disables the paper size control (Windows only).

wxPageSetupData::EnablePrinter

void EnablePrinter(Bool flag)

Enables or disables the Printer button, which invokes a printer setup dialog.

wxPageSetupData::GetPaperSize

wxPoint GetPaperSize(void)

Returns the paper size in millimetres.

wxPageSetupData::GetMarginTopLeft

wxPoint GetMarginTopLeft(void)

Returns the left (x) and top (y) margins.

wxPageSetupData::GetMarginBottomRight

wxPoint GetMarginBottomRight(void)

Returns the right (x) and bottom (y) margins.

wxPageSetupData::GetMinMarginTopLeft

wxPoint GetMinMarginTopLeft(void)

Returns the left (x) and top (y) minimum margins the user can enter (Windows only).

CHAPTER 9

225

wxPageSetupData::GetMinMarginBottomRight

wxPoint GetMinMarginBottomRight(void)

Returns the right (x) and bottom (y) minimum margins the user can enter (Windows only).

wxPageSetupData::GetOrientation

int GetOrientation(void)

Returns the orientation, which can be wxPORTRAIT or wxLANDSCAPE.

wxPageSetupData::GetDefaultMinMargins

Bool GetDefaultMinMargins(void)

Returns TRUE if the page setup dialog will take its minimum margin values from the currently
selected printer properties. Windows only.

wxPageSetupData::GetEnableMargins

Bool GetEnableMargins(void)

Returns TRUE if the margin controls are enabled (Windows only).

wxPageSetupData::GetEnableOrientation

Bool GetEnableOrientation(void)

Returns TRUE if the orientation control is enabled (Windows only).

wxPageSetupData::GetEnablePaper

Bool GetEnablePaper(void)

Returns TRUE if the paper size control is enabled (Windows only).

wxPageSetupData::GetEnablePrinter

Bool GetEnablePrinter(void)

Returns TRUE if the printer setup button is enabled.

wxPageSetupData::GetEnableHelp

Bool GetEnableHelp(void)

CHAPTER 9

226

Returns TRUE if the printer setup button is enabled.

wxPageSetupData::GetDefaultInfo

Bool GetDefaultInfo(void)

Returns TRUE if the dialog will simply return default printer information (such as orientation)
instead of showing a dialog. Windows only.

wxPageSetupData::SetPaperSize

void SetPaperSize(const wxPoint& size)

Sets the paper size in millimetres.

wxPageSetupData::SetMarginTopLeft

void GetMarginTopLeft(const wxPoint& pt)

Sets the left (x) and top (y) margins.

wxPageSetupData::SetMarginBottomRight

void SetMarginBottomRight(const wxPoint& pt)

Sets the right (x) and bottom (y) margins.

wxPageSetupData::SetMinMarginTopLeft

void SetMinMarginTopLeft(const wxPoint& pt)

Sets the left (x) and top (y) minimum margins the user can enter (Windows only).

wxPageSetupData::SetMinMarginBottomRight

void SetMinMarginBottomRight(const wxPoint& pt)

Sets the right (x) and bottom (y) minimum margins the user can enter (Windows only).

wxPageSetupData::SetOrientation

void SetOrientation(int orientation)

Sets the orientation, which can be wxPORTRAIT or wxLANDSCAPE.

CHAPTER 9

227

wxPageSetupData::SetDefaultMinMargins

void SetDefaultMinMargins(Bool flag)

Pass TRUE if the page setup dialog will take its minimum margin values from the currently
selected printer properties. Windows only.

wxPageSetupData::SetDefaultInfo

void SetDefaultInfo(Bool flag)

Pass TRUE if the dialog will simply return default printer information (such as orientation) instead
of showing a dialog. Windows only.

9.73. wxPageSetupDialog: wxDialogBox

This class represents the page setup common dialog. The page setup dialog is standard from
Windows 95 on, replacing the print setup dialog (which is retained in Windows and wxWindows
for backward compatibility). On Windows 95 and NT 4.0 and above, the page setup dialog is
native to the windowing system, otherwise it is emulated.

The page setup dialog contains controls for paper size (A4, A5 etc.), orientation (landscape or
portrait), and controls for setting left, top, right and bottom margin sizes in millimetres. The page
setup dialog does not set any global information (the exception being orientation for PostScript
printing) so you need to query the wxPageSetupData (page 223) object associated with the
dialog.

Note that the OK and Cancel buttons do not destroy the dialog; this must be done by the
application.

wxPageSetupDialog::wxPageSetupDialog

void wxPageSetupDialog(wxWindow *parent, wxPageSetupData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of page setup data, which
will be copied to the print dialog's internal data.

wxPageSetupDialog::~wxPageSetupDialog

void ~wxPageSetupDialog(void)

Destructor.

wxPageSetupDialog::GetPageSetupData

wxPageSetupData& GetPageSetupData(void)

Returns the page setup data (page 223) associated with the dialog.

CHAPTER 9

228

wxPageSetupDialog::Show

Bool Show(Bool flag)

Shows the dialog, returning TRUE if the user pressed Ok, and FALSE otherwise.

9.74. wxPanel: wxCanvas

A panel is a subwindow of a frame in which panel items can be placed to allow the user to view
and set controls. Panel items include messages, text items, list items, and check boxes. Use Fit
to fit the panel around its items.

Because wxPanel inherits from wxCanvas (in implementations that permit it, such as XView,
Motif, and Windows) it has a device context, and can be drawn on. There are some restrictions,
however:

• The following wxCanvas members cannot be used: SetScrollbars, Scroll, GetVirtualSize.
• The device context associated with wxDialogBox behaves slightly differently: drawing to

it requires enclosing code in BeginDrawing, EndDrawing calls. This is because under
Windows, dialog box device contexts are not 'retained' and settings would be lost if the
device context were retrieved and released for each drawing operations.

wxPanel::wxPanel

void wxPanel(void)

Constructor, for deriving classes.

void wxPanel(wxWindow *parent, int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "panel")

Constructor.

The parameters x, y, width and height can be omitted on construction if the position and size will
later be set (for example by a application frame's OnSize callback, or if there is only one
subwindow for the frame, in which case the subwindow fills the frame).

The style parameter may be a combination of the following, using the bitwise 'or' operator.

wxBORDER Draws a thin border around the panel.
wxUSER_COLOURS Under Windows, overrides standard control processing to allow setting of

the panel background colour.
wxVSCROLL Gives the dialog box a vertical scrollbar (XView only).

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual panels.

The parent window may be a panel in Motif and Windows, but not XView.

wxPanel::~wxPanel

void ~wxPanel(void)

CHAPTER 9

229

Destructor. Deletes any panel items before deleting the physical window.

wxPanel::Create

void Create(wxWindow *parent, int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "panel")

Used in two-step panel construction. See wxPanel::wxPanel (page 228)for further details.

wxPanel::CreateItem

wxItem * CreateItem(wxItemResource *resource, wxResourceTable *table)

Virtual function that is called by wxPanel::LoadFromResource to create an item from a resource.
Override this is if you must create items of different class from the usual ones.

wxPanel::DrawAllStaticItems

void DrawAllStaticItems(void)

Draws all the wxWindows static items associated with this panel. This is experimental code.

wxPanel::Fit

void Fit(void)

Resize the panel to just fit around the panel items. Also works for dialog boxes.

wxPanel::GetButtonFont

wxFont * GetButtonFont(void)

Get the current font for drawing panel item values.

wxPanel::GetCursor

void GetCursor(int *x, int *y)

Gets the current panel 'cursor' position, i.e. where the next panel item will be placed.

wxPanel::GetDefaultItem

wxButton * GetDefaultItem(void)

Retrieves the default button, previously set with wxButton::SetDefault (page 55).

CHAPTER 9

230

wxPanel::GetHorizontalSpacing

int GetHorizontalSpacing(void)

Gets the horizontal spacing for placing items on a panel.

wxPanel::GetBackgroundColour

wxColour * GetBackgroundColour(void)

Gets the default item background colour.

wxPanel::GetButtonColour

wxColour * GetButtonColour(void)

Gets the default item button colour.

wxPanel::GetLabelColour

wxColour * GetLabelColour(void)

Gets the default item label colour.

wxPanel::GetLabelFont

wxFont * GetLabelFont(void)

Get the current font for drawing panel item labels.

wxPanel::GetPanelDC

wxPanelDC * GetPanelDC(void)

Returns the panel device context. You may also get the device context using
wxCanvasDC::GetDC. Since wxCanvasDC and wxPanelDC offer the same interface, either call
will be adequate to get a suitable device context.

wxPanel::GetVerticalSpacing

int GetVerticalSpacing(void)

Gets the vertical spacing for placing items on a panel.

wxPanel::LoadFromResource

CHAPTER 9

231

Bool LoadFromResource(wxWindow *parent, char *name)

Loads the contents of a panel or dialog box from a wxWindows resource.

See also wxWindows resource functions (page 355) and the wxWindows resource system (page
414).

wxPanel::NewLine

void NewLine(void)

Cause the next item to be positioned at the beginning of the next line, using the current vertical
spacing. More than one new line in succession causes extra vertical spacing to be inserted.

wxPanel::OnCommand

void OnCommand(wxWindow &win, wxCommandEvent &event)

This member is called for panel items that do not have a callback function of their own. It must be
overridden when using wxWindows resources, for example.

See also wxWindows resource formats (page 414).

wxPanel::OnDefaultAction

void OnDefaultAction(wxItem *item)

Called when the user initiates the default action for a panel or dialog box, for example by double
clicking on a listbox. itemis the panel item which caused the default action.

The default behaviour for this member is to either send a double click event to the item if it is a
listbox, or to retrieve the default button for the panel, and send it a command event as if the user
had clicked on the button. This gives default listbox double-click behaviour under Motif and MS
Windows. The default code is as follows:

void wxbPanel::OnDefaultAction(wxItem *initiatingItem)
{
 if (initiatingItem->IsKindOf(CLASSINFO(wxListBox)) &&
 initiatingItem.callback)
 {
 wxListBox *lbox = (wxListBox *)initiatingItem;
 wxCommandEvent event(wxEVENT_TYPE_LISTBOX_DCLICK_COMMAND);
 event.commandInt = -1;
 if ((lbox->GetWindowStyleFlag() & wxLB_SINGLE) ||
 (lbox->GetSelectionMode() == wxSINGLE))
 {
 event.commandString = copystring(lbox->GetStringSelection());
 event.commandInt = lbox->GetSelection();
 event.clientData =
 lbox->wxListBox::GetClientData(event.commandInt);
 }
 event.eventObject = lbox;

CHAPTER 9

232

 lbox->ProcessCommand(event);

 if (event.commandString)
 delete[] event.commandString;
 return;
 }

 wxButton *but = GetDefaultItem();
 if (but)
 {
 wxCommandEvent event(wxEVENT_TYPE_BUTTON_COMMAND);
 but->Command(event);
 }
}

wxPanel::OnEvent

void OnEvent(wxMouseEvent & event)

Called when the panel receives a mouse event. The default implementation manages panel item
dragging and sizing if in user-interface edit mode. It also sends panel mouse clicks to the
application-overridable member functions OnLeftClick and OnRightClick, again only in user-
interface edit mode.

See also wxWindow::SetUserEditMode (page 327).

wxPanel::OnItemEvent

void OnItemEvent(wxItem * item, wxMouseEvent & event)

Called in user-interface edit mode when the item receives a mouse event. The default
implementation manages panel item dragging and sizing.

See also wxWindow::SetUserEditMode (page 327).

wxPanel::OnItemLeftClick

void OnItemLeftClick(int x, int y, int keys)

Called in user-interface edit mode when the user left-clicks on a panel item. The coordinates
(relative to the item) and a flag indicating shift and control key status are passed. keys is a bit list
of wxKEY_SHIFT and wxKEY_CTRL.

See also wxWindow::SetUserEditMode (page 327).

wxPanel::OnItemMove

void OnItemMove(wxItem * item, int x, int y)

CHAPTER 9

233

Called in user-interface edit mode when the item has been moved by the user.

See also wxWindow::SetUserEditMode (page 327).

wxPanel::OnItemRightClick

void OnItemRightClick(int x, int y, int keys)

Called in user-interface edit mode when the user right-clicks on a panel item. The coordinates
(relative to the item) and a flag indicating shift and control key status are passed. keys is a bit list
of wxKEY_SHIFT and wxKEY_CTRL.

See also wxWindow::SetUserEditMode (page 327).

wxPanel::OnItemSize

void OnItemSize(wxItem * item, int width, int height)

Called in user-interface edit mode when the item has been resized by the user.

See also wxWindow::SetUserEditMode (page 327).

wxPanel::OnLeftClick

void OnLeftClick(int x, int y, int keys)

Called in user-interface edit mode when the user left-clicks on the panel background. The
coordinates and a flag indicating shift and control key status are passed. keys is a bit list of
wxKEY_SHIFT and wxKEY_CTRL.

See also wxWindow::SetUserEditMode (page 327).

wxPanel::OnRightClick

void OnRightClick(int x, int y, int keys)

Called in user-interface edit mode when the user right-clicks on the panel background. The
coordinates and a flag indicating shift and control key status are passed. keys is a bit list of
wxKEY_SHIFT and wxKEY_CTRL.

See also wxWindow::SetUserEditMode (page 327).

wxPanel::OnPaint

void OnPaint(void)

Sent to the panel when it receives an expose event. If you wish to drawn on the panel, you may
derive your own class to handle this message.

CHAPTER 9

234

The standard wxPanel::OnPaint implementation contains code to draw custom static items on the
panel, and also to draw selection handles for panel items if necessary. If you wish to use this
functionality, call wxPanel::OnPaint from your own OnPaint handler, or call the individual
DrawAllStaticItems and PaintSelectionHandles functions.

wxPanel::PaintSelectionHandles

void PaintSelectionHandles(void)

Paints the selection handles for panel items if user interface editing mode is on. This function is
called automatically by the default wxPanel::OnPaint handler.

See wxWindow::SetUserEditMode (page 327).

wxPanel::SetHorizontalSpacing

void SetHorizontalSpacing(int sp)

Sets the horizontal spacing for placing items on a panel.

wxPanel::SetLabelPosition

void SetLabelPosition(int position)

Determines the current method of placing labels on panel items: if position is wxHORIZONTAL,
labels are placed to the left of the item value. If position is wxVERTICAL, the label is placed
above the item value. The default behaviour is to have horizontal label placing.

Under MS Windows, this function words for wxText, wxChoice and wxListBox. Under XView,
absolute positioning must be used for the wxVERTICAL position to work in some cases. This is
because of some strange behaviour in XView where setting a horizontal layout orientation but a
vertical label position causes items after list box to appear too low on the panel. So, where it is
necessary to have vertical labels, use absolute positioning where results are not as expected.

wxPanel::SetBackgroundColour

void SetBackgroundColour(wxColour& colour)

Specifies the default colour for drawing panel item backgrounds (Motif and Windows).

wxPanel::SetButtonColour

void SetButtonColour(wxColour& colour)

Specifies the default colour for drawing value text (Motif and Windows). wxButton items do not
respond to this setting under Windows.

wxPanel::SetButtonFont

CHAPTER 9

235

void SetButtonFont(wxFont *font)

Specifies the default font for drawing panel item values (Motif and Windows).

wxPanel::SetHorizontalSpacing

void SetHorizontalSpacing(int sp)

Sets the horizontal spacing for placing items on a panel.

wxPanel::SetLabelColour

void SetLabelColour(wxColour& colour)

Specifies the default colour for drawing panel item labels (Motif and Windows).

wxPanel::SetLabelFont

void SetLabelFont(wxFont *font)

Specifies the font for drawing panel item labels (Motif and Windows).

wxPanel::SetVerticalSpacing

void SetVerticalSpacing(int sp)

Sets the vertical spacing for placing items on a panel.

wxPanel::Tab

void Tab(int pixels)

Tabs by the given number of pixels.

9.75. wxPanelDC: wxDC

A panel device context is automatically created when a panel or dialog box is created. It can be
retrieved from a panel with wxCanvas::GetDC (page 61) orwxPanel::GetPanelDC (page 230) and
then drawn into. See wxDC (page 108) for further information on device contexts.

9.76. wxPathList: wxList

The path list is a convenient way of storing a number of directories, and when presented with a
filename without a directory, searching for an existing file in those directories. Storing the
filename only in an application's files and using a locally-defined list of directories makes the
application and its files more portable.

Use the FileNameFromPath global function to extract the filename from the path.

CHAPTER 9

236

wxPathList::wxPathList

void wxPathList(void)

Constructor.

wxPathList::AddEnvList

void AddEnvList(char *env_variable)

Finds the value of the given environment variable, and adds all paths to the path list. Useful for
finding files in the PATH variable, for example.

wxPathList::Add

void Add(char *path)

Adds the given directory to the path list, but does not check if the path was already on the list
(use wxPathList::Member) for this).

wxPathList::EnsureFileAccessible

void EnsureFileAccessible(char *filename)

Given a full filename (with path), ensures that files in the same path can be accessed using the
pathlist. It does this by stripping the filename and adding the path to the list if not already there.

wxPathList::FindValidPath

char * FindValidPath(char *file)

Searches for a full path for an existing file by appending file to successive members of the path
list. If the file exists, a temporary pointer to the full path is returned.

wxPathList::Member

Bool Member(char *file)

TRUE if the path is in the path list (ignoring case).

9.77. wxPen: wxObject

A pen is a drawing tool for drawing outlines. It is used for drawing lines and painting the outline of
rectangles, ellipses, etc. It has a colour, a width and a style. On a monochrome display, the
default behaviour is to show all non-white pens as black. To change this, set the Colour member
of the device context to TRUE, and select appropriate colours.

CHAPTER 9

237

The style may be one of wxSOLID, wxDOT, wxLONG_DASH, wxSHORT_DASH and
wxDOT_DASH. The names of these styles should be self explanatory.

Do not initialize objects on the stack before the program commences, since other required
structures may not have been set up yet. Instead, define global pointers to objects and create
them in OnInit or when required.

An application may wish to dynamically create pens with different characteristics, and there is the
consequent danger that a large number of duplicate pens will be created. Therefore an
application may wish to get a pointer to a pen by using the global list of pens wxThePenList, and
calling the member function FindOrCreatePen. See the entry for wxPenList (page 239).

wxPen::wxPen

void wxPen(void)

void wxPen(wxColour&colour, int width, int style)

void wxPen(char *colour_name, int width, int style)

Constructs a pen, uninitialized, initialized with an RGB colour, a width and a style, or initialized
using a colour name, a width and a style. If the named colour form is used, an appropriate
wxColour structure is found in the colour database.

style may be one of wxSOLID, wxDOT, wxLONG_DASH, wxSHORT_DASH and wxDOT_DASH.

wxPen::~wxPen

void ~wxPen(void)

Destructor, destroying the pen. Note that pens should very rarely be deleted since windows may
contain pointers to them. All pens will be deleted when the application terminates.

If you have to delete the pen (for example, you are creating a lot of them), then call
wxDC::SetPen (page 119) with a NULL argument to ensure that the old pen is restored, and the
current pen is selected out of the device context.

wxPen::GetCap

int GetCap(void)

Returns the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING and
wxCAP_BUTT. The default is wxCAP_ROUND.

wxPen::GetColour

wxColour& GetColour(void)

Returns a reference to the pen colour.

CHAPTER 9

238

wxPen::GetDashes

int GetDashes(wxDash **dashes)

Gets an array of dashes (defined as char in X, DWORD under Windows).dashes is a pointer to
the array (not allocated by the application). The function returns the number of dashes associated
with this pen.

wxPen::GetJoin

int GetJoin(void)

Returns the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and
wxJOIN_MITER. The default is wxJOIN_ROUND.

wxPen::GetStipple

wxBitmap * GetStipple(void)

Gets the stipple bitmap.

wxPen::GetStyle

int GetStyle(void)

Returns the pen style.

wxPen::GetWidth

int GetWidth(void)

Returns the pen width.

wxPen::SetCap

void SetCap(intcap_style)

Sets the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING and
wxCAP_BUTT. The default is wxCAP_ROUND.

wxPen::SetColour

void SetColour(wxColour &colour)

void SetColour(char *colour_name)

void SetColour(int red, int green, int blue)

CHAPTER 9

239

The pen's colour is changed to the given colour.

wxPen::SetDashes

void SetDashes(int n, wxDash *dashes)

Associates an array of pointers to dashes (defined as char in X, DWORD under Windows) with
the pen. The array is not deallocated by wxPen, but neither must it be deallocated by the calling
application until the pen is deleted or this function is called with a NULL array.

Sorry, I don't yet have information as to how the dashes work.

wxPen::SetJoin

void SetJoin(intjoin_style)

Sets the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and
wxJOIN_MITER. The default is wxJOIN_ROUND.

wxPen::SetStipple

void SetStipple(wxBitmap * stipple)

Sets the bitmap for stippling.

wxPen::SetStyle

void SetStyle(int style)

Set the pen style (wxSOLID or wxTRANSPARENT).

wxPen::SetWidth

void SetWidth(int width)

Set the pen width.

9.78. wxPenList: wxList

A pen list is a list containing all pens which have been created. There is only one instance of this
class: wxThePenList. Use this object to search for a previously created pen of the desired type
and create it if not already found. In some windowing systems, the pen may be a scarce
resource, so it is best to reuse old resources if possible. When an application finishes, all pens
will be deleted and their resources freed, eliminating the possibility of 'memory leaks'.

wxPenList::wxPenList

void wxPenList(void)

CHAPTER 9

240

Constructor. The application should not construct its own pen list: use the object pointer
wxThePenList.

wxPenList::AddPen

void AddPen(wxPen *pen)

Used by wxWindows to add a pen to the list, called in the pen constructor.

wxPenList::FindOrCreatePen

wxPen * FindOrCreatePen(wxColour *colour, int width, int style)

wxPen * FindOrCreatePen(char *colour_name, int width, int style)

Finds a pen of the given specification, or creates one and adds it to the list.

wxPenList::RemovePen

void RemovePen(wxPen *pen)

Used by wxWindows to remove a pen from the list.

9.79. wxPoint: wxObject

A wxPoint is a useful data structure for graphics operations. It simply contains floating point x
and y members. See also wxIntPoint (page 191) for an integer version.

wxPoint::wxPoint

void wxPoint(void)

void wxPoint(float x, float y)

Create a point.

float x

float y

Members of the wxPoint object.

9.80. wxPostScriptDC: wxDC

This defines the wxWindows Encapsulated PostScript device context, which can write PostScript
files on any platform. See wxDC (page 108) for descriptions of the member functions.

wxPostScriptDC::wxPostScriptDC

CHAPTER 9

241

void wxPostScriptDC(char *output, Bool interactive = TRUE,
 wxWindow *parent)

Constructor. output is an optional file for printing to, and if interactive is TRUE a dialog box will be
displayed for adjusting various parameters. parent is the parent of the printer dialog box.

Use the Ok member to test whether the constructor was successful in creating a useable device
context.

See Printer settings (page 338) for functions to set and get PostScript printing settings.

wxPostScriptDC::GetStream

ostream * GetStream(void)

Returns the stream currently being used to write PostScript output. Use this to insert any
PostScript code that is outside the scope of wxPostScriptDC.

9.81. wxPreviewCanvas: wxCanvas

A preview canvas is the default canvas used by the print preview system to display the preview.

See also wxPreviewFrame (page 244), wxPreviewControlBar (page 241),wxPrintPreview (page
253).

wxPreviewCanvas::wxPreviewCanvas

void wxPreviewCanvas(wxPrintPreview *preview, wxWindow *parent, int x = -1, int y = -1,
 int width = -1, int height = -1,
 long style = 0, char *name = "canvas")

Constructor.

wxPreviewCanvas::~wxPreviewCanvas

void ~wxPreviewCanvas(void)

Destructor.

wxPreviewCanvas::OnPaint

void OnPaint(void)

Calls wxPrintPreview::PaintPage to refresh the canvas.

9.82. wxPreviewControlBar: wxPanel

This is the default implementation of the preview control bar, a panel with buttons and a zoom
control. You can derive a new class from this and override some or all member functions to
change the behaviour and appearance; or you can leave it as it is.

CHAPTER 9

242

See also wxPreviewFrame (page 244), wxPreviewCanvas (page 241),wxPrintPreview (page
253).

wxPreviewControlBar::buttonFlags

long buttonFlags

Protected data member, containing the button flags (see the constructor for details).

wxPreviewControlBar::buttonFont

static wxFont * buttonFont

Protected data member, pointing to the font used for the buttons.

wxPreviewControlBar::closeButton

wxButton * closeButton

Protected data member, pointing to the close button.

wxPreviewControlBar::nextPageButton

wxButton * nextPageButton

Protected data member, pointing to the next page button.

wxPreviewControlBar::previousPageButton

wxButton * previousPageButton

Protected data member, pointing to the previous page button.

wxPreviewControlBar::printPreview

wxPrintPreview * printPreview

Protected data member, pointing to the associated print preview object.

wxPreviewControlBar::zoomControl

wxChoice * zoomControl

Protected data member, pointing to the zoom control.

CHAPTER 9

243

wxPreviewControlBar::wxPreviewControlbar

void wxPreviewControlBar(wxPrintPreview *preview, long buttons, wxWindow *parent, int x
= -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "panel")

Constructor.

The buttons parameter may be a combination of the following, using the bitwise 'or' operator.

wxPREVIEW_PRINT Create a print button.
wxPREVIEW_NEXT Create a next page button.
wxPREVIEW_PREVIOUS Create a previous page button.
wxPREVIEW_ZOOM Create a zoom control.
wxPREVIEW_DEFAULT Equivalent to a combination of wxPREVIEW_PREVIOUS,

wxPREVIEW_NEXT and wxPREVIEW_ZOOM.

wxPreviewControlBar::~wxPreviewControlBar

void ~wxPreviewControlBar(void)

Destructor.

wxPreviewControlBar::CreateButtons

void CreateButtons(void)

Creates buttons, according to value of the button style flags.

wxPreviewControlBar::GetPrintPreview

wxPrintPreview * GetPrintPreview(void)

Gets the print preview object associated with the control bar.

wxPreviewControlBar::GetZoomControl

int GetZoomControl(void)

Gets the current zoom setting in percent.

wxPreviewControlBar::OnPaint

void OnPaint(void)

Draws a black border on the bottom of the control.

CHAPTER 9

244

wxPreviewControlBar::SetZoomControl

void SetZoomControl(int percent)

Sets the zoom control.

9.83. wxPreviewFrame: wxFrame

This class provides the default method of managing the print preview interface. Member functions
may be overridden to replace functionality, or the class may be used without derivation.

See also wxPreviewCanvas (page 241), wxPreviewControlBar (page 241),wxPrintPreview (page
253).

wxPreviewFrame::controlBar

wxPreviewControlBar * controlBar

Protected data member, pointing to the preview control bar.

wxPreviewFrame::previewCanvas

wxCanvas * previewCanvas

Protected data member, pointing to the preview canvas.

wxPreviewFrame::printPreview

wxPrintPreview * printPreview

Protected data member, pointing to the print preview object.

wxPreviewFrame::wxPreviewFrame

void wxPreviewFrame(wxPrintPreview *preview, wxFrame *parent, char *title, int x = -1, int y
= -1,
 int width = -1, int height = -1,
 long style = wxSDI | wxDEFAULT_FRAME, char *name = "frame")

Constructor. Pass a print preview object plus other normal frame arguments.

wxPreviewFrame::~wxPreviewFrame

void ~wxPreviewFrame(void)

Destructor.

wxPreviewFrame::CreateControlBar

CHAPTER 9

245

void CreateControlBar(void)

Creates a wxPreviewControlBar. Override this function to allow a user-defined preview control
bar object to be created.

wxPreviewFrame::CreateCanvas

void CreateCanvas(void)

Creates a wxPreviewCanvas. Override this function to allow a user-defined preview canvas
object to be created.

wxPreviewFrame::Initialize

void Initialize(void)

Creates the preview canvas and control bar, and calls wxWindow::MakeModal(TRUE) to disable
other top-level windows in the application.

This function should be called by the application prior to showing the frame.

wxPreviewFrame::OnClose

Bool OnClose(void)

Enables the other frames in the application, and deletes the print preview object, implicitly
deleting any printout objects associated with the print preview object.

9.84. wxPrintData: wxObject

This class holds a variety of information related to print dialogs.

wxPrintData::wxPrintData

void wxPrintData(void)

Constructor.

wxPrintData::~wxPrintData

void ~wxPrintData(void)

Destructor.

wxPrintData::EnableHelp

void EnableHelp(Bool flag)

CHAPTER 9

246

Enables or disables the 'Help' button.

wxPrintData::EnablePageNumbers

void EnablePageNumbers(Bool flag)

Enables or disables the 'Page numbers' controls.

wxPrintData::EnablePrintToFile

void EnablePrintToFile(Bool flag)

Enables or disables the 'Print to file' checkbox.

wxPrintData::EnableSelection

void EnableSelection(Bool flag)

Enables or disables the 'Selection' radio button.

wxPrintData::GetAllPages

Bool GetAllPages(void)

Returns TRUE if the user requested that all pages be printed.

wxPrintData::GetCollate

Bool GetCollate(void)

Returns TRUE if the user requested that the document(s) be collated.

wxPrintData::GetFromPage

int GetFromPage(void)

Returns the from page number, as entered by the user.

wxPrintData::GetMaxPage

int GetMaxPage(void)

Returns the maximum page number.

wxPrintData::GetMinPage

CHAPTER 9

247

int GetMinPage(void)

Returns the minimum page number.

wxPrintData::GetNoCopies

int GetNoCopies(void)

Returns the number of copies requested by the user.

wxPrintData::GetToPage

int GetToPage(void)

Returns the to page number, as entered by the user.

wxPrintData::SetCollate

void SetCollate(Bool flag)

Sets the 'Collate' checkbox to TRUE or FALSE.

wxPrintData::SetFromPage

void SetFromPage(int page)

Sets the from page number.

wxPrintData::SetMaxPage

void SetMaxPage(int page)

Sets the maximum page number.

wxPrintData::SetMinPage

void SetMinPage(int page)

Sets the minimum page number.

wxPrintData::SetNoCopies

void SetNoCopies(int n)

Sets the default number of copies to be printed out.

CHAPTER 9

248

wxPrintData::SetPrintToFile

void SetPrintToFile(Bool flag)

Sets the 'Print to file' checkbox to TRUE or FALSE.

wxPrintData::SetSetupDialog

void SetSetupDialog(Bool flag)

Determines whether the dialog to be shown will be the Print dialog (pass FALSE) or Print Setup
dialog (pass TRUE).

wxPrintData::SetToPage

void SetToPage(int page)

Sets the to page number.

9.85. wxPrintDialog: wxDialogBox

See also Overview (page 387)

This class represents the print and print setup common dialogs. You may obtain a wxPrinterDC
(page 250) device context from a successfully dismissed print dialog.

wxPrintDialog::wxPrintDialog

void wxPrintDialog(wxWindow *parent, wxPrintData *data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of print data, which will be
copied to the print dialog's print data.

wxPrintDialog::~wxPrintDialog

void ~wxPrintDialog(void)

Destructor. If wxPrintDialog::GetPrintDC has not been called, the device context obtained by the
dialog (if any) will be deleted.

wxPrintDialog::GetPrintData

wxPrintData& GetPrintData(void)

Returns the print data (page 245) associated with the print dialog.

wxPrintDialog::GetPrintDC

CHAPTER 9

249

wxDC * GetPrintDC(void)

Returns the device context created by the print dialog, if any. When this function has been called,
the ownership of the device context is transferred to the application, so it must then be deleted
explicitly.

wxPrintDialog::Show

Bool Show(Bool flag)

Shows the dialog, returning TRUE if the user pressed Ok, and FALSE otherwise. After this
function is called, a device context may be retrievable using wxPrintDialog::GetDC.

9.86. wxPrinter: wxObject

See also Printing framework overview (page 377)

This class represents the Windows or PostScript printer, and is the vehicle through which printing
may be launched by an application. Printing can also be achieved through using of lower
functions and classes, but this and associated classes provide a more convenient and general
method of printing.

See also wxPrinterDC (page 250), wxPrintDialog (page 248), wxPrintout (page 251),
wxPrintPreview (page 253).

wxPrinter::wxPrinter

void wxPrinter(wxPrintData *data = NULL)

Constructor. Pass an optional pointer to a block of print data, which will be copied to the printer
object's print data.

wxPrinter::~wxPrinter

void ~wxPrinter(void)

Destructor.

wxPrinter::Abort

Bool Abort(void)

Returns TRUE if the user has aborted the print job.

wxPrinter::CreateAbortWindow

void CreateAbortWindow(wxWindow *parent, wxPrintout *printout)

Creates the default printing abort window, with a cancel button.

CHAPTER 9

250

wxPrinter::GetPrintData

wxPrintData& GetPrintData(void)

Returns the print data (page 245) associated with the printer object.

wxPrinter::Print

Bool Print(wxWindow *parent, wxPrintout *printout, Bool prompt=TRUE)

Starts the printing process. Provide a parent window, a user-defined wxPrintout object which
controls the printing of a document, and whether the print dialog should be invoked first.

Print could return FALSE if there was a problem initializing the printer device context (current
printer not set, for example).

wxPrinter::PrintDialog

Bool PrintDialog(wxWindow *parent)

Invokes the print dialog.

wxPrinter::ReportError

void ReportError(wxWindow *parent, wxPrintout *printout, char *message)

Default error-reporting function.

wxPrinter::Setup

void Setup(wxWindow *parent)

Invokes the print setup dialog.

9.87. wxPrinterDC: wxDC

A printer device context is specific to Windows, and allows access to any printer with a Windows
driver. See wxDC (page 108) for further information on device contexts, and wxDC::GetSize
(page 114) for advice on achieving the correct scaling for the page.

wxPrinterDC::wxPrinterDC

void wxPrinterDC(char *driver, char *device, char *output, Bool interactive = TRUE)

Constructor. With three NULLs, the default printer dialog is displayed. device indicates the type
of printer and outputis an optional file for printing to. The driver parameter is currently unused.
Use the Ok member to test whether the constructor was successful in creating a useable device

CHAPTER 9

251

context.

9.88. wxPrintout: wxObject

See also Printing framework overview (page 377)

This class encapsulates the functionality of printing out an application document. A new class
must be derived and members overridden to respond to calls such as OnPrintPage and
HasPage. Instances of this class are passed to wxPrinter::Print or a wxPrintPreview object to
initiate printing or previewing.

See also wxPrinterDC (page 250), wxPrintDialog (page 248), wxPrinter (page 249),
wxPrintPreview (page 253).

wxPrintout::wxPrintout

void wxPrintout(char *title = "Printout")

Constructor. Pass an optional title argument (currently unused).

wxPrintout::~wxPrintout

void ~wxPrintout(void)

Destructor.

wxPrintout::GetDC

wxDC * GetDC(void)

Returns the device context associated with the printout (given to the printout at start of printing or
previewing). This will be a wxPrinterDC if printing under Windows, a wxPostScriptDC if printing on
other platforms, and a wxMemoryDC if previewing.

wxPrintout::GetPageInfo

void GetPageInfo(int *minPage, int *maxPage, int *pageFrom, int *pageTo)

Called by the framework to obtain information from the application about minimum and maximum
page values that the user can select, and the required page range to be printed. By default this
returns 1, 32000 for the page minimum and maximum values, and 1, 1 for the required page
range.

If minPage is zero, the page number controls in the print dialog will be disabled.

wxPrintout::GetPageSizeMM

void GetPageSizeMM(int *w, int *h)

Returns the size of the printer page in millimetres.

CHAPTER 9

252

wxPrintout::GetPageSizePixels

void GetPageSizePixels(int *w, int *h)

Returns the size of the printer page in pixels. These may not be the same as the values returned
from wxDC::GetSize (page 114) if the printout is being used for previewing, since in this case, a
memory device context is used, using a bitmap size reflecting the current preview zoom. The
application must take this discrepancy into account if previewing is to be supported.

wxPrintout::GetPPIPrinter

void GetPPIPrinter(int *w, int *h)

Returns the number of pixels per logical inch of the printer device context. Dividing the printer PPI
by the screen PPI can give a suitable scaling factor for drawing text onto the printer. Remember
to multiply this by a scaling factor to take the preview DC size into account.

wxPrintout::GetPPIScreen

void GetPPIScreen(int *w, int *h)

Returns the number of pixels per logical inch of the screen device context. Dividing the printer
PPI by the screen PPI can give a suitable scaling factor for drawing text onto the printer.
Remember to multiply this by a scaling factor to take the preview DC size into account.

wxPrintout::HasPage

Bool HasPage(int pageNum)

Should be overriden to return TRUE if the document has this page, or FALSE if not. Returning
FALSE signifies the end of the document. By default, HasPage behaves as if the document has
only one page.

wxPrintout::IsPreview

Bool IsPreview(void)

Returns TRUE if the printout is currently being used for previewing.

wxPrintout::OnBeginDocument

Bool OnBeginDocument(int startPage, int endPage)

Called by the framework at the start of document printing. Return FALSE from this function
cancels the print job. OnBeginDocument is called once for every copy printed.

The base wxPrintout::OnBeginDocument must be called (and the return value checked) from
within the overriden function, since it calls wxDC::StartDoc.

CHAPTER 9

253

wxPrintout::OnEndDocument

void OnEndDocument(void)

Called by the framework at the end of document printing. OnEndDocument is called once for
every copy printed.

The base wxPrintout::OnEndDocument must be called from within the overriden function, since it
calls wxDC::EndDoc.

wxPrintout::OnBeginPrinting

void OnBeginPrinting(void)

Called by the framework at the start of printing. OnBeginPrinting is called once for every print job
(regardless of how many copies are being printed).

wxPrintout::OnEndPrinting

void OnEndPrinting(void)

Called by the framework at the end of printing. OnEndPrinting is called once for every print job
(regardless of how many copies are being printed).

wxPrintout::OnPreparePrinting

void OnPreparePrinting(void)

Called once by the framework before any other demands are made of the wxPrintout object. This
gives the object an opportunity to calculate the number of pages in the document, for example.

wxPrintout::OnPrintPage

Bool OnPrintPage(int pageNum)

Called by the framework when a page should be printed. Returning FALSE cancels the print job.
The application can use wxPrintout::GetDC to obtain a device context to draw on.

9.89. wxPrintPreview: wxObject

See also Printing framework overview (page 377)

Objects of this class manage the print preview process. The object is passed a wxPrintout object,
and the wxPrintPreview object itself is passed to a wxPreviewFrame object. Previewing is started
by initializing and showing the preview frame. Unlike wxPrinter::Print, flow of control returns to the
application immediately after the frame is shown.

See also wxPrinterDC (page 250), wxPrintDialog (page 248), wxPrintout (page 251), wxPrinter
(page 249), wxPreviewCanvas (page 241), wxPreviewControlBar (page 241), wxPreviewFrame

CHAPTER 9

254

(page 244).

wxPrintPreview::wxPrintPreview

void wxPrintPreview(wxPrintout *printout, wxPrintout *printoutForPrinting,wxPrintData
*data=NULL)

Constructor. Pass a printout object, an optional printout object to be used for actual printing, and
the address of an optional block of printer data, which will be copied to the print preview object's
print data.

If printoutForPrinting is non-NULL, a Print... button will be placed on the preview frame so that
the user can print directly from the preview interface.

Do not explicitly delete the printout objects once this destructor has been called, since they will be
deleted in the wxPrintPreview constructor. The same does not apply to the data argument.

Test the Ok member to check whether the wxPrintPreview object was created correctly. Ok could
return FALSE if there was a problem initializing the printer device context (current printer not set,
for example).

wxPrintPreview::~wxPrintPreview

void ~wxPrinter(void)

Destructor. Deletes both print preview objects, so do not destroy these objects in your application.

wxPrintPreview::DrawBlankPage

Bool DrawBlankPage(wxCanvas *canvas)

Draws a representation of the blank page into the canvas. Used internally.

wxPrintPreview::GetCanvas

wxCanvas * GetCanvas(void)

Gets the canvas used for displaying the print preview image.

wxPrintPreview::GetCurrentPage

int GetCurrentPage(void)

Gets the page currently being previewed.

wxPrintPreview::GetFrame

wxFrame * GetFrame(void)

CHAPTER 9

255

Gets the frame used for displaying the print preview canvas and control bar.

wxPrintPreview::GetMaxPage

int GetMaxPage(void)

Returns the maximum page number.

wxPrintPreview::GetMinPage

int GetMinPage(void)

Returns the minimum page number.

wxPrintPreview::GetPrintData

wxPrintData& GetPrintData(void)

Returns a reference to the internal print data.

wxPrintPreview::GetPrintout

wxPrintout * GetPrintout(void)

Gets the preview printout object associated with the wxPrintPreview object.

wxPrintPreview::GetPrintoutForPrinting

wxPrintout * GetPrintoutForPrinting(void)

Gets the printout object to be used for printing from within the preview interface, or NULL if none
exists.

wxPrintPreview::Ok

Bool Ok(void)

Returns TRUE if the wxPrintPreview is valid, FALSE otherwise. It could return FALSE if there was
a problem initializing the printer device context (current printer not set, for example).

wxPrintPreview::PaintPage

Bool PaintPage(wxCanvas *canvas)

This refreshes the preview canvas with the preview image. It must be called from the preview
canvas's OnPaint member.

CHAPTER 9

256

The implementation simply blits the preview bitmap onto the canvas, creating a new preview
bitmap if none exists.

wxPrintPreview::Print

Bool Print(Bool prompt)

Invokes the print process using the second wxPrintout object supplied in the wxPrintPreview
constructor. Will normally be called by the Print... panel item on the preview frame's control bar.

wxPrintPreview::RenderPage

Bool RenderPage(int pageNum)

Renders a page into a wxMemoryDC. Used internally by wxPrintPreview.

wxPrintPreview::SetCanvas

void SetCanvas(wxCanvas *canvas)

Sets the canvas to be used for displaying the print preview image.

wxPrintPreview::SetCurrentPage

void SetCurrentPage(int pageNum)

Sets the current page to be previewed.

wxPrintPreview::SetFrame

void SetFrame(wxFrame *frame)

Sets the frame to be used for displaying the print preview canvas and control bar.

wxPrintPreview::SetPrintout

void SetPrintout(wxPrintout *printout)

Associates a printout object with the wxPrintPreview object.

wxPrintPreview::SetZoom

void SetZoom(int percent)

Sets the percentage preview zoom, and refreshes the preview canvas accordingly.

9.90. wxQueryCol: wxObject

CHAPTER 9

257

See also Overview (page 395)

Every ODBC data column is represented by an instance of this class.

wxQueryCol::wxQueryCol

void wxQueryCol(void)

Constructor. Sets the attributes of the column to default values.

wxQueryCol::~wxQueryCol

void ~wxQueryCol(void)

Destructor. Deletes the wxQueryField list.

wxQueryCol::BindVar

void * BindVar(void *v, long sz)

Binds a user-defined variable to a column. Whenever a column is bound to a variable, it will
automatically copy the data of the current field into this buffer (to a maximum of sz bytes).

wxQueryCol::FillVar

void FillVar(int recnum)

Fills the bound variable with the data of the field recnum. When no variable is bound to the
column nothing will happen.

wxQueryCol::GetData

void * GetData(int field)

Returns a pointer to the data of the field.

wxQueryCol::GetName

char * GetName(void)

Returns the name of a column.
wxQueryCol::GetType

short GetType(void)

Returns the data type of a column.

CHAPTER 9

258

wxQueryCol::GetSize

long GetSize(int field)

Return the size of the data of the field field.

wxQueryCol::IsRowDirty

Bool IsRowDirty(int field)

Returns TRUE if the given field has been changed, but not saved.

wxQueryCol::IsNullable

Bool IsNullable(void) Returns TRUE if a column may contain no data.

wxQueryCol::AppendField

void AppendField(void *buf, long len)

Appends a wxQueryField instance to the field list of the column. len bytes from buf will be copied
into the field's buffer.

wxQueryCol::SetData

Bool SetData(int field, void *buf, long len)

Sets the data of a field. This function finds the wxQueryField corresponding to field and calls
wxQueryField::SetData with buf and len arguments.

wxQueryCol::SetName

void SetName(char *name)

Sets the name of a column. Only useful when creating new tables or appending columns.
wxQueryCol::SetNullable

void SetNullable(Bool nullable)

Determines whether a column may contain no data. Only useful when creating new tables or
appending columns.

wxQueryCol::SetFieldDirty

void SetFieldDirty(int field, Bool dirty = TRUE)

Sets the dirty tag of a given field.

CHAPTER 9

259

wxQueryCol::SetType

void SetType(short type) Sets the data type of a column. Only useful when creating new tables
or appending columns.

9.91. wxQueryField: wxObject

See also Overview (page 395)

Represents the data item for one or several columns.

wxQueryField::wxQueryField

void wxQueryField(void)

Constructor. Sets type and size of the field to default values.
wxQueryField::~wxQueryField

void ~wxQueryField(void)

Destructor. Frees the associated memory depending on the field type.

wxQueryField::AllocData

Bool AllocData(void)

Allocates memory depending on the size and type of the field.

wxQueryField::ClearData

void ClearData(void)

Deletes the contents of the field buffer without deallocating the memory.

wxQueryField::GetData

void * GetData(void)

Returns a pointer to the field buffer.

wxQueryField::GetSize

long GetSize(void)

Returns the size of the field buffer.

CHAPTER 9

260

wxQueryField::GetType

short GetType(void)

Returns the type of the field (currently SQL_CHAR, SQL_VARCHAR or SQL_INTEGER).
wxQueryField::IsDirty

Bool IsDirty(void)

Returns TRUE if the data of a field has been changed, but not saved.

wxQueryField::SetData

Bool SetData(void *data, long sz)

Allocates memory of the size sz and copies the contents of d into the field buffer.
wxQueryField::SetDirty

void SetDirty(Bool dirty = TRUE)

Sets the dirty tag of a field.

wxQueryField::SetSize

void SetSize(long size)

Resizes the field buffer. Stored data will be lost.
wxQueryField::SetType

void SetType(short type)

Sets the type of the field. Currently the types SQL_CHAR, SQL_VARCHAR and SQL_INTEGER
are supported.

9.92. wxRadioBox: wxItem

A radio box item is used to select one of number of mutually exclusive choices. It is displayed as
a vertical column or horizontal row of labelled buttons.

wxRadioBox::wxRadioBox

void wxRadioBox(void)

Constructor, for use by derived classes.

void wxRadioBox(wxPanel *parent, wxFunction func, char *label,
 int x = -1, int y = -1, int width = -1, int height = -1,
 int n, char *choices[], int majorDim = 0, long style = wxHORIZONTAL, char *name =
"radioBox")

void wxRadioBox(wxPanel *parent, wxFunction func, char *label,

CHAPTER 9

261

 int x = -1, int y = -1, int width = -1, int height = -1,
 int n, wxBitmap *choices[], int majorDim = 0, long style = wxHORIZONTAL, char *name =
"radioBox")

Constructor, creating and showing a radiobox.

func may be NULL; otherwise it is used as the callback for the radiobox. Note that the cast
(wxFunction) must be used when passing your callback function name, or the compiler may
complain that the function does not match the constructor declaration.

If label is non-NULL, it will be used to label the radiobox.

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

If width or height are omitted (or are less than zero), an appropriate size will be used for the
radiobox.

n is the number of possible choices, and choices is an array of strings or bitmaps of size n.
wxWindows allocates its own memory for these strings so the calling program must deallocate
the array itself.

majorDim specifies the number of rows (if style is wxVERTICAL) or columns (if style is
wxHORIZONTAL) for a two-dimensional radiobox.

style specifies a bitwise-or list of styles. Specify wxVERTICAL to lay out a two-dimensional
radiobox in columns of specified majorDim height, or wxHORIZONTAL to lay it out in rows.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual radioboxes.

wxRadioBox::~wxRadioBox

void ~wxRadioBox(void)

Destructor, destroying the radiobox item.

wxRadioBox::Create

Bool Create(wxPanel *parent, wxFunction func, char *label,
 int x = -1, int y = -1, int width = -1, int height = -1,
 int n, char *choices[], int majorDim = 0, long style = wxHORIZONTAL, char *name =
"radioBox")

Bool Create(wxPanel *parent, wxFunction func, char *label,
 int x = -1, int y = -1, int width = -1, int height = -1,
 int n, wxBitmap *choices[], int majorDim = 0, long style = wxHORIZONTAL, char *name =
"radioBox")

Creates the radiobox for two-step construction. Derived classes should call or replace this
function. See wxRadioBox::wxRadioBox (page 260)for further details.

CHAPTER 9

262

wxRadioBox::Enable

void Enable(Bool enable)

Enables or disables the entire radiobox.

void Enable(int n, Bool enable)

Enables or disables an individual button in the radiobox (does nothing in XView).

wxRadioBox::FindString

int FindString(char *s)

Finds a choice matching the given string, returning the position if found, or -1 if not found.

wxRadioBox::GetSelection

int GetSelection(void)

Gets the id (position) of the selected string.

wxRadioBox::GetStringSelection

char * GetStringSelection(void)

Gets the selected string. This must be copied by the calling program if long term use is to be
made of it.

wxRadioBox::Number

int Number(void)

Returns the number of choices in the radiobox.

wxRadioBox::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position.

wxRadioBox::SetStringSelection

void SetStringSelection(char * s)

Sets the choice by passing the desired string.

CHAPTER 9

263

wxRadioBox::Show

void Show(int item, Bool show)

Shows or hides individual radio box controls.

wxRadioBox::GetString

char * GetString(int n)

Returns a temporary pointer to the string at position n.

9.93. wxRadioButton: wxItem

A radio button item is a button which usually denotes one of several mutually exclusive options. It
can be created as a standard button with a label, or as a bitmap button.

Please note that this is an experimental panel item, and is implemented for Windows and Motif
only. Compilation of this functionality is controlled by the USE_RADIOBUTTON symbol.

wxRadioButton::wxRadioButton

void wxRadioButton(void)

Constructor, for use by derived classes.

void wxRadioButton(wxPanel *parent, wxFunction func, char *label, Bool value,
 int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "radioButton")

void wxRadioButton(wxPanel *parent, wxFunction func, wxBitmap *bitmap, Bool value,
 int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "radioButton")

Constructor, creating and showing a radio button.

func may be NULL; otherwise it is used as the callback for the radio box. Note that the cast
(wxFunction) must be used when passing your callback function name, or the compiler may
complain that the function does not match the constructor declaration.

If label is non-NULL, it will be used to label the radio button.

bitmap can be used to give the radio button a custom bitmap instead of a standard appearance
and label.

value determines the initial value of the radio button.

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

If width or height are omitted (or are less than zero), an appropriate size will be used for the radio
button.

CHAPTER 9

264

style specifies a bitwise-or list of styles. The wxRB_GROUP style can be used to start or end a
group of buttons in Windows.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual radio buttons.

wxRadioButton::~wxRadioButton

void ~wxRadioButton(void)

Destructor, destroying the radio button item.

wxRadioButton::Create

Bool Create(wxPanel *parent, wxFunction func, char *label, Bool value,
 int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "radioButton")

Bool Create(wxPanel *parent, wxFunction func, wxBitmap *bitmap, Bool value,
 int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "radioButton")

Creates the choice for two-step construction. Derived classes should call or replace this function.
See wxRadioButton::wxRadioButton (page 263)for further details.

wxRadioButton::GetValue

Bool GetValue(void)

Returns TRUE if the radio button is depressed, FALSE otherwise.

wxRadioButton::SetValue

void SetValue(Bool value)

Sets the radio button to selected or unselected status.

9.94. wxRecordSet: wxObject

See also Overview (page 395)

Each wxRecordSet represents an ODBC database query. You can make multiple queries at a
time by using multiple wxRecordSets with a wxDatabase or you can make your queries in
sequential order using the same wxRecordSet.

wxRecordSet::wxRecordSet

void wxRecordSet(wxDatabase *db, int type = wxOPEN_TYPE_DYNASET, int opt =
wxOPTION_DEFAULT)

CHAPTER 9

265

Constructor. db is a pointer to the wxDatabase instance you wish to use the wxRecordSet with.
Currently there are two possible values of type:

• wxOPEN_TYPE_DYNASET: Loads only one record at a time into memory. The other
data of the result set will be loaded dynamically when moving the cursor. This is the
default type.

• wxOPEN_TYPE_SNAPSHOT: Loads all records of a result set at once. This will need
much more memory, but will result in faster access to the ODBC data.

The option parameter is not used yet.

The constructor appends the wxRecordSet object to the parent database's list of wxRecordSet
objects, for later destruction when the wxDatabase is destroyed.

wxRecordSet::~wxRecordSet

void ~wxRecordSet(void)

Destructor. All data except that stored in user-defined variables will be lost. It also unlinks the
wxRecordSet object from the parent database's list of wxRecordSet objects.
wxRecordSet::AddNew

void AddNew(void)

Not implemented.

wxRecordSet::BeginQuery

Bool BeginQuery(int openType, char *sql = NULL, int options = wxOPTION_DEFAULT)

Not implemented.

wxRecordSet::BindVar

void * BindVar(int col, void *buf, long size)

Binds a user-defined variable to the column col. Whenever the current field's data changes, it will
be copied into buf (maximum size bytes).

void * BindVar(const char *col, void *buf, long size)

The same as above, but uses the column name as the identifier.

wxRecordSet::CanAppend

Bool CanAppend(void)

Not implemented.

wxRecordSet::Cancel

CHAPTER 9

266

void Cancel(void)

Not implemented.

wxRecordSet::CanRestart

Bool CanRestart(void)

Not implemented.

wxRecordSet::CanScroll

Bool CanScroll(void)

Not implemented.

wxRecordSet::CanTransact

Bool CanTransact(void)

Not implemented.

wxRecordSet::CanUpdate

Bool CanUpdate(void)

Not implemented.

wxRecordSet::ConstructDefaultSQL

Bool ConstructDefaultSQL(void)

Not implemented.

wxRecordSet::Delete

Bool Delete(void)

Deletes the current record. Not implemented.

wxRecordSet::Edit

void Edit(void)

Not implemented.

CHAPTER 9

267

wxRecordSet::EndQuery

Bool EndQuery(void)

Not implemented.

wxRecordSet::ExecuteSQL

Bool ExecuteSQL(char *sql)

Directly executes a SQL statement. The data will be presented as a normal result set. Note that
the recordset must have been created as a snapshot, not dynaset. Dynasets will be implemented
in the near future.

Examples of common SQL statements are given in A selection of SQL commands (page 396).

wxRecordSet::FillVars

void FillVars(int recnum)

Fills in the user-defined variables of the columns. You can set these variables with
wxQueryCol::BindVar. This function will be automatically called after every successful database
operation.

wxRecordSet::GetColName

char * GetColName(int col)

Returns the name of the column at position col. Returns NULL if col does not exist.

wxRecordSet::GetColType

short GetColType(int col)

Returns the data type of the column at position col. Returns SQL_TYPE_NULL if col does not
exist.

short GetColType(const char * name)

The same as above, but uses the column name as the identifier.

See ODBC SQL data types (page 395) for a list of possible data types.

wxRecordSet::GetColumns

Bool GetColumns(char *table = NULL)

Returns the columns of the table with the specified name. If no name is given the class member
tablename will be used. If both names are NULL nothing will happen. The data will be presented

CHAPTER 9

268

as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) COLUMN_NAME
4 (SMALLINT) DATA_TYPE
5 (VARCHAR) TYPE_NAME
6 (INTEGER) PRECISION
7 (INTEGER) LENGTH
8 (SMALLINT) SCALE
9 (SMALLINT) RADIX
10 (SMALLINT) NULLABLE
11 (VARCHAR) REMARKS

wxRecordSet::GetCurrentRecord

long GetCurrentRecord(void)

Not implemented.

wxRecordSet::GetDatabase

wxDatabase * GetDatabase(void)

Returns the wxDatabase object bound to a wxRecordSet.

wxRecordSet::GetDataSources

Bool GetDataSources(void)

Gets the currently-defined data sources via the ODBC manager. The data will be presented as a
normal result set. See the documentation for the ODBC function SQLDataSources for how the
data is organized.

Example:
 wxDatabase Database;

 wxRecordSet *Record = new wxRecordSet(&Database);

 if (!Record->GetDataSources()) {
 char buf[300];
 sprintf(buf, "%s %s\n", Database.GetErrorClass(),
Database.GetErrorMessage());
 frame->output->SetValue(buf);
 }
 else {
 do {
 frame->DataSource->Append((char*)Record->GetFieldDataPtr(0,
SQL_CHAR));
 } while (Record->MoveNext());

CHAPTER 9

269

 }

wxRecordSet::GetDefaultConnect

char * GetDefaultConnect(void)

Not implemented.

wxRecordSet::GetDefaultSQL

char * GetDefaultSQL(void)

Not implemented.

wxRecordSet::GetErrorCode

wxRETCODE GetErrorCode(void)

Returns the error code of the last ODBC action. This will be one of:

SQL_ERROR General error.
SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESSThe call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can be obtained

from the ODBC manager.

wxRecordSet::GetFieldData

Bool GetFieldData(int col, int dataType, void *dataPtr)

Copies the current data of the column at position col into the buffer dataPtr. To be sure to get the
right type of data, the user has to pass the correct data type. The function returns FALSE if col
does not exist or the wrong data type was given.

Bool GetFieldData(const char *name, int dataType, void *dataPtr)

The same as above, but uses the column name as the identifier.

See ODBC SQL data types (page 395) for a list of possible data types.

wxRecordSet::GetFieldDataPtr

void * GetFieldDataPtr(int col, int dataType)

Returns the current data pointer of the column at position col. To be sure to get the right type of
data, the user has to pass the data type. Returns NULL if col does not exist or if dataType is
incorrect.

CHAPTER 9

270

void * GetFieldDataPtr(const char *name, int dataType)

The same as above, but uses the column name as the identifier.

See ODBC SQL data types (page 395) for a list of possible data types.

wxRecordSet::GetFilter

char * GetFilter(void)

Returns the current filter.

wxRecordSet::GetForeignKeys

Bool GetPrimaryKeys(char *ptable = NULL, char *ftable = NULL)

Returns a list of foreign keys in the specified table (columns in the specified table that refer to
primary keys in other tables), or a list of foreign keys in other tables that refer to the primary key
in the specified table.

If ptable contains a table name, this function returns a result set containing the primary key of the
specified table.

If ftable contains a table name, this functions returns a result set of containing all of the foreign
keys in the specified table and the primary keys (in other tables) to which they refer.

If both ptable and ftable contain table names, this function returns the foreign keys in the table
specified in ftable that refer to the primary key of the table specified in ptable. This should be one
key at most.

GetForeignKeys returns results as a standard result set. If the foreign keys associated with a
primary key are requested, the result set is ordered by FKTABLE_QUALIFIER,
FKTABLE_OWNER, FKTABLE_NAME, and KEY_SEQ. If the primary keys associated with a
foreign key are requested, the result set is ordered by PKTABLE_QUALIFIER,
PKTABLE_OWNER, PKTABLE_NAME, and KEY_SEQ. The following table lists the columns in
the result set.

0 (VARCHAR) PKTABLE_QUALIFIER
1 (VARCHAR) PKTABLE_OWNER
2 (VARCHAR) PKTABLE_NAME
3 (VARCHAR) PKCOLUMN_NAME
4 (VARCHAR) FKTABLE_QUALIFIER
5 (VARCHAR) FKTABLE_OWNER
6 (VARCHAR) FKTABLE_NAME
7 (VARCHAR) FKCOLUMN_NAME
8 (SMALLINT) KEY_SEQ
9 (SMALLINT) UPDATE_RULE
10 (SMALLINT) DELETE_RULE
11 (VARCHAR) FK_NAME
12 (VARCHAR) PK_NAME

CHAPTER 9

271

wxRecordSet::GetNumberCols

long GetNumberCols(void)

Returns the number of columns in the result set.
wxRecordSet::GetNumberFields

int GetNumberFields(void)

Not implemented.

wxRecordSet::GetNumberParams

int GetNumberParams(void)

Not implemented.

wxRecordSet::GetNumberRecords

long GetNumberRecords(void)

Returns the number of records in the result set.
wxRecordSet::GetPrimaryKeys

Bool GetPrimaryKeys(char *table = NULL)

Returns the column names that comprise the primary key of the table with the specified name. If
no name is given the class member tablename will be used. If both names are NULL nothing will
happen. The data will be presented as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) COLUMN_NAME
4 (SMALLINT) KEY_SEQ
5 (VARCHAR) PK_NAME

wxRecordSet::GetOptions

int GetOptions(void)

Returns the options of the wxRecordSet. Options are not supported yet.

wxRecordSet::GetResultSet

Bool GetResultSet(void)

Copies the data presented by ODBC into wxRecordSet. Depending on the wxRecordSet type all

CHAPTER 9

272

or only one record(s) will be copied. Usually this function will be called automatically after each
successful database operation.
wxRecordSet::GetSortString

char * GetSortString(void)

Not implemented.
wxRecordSet::GetSQL

char * GetSQL(void)

Not implemented.

wxRecordSet::GetTableName

char * GetTableName(void)

Returns the name of the current table.
wxRecordSet::GetTables

Bool GetTables(void)

Gets the tables of a database. The data will be presented as a normal result set, organized as
follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) TABLE_TYPE (TABLE, VIEW, SYSTEM TABLE, GLOBAL TEMPORARY,

LOCAL TEMPORARY, ALIAS, SYNONYM, or database-specific type)
4 (VARCHAR) REMARKS

wxRecordSet::GetType

int GetType(void)

Returns the type of the wxRecordSet: wxOPEN_TYPE_DYNASET or
wxOPEN_TYPE_SNAPSHOT. See the wxRecordSet description for details.

wxRecordSet::GoTo

Bool GoTo(long n)

Moves the cursor to the record with the number n, where the first record has the number 0.
wxRecordSet::IsBOF

Bool IsBOF(void)

Returns TRUE if the user tried to move the cursor before the first record in the set.

CHAPTER 9

273

wxRecordSet::IsFieldDirty

Bool IsFieldDirty(int field)

Returns TRUE if the given field has been changed but not saved yet.

Bool IsFieldDirty(const char *name)

Same as above, but uses the column name as the identifier.

wxRecordSet::IsFieldNull

Bool IsFieldNull(int field)

Returns TRUE if the given field has no data.

Bool IsFieldNull(const char * name)

Same as above, but uses the column name as the identifier.

wxRecordSet::IsColNullable

Bool IsColNullable(int col)

Returns TRUE if the given column may contain no data.

Bool IsColNullable(const char *name)

Same as above, but uses the column name as the identifier.

wxRecordSet::IsEOF

Bool IsEOF(void)

Returns TRUE if the user tried to move the cursor behind the last record in the set.

wxRecordSet::IsDeleted

Bool IsDeleted(void)

Not implemented.
wxRecordSet::IsOpen

Bool IsOpen(void)

Returns TRUE if the parent database is open.

wxRecordSet::Move

CHAPTER 9

274

Bool Move(long rows)

Moves the cursor a given number of rows. Negative values are allowed.
wxRecordSet::MoveFirst

Bool MoveFirst(void)

Moves the cursor to the first record.
wxRecordSet::MoveLast

Bool MoveLast(void)

Moves the cursor to the last record.
wxRecordSet::MoveNext

Bool MoveNext(void)

Moves the cursor to the next record.
wxRecordSet::MovePrev

Bool MovePrev(void)

Moves the cursor to the previous record.
wxRecordSet::Query

Bool Query(char *columns, char *table, char *filter = NULL)

Start a query. An SQL string of the following type will automatically be generated and executed:
"SELECT columns FROM table WHERE filter".

wxRecordSet::RecordCountFinal

Bool RecordCountFinal(void)

Not implemented.
wxRecordSet::Requery

Bool Requery(void)

Re-executes the last query. Not implemented.

wxRecordSet::SetFieldDirty

void SetFieldDirty(int field, Bool dirty = TRUE)

Sets the dirty tag of the field field. Not implemented.

void SetFieldDirty(const char *name, Bool dirty = TRUE)

Same as above, but uses the column name as the identifier.

CHAPTER 9

275

wxRecordSet::SetDefaultSQL

void SetDefaultSQL(char *s)

Not implemented.

wxRecordSet::SetFieldNull

void SetFieldNull(void *p, Bool isNull = TRUE)

Not implemented.

wxRecordSet::SetOptions

void SetOptions(int opt)

Sets the options of the wxRecordSet. Not implemented.
wxRecordSet::SetTableName

void SetTableName(char *tablename)

Specify the name of the table you want to use.
wxRecordSet::SetType

void SetType(int type)

Sets the type of the wxRecordSet. See the wxRecordSet class description for details.

wxRecordSet::Update

Bool Update(void)

Writes back the current record. Not implemented.

9.95. wxScreenDC: wxCanvasDC

An instance of this class may be created to access the whole screen. Free the instance as soon
as it has been used, since there are a limited number of device contexts in some environments.

Note that this hasn't been tested yet.

See wxDC (page 108) for further information on device contexts.

wxScreenDC::wxScreenDC

void wxScreenDC(void)

Constructor.

CHAPTER 9

276

9.96. wxScrollBar: wxItem

A wxScrollBar is a panel item that represents a horizontal or vertical scroll control. It may be used
on panels to give similar functionality to a scrollable wxCanvas, or it may be used as a kind of
slider.

Note that the constructor arguments have changed in version 1.65.

Note also that from 1.66, SetObjectLength (page 277) is now consistent under Motif and
Windows, so your code under Windows may need to change. You must call SetViewLength
before calling SetObjectLength. See wxGenericGrid for an example of usage.

wxScrollBar::wxScrollBar

void wxScrollBar(wxPanel *parent, wxFunction func,
 int x = -1, int y = -1, int width = -1, int height = -1,
 long style = wxHORIZONTAL, char *name = "scrollBar")

Constructor, creating and showing a scrollbar. The parent must be a valid panel or dialog box
pointer.

Note that the constructor arguments have changed in version 1.65: the old direction parameter is
now passed in the window style.

func may be NULL; otherwise it is used as the callback for the scrollbar.

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

If width or height are omitted (or are less than zero), an appropriate size will be used for the
scrollbar.

style may be either wxHORIZONTAL or wxVERTICAL.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual scrollbars.

wxScrollBar::~wxScrollBar

void ~wxScrollBar(void)

Destructor, destroying the scrollbar.

wxScrollBar::Create

void Create(wxPanel *parent, wxFunction func,
 int x = -1, int y = -1, int width = -1, int height = -1,
 long style = wxHORIZONTAL, char *name = "scrollBar")

Scrollbar creation function called by the scrollbar constructor. Call it when a derived scrollbar
class uses the zero-argument wxScrollBar constructor, but can reuse the existing scrollbar
creation code. See wxScrollBar::wxScrollBar (page 276) for details.

CHAPTER 9

277

wxScrollBar::GetValue

int GetValue(void)

Returns the current position of the scrollbar.

wxScrollBar::GetValues

void GetValues(int *viewStart, int *viewLength, int *objectLength, int *pageLength) Returns
scrollbar settings information.

wxScrollBar::SetObjectLength

void SetObjectLength(int objectLength)

Sets the object length for the scrollbar. This is the total object size (virtual size). You must call
SetViewLength (page 277) before calling SetObjectLength.

Example: you are implementing scrollbars on a text window, where text lines have a maximum
width of 100 characters. Your text window has a current width of 60 characters. So the view
length is 60, and the object length is 100. The scrollbar will then enable you to scroll to see the
other 40 characters.

You will need to call SetViewLength and SetObjectLength whenever there is a change in the size
of the window (the view size) or the size of the contents (the object length).

wxScrollBar::SetPageLength

void SetPageLength(int pageLength)

Sets the page length for the scrollbar. This is the number of scroll units which are scrolled when
the user pages down (clicks on the scrollbar outside the thumbtrack area).

wxScrollBar::SetViewLength

void SetViewLength(int viewLength)

Sets the view length for the scrollbar.

wxScrollBar::SetValue

void SetValue(int viewStart)

Sets the position of the scrollbar.

9.97. wxServer: wxIPCObject

CHAPTER 9

278

See also IPC overview (page 378)

A wxServer object represents the server part of a client-server DDE (Dynamic Data Exchange)
conversation (available under both Windows and UNIX).

wxServer::wxServer

void wxServer(void)

Constructs a server object.

wxServer::Create

Bool Create(char *service)

Registers the server using the given service name. Under UNIX, the string must contain an
integer id which is used as an Internet port number. FALSE is returned if the call failed (for
example, the port number is already in use).

wxServer::OnAcceptConnection

wxConnection * OnAcceptConnection(char *topic)

When a client calls MakeConnection, the server receives the message and this member is
called. The application should derive a member to intercept this message and return a connection
object of either the standard wxConnection type, or of a user-derived type. If the topic is "STDIO'',
the application may wish to refuse the connection. Under UNIX, when a server is created the
OnAcceptConnection message is always sent for standard input and output, but in the context of
DDE messages it doesn't make a lot of sense.

9.98. wxSlider: wxItem

A slider is, as its name suggests, an item with a handle which can be pulled back and forth to
change a value. It is currently horizontal only. In MS Windows, a scrollbar is used to simulate the
slider.

wxSlider::wxSlider

void wxSlider(wxPanel *parent, wxFunction func, char *label,
 int value, int min_value, int max_value, int width,
 int x = -1, int y = -1, long style = wxHORIZONTAL, char *name = "slider")

Constructor, creating and showing a horizontal slider.

func may be NULL; otherwise it is used as the callback for the slider. Note that the cast
(wxFunction) must be used when passing your callback function name, or the compiler may
complain that the function does not match the constructor declaration.

If label is non-NULL, it will be used to label the slider.

The parameters x and y are used to specify an absolute position, or a position after the previous

CHAPTER 9

279

panel item if omitted or default.

The width is in pixels, and the scroll increment will be adjusted to a suitable value given the
minimum and maximum integer values.

The style parameter may be wxHORIZONTAL to denote a horizontal slider, or wxVERTICAL for a
vertical slider.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual sliders.

wxSlider::~wxSlider

void ~wxSlider(void)

Destructor, destroying the slider.

wxSlider::Create

void Create(wxPanel *parent, wxFunction func, char *label,
 int value, int min_value, int max_value, int width,
 int x = -1, int y = -1, long style = 0, char *name = "slider")

Used for two-step slider construction. See wxSlider::wxSlider (page 278) for further details.

wxSlider::GetMax

int GetMax(void)

Gets the maximum slider value.

wxSlider::GetMin

int GetMin(void)

Gets the minimum slider value.

wxSlider::GetValue

int GetValue(void)

Gets the current slider value.

wxSlider::SetRange

void SetRange(int minValue, int maxValue)

Sets the minimum and maximum slider values.

CHAPTER 9

280

wxSlider::SetValue

void SetValue(int value)

Sets the value (and displayed position) of the slider).

9.99. wxSplitterWindow: wxCanvas

See also wxSplitterWindow overview (page 420)

This class manages either one or two subwindows. The current view can be split into two
programmatically (perhaps from a menu command), and unsplit either programmatically or via the
wxSplitterWindow user interface.

Appropriate 3D shading for the Windows 95 user interface is an option.

wxSplitterWindow::wxSplitterWindow

 wxSplitterWindow(void)

Default constructor.

 wxSplitterWindow(wxWindow *parent, int x, int y, int width, int height, long style=0, char
*name)

Constructor for creating the window.

Parameters

parent
The parent of the splitter window.

width
The window width.

height
The window height.

style
The window style. May be a bit list of:

wxSP_3D Draws a 3D effect border and sash.
wxSP_BORDER Draws a thin black border around the window, and a black sash.
wxSP_NOBORDER No border, and a black sash.

name
The window name.

Remarks

After using this constructor, you must create either one or two subwindows with the splitter
window as parent, and then call one of Initialize (page 282), SplitVertically (page 285) and
SplitHorizontally (page 284) in order to set the pane(s).

CHAPTER 9

281

You can create two windows, with one hidden when not being shown; or you can create and
delete the second pane on demand.

See also

Initialize (page 282), SplitVertically (page 285), SplitHorizontally (page 284)

wxSplitterWindow::~wxSplitterWindow

 ~wxSplitterWindow(void)

Destroys the wxSplitterWindow and its children.

wxSplitterWindow::GetMinimumPaneSize

int GetMinimumPaneSize(void)

Returns the current minimum pane size (defaults to zero).

See also

SetMinimumPaneSize (page 283)

wxSplitterWindow::GetSashPosition

int GetSashPosition(void)

Returns the current sash position.

See also

SetSashPosition (page 283)

wxSplitterWindow::GetSplitMode

int GetSplitMode(void)

Gets the split mode.

See also

SetSplitMode (page 284), SplitVertically (page 285), SplitHorizontally (page 284).

wxSplitterWindow::GetWindow1

wxWindow* GetWindow1(void)

Returns the left/top or only pane.

CHAPTER 9

282

wxSplitterWindow::GetWindow2

wxWindow* GetWindow2(void)

Returns the right/bottom pane.

wxSplitterWindow::Initialize

void Initialize(wxWindow* window)

Initializes the splitter window to have one pane.

Parameters

window
The pane for the unsplit window.

Remarks

This should be called if you wish to initially view only a single pane in the splitter window.

See also

SplitVertically (page 285), SplitHorizontally (page 284).

wxSplitterWindow::IsSplit

Bool IsSplit(void)

Returns TRUE if the window is split, FALSE otherwise.

wxSplitterWindow::OnDoubleClickSash

virtual void OnDoubleClickSash(int x, int y)

Application-overridable function called when the sash is double-clicked with the left mouse button.

Parameters

x
The x position of the mouse cursor.

y
The y position of the mouse cursor.

Remarks

The default implementation of this function calls Unsplit (page 285) if the minimum pane size is
zero.

See also

CHAPTER 9

283

Unsplit (page 285)

wxSplitterWindow::OnUnsplit

virtual void OnUnsplit(wxWindow* removed)

Application-overridable function called when the window is unsplit, either programmatically or
using the wxSplitterWindow user interface.

Parameters

removed
The window being removed.

Remarks

The default implementation of this function simply hides removed. You may wish to delete the
window.

See also

Unsplit (page 285)

wxSplitterWindow::SetSashPosition

void SetSashPosition(int position, Bool redraw = TRUE)

Sets the sash position.

Parameters

position
The sash position in pixels.

redraw
If TRUE, resizes the panes and redraws the sash and border.

Remarks

Does not currently check for an out-of-range value.

See also

GetSashPosition (page 281)

wxSplitterWindow::SetMinimumPaneSize

void SetMinimumPaneSize(int paneSize)

Sets the minimum pane size.

CHAPTER 9

284

Parameters

paneSize
Minimum pane size in pixels.

Remarks

The default minimum pane size is zero, which means that either pane can be reduced to zero by
dragging the sash, thus removing one of the panes. To prevent this behaviour (and veto out-of-
range sash dragging), set a minimum size, for example 20 pixels.

See also

GetMinimumPaneSize (page 281)

wxSplitterWindow::SetSplitMode

void SetSplitMode(int mode)

Sets the split mode.

Parameters

mode
Can be wxSPLIT_VERTICAL or wxSPLIT_HORIZONTAL.

Remarks

Only sets the internal variable; does not update the display.

See also

GetSplitMode (page 281), SplitVertically (page 285), SplitHorizontally (page 284).

wxSplitterWindow::SplitHorizontally

Bool SplitHorizontally(wxWindow* window1, wxWindow* window2, int sashPosition = -1)

Initializes the top and bottom panes of the splitter window.

Parameters

window1
The top pane.

window2
The bottom pane.

sashPosition
The initial position of the sash. If the value is -1, a default position is chosen.

Return value

CHAPTER 9

285

TRUE if successful, FALSE otherwise (the window was already split).

Remarks

This should be called if you wish to initially view two panes. It can also be called at any
subsequent time, but the application should check that the window is not currently split using
IsSplit (page 282).

See also

SplitVertically (page 285), IsSplit (page 282), Unsplit (page 285).

wxSplitterWindow::SplitVertically

Bool SplitVertically(wxWindow* window1, wxWindow* window2, int sashPosition = -1)

Initializes the left and right panes of the splitter window.

Parameters

window1
The left pane.

window2
The right pane.

sashPosition
The initial position of the sash. If the value is -1, a default position is chosen.

Return value

TRUE if successful, FALSE otherwise (the window was already split).

Remarks

This should be called if you wish to initially view two panes. It can also be called at any
subsequent time, but the application should check that the window is not currently split using
IsSplit (page 282).

See also

SplitHorizontally (page 284), IsSplit (page 282), Unsplit (page 285).

wxSplitterWindow::Unsplit

Bool Unsplit(wxWindow* toRemove = NULL)

Unsplits the window.

Parameters

toRemove
The pane to remove, or NULL to remove the right or bottom pane.

CHAPTER 9

286

Return value

TRUE if successful, FALSE otherwise (the window was not split).

Remarks

This call will not actually delete the pane being removed; it calls OnUnsplit (page 283) which can
be overridden for the desired behaviour. By default, the pane being removed is hidden.

See also

SplitHorizontally (page 284), SplitVertically (page 285), IsSplit (page 282), OnUnsplit (page 283).

9.100. wxString: wxObject

See also Overview (page 399)

Member functions by category (page 363)

CAVE: The description of the memberfunctions is very sparse in the moment. It will be extended
in the next version of the help file. The list of memberfunctions is complete.

wxString::wxString

void wxString(void)
void wxString(const wxString& x)
void wxString(const wxSubString& x)
void wxString(const char* t)
void wxString(const char* t, int len)
void wxString(char c)

Constructors.

wxString::~wxString

void ~wxString(void)

String destructor.

wxString::Alloc

void Alloc(int newsize)

Preallocate some space for wxString.

wxString::Allocation

int Allocation(void) const

Report current allocation (not length!).

CHAPTER 9

287

wxString::Append

wxString& Append(const char* cs)
wxString& Append(const wxString& s)

Concatenation.

wxString& Append(char c, int rep = 1)

Append c, rep times

wxString::After

wxSubString After(int pos)
wxSubString After(const wxString& x, int startpos = 0)
wxSubString After(const wxSubString& x, int startpos = 0)
wxSubString After(const char* t, int startpos = 0)
wxSubString After(char c, int startpos = 0)
wxSubString After(const wxRegex& r, int startpos = 0)

wxString::At

wxSubString At(int pos, int len)
wxSubString operator ()(int pos, int len)
wxSubString At(const wxString& x, int startpos = 0)
wxSubString At(const wxSubString& x, int startpos = 0)
wxSubString At(const char* t, int startpos = 0)
wxSubString At(char c, int startpos = 0)
wxSubString At(const wxRegex& r, int startpos = 0)

wxSubString extraction.

Note that you can't take a substring of a const wxString, since this leaves open the possiblility of
indirectly modifying the wxString through the wxSubString.

wxString::Before

wxSubString Before(int pos)
wxSubString Before(const wxString& x, int startpos = 0)
wxSubString Before(const wxSubString& x, int startpos = 0)
wxSubString Before(const char* t, int startpos = 0)
wxSubString Before(char c, int startpos = 0)
wxSubString Before(const wxRegex& r, int startpos = 0)

wxString::Capitalize

void Capitalize(void)
friend wxString Capitalize(wxString& x)

CHAPTER 9

288

wxString::Cat

friend void Cat(const wxString& a, const wxString& b, wxString& c)
friend void Cat(const wxString& a, const wxSubString& b, wxString& c)
friend void Cat(const wxString& a, const char* b, wxString& c)
friend void Cat(const wxString& a, char b, wxString& c)
friend void Cat(const wxSubString& a, const wxString& b, wxString& c)
friend void Cat(const wxSubString& a, const wxSubString& b, wxString& c)
friend void Cat(const wxSubString& a, const char* b, wxString& c)
friend void Cat(const wxSubString& a, char b, wxString& c)
friend void Cat(const char* a, const wxString& b, wxString& c)
friend void Cat(const char* a, const wxSubString& b, wxString& c)
friend void Cat(const char* a, const char* b, wxString& c)
friend void Cat(const char* a, char b, wxString& c)

Concatenate first two arguments, store the result in the last argument.

friend void Cat(const wxString& a, const wxString& b, const wxString& c, wxString& d)
friend void Cat(const wxString& a, const wxString& b, const wxSubString& c, wxString& d)
friend void Cat(const wxString& a, const wxString& b, const char* c, wxString& d)
friend void Cat(const wxString& a, const wxString& b, char c, wxString& d)
friend void Cat(const wxString& a, const wxSubString& b, const wxString& c, wxString& d)
friend void Cat(const wxString& a, const wxSubString& b, const wxSubString& c,
wxString& d)
friend void Cat(const wxString& a, const wxSubString& b, const char* c, wxString& d)
friend void Cat(const wxString& a, const wxSubString& b, char c, wxString& d)
friend void Cat(const wxString& a, const char* b, const wxString& c, wxString& d)
friend void Cat(const wxString& a, const char* b, const wxSubString& c, wxString& d)
friend void Cat(const wxString& a, const char* b, const char* c, wxString& d)
friend void Cat(const wxString& a, const char* b, char c, wxString& d)

friend void Cat(const char* a, const wxString& b, const wxString& c, wxString& d)
friend void Cat(const char* a, const wxString& b, const wxSubString& c, wxString& d)
friend void Cat(const char* a, const wxString& b, const char* c, wxString& d)
friend void Cat(const char* a, const wxString& b, char c, wxString& d)
friend void Cat(const char* a, const wxSubString& b, const wxString& c, wxString& d)
friend void Cat(const char* a, const wxSubString& b, const wxSubString& c, wxString& d)
friend void Cat(const char* a, const wxSubString& b, const char* c, wxString& d)
friend void Cat(const char* a, const wxSubString& b, char c, wxString& d)
friend void Cat(const char* a, const char* b, const wxString& c, wxString& d)
friend void Cat(const char* a, const char* b, const wxSubString& c, wxString& d)
friend void Cat(const char* a, const char* b, const char* c, wxString& d)
friend void Cat(const char* a, const char* b, char c, wxString& d)

Double concatenation, by request. (Yes, there are too many versions, but if one is supported,
then the others should be too). Concatenate the first 3 args, store the result in the last argument.

wxString::Chars

const char* Chars(void) const

Conversion.

CHAPTER 9

289

wxString::CompareTo

#define NO_POS ((int)(-1)) // undefined position
enum CaseCompare {exact, ignoreCase};

 int CompareTo(const char* cs, CaseCompare cmp = exact) const
int CompareTo(const wxString& cs, CaseCompare cmp = exact) const

wxString::Contains

Bool Contains(char c) const
Bool Contains(const wxString& y) const
Bool Contains(const wxSubString& y) const
Bool Contains(const char* t) const
Bool Contains(const wxRegex& r) const

Return 1 if target appears anyhere in wxString; else 0.

Bool Contains(const char* pat, CaseCompare cmp) const
Bool Contains(const wxString& pat, CaseCompare cmp) const

Case dependent/independent variation .

Bool Contains(char c, int pos) const
Bool Contains(const wxString& y, int pos) const
Bool Contains(const wxSubString& y, int pos) const
Bool Contains(const char* t, int pos) const
Bool Contains(const wxRegex& r, int pos) const

Return 1 if the target appears anywhere after position pos (or before, if pos is negative) in
wxString; else 0.

wxString::Copy

wxString Copy(void) const

Duplication.

wxString::Del

wxString& Del(int pos, int len)

Delete len characters starting at pos.

wxString& Del(const wxString& y, int startpos = 0)
wxString& Del(const wxSubString& y, int startpos = 0)
wxString& Del(const char* t, int startpos = 0)
wxString& Del(char c, int startpos = 0)
wxString& Del(const wxRegex& r, int startpos = 0)

Delete the first occurrence of target after startpos.

CHAPTER 9

290

wxString::DownCase

void Downcase(void)
friend wxString Downcase(wxString& x)

wxString::Elem

char Elem(int i) const

Element extraction.

wxString::Empty

int Empty(void) const

wxString::Error

void Error(const char* msg) const

wxString::First

int First(char c) const
int First(const char* cs) const
int First(const wxString& cs) const

Return first or last occurrence of item.
wxString::Firstchar

char Firstchar(void) const

Element extraction.

wxString::Freq

int Freq(char c) const
int Freq(const wxString& y) const
int Freq(const wxSubString& y) const
int Freq(const char* t) const

Return number of occurrences of target in wxString.

wxString::From

wxSubString From(int pos)
wxSubString From(const wxString& x, int startpos = 0)
wxSubString From(const wxSubString& x, int startpos = 0)

CHAPTER 9

291

wxSubString From(const char* t, int startpos = 0)
wxSubString From(char c, int startpos = 0)
wxSubString From(const wxRegex& r, int startpos = 0)

wxString::GetData

char* GetData(void)

wxWindows compatibility conversion.

wxString::GSub

int GSub(const wxString& pat, const wxString& repl)
int GSub(const wxSubString& pat, const wxString& repl)
int GSub(const char* pat, const wxString& repl)
int GSub(const char* pat, const char* repl)
int GSub(const wxRegex& pat, const wxString& repl)

Global substitution: substitute all occurrences of pat with repl, returning the number of matches.

wxString::Index

int Index(char c, int startpos = 0) const
int Index(const wxString& y, int startpos = 0) const
int Index(const wxString& y, int startpos, CaseCompare cmp) const
int Index(const wxSubString& y, int startpos = 0) const
int Index(const char* t, int startpos = 0) const
int Index(const char* t, int startpos, CaseCompare cmp) const
int Index(const wxRegex& r, int startpos = 0) const

Return the position of target in string, or -1 for failure.

wxString::Insert

wxString& Insert(int pos, const char* s)
wxString& Insert(int pos, const wxString& s)

Insertion.
wxString::IsAscii

int IsAscii(void) const

Classification (should be capital, because of ctype.h macros).

wxString::IsDefined

int IsDefined(void) const

Classification (should be capital, because of ctype.h macros).

CHAPTER 9

292

wxString::IsNull

int IsNull(void) const

Classification (should be capital, because of ctype.h macros).

wxString::IsNumber

int IsNumber(void) const

Classification (should be capital, because of ctype.h macros).

wxString::IsWord

int IsWord(void) const

Classification (should be capital, because of ctype.h macros).

wxString::Last

int Last(char c) const
int Last(const char* cs) const
int Last(const wxString& cs) const

First or last occurrence of item.

wxString::Lastchar

char Lastchar(void) const

Element extraction.

wxString::Length

unsigned int Length(void) const

wxString::LowerCase

void LowerCase(void)

wxString::Matches

Bool Matches(char c, int pos = 0) const
Bool Matches(const wxString& y, int pos = 0) const
Bool Matches(const wxSubString& y, int pos = 0) const
Bool Matches(const char* t, int pos = 0) const

CHAPTER 9

293

Bool Matches(const wxRegex& r, int pos = 0) const

Return 1 if target appears at position pos in wxString; else 0.

wxString::OK

int OK(void) const

wxString::Prepend

wxString& Prepend(const wxString& y)
wxString& Prepend(const wxSubString& y)
wxString& Prepend(const char* t)
wxString& Prepend(char c)

Prepend.

wxString& Prepend(char c, int rep=1)

Prepend c, rep times.
wxString::Readline

friend int Readline(istream& s, wxString& x, char terminator = '\n', int discard_terminator = 1)
friend int Readline(FILE * f, wxString& x, char terminator = '\n', int discard_terminator = 1)

wxString::Remove

wxString& RemoveLast(void)
 wxString& Remove(int pos)
wxString& Remove(int pos, int len)

Remove pos to end of string.

wxString::Replace

wxString& Replace(int pos, int n, const char* s)
wxString& Replace(int pos, int n, const wxString& s)

wxString::Replicate

friend wxString Replicate(char c, int n)
friend wxString Replicate(const wxString& y, int n)

Replication.

wxString::Reverse

void Reverse(void)

CHAPTER 9

294

friend wxString Reverse(wxString& x)

wxString::sprintf

void sprintf(const char * fmt)

Formatted assignment. We do not use the 'sprintf' constructor anymore, because with that
constructor, every initialisation with a string would go through sprintf and this is not desirable,
because sprintf interprets some characters. With the above function we can write:

wxString msg; msg.sprintf("Processing item %d\n", count);

wxString::Strip

enumStripType {leading = 0x1, trailing = 0x2, both = 0x3};

wxSubString Strip(StripType s = trailing, char c = ' ')

Strip characterss at the front and/or end. StripType is defined for bitwise ORing.

wxString::SubString

wxString SubString(int from, int to)

Edward Zimmermann's additions.

wxString::Through

wxSubString Through(int pos)
wxSubString Through(const wxString& x, int startpos = 0)
wxSubString Through(const wxSubString& x, int startpos = 0)
wxSubString Through(const char* t, int startpos = 0)
wxSubString Through(char c, int startpos = 0)
wxSubString Through(const wxRegex& r, int startpos = 0)

wxString::Upcase

void Upcase(void)
friend wxString Upcase(wxString& x)

wxString::UpperCase

void UpperCase(void)

wxString::operator =

CHAPTER 9

295

wxString& operator =(const wxString& y)
wxString& operator =(const char* y)
wxString& operator =(char c)
wxString& operator =(const wxSubString& y)

Assignment.
wxString::operator +=

wxString& operator +=(const wxString& y)
wxString& operator +=(const wxSubString& y)
wxString& operator +=(const char* t)
wxString& operator +=(char c)

Concatenation.

wxString::operator []

char& operator [](int i)

Element extraction.

wxString::operator ()

char& operator ()(int i)

wxString::operator <<

friend ostream& operator <<(ostream& s, const wxString& x)
friend ostream& operator <<(ostream& s, const wxSubString& x)

wxString::operator >>

friend istream& operator >>(istream& s, wxString& x)

wxString::operator const char *

 operator const char*(void) const

Conversion.

wxCHARARG

#define wxCHARARG(s) ((char *)(s).Chars())

Here is a very, very, very ugly macro, but it makes things more transparent in cases, where a
library function requires a (char *) argument. This is especially the case in wxWindows, where all
char-arguments are (char *) and not (const char *). This macro should only be used in such cases
and NOT to modify the internal data. The conventional way would be 'function((char

CHAPTER 9

296

*)string.Chars())'. With the wxCHARARG macro, this can be achieved by
'function(wxCHARARG(string))'. This makes it clearer that the usage should be confined to
arguments.

CommonPrefix

friend wxString CommonPrefix(const wxString& x, const wxString& y,
 int startpos = 0)

CommonSuffix

friend wxString CommonSuffix(const wxString& x, const wxString& y,
 int startpos = -1)

Compare

int Compare(const wxString& x, const wxString& y)
int Compare(const wxString& x, const wxSubString& y)
int Compare(const wxString& x, const char* y)
int Compare(const wxSubString& x, const wxString& y)
int Compare(const wxSubString& x, const wxSubString& y)
int Compare(const wxSubString& x, const char* y)

Case dependent comparison. Returns 0 if the match succeeded.

FCompare

int FCompare(const wxString& x, const wxString& y)

Case independent comparison. Returns 0 if the match succeeded.

Comparison operators

int operator ==(const wxString& x, const wxString& y)
 int operator !=(const wxString& x, const wxString& y)
int operator >(const wxString& x, const wxString& y)
int operator >=(const wxString& x, const wxString& y)
int operator <(const wxString& x, const wxString& y)
int operator <=(const wxString& x, const wxString& y)
int operator ==(const wxString& x, const wxSubString& y)
int operator !=(const wxString& x, const wxSubString& y)
int operator >(const wxString& x, const wxSubString& y)
int operator >=(const wxString& x, const wxSubString& y)
int operator <(const wxString& x, const wxSubString& y)
int operator <=(const wxString& x, const wxSubString& y)
int operator ==(const wxString& x, const char* t)
int operator !=(const wxString& x, const char* t)
int operator >(const wxString& x, const char* t)
int operator >=(const wxString& x, const char* t)

CHAPTER 9

297

int operator <(const wxString& x, const char* t)
int operator <=(const wxString& x, const char* t)
int operator ==(const wxSubString& x, const wxString& y)
int operator !=(const wxSubString& x, const wxString& y)
int operator >(const wxSubString& x, const wxString& y)
int operator >=(const wxSubString& x, const wxString& y)
int operator <(const wxSubString& x, const wxString& y)
int operator <=(const wxSubString& x, const wxString& y)
int operator ==(const wxSubString& x, const wxSubString& y)
int operator !=(const wxSubString& x, const wxSubString& y)
int operator >(const wxSubString& x, const wxSubString& y)
int operator >=(const wxSubString& x, const wxSubString& y)
int operator <(const wxSubString& x, const wxSubString& y)
int operator <=(const wxSubString& x, const wxSubString& y)
int operator ==(const wxSubString& x, const char* t)
int operator !=(const wxSubString& x, const char* t)
int operator >(const wxSubString& x, const char* t)
int operator >=(const wxSubString& x, const char* t)
int operator <(const wxSubString& x, const char* t)
int operator <=(const wxSubString& x, const char* t)

operator +

wxString operator +(const wxString& x, const wxString& y)
wxString operator +(const wxString& x, const wxSubString& y)
wxString operator +(const wxString& x, const char* y)
wxString operator +(const wxString& x, char y)
wxString operator +(const wxSubString& x, const wxString& y)
wxString operator +(const wxSubString& x, const wxSubString& y)
wxString operator +(const wxSubString& x, const char* y)
wxString operator +(const wxSubString& x, char y)
wxString operator +(const char* x, const wxString& y)
wxString operator +(const char* x, const wxSubString& y)

Join

friend wxString Join(wxString src[], int n, const wxString& sep)

Split

friend int Split(const wxString& x, wxString res[], int maxn,
 const wxString& sep)
friend int Split(const wxString& x, wxString res[], int maxn,
 const wxRegex& sep)

Split string into array res at separators; return number of elements

9.101. wxStringList: wxList

A string list is a list which is assumed to contain strings, with a specific member functions.
Memory is allocated when strings are added to the list, and deallocated by the destructor or by

CHAPTER 9

298

the Delete member.

wxStringList::wxStringList

void wxStringList(void)

Constructor.

void wxStringList(char *first, ...)

Constructor, taking NULL-terminated string argument list. wxStringList allocates memory for the
strings.

wxStringList::~wxStringList

void ~wxStringList(void)

Deletes string list, deallocating strings.

wxStringList::Add

wxNode * Add(char *s)

Adds string to list, allocating memory.

wxStringList::Delete

void Delete(char *s)

Searches for string and deletes from list, deallocating memory.

wxStringList::ListToArray

char ** ListToArray(Bool new_copies = FALSE)

Converts the list to an array of strings, only allocating new memory if new_copies is TRUE.

wxStringList::Member

Bool Member(char *s)

Returns TRUE if s is a member of the list (tested using strcmp).

wxStringList::Sort

void Sort(void)

CHAPTER 9

299

Sorts the strings in ascending alphabetical order. Note that all nodes (but not strings) get
deallocated and new ones allocated.

9.102. wxText: wxItem

A text item is an area of editable text, with an optional label displayed in front of it.

The callback function specified for the text item will be called for the following events:

• wxEVENT_TYPE_TEXT_COMMAND (text has changed)
• wxEVENT_TYPE_TEXT_ENTER_COMMAND (enter has been pressed: if the

wxPROCESS_ENTER style is used)
• under Windows, wxEVENT_TYPE_SET_FOCUS, wxEVENT_TYPE_KILL_FOCUS

when the focus changes.

wxText::wxText

void wxText(void)

Constructor, for deriving classes.

void wxText(wxPanel *parent, wxFunction func, char *label,
 char *value = "", int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "text")

Constructor, creating and showing a text item with the given string value.

func may be NULL; otherwise it is used as the callback for the list box. Note that the cast
(wxFunction) must be used when passing your callback function name, or the compiler may
complain that the function does not match the constructor declaration.

If label is non-NULL, it will be used to label the text item.

The parameters x and y are used to specify an absolute position, or a position after the previous
panel item if omitted or default.

If width or height are omitted (or are less than zero), an appropriate size will be used for the item.

The style parameter can be a bit list of the following:

wxTE_PROCESS_ENTER The callback function will receive the message
wxEVENT_TYPE_TEXT_ENTER_COMMAND. Note that this will break tab
traversal for this panel item under Windows.

wxTE_PASSWORD The text will be echoed as asterisks.
wxTE_READONLY The text will not be user-editable.
wxFIXED_LENGTH Allows the values of a column of items to be left-aligned. Create an item

with this style, and pad out your labels with spaces to the same length. The item
labels will initially created with a string of identical characters, positioning all the
values at the same x-position. Then the real label is restored.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual text items.

CHAPTER 9

300

wxText::~wxText

void ~wxText(void)

Destructor, destroying the text item.

wxText::Copy

void Copy(void)

Copies the selected text to the clipboard under Motif and MS Windows.

wxText::Create

Bool Create(wxPanel *parent, wxFunction func, char *label,
 char *value = "", int x = -1, int y = -1, int width = -1, int height = -1,
 long style = 0, char *name = "text")

Creates the text item for two-step construction. Derived classes should call or replace this
function. See wxText::wxText (page 299)for further details.

wxText::Cut

void Cut(void)

Copies the selected text to the clipboard and removes the selection. Windows and Motif only.

wxText::GetInsertionPoint

long GetInsertionPoint(void)

Returns the insertion point. Windows and Motif only.

wxText::GetLastPosition

long GetLastPosition(void)

Returns the last position in the text item. Windows and Motif only.

wxText::GetValue

char * GetValue(void)

Gets a pointer to the current value. Copy this for long-term use.

wxText::Paste

CHAPTER 9

301

void Paste(void)

Pastes text from the clipboard to the text item. Windows and Motif only.

wxText::Remove

void Remove(long from, long to)

Removes the text between the two positions. Windows and Motif only.

wxText::Replace

void Replace(long from, long to, char *value)

Replaces the text between two positions with the given text. Windows and Motif only.

wxText::SetEditable

void SetEditable(Bool editable)

Makes the text item editable (TRUE) or read-only (FALSE).

wxText::SetInsertionPoint

void SetInsertionPoint(long pos)

Sets the insertion point. Windows only.

wxText::SetInsertionPointEnd

void SetInsertionPointEnd(void)

Sets the insertion point at the end of the text item. Windows and Motif only.

wxText::SetSelection

void SetSelection(long from, long to)

Selects the text between the two positions. Windows and Motif only.

wxText::SetValue

void SetValue(char * value)

Sets the text. value must be deallocated by the calling program.

CHAPTER 9

302

9.103. wxTextWindow: wxWindow

A text window is a subwindow of a frame (or a panel, on some platforms), offering some basic
ability to display scrolling text. Editing is possible under all platforms, but if editing is required
under Windows, the wxNATIVE_IMPL style should be included. This is because the default
implementation is a read-only text window that can display more than the 64K or so of text
allowed using the standard edit control.

Some manipulation functions take integer positions, starting from zero.

Many of these functions are currently platform-specific, and have yet to be fully implemented or
tested.

For compilers other than Borland C++, this class also derives from streambuf. You can then use
instances of wxTextWindow for the usual ostream operations, for example:

 wxTextWindow *textwin = new wxTextWindow(...);

 ostream stream(textwin);
 stream << "Hello! C++ streams are neat." << endl;

wxTextWindow::wxTextWindow

void wxTextWindow(void)

Constructor, for deriving classes.

void wxTextWindow(wxWindow *parent, int x = -1, int y = -1,
 int width = -1, int height = -1, long style = 0, char *name = "textWindow")

Constructor.

Under Windows and Motif, the parent can be either a frame or panel. Under XView, the parent
must be a frame.

The parameters x, y, width and height can be omitted on construction if the position and size will
later be set (for example by a application frame's OnSize callback, or if there is only one
subwindow for the frame, in which case the subwindow fills the frame).

style is a bit list of some of the following:

wxBORDER Use this style to draw a thin border in MS Windows (non-native implementation
only).

wxNATIVE_IMPL Use this style to allow editing under MS Windows, albeit with a 64K
limitation.

wxREADONLY Use this style to disable editing.
wxHSCROLL Use this style to enable a horizontal scrollbar, or leave it out to allow line

wrapping. Windows and Motif only.

The name parameter is used to associate a name with the item, allowing the application user to
set Motif resource values for individual text windows.

CHAPTER 9

303

wxTextWindow::~wxTextWindow

void ~wxTextWindow(void)

Destructor. Deletes any stored text before deleting the physical window.

wxTextWindow::Clear

void Clear(void)

Clears the window and deletes the stored text.

wxTextWindow::Create

Bool Create(wxWindow *parent, int x = -1, int y = -1,
 int width = -1, int height = -1, long style = 0, char *name = "textWindow")

Creates the text item for two-step construction. Derived classes should call or replace this
function. See wxTextWindow::wxTextWindow (page 302)for further details.

wxTextWindow::Copy

Bool Copy(void)

Copies the selected text onto the clipboard.

Motif and Windows only.

wxTextWindow::Cut

Bool Cut(void)

Copies the selected text onto the clipboard, and then deletes the text from the window.

Motif and Windows only.

wxTextWindow::DiscardEdits

void DiscardEdits(void)

Resets the internal 'modified' flag as if the current edits had been saved.

wxTextWindow::GetContents

char * GetContents(void)

Gets a pointer to a newly allocated buffer containing the text window contents. Free the buffer
with the C++ delete operator.

CHAPTER 9

304

wxTextWindow::GetInsertionPoint

long GetInsertionPoint(void)

Gets the current insertion point.

Motif and XView only.

wxTextWindow::GetLastPosition

long GetLastPosition(void)

Gets the position representing the end of the text window contents.

Motif and XView only.

wxTextWindow::GetLineLength

int GetLineLength(long lineNo)

Gets the length of the specified line (starting from zero).

wxTextWindow::GetLineText

int GetLineText(long lineNo, char *buffer)

Puts the contents of the specified line (starting from zero) into the given buffer, returning the
number of characters copied.

wxTextWindow::GetNumberOfLines

int GetNumberOfLines(void)

Gets the number of lines in the text window buffer.

wxTextWindow::SetSelection

void SetSelection(long from, long to)

Selects the text between from and to.

wxTextWindow::LoadFile

Bool LoadFile(char * file)

Loads and displays the named file, if it exists. Success is indicated by a return value of TRUE.

CHAPTER 9

305

wxTextWindow::Modified

Bool Modified(void)

Returns TRUE if the text has been modified.

wxTextWindow::OnChar

void OnChar(wxKeyEvent& event)

In Motif and Windows, it is possible to intercept character input by overriding this member. Call
this function to let the default behaviour take place; not calling it results in the character being
ignored. You can replace the keyCode member of event to translate keystrokes.

Note that Windows and Motif have different ways of implementing the default behaviour. In
Windows, calling wxTextWindow::OnChar immediately processes the character. In Motif, calling
this function simply sets a flag to let default processing happen. This might affect the way in
which you write your OnChar function on different platforms.

Under Windows, the wxNATIVE_IMPL flag must be passed to the wxTextWindow constructor if
overriding OnChar is to have any effect.

See wxEvtHandler::OnChar (page 151) and wxKeyEvent (page 193) for more details of the
keystroke event.

wxTextWindow::Paste

Bool Paste(void)

Pastes text from the clipboard into the text window.

Motif and Windows only.

wxTextWindow::PositionToXY

long PositionToXY(long pos, long *x, long *y)

Converts given character and line position to a position.

Motif and Windows only.

wxTextWindow::Remove

void Remove(long from, long to)

Removes the text between from and to.

wxTextWindow::Replace

CHAPTER 9

306

void Replace(long from, long to, char *value)

Replaces the text between from and to with value.

wxTextWindow::SaveFile

Bool SaveFile(char * file)

Saves the text in the named file. Success is indicated by a return value of TRUE.

wxTextWindow::SetFont

void SetFont(wxFont *font)

Sets the font for the text window.

Windows and Motif only.

wxTextWindow::SetEditable

void SetEditable(Bool editable)

Determines whether the text window is user-editable

wxTextWindow::SetInsertionPoint

void SetInsertionPoint(long pos)

Sets the current insertion point to pos.

wxTextWindow::SetInsertionPointEnd

void SetInsertionPointEnd(void)

Sets the current insertion point to the end of the text.

Motif and XView only.

wxTextWindow::ShowPosition

void ShowPosition(long pos)

Makes the line containing the given position visible.

Motif and XView only.

CHAPTER 9

307

wxTextWindow::WriteText

void WriteText(char * text)

Writes the text into the text window. Presently there is no means of writing text to other than the
end of the existing text. Newlines in the text string are the only control characters allowed, and
they will cause appropriate line breaks. See << (page 307) for more convenient ways of writing to
the window.

wxTextWindow::XYToPosition

long XYToPosition(long x, long y)

Converts given character and line position to a position.

wxTextWindow::operator <<

wxTextWindow& operator <<(char *s)

wxTextWindow& operator <<(int i)

wxTextWindow& operator <<(long i)

wxTextWindow& operator <<(float f)

wxTextWindow& operator <<(double d)

wxTextWindow& operator <<(char c)

Operator definitions for writing to a text window, for example:

 wxTextWindow *wnd = new wxTextWindow(my_frame);

 (*wnd) << "Welcome to text window number " << 1 << ".\n";

9.104. wxTimer: wxObject

The wxTimer object is an abstraction of MS Windows, XView and X toolkit timers. To use it,
derive a new class and override the Notify member to perform the required action. Start with
Start, stop with Stop, it's as simple as that.

See also ::wxStartTimer (page 350) and ::wxGetElapsedTime (page 346)for stopwatch functions.

wxTimer::wxTimer

void wxTimer(void)

Constructor.

wxTimer::~wxTimer

CHAPTER 9

308

void ~wxTimer(void)

Destructor. Stops the timer if activated.

wxTimer::Interval

int Interval(void)

Returns the current interval for the timer.

wxTimer::Notify

void Notify(void)

This member should be overridden by the user. It is called on timeout.

wxTimer::Start

Bool Start(int milliseconds = -1, Bool oneShot=FALSE)

(Re)starts the timer. If milliseconds is absent or -1, the previous value is used. Returns FALSE if
the timer could not be started, TRUE otherwise (in MS Windows timers are a limited resource).

If oneShot is FALSE (the default), the Notify function will be repeatedly called. If TRUE, Notify will
be called only once.

wxTimer::Stop

void Stop(void)

Stops the timer.

9.105. wxToolBar: wxPanel

See also Overview (page 391)

A wxToolBar is a canvas containing mouse-sensitive bitmaps. Include the file wx_tbar.h to use
this class.

Note: under XView, wxToolBar inherits from wxCanvas, not wxPanel, due to limitations in the
XView toolkit.

wxToolBar::wxToolBar

void wxToolBar(wxWindow *parent, int x = 0, int y = 0,
 int width = -1, int height = -1, long style = 0,
 int orientation = wxVERTICAL, int nRowsOrColumns = 1, char *name = "toolBar")

Constructs a toolbar canvas.

CHAPTER 9

309

parent is a parent window, usually a wxFrame.

x, y set the position of the window.

width, height set the size of the window.

style is a bitlist, which may contain the following flags:

wxTB_3DBUTTONS Gives a 3D look to the buttons, but not to the same extent as
wxButtonBar.

orientation specifies a wxVERTICAL or wxHORIZONTAL orientation for laying out the toolbar.

nRowsOrColumns specifies the number of rows or columns, whose meaning depends on
orientation. If laid out vertically, nRowsOrColumns specifies the number of rows to draw before
the next column is started; if horizontal, it refers to the number of columns to draw before the next
row is started.

name specifies a window name for the toolbar.

Under Windows 95, the wxButtonBar constructor only accepts wxVERTICAL plus the number of
rows.

wxToolBar::~wxToolBar

void ~wxToolBar(void)

Toolbar destructor.

wxToolBar::AddSeparator

void AddSeparator()

Adds a separator for spacing groups of tools.

wxToolBar::AddTool

wxToolBarTool * AddTool(int toolIndex, wxBitmap * bitmap1, wxBitmap * bitmap2 = NULL,
Bool isToggle = FALSE, float xPos = -1, float yPos = -1, wxObject *clientData = NULL, char
*shortHelpString = NULL, char *longHelpString = NULL)

Adds a tool to the toolbar. The toolIndex is an integer by which the tool may be identified in
subsequent operations. isToggle specifies whether the tool is a toggle or not: a toggle tool may
be in two states, whereas a non-toggle tool is just a button.

The first bitmap is the primary tool bitmap for toggle and button tools. The second bitmap
specifies the on-state bitmap for a toggle tool. If this is NULL, either an inverted version of the
primary bitmap is used for the on-state of a toggle tool (monochrome displays) or a black border
is drawn around the tool (colour displays).

CHAPTER 9

310

The arguments xPos and yPos allow the programmer to specify the position of the tool if
automatic layout is not suitable. For example, a toolbar along the top of a window may have
groups of tools, with spacing between groups. In this case, specifying xPos is all that is required,
and yPos will take its value from the current vertical spacing value.

clientData is an optional pointer to client data which can be retrieved later using
GetToolClientData.

shortHelpString is used for displaying a tooltip for the tool in the Windows 95 implementation of
wxButtonBar.

longHelpString can be used to displayer longer help, such as status line help.

wxToolBar::CreateTools

Bool CreateTools()

Required for the Windows 95 version of wxButtonBar: call this function after all tools have been
added to the toolbar. It is harmless to call CreateTools for wxToolBar.

wxToolBar::DrawTool

void DrawTool(wxMemoryDC& memDC, wxToolBarTool *tool)

Draws the specified tool onto the canvas using the given memory device context. Used internally,
and should not need to be used by the programmer.

wxToolBar::EnableTool

void EnableTool(int toolIndex, Bool enable)

Enables or disables the tool. Not currently implemented, but should give some indication of
whether the tool is active.

wxToolBar::FindToolForPosition

wxToolBarTool * FindToolForPosition(float x, float y)

Find a tool for the given mouse position, or return NULL. Used internally, and should not need to
be used by the programmer.

wxToolBar::GetMaxSize

void GetMaxSize(float *w, float *h)

Gets the maximum size taken up by the tools after layout, including margins. This can be used to
size a frame around the toolbar canvas.

wxToolBar::GetToolClientData

CHAPTER 9

311

wxObject * GetToolClientData(int toolIndex)

Get any client data associated with the tool.

wxToolBar::GetToolEnabled

Bool GetToolEnabled(int toolIndex)

Returns TRUE if the tool is enabled, FALSE otherwise.

wxToolBar::GetToolLongHelp

char * GetToolLongHelp(int toolIndex)

Returns the long help for the given tool.

wxToolBar::GetToolShortHelp

char * GetToolShortHelp(int toolIndex)

Returns the short help for the given tool.

wxToolBar::GetToolState

Bool GetToolState(int toolIndex)

Gets the on/off state of a toggle tool.

wxToolBar::Layout

void Layout(void)

Called by the application after the tools have been added to automatically lay the tools out on the
canvas. If you have given absolute positions when adding the tools, do not call this.

wxToolBar::OnLeftClick

Bool OnLeftClick(int toolIndex, Bool toggleDown)

Called when the user clicks on a tool with the left mouse button. The programmer should override
this function to detect left tool clicks. toolIndex is the identifier passed to AddTool, and
toggleDown is TRUE if the tool is a toggle and the toggle is down, otherwise is FALSE.

If the tool is a toggle and this function returns FALSE, the toggle toggle state (internal and visual)
will not be changed. This provides a way of specifying that toggle operations are not permitted in
some circumstances.

CHAPTER 9

312

wxToolBar::OnMouseEnter

void OnMouseEnter(int toolIndex)

This is called when the mouse moves into a tool (toolIndex is greater than -1) or out of the toolbox
(toolIndex is -1). The programmer can override this to provide extra information about the tool,
such as a short description on the status line. Icons are not always as intuitive as they're cracked
up to be!

wxToolBar::OnRightClick

void OnRightClick(int toolIndex, float x, float y)

Called when the user clicks on a tool with the right mouse button. The programmer should
override this function to detect right tool clicks.toolIndex is the identifier passed to AddTool, and
xand y give the mouse cursor position.

A typical use of this member might be to pop up a menu.

wxToolBar::SetMargins

void SetMargins(int x, int y)

Set the values to be used as margins for the toolbar. This must be called before the tools are
added if absolute positioning is to be used, and the default (zero-size) margins are to be
overridden.

wxToolBar::SetToolLongHelp

void SetToolLongHelp(int toolIndex, char *helpString)

Sets the long help for the given tool.

wxToolBar::SetToolPacking

void SetToolPacking(int packing)

Sets the value used for spacing tools. The default value is 1.

wxToolBar::SetToolShortHelp

void SetToolShortHelp(int toolIndex, char *helpString)

Sets the short help for the given tool.

wxToolBar::SetToolSeparation

void SetToolSeparation(int separation)

CHAPTER 9

313

Sets the value used by tool separators. The default value is 5.

wxToolBar::ToggleTool

void ToggleTool(int toolIndex, Bool toggle)

Toggles a tool on or off.

9.106. wxTypeTree: wxList

OBSOLETE CLASS. Please see the run time class information (page 370) for an alternative type
system.

wxTypeTree implements an explicit type hierarchy which can be useful for querying C++ types at
run-time, usually by calling wxSubType (page 350) using the wxObject::__type (page 222)
member.

A type is added to the global variable wxAllTypes; wxWindows adds its own standard types on
initialization, in wxInitStandardTypes, but the application can add its own.

The standard wxWindows types, grouped by functionality, are:

• wxTYPE_ANY
• wxTYPE_OBJECT (an alias for wxTYPE_ANY)
• wxTYPE_WINDOW
• wxTYPE_DIALOG_BOX
• wxTYPE_ITEM
• wxTYPE_PANEL
• wxTYPE_CANVAS
• wxTYPE_TEXT_WINDOW
• wxTYPE_FRAME
• wxTYPE_BUTTON
• wxTYPE_TEXT
• wxTYPE_MESSAGE
• wxTYPE_CHOICE
• wxTYPE_LIST_BOX
• wxTYPE_SLIDER
• wxTYPE_CHECK_BOX
• wxTYPE_MENU
• wxTYPE_MENU_BAR
• wxTYPE_MULTI_TEXT
• wxTYPE_RADIO_BOX
• wxTYPE_EVENT
• wxTYPE_DC
• wxTYPE_DC_CANVAS
• wxTYPE_DC_POSTSCRIPT
• wxTYPE_DC_PRINTER
• wxTYPE_DC_METAFILE
• wxTYPE_DC_MEMORY
• wxTYPE_MOUSE_EVENT
• wxTYPE_KEY_EVENT

CHAPTER 9

314

• wxTYPE_COMMAND_EVENT
• wxTYPE_PEN
• wxTYPE_BRUSH
• wxTYPE_FONT
• wxTYPE_ICON
• wxTYPE_BITMAP
• wxTYPE_METAFILE
• wxTYPE_TIMER
• wxTYPE_COLOUR
• wxTYPE_COLOURMAP
• wxTYPE_CURSOR
• wxTYPE_DDE_CLIENT
• wxTYPE_DDE_SERVER
• wxTYPE_DDE_CONNECTION
• wxTYPE_HELP_INSTANCE
• wxTYPE_LIST
• wxTYPE_STRING_LIST
• wxTYPE_HASH_TABLE
• wxTYPE_NODE
• wxTYPE_APP

wxTypeTree::wxTypeTree

void wxTypeTree(void)

Constructor. Used by wxWindows only, since there only one instance of this class.

wxTypeTree::AddType

void AddType(WXTYPE newType, WXTYPE parentType, char *name)

Adds a type to the hierarchy. newType is the type being registered, parentType is the parent type,
and name is an identifier (which can used in error messages). The top (root) type is
wxTYPE_ANY.

Example:

wxAllTypes.AddType(wxTYPE_WINDOW, wxTYPE_ANY, "window");
wxAllTypes.AddType(wxTYPE_PANEL, wxTYPE_WINDOW, "panel");
wxAllTypes.AddType(wxTYPE_CANVAS, wxTYPE_WINDOW, "canvas");

wxTypeTree::GetName

char * GetName(WXTYPE typ)

Gets a temporary pointer to the name of the given type, or NULL if the type is not found.

9.107. wxUpdateIterator: wxObject

This class is used to iterate through all damaged regions of a canvas, panel or dialog box, within
an OnPaint call.

CHAPTER 9

315

To use it, construct an iterator object on the stack and loop through the regions, testing the object
and incrementing the iterator at the end of the loop.

See wxCanvas::OnPaint (page 63) for an example of use.

wxUpdateIterator::wxUpdateIterator

void wxUpdateIterator(wxCanvas *canvas)

Creates an iterator object.

wxUpdateIterator::GetX

int GetX(void)

Returns the x value for the current region.

wxUpdateIterator::GetY

int GetY(void)

Returns the y value for the current region.

wxUpdateIterator::GetWidth

int GetWidth(void)

Returns the width value for the current region.

wxUpdateIterator::GetHeight

int GetWidth(void)

Returns the width value for the current region.

wxUpdateIterator::operator ++

void operator ++(void)

Increments the iterator to the next region.

9.108. wxView: wxEvtHandler

See also Overview (page 374)

The view class can be used to model the viewing and editing component of an application's file-
based data. It is part of the document/view framework supported by wxWindows, and cooperates

CHAPTER 9

316

with the wxDocument (page 140), wxDocTemplate (page 135)and wxDocManager (page 128)
classes.

wxView::viewDocument

wxDocument * viewDocument

The document associated with this view. There may be more than one view per document, but
there can never be more than one document for one view.

wxView::viewFrame

wxFrame * viewFrame

Frame associated with the view, if any.

wxView::viewTypeName

char * viewTypeName

The view type name given to the wxDocTemplate constructor, copied to this variable when the
view is created. Not currently used by the framework.

wxView::wxView

void wxView(void)

Constructor. Define your own default constructor to initialize application-specific data.

wxView::~wxView

void ~wxView(void)

Destructor. Removes itself from the document's list of views.

wxView::Activate

void Activate(Bool activate)

Call this from your view frame's OnActivate member to tell the framework which view is currently
active. If your windowing system doesn't call OnActivate, you may need to call this function from
OnMenuCommand or any place where you know the view must be active, and the framework will
need to get the current view.

The prepackaged view frame wxDocChildFrame calls wxView::Activate from its OnActivate
member and from its OnMenuCommand member.

This function calls wxView::OnActivateView.

CHAPTER 9

317

wxView::Close

Bool Close(Bool deleteWindow = TRUE)

Closes the view by calling OnClose. If deleteWindow is TRUE, this function should delete the
window associated with the view.

wxView::GetDocument

wxDocument * GetDocument(void)

Gets a pointer to the document associated with the view.

wxView::GetDocumentManager

wxDocumentManager * GetDocumentManager(void)

Returns a pointer to the document manager instance associated with this view.

wxView::GetFrame

wxFrame * GetFrame(void)

Gets the frame associated with the view (if any).

wxView::GetViewName

char * GetViewName(void)

Gets the name associated with the view (passed to the wxDocTemplate constructor). Not
currently used by the framework.

wxView::OnActivateView

void OnActivateView(Bool activate, wxView *activeView, wxView *deactiveView)

Called when a view is activated by means of wxView::Activate. The default implementation does
nothing.

wxView::OnChangeFilename

void OnChangeFilename(void)

Called when the filename has changed. The default implementation constructs a suitable title and
sets the title of the view frame (if any).

CHAPTER 9

318

wxView::OnClose

Bool OnClose(Bool deleteWindow)

Implements closing behaviour. The default implementation calls wxDocument::Close to close the
associated document. Does not delete the view. The application may wish to do some cleaning
up operations in this function, if a call to wxDocument::Close succeeded. For example, if your
application's all share the same canvas, you need to disassociate the canvas from the view and
perhaps clear the canvas. If deleteWindow is TRUE, delete the frame associated with the view.

wxView::OnCreate

Bool OnCreate(wxDocument *doc, long flags)

Called just after view construction to give the view a chance to initialize itself based on the
passed document and flags (unused). By default, simply returns TRUE. If the function returns
FALSE, the view will be deleted.

The predefined document child frame, wxDocChildFrame, calls this function automatically.

wxView::OnCreatePrintout

wxPrintout * OnCreatePrintout(void)

If the printing framework is enabled in the library, this function returns a wxPrintout (page 251)
object for the purposes of printing. It should create a new object everytime it is called; the
framework will delete objects it creates.

By default, this function returns an instance of wxDocPrintout, which prints and previews one
page by calling wxView::OnDraw.

Override to return an instance of a class other than wxDocPrintout.

wxView::OnUpdate

void OnUpdate(wxView *sender, wxObject *hint)

Called when the view should be updated. sender is a pointer to the view that sent the update
request, or NULL if no single view requested the update (for instance, when the document is
opened). hint is as yet unused but may in future contain application-specific information for
making updating more efficient.

wxView::SetDocument

void SetDocument(wxDocument *doc)

Associates the given document with the view. Normally called by the framework.

wxView::SetFrame

CHAPTER 9

319

void SetFrame(wxFrame *frame)

Sets the frame associated with this view. The application should call this if possible, to tell the
view about the frame.

wxView::SetViewName

void SetViewName(char *name)

Sets the view type name. Should only be called by the framework.

9.109. wxWindow: wxObject

See also Event handling overview (page 390)

wxWindow is the base class for all windows and panel items. Any children of the window will be
deleted automatically by the destructor before the window itself is deleted.

wxWindow::wxWindow

void wxWindow(void)

Constructor.

wxWindow::~wxWindow

void ~wxWindow(void)

Destructor. Deletes all subwindows, then deletes itself.

wxWindow::AddChild

void AddChild(wxWindow *child)

Adds a child window. This is called automatically by window creation functions so should not be
required by the application programmer.

wxWindow::CaptureMouse

void CaptureMouse(void)

Directs all mouse input to this window. Call ReleaseMouse to release the capture.

wxWindow::Center

void Center(int direction)

See Centre (page 320).

CHAPTER 9

320

wxWindow::Centre

void Centre(int direction)

Centres the window. The parameter may be wxHORIZONTAL, wxVERTICAL or wxBOTH.

The actual behaviour depends on the derived window. For a frame or dialog box, centring is
relative to the whole display. For a panel item, centring is relative to the panel.

wxWindow::ClientToScreen

void ClientToScreen(int *x, int *y)

Converts the values pointed to by x and y to screen coordinates from coordinates relative to this
window.

wxWindow::Close

Bool Close(Bool force)

Applies to managed windows (wxFrames and wxDialogBoxes) only. The purpose of this call is to
provide a more elegant way of destroying a window than using the delete operator.

Close calls OnClose for the window, providing an opportunity for the window to veto the close.

If OnClose returns FALSE and force is FALSE, then FALSE is returned and no deletion occurs.

If force is TRUE, then regardless of the return value of OnClose, the window will be added to a
list for deletion during application idle time. The window will therefore not be deleted immediately,
and the object can be used just after calling Close.

This has an important benefit under X, where immediate deletion of a window can cause
problems if events for that window and its children are still pending. Using Close should eliminate
these problems since the window will not be deleted until there are no more X events pending.

wxWindow::DestroyChildren

void DestroyChildren(void)

Destroys all children of a window. Called automatically by the destructor.

wxWindow::DragAcceptFiles

void DragAcceptFiles(Bool accept)

Under Windows, if accept is TRUE, makes the window eligible for a OnDropFiles event.

wxWindow::Enable

CHAPTER 9

321

void Enable(Bool enable)

Enable or disable the window, so input has no effect.

wxWindow::GetCharHeight

float GetCharHeight(void)

Get the character height for this window.

wxWindow::GetCharWidth

float GetCharWidth(void)

Get the average character width for this window.

wxWindow::GetChildren

wxList * GetChildren(void)

Returns a temporary pointer to a list of the window's children.

wxWindow::GetClientSize

void GetClientSize(int *width, int *height)

This gets the size of the window 'client area' in pixels. The client area is the area which may be
drawn on by the programmer, excluding title bar, border etc.

wxWindow::GetConstraints

wxLayoutConstraints * GetConstraints(void)

Gets a pointer to the window's layout constraints (if any).

wxWindow::GetEventHandler

wxEvtHandler * GetEventHandler(void)

Gets the event handler for this window. By default, the window is its own event handler. Use this
function if you wish to manually call an event handler function (such as OnPaint).

See wxEvtHandler (page 150).

wxWindow::GetGrandParent

CHAPTER 9

322

wxWindow * GetGrandParent(void)

Returns the grandparent of a window, if any.

wxWindow::GetHandle

char * GetHandle(void)

Gets the platform-specific handle of the physical window.

wxWindow::GetPosition

void GetPosition(int *x, int *y)

This gets the position of the window in pixels, relative to the parent window or if no parent,
relative to the whole display.

wxWindow::GetLabel

char * GetLabel(void)

Generic way of getting a label from any window, perhaps for identification purposes. Some
windows do not have labels (such as subwindows), but frames, dialogs and panel items all have
labels, where the interpretation of what constitutes a label differs from class to class. This can be
useful for meta-programs (such as testing tools or special-needs access programs) which need to
identify windows by name rather than visually.

wxWindow::GetName

char * GetName(void)

Returns a pointer to internal data containing the window's name. This name is not guaranteed to
be unique; it is up to the programmer to supply an appropriate name.

wxWindow::GetParent

wxWindow * GetParent(void)

Returns the parent of a window, if any.

wxWindow::GetSize

void GetSize(int *width, int *height)

This gets the size of the entire window in pixels.

wxWindow::GetTextExtent

CHAPTER 9

323

void GetTextExtent(char *string, float *x, float *y)

Gets the width and height of the string as it would be drawn on the window with the currently
selected font.

wxWindow::GetUserEditMode

Bool GetUserEditMode(void)

Returns TRUE if the window is in user interface edit mode.

See wxWindow::SetUserEditMode (page 327) for further details.

wxWindow::GetWindowStyleFlag

long GetWindowStyleFlag(void)

Gets the window style that was passed to the consructor or Createmember.

wxWindow::IsShown

Bool IsShown(void)

Returns TRUE if the window is shown, FALSE if it has been hidden.

wxWindow::Layout

void Layout(void)

Invokes the constraint-based layout algorithm for this window. It is called automatically by the
default wxWindow::OnSize member.

wxWindow::Lower

void Lower(void)

Lowers the window to the bottom of the window hierarchy if it is a managed window (dialog or
frame). Motif and Windows only.

wxWindow::MakeModal

void MakeModal(Bool flag)

If flag is TRUE, this call disables all other windows in the application so that the user can only
interact with this window. If flag is FALSE, the effect is reversed.

CHAPTER 9

324

wxWindow::Move

void Move(int x, int y)

Moves the window to the given position.

Implementations of SetSize can also implicitly implement the wxWindow::Move function, which is
defined in the base wxWindow class as the call:

 SetSize(x, y, -1, -1, wxSIZE_USE_EXISTING);

wxWindow::PopupMenu

Bool PopupMenu(wxMenu *menu, float x, float y)

Pops up the given menu at the specified coordinates, relative to this window, and returns control
when the user has dismissed the menu. If a menu item is selected, the callback defined for the
menu is called with wxMenu and wxCommandEvent reference arguments. The callback should
access the commandInt member of the event to check the selected menu identifier.

Valid only for subwindows (panels, canvases and text windows).

See also wxMenu (page 206).

This function should now function correctly under Motif, removing the need to use
FakePopupMenu.

wxWindow::Raise

void Raise(void)

Raises the window to the top of the window hierarchy if it is a managed window (dialog or frame).
Motif and Windows only.

wxWindow::Refresh

void Refresh(Bool eraseBackground = TRUE, wxRectangle *rect = NULL)

Causes a message or event to be generated to repaint the window. If eraseBackground is TRUE,
the background will be erased. If rect is non-NULL, only the given rectangle will be treated as
damaged.

wxWindow::ReleaseMouse

void ReleaseMouse(void)

Releases mouse input captured with CaptureMouse.

wxWindow::ScreenToClient

CHAPTER 9

325

void ScreenToClient(int *x, int *y)

Converts the values pointed to by x and y to window coordinates from screen coordinates.

wxWindow::SetAutoLayout

void SetAutoLayout(Bool autoLayout)

Set this to TRUE if you wish the Layout function to be called from within wxWindow::OnSize
functions (when the window is resized).

See also SetConstraints (page 325).

wxWindow::SetConstraints

void SetConstraints(wxLayoutConstraints *constraints)

Sets the window to have the given layout constraints. The window will then own the object, and
will take care of its deletion. If an existing layout constraints object is already owned by the
window, it will be deleted.

Pass NULL to this function to disassociate and delete the window's constraints.

You must call wxWindow::SetAutoLayout (page 325) to tell a window to use the constraints
automatically in OnSize; otherwise, you must override OnSize and call Layout explicitly.

wxWindow::SetDoubleClick

void SetDoubleClick(Bool allowDoubleClick)

For canvases, allows double click if allowDoubleClick is TRUE. The default is FALSE.

wxWindow::SetFocus

void SetFocus(void)

This sets the window to receive keyboard input. The only panel item that will respond to this
under XView is the wxText item and derived items.

wxWindow::SetName

void SetName(char *name)

Sets the window's name.

wxWindow::SetSize

void SetSize(int x, int y, int width, int height, int sizeFlags = wxSIZE_AUTO)

CHAPTER 9

326

void SetSize(int width, int height)

This sets the size and/or position of the entire window in pixels. The second form is a
convenience for calling the first form with default x and y parameters, and must be used with non-
default width and height values.

The first form sets the position and optionally size, of the window. Parameters may be -1 to
indicate either that a default should be supplied by wxWindows, or that the current value of the
dimension should be used. The behaviour is controlled by sizeFlags, which is a bit list of the
following:

• wxSIZE_AUTO_WIDTH (1): a -1 width value is taken to indicate a wxWindows-supplied
default width.

• wxSIZE_AUTO_HEIGHT (2): a -1 height value is taken to indicate a wxWindows-
supplied default width.

• wxSIZE_AUTO (3): -1 size values are taken to indicate a wxWindows-supplied default
size.

• wxSIZE_USE_EXISTING (0): existing dimensions should be used if -1 values are
supplied.

• wxSIZE_ALLOW_MINUS_ONE: allow dimensions of -1 and less to be interpreted as
real dimensions, not default values.

In versions of wxWindows prior to 1.61 (c), it was not always clear what interpretation was being
used. Now implementations of SetSize can also implicitly implement the wxWindow::Move
function, which is defined as the call:

 SetSize(x, y, -1, -1, wxSIZE_USE_EXISTING);

wxWindow::SetSizeHints

void SetSizeHints(int minW=-1, int minH=-1, int maxW=-1, int maxH=-1, int incW=-1, int
incH=-1)

Sets the minimum and maximum frame size under MS Windows, Motif and XView. Under Motif
and XView the width and height resizing increments can also be set.

If a pair of values is not set (or set to -1), the default values will be used.

wxWindow::SetClientSize

void SetClientSize(int width, int height)

This sets the size of the window client area in pixels. Using this function to size a window tends to
be more device-independent than SetSize, since the application need not worry about what
dimensions the border or title bar have when trying to fit the window around panel items, for
example.

wxWindow::SetColourMap

void SetColourMap(wxColourMap *colourMap)

Assigns the given colourmap to the window.

CHAPTER 9

327

See wxColourMap (page 81) for further details.

wxWindow::SetCursor

wxCursor * SetCursor(wxCursor *cursor)

Sets the window's cursor, returning the previous cursor (if any). This function applies to all
subwindows.

See also ::wxSetCursor (page 336), wxCursor (page 94).

wxWindow::SetEventHandler

void SetEventHandler(wxEvtHandler *handler)

Sets the event handler for this window. By default, the window is its own event handler. See
wxEvtHandler (page 150).

wxWindow::SetTitle

void SetTitle(char *title)

Sets the window's title, allocating its own string storage. Currently applicable only to frames.

wxWindow::SetUserEditMode

void SetUserEditMode(Bool editable)

Sets a flag indicating that the user can 'edit' the interface. This is for the use of visual user
interface building tools, and currently only works for wxPanel and wxDialogBox.

When this mode is on, the windows stop having their normal functionality and instead receives
OnEvent calls that the application can intercept. In particular, the base wxPanel class implements
panel item moving and sizing, and passes left and right click events from the items and panel to
the application via functions such as OnLeftClick. The application might pop up a menu or
select/deselect items in response to these calls.

See also wxWindow::GetUserEditMode (page 323).

wxWindow::Show

Bool Show(Bool show)

If show is TRUE, displays the window and brings it to the front. Otherwise, hides the window.

328

10. Functions

The functions defined in wxWindows are described here.

10.1. File functions

See also wxPathList (page 235).

::wxDirExists

Bool wxDirExists(char *dirname)

Returns TRUE if the directory exists.

::Dos2UnixFilename

void Dos2UnixFilename(char *s)

Converts a DOS to a UNIX filename by replacing backslashes with forward slashes.

::wxFileExists

Bool wxFileExists(char *filename)

Returns TRUE if the file exists.

::wxFileNameFromPath

char * wxFileNameFromPath(char *path)

Returns a temporary pointer to the filename for a full path. Copy this pointer for long-term use.

::wxFindFirstFile

char * wxFindFirstFile(const char *spec, int flags = 0)

This function does directory searching; returns the first file that matches the path spec, or NULL.
Use wxFindNextFile (page 329) to get the next matching file.

spec may contain wildcards.

flags is reserved for future use.

The returned filename is a pointer to static memory so should not be freed.

For example:

CHAPTER 10

329

 char *f = wxFindFirstFile("/home/project/*.*");
 while (f)
 {
 ...
 f = wxFindNextFile();
 }

::wxFindNextFile

char * wxFindFirstFile(void)

Returns the next file that matches the path passed to wxFindFirstFile (page 328).

::wxIsAbsolutePath

Bool wxIsAbsolutePath(char *filename)

Returns TRUE if the argument is an absolute filename, i.e. with a slash or drive name at the
beginning.

::wxPathOnly

char * wxPathOnly(char *path)

Returns a temporary pointer to the directory part of the filename. Copy this pointer for long-term
use.

::wxUnix2DosFilename

void wxUnix2DosFilename(char *s)

Converts a UNIX to a DOS filename by replacing forward slashes with backslashes.

::wxConcatFiles

Bool wxConcatFiles(char *file1, char *file2,char *file3)

Concatenates file1 and file2 to file3, returning TRUE if successful.

::wxCopyFile

Bool wxCopyFile(char *file1, char *file2)

Copies file1 to file2, returning TRUE if successful.

::wxGetHostName

Bool wxGetHostName(char *buf, int sz)

CHAPTER 10

330

Copies the current host machine's name into the supplied buffer.

Under Windows or NT, this function first looks in the environment variable SYSTEM_NAME; if
this is not found, the entry HostName in the wxWindows section of the WIN.INI file is tried.

Returns TRUE if successful, FALSE otherwise.

::wxGetEmailAddress

Bool wxGetEmailAddress(char *buf, int sz)

Copies the user's email address into the supplied buffer, by concatenating the values returned by
wxGetHostName (page 329) and wxGetUserId (page 330).

Returns TRUE if successful, FALSE otherwise.

::wxGetUserId

Bool wxGetUserId(char *buf, int sz)

Copies the current user id into the supplied buffer.

Under Windows or NT, this function first looks in the environment variables USER and
LOGNAME; if neither of these is found, the entry UserId in the wxWindows section of the
WIN.INI file is tried.

Returns TRUE if successful, FALSE otherwise.

::wxGetUserName

Bool wxGetUserName(char *buf, int sz)

Copies the current user name into the supplied buffer.

Under Windows or NT, this function looks for the entry UserName in the wxWindows section of
the WIN.INI file. If PenWindows is running, the entry Current in the section User of the
PENWIN.INI file is used.

Returns TRUE if successful, FALSE otherwise.

::wxGetWorkingDirectory

char * wxGetWorkingDirectory(char *buf=NULL, int sz=1000)

Copies the current working directory into the buffer if supplied, or copies the working directory into
new storage (which you must delete yourself) if the buffer is NULL.

sz is the size of the buffer if supplied.

CHAPTER 10

331

::wxGetTempFileName

char * wxGetTempFileName(char *prefix, char *buf=NULL)

Makes a temporary filename based on prefix, opens and closes the file, and places the name in
buf. If buf is NULL, new store is allocated for the temporary filename using new.

Under Windows, the filename will include the drive and name of the directory allocated for
temporary files (usually the contents of the TEMP variable). Under UNIX, the /tmp directory is
used.

It is the application's responsibility to create and delete the file.

::wxIsWild

Bool wxIsWild(char *pattern)

Returns TRUE if the pattern contains wildcards. See wxMatchWild (page 331).

::wxMatchWild

Bool wxMatchWild(char *pattern, char *text, Bool dot_special)

Returns TRUE if the pattern matches the text; if dot_special is TRUE, filenames beginning with a
dot are not matched with wildcard characters. See wxIsWild (page 331).

::wxMkdir

Bool wxMkdir(char *dir)

Makes the directory dir, returning TRUE if successful.

::wxRemoveFile

Bool wxRemoveFile(char *file)

Removes file, returning TRUE if successful.

::wxRenameFile

Bool wxRenameFile(char *file1, char *file2)

Renames file1 to file2, returning TRUE if successful.

::wxRmdir

Bool wxRmdir(char *dir, int flags=0)

CHAPTER 10

332

Removes the directory dir, returning TRUE if successful. Does not work under VMS.

The flags parameter is reserved for future use.

::wxSetWorkingDirectory

Bool wxSetWorkingDirectory(char *dir)

Sets the current working directory, returning TRUE if the operation succeeded. Under MS
Windows, the current drive is also changed if dir contains a drive specification.

10.2. String functions

::copystring

char * copystring(char *s)

Makes a copy of the string s using the C++ new operator, so it can be deleted with the delete
operator.

::wxStringMatch

Bool wxStringMatch(char *s1, char *s2,
 Bool subString = TRUE, Bool exact = FALSE)

Returns TRUE if the substring s1 is found within s2, ignoring case if exact is FALSE. If subString
is FALSE, no substring matching is done.

::wxStringEq

Bool wxStringEq(char *s1, char *s2)

A macro defined as:

#define wxStringEq(s1, s2) (s1 && s2 && (strcmp(s1, s2) == 0))

::wxTransferFileToStream

Bool wxTransferFileToStream(char *filename, ostream& stream)

Copies the given file to stream. Useful when converting an old application to use streams (within
the document/view framework, for example).

Use of this function requires the file wx_doc.h to be included.

::wxTransferStreamToFile

Bool wxTransferStreamToFile(istream& stream char *filename)

CHAPTER 10

333

Copies the given stream to the file filename. Useful when converting an old application to use
streams (within the document/view framework, for example).

Use of this function requires the file wx_doc.h to be included.

10.3. Dialog functions

Below are a number of convenience functions for getting input from the user or displaying
messages. Note that in these functions the last three parameters are optional. However, it is
recommended to pass a parent frame parameter, or (in MS Windows or Motif) the wrong window
frame may be brought to the front when the dialog box is popped up.

::wxFileSelector

char * wxFileSelector(char *message, char *default_path = NULL,
 char *default_filename = NULL, char *default_extension = NULL,
 char *wildcard = "*.*'', int flags = 0, wxWindow *parent = NULL,
 int x = -1, int y = -1)

Pops up a file selector box. In Windows, this is the common file selector dialog. In X, this is a file
selector box with somewhat less functionality. The path and filename are distinct elements of a
full file pathname. If path is NULL, the current directory will be used. If filename is NULL, no
default filename will be supplied. The wildcard determines what files are displayed in the file
selector, and file extension supplies a type extension for the required filename. Flags may be a
combination of wxOPEN, wxSAVE, wxOVERWRITE_PROMPT, wxHIDE_READONLY, or 0.
They are only significant at present in Windows.

Both the X and Windows versions implement a wildcard filter. Typing a filename containing
wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only those files matching
the pattern being displayed. In the X version, supplying no default name will result in the wildcard
filter being inserted in the filename text item; the filter is ignored if a default name is supplied.

Under Windows (only), the wildcard may be a specification for multiple types of file with a
description for each, such as:

 "BMP files (*.bmp) | *.bmp | GIF files (*.gif) | *.gif"

The application must check for a NULL return value (the user pressed Cancel). For example:

char *s = wxFileSelector("Choose a file to open");
if (s)
{
 ...
}

Remember that the returned pointer is temporary and should be copied if other wxWindows calls
will be made before the value is to be used.

::wxGetTextFromUser

char * wxGetTextFromUser(char *message, char *caption = "Input text",
 char *default_value = "", wxWindow *parent = NULL,

CHAPTER 10

334

 int x = -1, int y = -1, Bool centre = TRUE)

Pop up a dialog box with title set to caption, message message, and a default_value. The user
may type in text and press OK to return this text, or press Cancel to return NULL.

If centre is TRUE, the message text (which may include new line characters) is centred; if FALSE,
the message is left-justified.

::wxGetMultipleChoice

int wxGetMultipleChoice(char *message, char *caption, int n, char *choices[],
 int nsel, int *selection, wxWindow *parent = NULL, int x = -1, int y = -1,
 Bool centre = TRUE, int width=150, int height=200)

Pops up a dialog box containing a message, OK/Cancel buttons and a multiple-selection listbox.
The user may choose one or more item(s) and press OK or Cancel.

The number of initially selected choices, and array of the selected indices, are passed in; this
array will contain the user selections on exit, with the function returning the number of selections.
selection must be as big as the number of choices, in case all are selected.

If Cancel is pressed, -1 is returned.

choices is an array of n strings for the listbox.

If centre is TRUE, the message text (which may include new line characters) is centred; if FALSE,
the message is left-justified.

::wxGetSingleChoice

char * wxGetSingleChoice(char *message, char *caption, int n, char *choices[],
 wxWindow *parent = NULL, int x = -1, int y = -1,
 Bool centre = TRUE, int width=150, int height=200)

Pops up a dialog box containing a message, OK/Cancel buttons and a single-selection listbox.
The user may choose an item and press OK to return a string or Cancel to return NULL.

choices is an array of n strings for the listbox.

If centre is TRUE, the message text (which may include new line characters) is centred; if FALSE,
the message is left-justified.

::wxGetSingleChoiceIndex

int wxGetSingleChoiceIndex(char *message, char *caption, int n, char *choices[],
 wxWindow *parent = NULL, int x = -1, int y = -1,
 Bool centre = TRUE, int width=150, int height=200)

As wxGetSingleChoice but returns the index representing the selected string. If the user
pressed cancel, -1 is returned.

CHAPTER 10

335

::wxGetSingleChoiceData

char * wxGetSingleChoiceData(char *message, char *caption, int n, char *choices[],
 char *client_data[], wxWindow *parent = NULL, int x = -1,
 int y = -1, Bool centre = TRUE, int width=150, int height=200)

As wxGetSingleChoice but takes an array of client data pointers corresponding to the strings,
and returns one of these pointers.

::wxMessageBox

int wxMessageBox(char *message, char *caption = "Message", int style = wxOK |
wxCENTRE,
 wxWindow *parent = NULL, int x = -1, int y = -1)

General purpose message dialog. style may be a bit list of the following identifiers:

wxYES_NO Puts Yes and No buttons on the message box. May be combined with
wxCANCEL.

wxCANCEL Puts a Cancel button on the message box. May be combined with wxYES_NO
or wxOK.

wxOK Puts an Ok button on the message box. May be combined with wxCANCEL.
wxCENTRE Centres the text.
wxICON_EXCLAMATION Under Windows, displays an exclamation mark symbol.
wxICON_HAND Under Windows, displays a hand symbol.
wxICON_QUESTION Under Windows, displays a question mark symbol.
wxICON_INFORMATION Under Windows, displays an information symbol.

The return value is one of: wxYES, wxNO, wxCANCEL, wxOK.

For example:

 ...
 int answer = wxMessageBox("Quit program?", "Confirm",
 wxYES_NO | wxCANCEL, main_frame);
 if (answer == wxYES)
 delete main_frame;
 ...

message may contain newline characters, in which case the message will be split into separate
lines, to cater for large messages.

Under Windows, the native MessageBox function is used unless wxCENTRE is specified in the
style, in which case a generic function is used. This is because the native MessageBox function
cannot centre text. The symbols are not shown when the generic function is used.

10.4. GDI functions

The following are relevant to the GDI (Graphics Device Interface).

::wxColourDisplay

CHAPTER 10

336

Bool wxColourDisplay(void)

Returns TRUE if the display is colour, FALSE otherwise.

::wxDisplayDepth

int wxDisplayDepth(void)

Returns the depth of the display (a value of 1 denotes a monochrome display).

::wxMakeMetaFilePlaceable

Bool wxMakeMetaFilePlaceable(char *filename, int minX, int minY, int maxX, int maxY, float
scale=1.0)

Given a filename for an existing, valid metafile (as constructed using wxMetaFileDC (page 213))
makes it into a placeable metafile by prepending a header containing the given bounding box.
The bounding box may be obtained from a device context after drawing into it, using the functions
wxDC::MinX, wxDC::MinY, wxDC::MaxX and wxDC::MaxY.

In addition to adding the placeable metafile header, this function adds the equivalent of the
following code to the start of the metafile data:

 SetMapMode(dc, MM_ANISOTROPIC);
 SetWindowOrg(dc, minX, minY);
 SetWindowExt(dc, maxX - minX, maxY - minY);

This simulates the MM_TEXT mapping mode, which wxWindows assumes.

Placeable metafiles may be imported by many Windows applications, and can be used in RTF
(Rich Text Format) files.

scale allows the specification of scale for the metafile.

This function is only available under Windows.

::wxSetCursor

void wxSetCursor(wxCursor *cursor)

Globally sets the cursor; only has an effect in MS Windows. See also wxCursor (page 94),
wxWindow::SetCursor (page 327).

10.5. System event functions

The wxWindows system event implementation is incomplete and experimental, but is intended to
be a platform-independent way of intercepting and sending events, including defining application-
specific events and handlers.

Ultimately it is intended to be used as a way of testing wxWindows applications using scripts,
although there are currently problems with this (especially with modal dialogs).

CHAPTER 10

337

All this is documented more to provoke comments and suggestions, and jog my own memory,
rather than to be used, since it has not been tested. However wxSendEvent will probably work if
you instantiate the event structure properly for a command event type (see the code in
wb_panel.cpp for wxPanel::OnDefaultAction (page 231) which uses wxSendEvent to send a
command to the default button).

::wxAddPrimaryEventHandler

Bool wxAddPrimaryEventHandler(wxEventHandler handlerFunc)

Add a primary event handler---the normal event handler for this event. For built-in events, these
would include moving and resizing windows. User-defined primary events might include the code
to select an image in a diagram (which could of course be achieved by a series of external events
for mouse-clicking, but would be more difficult to specify and less robust).

Returns TRUE if it succeeds.

An event handler takes a pointer to a wxEvent and a boolean flag which is TRUE if the event was
externally generated, and returns a boolean which is TRUE if that event was handled.

::wxAddSecondaryEventHandler

Bool wxAddSecondaryEventHandler(wxEventHandler handlerFunc, Bool pre,
 Bool override, Bool append)

Add a secondary event handler, pre = TRUE iff it should be called before the event is executed.
override = TRUE iff the handler is allowed to override all subsequent events by returning TRUE.
Returns TRUE if succeeds.

A secondary event handler is an application-defined handler that may intercept normal events,
possibly overriding them. A primary event handler provides the normal behaviour for the event.

An event handler takes a pointer to a wxEvent and a boolean flag which is TRUE if the event was
externally generated, and returns a boolean which is TRUE if that event was handled.

::wxNotifyEvent

Bool wxNotifyEvent(wxEvent& event, Bool pre)

Notify the system of the event you are about to execute/have just executed. If TRUE is returned
and pre = TRUE, the calling code should not execute the event (since it has been intercepted by
a handler and vetoed).

These events are always internal, because they're generated from within the main application
code.

::wxRegisterEventClass

void wxRegisterEventClass(WXTYPE eventClassId,WXTYPE superClassId,
 wxEventConstructor constructor, char *description)

CHAPTER 10

338

Register a new event class (derived from wxEvent), giving the new event class type, its
superclass, a function for creating a new event object of this class, and an optional description.

::wxRegisterEventName

void wxRegisterEventName(WXTYPE eventTypeId,WXTYPE eventClassId,
 char *eventName)

Register the name of the event. This will allow a simple command language where giving the
event type name and some arguments will cause a new event of class eventClassId to be
created, with given event type, and some arguments, allows an event to be dynamically
constructed and sent.

::wxRegisterExternalEventHandlers

void wxRegisterExternalEventHandlers(void)

Define this and link before wxWindows library to allow registering events from 'outside' the main
application.

::wxRemoveSecondaryEventHandler

Bool wxRemoveSecondaryEventHandler(wxEventHandler handlerFunc, Bool pre)

Remove a secondary event handler. Returns TRUE if it succeeds.

::wxSendEvent

Bool wxSendEvent(wxEvent& event, Bool external)

Send an event to the system; usually it will be external, but set external to FALSE if calling from
within the main application in response to other events.

Returns TRUE if the event was processed.

10.6. Printer settings

The following functions are used to control PostScript printing. Under Windows, PostScript output
can only be sent to a file.

::wxGetPrinterCommand

char * wxGetPrinterCommand(void)

Gets the printer command used to print a file. The default is lpr.

::wxGetPrinterFile

CHAPTER 10

339

char * wxGetPrinterFile(void)

Gets the PostScript output filename.

::wxGetPrinterMode

int wxGetPrinterMode(void)

Gets the printing mode controlling where output is sent (PS_PREVIEW, PS_FILE or
PS_PRINTER). The default is PS_PREVIEW.

::wxGetPrinterOptions

char * wxGetPrinterOptions(void)

Gets the additional options for the print command (e.g. specific printer). The default is nothing.

::wxGetPrinterOrientation

int wxGetPrinterOrientation(void)

Gets the orientation (PS_PORTRAIT or PS_LANDSCAPE). The default is PS_PORTRAIT.

::wxGetPrinterPreviewCommand

char * wxGetPrinterPreviewCommand(void)

Gets the command used to view a PostScript file. The default depends on the platform.

::wxGetPrinterScaling

void wxGetPrinterScaling(float *x, float *y)

Gets the scaling factor for PostScript output. The default is 1.0, 1.0.

::wxGetPrinterTranslation

void wxGetPrinterTranslation(float *x, float *y)

Gets the translation (from the top left corner) for PostScript output. The default is 0.0, 0.0.

::wxSetPrinterCommand

void wxSetPrinterCommand(char *command)

Sets the printer command used to print a file. The default is lpr.

CHAPTER 10

340

::wxSetPrinterFile

void wxSetPrinterFile(char *filename)

Sets the PostScript output filename.

::wxSetPrinterMode

void wxSetPrinterMode(int mode)

Sets the printing mode controlling where output is sent (PS_PREVIEW, PS_FILE or
PS_PRINTER). The default is PS_PREVIEW.

::wxSetPrinterOptions

void wxSetPrinterOptions(char *options)

Sets the additional options for the print command (e.g. specific printer). The default is nothing.

::wxSetPrinterOrientation

void wxSetPrinterOrientation(int orientation)

Sets the orientation (PS_PORTRAIT or PS_LANDSCAPE). The default is PS_PORTRAIT.

::wxSetPrinterPreviewCommand

void wxSetPrinterPreviewCommand(char *command)

Sets the command used to view a PostScript file. The default depends on the platform.

::wxSetPrinterScaling

void wxSetPrinterScaling(float x, float y)

Sets the scaling factor for PostScript output. The default is 1.0, 1.0.

::wxSetPrinterTranslation

void wxSetPrinterTranslation(float x, float y)

Sets the translation (from the top left corner) for PostScript output. The default is 0.0, 0.0.

10.7. Clipboard functions

These clipboard functions are implemented for Windows only.

CHAPTER 10

341

::wxClipboardOpen

Bool wxClipboardOpen(void)

Returns TRUE if this application has already opened the clipboard.

::wxCloseClipboard

Bool wxCloseClipboard(void)

Closes the clipboard to allow other applications to use it.

::wxEmptyClipboard

Bool wxEmptyClipboard(void)

Empties the clipboard.

::wxEnumClipboardFormats

int wxEnumClipboardFormats(intdataFormat)

Enumerates the formats found in a list of available formats that belong to the clipboard. Each call
to this function specifies a known available format; the function returns the format that appears
next in the list.

dataFormat specifies a known format. If this parameter is zero, the function returns the first format
in the list.

The return value specifies the next known clipboard data format if the function is successful. It is
zero if the dataFormat parameter specifies the last format in the list of available formats, or if the
clipboard is not open.

Before it enumerates the formats function, an application must open the clipboard by using the
wxOpenClipboard function.

::wxGetClipboardData

wxObject * wxGetClipboardData(intdataFormat)

Gets data from the clipboard.

dataFormat may be one of:

• wxCF_TEXT or wxCF_OEMTEXT: returns a pointer to new memory containing a null-
terminated text string.

• wxCF_BITMAP: returns a new wxBitmap.

The clipboard must have previously been opened for this call to succeed.

CHAPTER 10

342

::wxGetClipboardFormatName

Bool wxGetClipboardFormatName(intdataFormat, char *formatName, intmaxCount)

Gets the name of a registered clipboard format, and puts it into the buffer formatName which is of
maximum length maxCount. dataFormat must not specify a predefined clipboard format.

::wxIsClipboardFormatAvailable

Bool wxIsClipboardFormatAvailable(intdataFormat)

Returns TRUE if the given data format is available on the clipboard.

::wxOpenClipboard

Bool wxOpenClipboard(void)

Opens the clipboard for passing data to it or getting data from it.

::wxRegisterClipboardFormat

int wxRegisterClipboardFormat(char *formatName)

Registers the clipboard data format name and returns an identifier.

::wxSetClipboardData

Bool wxSetClipboardData(intdataFormat, wxObject *data, intwidth, intheight)

Passes data to the clipboard.

dataFormat may be one of:

• wxCF_TEXT or wxCF_OEMTEXT: data is a null-terminated text string.
• wxCF_BITMAP: data is a wxBitmap.
• wxCF_DIB: data is a wxBitmap. The bitmap is converted to a DIB (device independent

bitmap).
• wxCF_METAFILE: data is a wxMetaFile. width and height are used to give

recommended dimensions.

The clipboard must have previously been opened for this call to succeed.

10.8. Miscellaneous functions

::NewId

long NewId(void)

CHAPTER 10

343

Generates an integer identifier unique to this run of the program.

::RegisterId

void RegisterId(long id)

Ensures that ids subsequently generated by NewId do not clash with the given id.

::wxBeginBusyCursor

void wxBeginBusyCursor(wxCursor *cursor = wxHOURGLASS_CURSOR)

Changes the cursor to the given cursor for all windows in the application. Use wxEndBusyCursor
(page 344) to revert the cursor back to its previous state. These two calls can be nested, and a
counter ensures that only the outer calls take effect.

See also wxIsBusy (page 348).

::wxBell

void wxBell(void)

Ring the system bell.

::wxCleanUp

void wxCleanUp(void)

Normally, wxWindows will call this cleanup function for you. However, if you call wxEntry (page
344) in order to initialize wxWindows manually, then you should also call wxCleanUp before
terminating wxWindows, if wxWindows does not get a chance to do it.

::wxCreateDynamicObject

wxObject * wxCreateDynamicObject(char *className)

Creates and returns an object of the given class, if the class has been registered with the
dynamic class system using DECLARE... and IMPLEMENT... macros.

::wxDebugMsg

void wxDebugMsg(char *fmt, ...)

Display a debugging message; under Windows, this will appear on the debugger command
window, and under UNIX, it will be written to standard error.

The syntax is identical to printf: pass a format string and a variable list of arguments.

Note that under Windows, you can see the debugging messages without a debugger if you have

CHAPTER 10

344

the DBWIN debug log application that comes with Microsoft C++.

Tip: under Windows, if your application crashes before the message appears in the debugging
window, put a wxYield call after each wxDebugMsg call. wxDebugMsg seems to be broken under
WIN32s (at least for Watcom C++): preformat your messages and use OutputDebugString
instead.

::wxDisplaySize

void wxDisplaySize(int *width, int *height)

Gets the physical size of the display in pixels.

::wxEntry

This initializes wxWindows in a platform-dependent way. Use this if you are not using the default
wxWindows entry code (e.g. main or WinMain). For example, you can initialize wxWindows from
an Microsoft Foundation Classes application using this function. See also wxCleanUp (page 343).

void wxEntry(HANDLE hInstance, HANDLE hPrevInstance, char *commandLine, int cmdShow,
Bool enterLoop = TRUE) wxWindows initialization under Windows (non-DLL). If enterLoop is
FALSE, the function will return immediately after calling wxApp::OnInit. Otherwise, the
wxWindows message loop will be entered.

void wxEntry(HANDLE hInstance, HANDLE hPrevInstance, WORD wDataSegment, WORD
wHeapSize, char * commandLine) wxWindows initialization under Windows (for applications
constructed as a DLL).

int wxEntry(int argc, char **argv)

wxWindows initialization under UNIX (XView or Motif).

::wxError

void wxError(char *msg, char *title = "wxWindows Internal Error")

Displays msg and continues. This writes to standard error under UNIX, and pops up a message
box under Windows. Used for internal wxWindows errors. See also wxFatalError (page 345).

::wxEndBusyCursor

void wxEndBusyCursor(void)

Changes the cursor back to the original cursor, for all windows in the application. Use with
wxBeginBusyCursor (page 343).

See also wxIsBusy (page 348).

::wxExecute

CHAPTER 10

345

long wxExecute(char *command, Bool sync = FALSE)

long wxExecute(char **argv, Bool sync = FALSE)

Executes another program in UNIX or Windows.

The first form takes a command string, such as "emacs file.txt".

The second form takes an array of values: a command, any number of arguments, terminated by
NULL.

If sync is FALSE (the default), flow of control immediately returns. If TRUE, the current application
waits until the other program has terminated.

If execution is asynchronous, the return value is the process id, otherwise it is a status value. A
zero value indicates that the command could not be executed.

See also wxShell (page 350).

::wxExit

void wxExit(void)

Exits application after calling wxApp::OnExit (page 46). Should only be used in an emergency:
normally the top-level frame should be deleted (after deleting all other frames) to terminate the
application. See wxFrame::OnClose (page 176) and wxApp (page 44).

::wxFatalError

void wxFatalError(char *msg, char *title = "wxWindows Fatal Error")

Displays msg and exits. This writes to standard error under UNIX, and pops up a message box
under Windows. Used for fatal internal wxWindows errors. See also wxError (page 344).

::wxFindMenuItemId

int wxFindMenuItemId(wxFrame *frame, char *menuString, char *itemString)

Find a menu item identifier associated with the given frame's menu bar.

::wxFindWindowByLabel

wxWindow * wxFindWindowByLabel(char *label, wxWindow *parent=NULL)

Find a window by its label. Depending on the type of window, the label may be a window title or
panel item label. If parent is NULL, the search will start from all top-level frames and dialog
boxes; if non-NULL, the search will be limited to the given window hierarchy. The search is
recursive in both cases.

::wxFindWindowByName

CHAPTER 10

346

wxWindow * wxFindWindowByName(char *name, wxWindow *parent=NULL)

Find a window by its name (as given in a window constructor or Create function call). If parent is
NULL, the search will start from all top-level frames and dialog boxes; if non-NULL, the search
will be limited to the given window hierarchy. The search is recursive in both cases.

If no such named window is found, wxFindWindowByLabel is called.

::wxGetActiveWindow

wxWindow * wxGetActiveWindow(void)

Gets the currently active window (Windows only).

::wxGetDisplayName

char * wxGetDisplayName(void)

Under X only, returns the current display name. See also wxSetDisplayName (page 349).

::wxGetHomeDir

char * wxGetHomeDir(char *buf)

Fills the buffer with a string representing the user's home directory (UNIX only).

::wxGetHostName

Bool wxGetHostName(char *buf, int bufSize)

Copies the host name of the machine the program is running on into the buffer buf, of maximum
size bufSize, returning TRUE if successful. Under UNIX, this will return a machine name. Under
Windows, this returns "windows''.

::wxGetElapsedTime

long wxGetElapsedTime(Bool resetTimer = TRUE)

Gets the time in milliseconds since the last ::wxStartTimer (page 350).

If resetTimer is TRUE (the default), the timer is reset to zero by this call.

See also wxTimer (page 307).

::wxGetFreeMemory

long wxGetFreeMemory(void)

CHAPTER 10

347

Returns the amount of free memory in Kbytes under environments which support it, and -1 if not
supported. Currently, returns a positive value under Windows, and -1 under UNIX.

::wxGetMousePosition

void wxGetMousePosition(int* x, int* y)

Returns the mouse position in screen coordinates.

::wxGetOsVersion

int wxGetOsVersion(int *major = NULL, int *minor = NULL)

Gets operating system version information.

Platform Return tyes
XView Return value is wxXVIEW_X, major is X version, minor is X revision.
Macintosh Return value is wxMACINTOSH.
Motif Return value is wxMOTIF_X, major is X version, minor is X revision.
OS/2 Return value is wxOS2_PM.
Windows 3.1 Return value is wxWINDOWS, major is 3, minor is 1.
Windows NT Return value is wxWINDOWS_NT, major is 3, minor is 1.
Windows 95 Return value is wxWIN95, major is 3, minor is 1.
Win32s (Windows 3.1) Return value is wxWIN32S, major is 3, minor is 1.
Watcom C++ 386 supervisor mode (Windows 3.1) Return value is wxWIN386, major is 3,

minor is 1.

::wxGetResource

Bool wxGetResource(char *section, char *entry, char **value, char *file = NULL)

Bool wxGetResource(char *section, char *entry, float *value, char *file = NULL)

Bool wxGetResource(char *section, char *entry, long *value, char *file = NULL)

Bool wxGetResource(char *section, char *entry, int *value, char *file = NULL)

Gets a resource value from the resource database (for example, WIN.INI, or .Xdefaults). If file is
NULL, WIN.INI or .Xdefaults is used, otherwise the specified file is used.

Under X, if an application class (wxApp::wx_class) has been defined, it is appended to the string
/usr/lib/X11/app-defaults/ to try to find an applications default file when merging all resource
databases.

The reason for passing the result in an argument is that it can be convenient to define a default
value, which gets overridden if the value exists in the resource file. It saves a separate test for
that resource's existence, and it also allows the overloading of the function for different types.

See also wxWriteResource (page 351).

CHAPTER 10

348

::wxGetUserId

Bool wxGetUserId(char *buf, int bufSize)

Copies the user's login identity (such as "jacs'') into the buffer buf, of maximum size bufSize,
returning TRUE if successful. Under Windows, this returns "user''.

::wxGetUserName

Bool wxGetUserName(char *buf, int bufSize)

Copies the user's name (such as "Julian Smart'') into the buffer buf, of maximum size bufSize,
returning TRUE if successful. Under Windows, this returns "unknown''.

::wxKill

int wxKill(long pid, int sig)

Under UNIX (the only supported platform), equivalent to the UNIX kill function. Returns 0 on
success, -1 on failure.

Tip: sending a signal of 0 to a process returns -1 if the process does not exist. It does not raise a
signal in the receiving process.

::wxInitClipboard

void wxInitClipboard(void)

Initializes the generic clipboard system by creating an instance of the class wxClipboard (page
75).

::wxIPCCleanUp

void wxIPCCleanUp(void)

Call this when your application is terminating, if you have called wxIPCInitialize (page 348).

::wxIPCInitialize

void wxIPCInitialize(void)

Initializes for interprocess communication operation. May be called multiple times without harm.

See also wxServer (page 277), wxClient (page 74), wxConnection (page 91)and the relevant
section of the user manual.

::wxIsBusy

CHAPTER 10

349

Bool wxIsBusy(void)

Returns TRUE if between two wxBeginBusyCursor (page 343) and wxEndBusyCursor (page 344)
calls.

::wxLoadUserResource

char * wxLoadUserResource(char *resourceName, char *resourceType="TEXT")

Loads a user-defined Windows resource as a string. If the resource is found, the function creates
a new character array and copies the data into it. A pointer to this data is returned. If
unsuccessful, NULL is returned.

The resource must be defined in the .rc file using the following syntax:

myResource TEXT file.ext

where file.ext is a file that the resource compiler can find.

One use of this is to store .wxr files instead of including the data in the C++ file; some compilers
cannot cope with the long strings in a .wxr file. The resource data can then be parsed using
wxResourceParseString (page 357).

This function is available under Windows only.

::wxNow

char * wxNow(void)

Returns a string representing the current date and time.

::wxPostDelete

void wxPostDelete(wxObject *object)

Under X, tells the system to delete the specified object when all other events have been
processed. In some environments, it is necessary to use this instead of deleting a frame directly
with the delete operator, because X will still send events to the window.

Now obsolete: use wxWindow::Close (page 320) instead.

::wxSetDisplayName

void wxSetDisplayName(char *displayName)

Under X only, sets the current display name. This is the X host and display name such as
"colonsay:0.0", and the function indicates which display should be used for creating windows from
this point on. Setting the display within an application allows multiple displays to be used.

See also wxGetDisplayName (page 346).

CHAPTER 10

350

::wxShell

Bool wxShell(const char *command = NULL)

Executes a command in an interactive shell window. If no command is specified, then just the
shell is spawned.

See also wxExecute (page 344).

::wxSleep

void wxSleep(int secs)

Under X, sleeps for the specified number of seconds using the technique specified in the XView
manual, not UNIX sleep.

::wxStripMenuCodes

void wxStripMenuCodes(char *in, char *out)

Strips any menu codes from in and places the result in out. Menu codes include & (mark the next
character with an underline as a keyboard shortkey in Windows and Motif) and \t (tab in
Windows).

::wxStartTimer

void wxStartTimer(void)

Starts a stopwatch; use ::wxGetElapsedTime (page 346) to get the elapsed time.

See also wxTimer (page 307).

::wxSubType

Bool wxSubType(WXTYPE type1, WXTYPE type2)

OBSOLETE FUNCTION: please use wxObject::IsKindOf (page 222) instead.

TRUE if type1 is a subtype of, or the same type as, type2. This can be useful when determining
whether an object is an instance of a class derived from some other class, and its usage can
make for generic code.

See also wxTypeTree (page 313) and wxObject::__type (page 222).

Example:

 wxNode *node = GetChildren()->First();
 while (node)
 {
 // Find a child that's a subwindow, but not a dialog box.

CHAPTER 10

351

 wxWindow *child = (wxWindow *)node->Data();
 if ((wxSubType(child->__type, wxTYPE_PANEL) &&
 !wxSubType(child->__type, wxTYPE_DIALOG_BOX)) ||
 wxSubType(child->__type, wxTYPE_TEXT_WINDOW) ||
 wxSubType(child->__type, wxTYPE_CANVAS))
 {
 child->SetFocus();
 return;
 }
 node = node->Next();
 }

::wxToLower

char wxToLower(char ch)

Converts the character to lower case. This is implemented as a macro for efficiency.

::wxToUpper

char wxToUpper(char ch)

Converts the character to upper case. This is implemented as a macro for efficiency.

::wxTrace

void wxTrace(char *fmt, ...)

Takes printf-style variable argument syntax. Output is directed to the current output stream (see
wxDebugContext (page 398)).

::wxTraceLevel

void wxTraceLevel(int level, char *fmt, ...)

Takes printf-style variable argument syntax. Output is directed to the current output stream (see
wxDebugContext (page 398)). The first argument should be the level at which this information is
appropriate. It will only be output if the level returned by wxDebugContext::GetLevel is equal to or
greater than this value.

::wxWriteResource

Bool wxWriteResource(char *section, char *entry, char *value, char *file = NULL)

Bool wxWriteResource(char *section, char *entry, float value, char *file = NULL)

Bool wxWriteResource(char *section, char *entry, long value, char *file = NULL)

Bool wxWriteResource(char *section, char *entry, int value, char *file = NULL)

CHAPTER 10

352

Writes a resource value into the resource database (for example, WIN.INI, or .Xdefaults). If file is
NULL, WIN.INI or .Xdefaults is used, otherwise the specified file is used.

Under X, the resource databases are cached until the internal function wxFlushResources is
called automatically on exit, when all updated resource databases are written to their files.

Note that it is considered bad manners to write to the .Xdefaults file under UNIX, although the
WIN.INI file is fair game under Windows.

See also wxGetResource (page 347).

::wxYield

Bool wxYield(void)

Yields control to pending messages in the windowing system (has no effect under XView). This
can be useful, for example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and (since Windows multitasking is
cooperative) other processes will not respond.

Caution should be exercised, however, since yielding may allow the user to perform actions
which are not compatible with the current task. Disabling menu items or whole menus during
processing can avoid unwanted reentrance of code.

10.9. Macros

These macros are defined in wxWindows.

CLASSINFO

wxClassInfo * CLASSINFO(className)

Returns a pointer to the wxClassInfo object associated with this class.

WXDEBUG_NEW

 WXDEBUG_NEW(arg)

This is defined in debug mode to be call the redefined new operator with filename and line
number arguments. The definition is:

#define WXDEBUG_NEW new(__FILE__,__LINE__)

In non-debug mode, this is defined as the normal new operator.

DECLARE_ABSTRACT_CLASS

 DECLARE_ABSTRACT_CLASS(className)

Used inside a class declaration to declare that the class should be made known to the class
hierarchy, but objects of this class cannot be created dynamically. The same as

CHAPTER 10

353

DECLARE_CLASS.

Example:

class wxCommand: public wxObject
{
 DECLARE_ABSTRACT_CLASS(wxCommand)

 private:
 ...
 public:
 ...
};

DECLARE_CLASS

 DECLARE_CLASS(className)

Used inside a class declaration to declare that the class should be made known to the class
hierarchy, but objects of this class cannot be created dynamically. The same as
DECLARE_ABSTRACT_CLASS.

DECLARE_DYNAMIC_CLASS

 DECLARE_DYNAMIC_CLASS(className)

Used inside a class declaration to declare that the objects of this class should be dynamically
createable from run-time type information.

Example:

class wxFrame: public wxWindow
{
 DECLARE_DYNAMIC_CLASS(wxFrame)

 private:
 char *frameTitle;
 public:
 ...
};

IMPLEMENT_ABSTRACT_CLASS

 IMPLEMENT_ABSTRACT_CLASS(className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-time type
information. The same as IMPLEMENT_CLASS.

Example:

IMPLEMENT_ABSTRACT_CLASS(wxCommand, wxObject)

wxCommand::wxCommand(void)

CHAPTER 10

354

{
...
}

IMPLEMENT_ABSTRACT_CLASS2

 IMPLEMENT_ABSTRACT_CLASS2(className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-time type
information and two base classes. The same as IMPLEMENT_CLASS2.

IMPLEMENT_CLASS

 IMPLEMENT_CLASS(className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-time type
information. The same as IMPLEMENT_ABSTRACT_CLASS.

IMPLEMENT_CLASS2

 IMPLEMENT_CLASS2(className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-time type
information and two base classes. The same as IMPLEMENT_ABSTRACT_CLASS2.

IMPLEMENT_DYNAMIC_CLASS

 IMPLEMENT_DYNAMIC_CLASS(className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-time type
information, and whose instances can be created dynamically.

Example:

IMPLEMENT_DYNAMIC_CLASS(wxFrame, wxWindow)

wxFrame::wxFrame(void)
{
...
}

IMPLEMENT_DYNAMIC_CLASS2

 IMPLEMENT_DYNAMIC_CLASS2(className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-time type
information, and whose instances can be created dynamically. Use this for classes derived from
two base classes.

CHAPTER 10

355

WXTRACE

 WXTRACE(formatString, ...)

Calls wxTrace with printf-style variable argument syntax. Output is directed to the current output
stream (see wxDebugContext (page 398)).

WXTRACELEVEL

 WXTRACELEVEL(level, formatString, ...)

Calls wxTraceLevel with printf-style variable argument syntax. Output is directed to the current
output stream (see wxDebugContext (page 398)). The first argument should be the level at which
this information is appropriate. It will only be output if the level returned by
wxDebugContext::GetLevel is equal to or greater than this value.

10.10. wxWindows resource functions

See also wxWindows resource system (page 414)

This section details functions for manipulating wxWindows (.WXR) resource files and loading user
interface elements from resources.

Please note that this use of the word 'resource' is different from that used when talking about
initialisation file resource reading and writing, using such functions as wxWriteResource and
wxGetResource. It's just an unfortunate clash of terminology.

For an overview of the wxWindows resource mechanism, see the wxWindows resource system
(page 414).

See also wxPanel::LoadFromResource (page 230) for panel and dialog loading from resource
data.

::wxResourceAddIdentifier

Bool wxResourceAddIdentifier(char *name, int value)

Used for associating a name with an integer identifier (equivalent to dynamically #defining a
name to an integer). Unlikely to be used by an application except perhaps for implementing
resource functionality for interpreted languages.

::wxResourceClear

void wxResourceClear(void)

Clears the wxWindows resource table.

::wxResourceCreateBitmap

wxBitmap * wxResourceCreateBitmap(char *resource)

CHAPTER 10

356

Creates a new bitmap from a file, static data, or Windows resource, given a valid wxWindows
bitmap resource identifier. For example, if the .WXR file contains the following:

static char *aiai_resource = "bitmap(name = 'aiai_resource',\
 bitmap = ['aiai', wxBITMAP_TYPE_BMP_RESOURCE, 'WINDOWS'],\
 bitmap = ['aiai.xpm', wxBITMAP_TYPE_XPM, 'X']).";

then this function can be called as follows:

 wxBitmap *bitmap = wxResourceCreateBitmap("aiai_resource");

::wxResourceCreateIcon

wxIcon * wxResourceCreateIcon(char *resource)

Creates a new icon from a file, static data, or Windows resource, given a valid wxWindows icon
resource identifier. For example, if the .WXR file contains the following:

static char *aiai_resource = "icon(name = 'aiai_resource',\
 icon = ['aiai', wxBITMAP_TYPE_ICO_RESOURCE, 'WINDOWS'],\
 icon = ['aiai', wxBITMAP_TYPE_XBM_DATA, 'X']).";

then this function can be called as follows:

 wxIcon *icon = wxResourceCreateIcon("aiai_resource");

::wxResourceCreateMenuBar

wxMenuBar * wxResourceCreateMenuBar(char *resource)

Creates a new menu bar given a valid wxWindows menubar resource identifier. For example, if
the .WXR file contains the following:

static char *menuBar11 = "menu(name = 'menuBar11',\
 menu = \
 [\
 ['&File', 1, '', \
 ['&Open File', 2, 'Open a file'],\
 ['&Save File', 3, 'Save a file'],\
 [],\
 ['E&xit', 4, 'Exit program']\
],\
 ['&Help', 5, '', \
 ['&About', 6, 'About this program']\
]\
]).";

then this function can be called as follows:

 wxMenuBar *menuBar = wxResourceCreateMenuBar("menuBar11");

::wxResourceGetIdentifier

CHAPTER 10

357

int wxResourceGetIdentifier(char *name)

Used for retrieving the integer value associated with an identifier. A zero value indicates that the
identifier was not found.

See wxResourceAddIdentifier (page 355).

::wxResourceParseData

Bool wxResourceParseData(char *resource, wxResourceTable *table = NULL)

Parses a string containing one or more wxWindows resource objects. If the resource objects are
global static data that are included into the C++ program, then this function must be called for
each variable containing the resource data, to make it known to wxWindows.

resource should contain data in the following form:

dialog(name = 'dialog1',
 style = 'wxCAPTION | wxDEFAULT_DIALOG_STYLE',
 title = 'Test dialog box',
 x = 312, y = 234, width = 400, height = 300,
 modal = 0,
 control = [wxGroupBox, 'Groupbox', '0', 'group6', 5, 4, 380, 262,
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]],
 control = [wxMultiText, 'Multitext', 'wxVERTICAL_LABEL',
'multitext3',
 156, 126, 200, 70, 'wxWindows is a multi-platform, GUI toolkit.',
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0],
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]]).

This function will typically be used after including a .wxr file into a C++ program as follows:

#include "dialog1.wxr"

Each of the contained resources will declare a new C++ variable, and each of these variables
should be passed to wxResourceParseData.

::wxResourceParseFile

Bool wxResourceParseFile(char *filename, wxResourceTable *table = NULL)

Parses a file containing one or more wxWindows resource objects in C++-compatible syntax. Use
this function to dynamically load wxWindows resource data.

::wxResourceParseString

Bool wxResourceParseString(char *resource, wxResourceTable *table = NULL)

Parses a string containing one or more wxWindows resource objects. If the resource objects are
global static data that are included into the C++ program, then this function must be called for
each variable containing the resource data, to make it known to wxWindows.

CHAPTER 10

358

resource should contain data with the following form:

static char *dialog1 = "dialog(name = 'dialog1',\
 style = 'wxCAPTION | wxDEFAULT_DIALOG_STYLE',\
 title = 'Test dialog box',\
 x = 312, y = 234, width = 400, height = 300,\
 modal = 0,\
 control = [wxGroupBox, 'Groupbox', '0', 'group6', 5, 4, 380, 262,\
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]],\
 control = [wxMultiText, 'Multitext', 'wxVERTICAL_LABEL',
'multitext3',\
 156, 126, 200, 70, 'wxWindows is a multi-platform, GUI
toolkit.',\
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0],\
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]]).";

This function will typically be used after calling wxLoadUserResource (page 349) to load an entire
.wxr file into a string.

::wxResourceRegisterBitmapData

Bool wxResourceRegisterBitmapData(char *name, char *xbm_data, int width,int height,
wxResourceTable *table = NULL)

Bool wxResourceRegisterBitmapData(char *name, char **xpm_data)

Makes #included XBM or XPM bitmap data known to the wxWindows resource system. This is
required if other resources will use the bitmap data, since otherwise there is no connection
between names used in resources, and the global bitmap data.

::wxResourceRegisterIconData

Another name for wxResourceRegisterBitmapData (page 358).

359

11. Classes by category

A classification of wxWindows classes by category.

11.1. Managed windows

There are several types of window that are directly controlled by the window manager (such as
MS Windows, or the Motif Window Manager). Frames may contain subwindows (page 359), and
dialog boxes have their own built-in subwindow similar to a panel.

• wxFrame (page 172)
• wxDialogBox (page 123)
• wxEnhDialogBox (page 146)

See also Common dialogs (page 359).

11.2. Subwindows

Subwindows should be created as children of frames. The panel subwindow may contain panel
items (controls or widgets).

• wxCanvas (page 57)
• wxPanel (page 228)
• wxTextWindow (page 302)
• wxToolBar (page 308)
• wxButtonBar (page 55)
• wxSplitterWindow (page 280)

See also wxWindow (page 319).

11.3. Common dialogs

See also Overview (page 385)

Common dialogs are ready-made dialog classes or functions.

• wxColourDialog (page 80)
• wxFileSelector (page 333)
• wxGetMultipleChoice (page 334)
• wxGetSingleChoice (page 334)
• wxGetSingleChoiceIndex (page 334)
• wxGetSingleChoiceData (page 335)
• wxGetTextFromUser (page 333)
• wxFontDialog (page 162)
• wxPrintDialog (page 248)
• wxPageSetupDialog (page 227)
• wxMessageBox (page 335)

See also wxDialogBox (page 123).

11.4. Panel items

These are widgets (in Motif terminology) or controls (in MS Windows terminology) that can be
placed on panels and dialog boxes, with the exception of wxMenu and wxMenuBar.

CHAPTER 11

360

• wxButton (page 54)
• wxCheckBox (page 68)
• wxChoice (page 69)
• wxComboBox (page 82)
• wxGauge (page 180)
• wxGroupBox (page 182)
• wxItem (page 191)
• wxListBox (page 201)
• wxMultiText (page 219)
• wxMenu (page 206)
• wxMenuBar (page 209)
• wxMessage (page 211)
• wxRadioBox (page 260)
• wxRadioButton (page 263)
• wxSlider (page 278)
• wxText (page 299)

See also wxWindow (page 319).

11.5. Window layout

See also Overview (page 388)

These are the classes and functions relevant to using automated window layout.

• wxIndividualLayoutConstraint (page 189)
• wxLayoutConstraints (page 196)
• wxWindow::Layout (page 323)
• wxWindow::SetConstraints (page 325)
• wxWindow::GetConstraints (page 321)

11.6. Device contexts

See also Overview (page 383)

Device contexts are surfaces that may be drawn on, and provide an abstraction that allows
parameterisation of your drawing code by passing different device contexts.

• wxCanvasDC (page 68)
• wxDC (page 108)
• wxMemoryDC (page 205)
• wxMetaFileDC (page 213)
• wxPanelDC (page 235)
• wxPostScriptDC (page 240)
• wxPrinterDC (page 250)

11.7. Graphics device interface

See also Bitmaps overview (page 384)

These classes are related to the Graphics Device Interface, in MS Windows terminology.

CHAPTER 11

361

• wxColour (page 76)
• wxBitmap (page 48)
• wxBrush (page 51)
• wxBrushList (page 53)
• wxCursor (page 94)
• wxFont (page 158)
• wxFontList (page 163)
• wxIcon (page 183)
• wxPen (page 237)
• wxPenList (page 239)
• wxColourMap (page 81)

11.8. Events

See also Overview (page 390)

Some member functions that an application overrides are passed event objects containing
information about the event.

• wxCommandEvent (page 88)
• wxEvent (page 149)
• wxKeyEvent (page 193)
• wxMouseEvent (page 214)

11.9. Data structures

These are the data structure classes offered by wxWindows.

• wxDate (page 101)
• wxHashTable (page 185)
• wxList (page 197)
• wxNode (page 221)
• wxObject (page 221)
• wxString (page 286)
• wxStringList (page 297)

11.10. Run-time class information system

See also Overview (page 370)

wxWindows supports run-time manipulation of class information, and dynamic creation of objects
given class names.

• wxClassInfo (page 72)
• wxObject (page 221)
• Macros (page 352)

11.11. Debugging features

See also Overview (page 397)

wxWindows supports some aspects of debugging an application through classes, functions and
macros.

CHAPTER 11

362

• wxDebugContext (page 120)
• wxDebugStreamBuf (page 123)
• wxObject (page 221)
• wxTrace (page 351)
• wxTraceLevel (page 351)
• WXDEBUG_NEW (page 352)
• WXTRACE (page 355)
• WXTRACELEVEL (page 355)

11.12. Interprocess communication

See also Overview (page 378)

wxWindows provides a simple interprocess communications facilities based on DDE.

• wxClient (page 74)
• wxConnection (page 91)
• wxHelpInstance (page 187)
• wxServer (page 277)

11.13. Document/view framework

See also Overview (page 372)

wxWindows supports a document/view framework which provides housekeeping for a document-
centric application.

• wxDocument (page 140)
• wxView (page 315)
• wxDocTemplate (page 135)
• wxDocManager (page 128)
• wxDocChildFrame (page 126)
• wxDocParentFrame (page 134)
• wxTransferFileToStream (page 332)
• wxTransferStreamToFile (page 332)

11.14. Printing framework

See also Overview (page 377)

A printing and previewing framework is implemented to make it relatively straighforward to
provide document printing facilities.

• wxPreviewFrame (page 244)
• wxPreviewCanvas (page 241)
• wxPreviewControlBar (page 241)
• wxPageSetupData (page 223)
• wxPageSetupDialog (page 227)
• wxPrintData (page 245)
• wxPrintDialog (page 248)
• wxPrinter (page 249)
• wxPrinterDC (page 250)

CHAPTER 11

363

• wxPrintout (page 251)
• wxPrintPreview (page 253)

11.15. Database classes

See also Database classes overview (page 393)

wxWindows provides a set of classes for accessing Microsoft's ODBC (Open Database
Connectivity) product.

• wxDatabase (page 96)
• wxQueryCol (page 256)
• wxQueryField (page 259)
• wxRecordSet (page 264)

11.16. Miscellaneous

• wxApp (page 44)
• wxForm (page 166)
• wxIntPoint (page 191)
• wxPathList (page 235)
• wxPoint (page 240)
• wxTimer (page 307)
• wxTypeTree (page 313)

11.17. wxString member functions

See also Overview (page 399)

This section describes categories of wxString (page 286) class member functions.

11.17.1. Assigment

• wxString::operator = (page 294)

11.17.2. Classification

• wxString::IsAscii (page 291)
• wxString::IsWord (page 292)
• wxString::IsNumber (page 292)
• wxString::IsNull (page 292)
• wxString::IsDefined (page 291)

11.17.3. Comparisons (case sensitive and insensitive)

• wxString::CompareTo (page 289)
• Compare (page 296)
• FCompare (page 296)
• Comparisons (page 296)

CHAPTER 11

364

11.17.4. Composition and Concatenation

• wxString::operator += (page 295)
• wxString::Append (page 287)
• wxString::Prepend (page 293)
• wxString::Cat (page 288)
• operator + (page 297)

11.17.5. Constructors/Destructors

• wxString::wxString (page 286)
• wxString:: wxString (page 286)

11.17.6. Conversions

• wxString::operator const char * (page 295)

• wxString::Chars (page 288)

• wxString::GetData (page 291)

11.17.7. Deletion/Insertion

• wxString::Del (page 289)
• wxString::Remove (page 293)
• wxString::Insert (page 291)
• Split (page 297)
• Join (page 297)

11.17.8. Duplication

• wxString::Copy (page 289)
• wxString::Replicate (page 293)

11.17.9. Element access

• wxString::operator[] (page 295)
• wxString::operator() (page 295)
• wxString::Elem (page 290)
• wxString::Firstchar (page 290)
• wxString::Lastchar (page 292)

11.17.10. Extraction of Substrings

• wxString::At (page 287)

CHAPTER 11

365

• wxString::Before (page 287)
• wxString::Through (page 294)
• wxString::From (page 290)
• wxString::After (page 287)
• wxString::SubString (page 294)

11.17.11. Input/Output

• wxString::sprintf (page 294)
• wxString::operator << (page 295)
• wxString::operator >> (page 295)
• wxString::Readline (page 293)

11.17.12. Searching/Matching

• wxString::Index (page 291)
• wxString::Contains (page 289)
• wxString::Matches (page 292)
• wxString::Freq (page 290)
• wxString::First (page 290)
• wxString::Last (page 292)

11.17.13. Substitution

• wxString::GSub (page 291)
• wxString::Replace (page 293)

11.17.14. Status

• wxString::Length (page 292)
• wxString::Empty (page 290)
• wxString::Allocation (page 286)
• wxString::IsNull (page 292)

11.17.15. Transformations

• wxString::Reverse (page 293)
• wxString::Upcase (page 294)
• wxString::UpperCase (page 294)
• wxString::DownCase (page 290)
• wxString::LowerCase (page 292)
• wxString::Capitalize (page 287)

11.17.16. Utilities

• wxString::Strip (page 294)
• wxString::Error (page 290)

CHAPTER 11

366

• wxString::OK (page 293)
• wxString::Alloc (page 286)
• wxCHARARG (page 295)
• CommonPrefix (page 296)
• CommonSuffix (page 296)

367

12. Topic overviews

This chapter contains a selection of topic overviews.

12.1. Window styles

Window styles are used to specify alternative behaviour and appearances for windows, when
they are created. The symbols are defined in such as way that they can be combined in a 'bit-list'
using the C++ bitwise-or operator. For example:

 wxCAPTION | wxMINIMIZE_BOX | wxMINIMIZE_BOX | wxTHICK_FRAME

12.1.1. wxFrame styles

The following styles apply to wxFrame windows.

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxCAPTION Puts a caption on the frame (Windows and XView only).
wxDEFAULT_FRAME Defined as wxMINIMIZE_BOX | wxMAXIMIZE_BOX |

wxTHICK_FRAME | wxSYSTEM_MENU | wxCAPTION.
wxMDI_CHILD Specifies a Windows MDI (multiple document interface) child frame.
wxMDI_PARENT Specifies a Windows MDI (multiple document interface) parent frame.
wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif only).
wxSDI Specifies a normal SDI (single document interface) frame.
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (Windows and Motif only).
wxTHICK_FRAME Displays a thick frame around the window (Windows and Motif only).
wxRESIZE_BORDER Displays a resizeable border around the window (Motif only).
wxTINY_CAPTION_HORIZ Under Windows 3.1, displays a small horizontal caption if

USE_ITSY_BITSY is set to 1 in wx_setup.h and the Microsoft ItsyBitsy library
has been compiled. Use instead of wxCAPTION.

wxTINY_CAPTION_VERT Under Windows 3.1, displays a small vertical caption if
USE_ITSY_BITSY is set to 1 in wx_setup.h and the Microsoft ItsyBitsy library
has been compiled. Use instead of wxCAPTION.

12.1.2. wxDialogBox styles

The following styles apply to wxDialogBox windows.

wxCAPTION Puts a caption on the dialog box (Motif only).
wxDEFAULT_DIALOG_STYLE Equivalent to wxCAPTION | wxSYSTEM_MENU |

wxTHICK_FRAME
wxRESIZE_BORDER Display a resizeable frame around the window (Motif only).
wxSYSTEM_MENU Display a system menu (Motif only).
wxTHICK_FRAME Display a thick frame around the window (Motif only).
wxUSER_COLOURS Under Windows, overrides standard control processing to allow setting of

the dialog box background colour.
wxVSCROLL Give the dialog box a vertical scrollbar (XView only).

CHAPTER 12

368

12.1.3. wxItem styles

The following styles apply to all wxItem (page 191) derived windows.

wxHORIZONTAL_LABEL The item will be created with a horizontal label.
wxVERTICAL_LABEL The item will be created with a vertical label.
wxFIXED_LENGTH Allows the values of a column of items to be left-aligned. Create an item

with this style, and pad out your labels with spaces to the same length. The item
labels will initially created with a string of identical characters, positioning all the
values at the same x-position. Then the real label is restored.

12.1.4. wxButton styles

There are no styles specific to wxButton (page 54).

12.1.5. wxComboBox

The following styles apply to wxComboBox (page 82) items.

wxCB_SIMPLE Creates a combobox with a permanently displayed list.
wxCB_DROPDOWN Creates a combobox with a drop-down list.
wxCB_READONLY Creates a combo box consisting of a drop-down list and static text item

displaying the current selection.
wxCB_SORT Sorts the entries in the list alphabetically (Windows only).

12.1.6. wxGauge styles

The following styles apply to wxGauge (page 180) items.

wxGA_HORIZONTAL The item will be created as a horizontal gauge.
wxGA_VERTICAL The item will be created as a vertical gauge.
wxGA_PROGRESSBAR Under Windows 95, the item will be created as a horizontal

progress bar.

12.1.7. wxGroupBox styles

There are no styles specific to wxGroupBox (page 182).

12.1.8. wxListBox styles

The following styles apply to wxListBox (page 201) items.

wxNEEDED_SB Create scrollbars if needed.
wxLB_NEEDED_SB Same as wxNEEDED_SB.
wxALWAYS_SB Create scrollbars immediately.

CHAPTER 12

369

wxLB_ALWAYS_SB Same as wxALWAYS_LB.
wxLB_SINGLE Single-selection list.
wxLB_MULTIPLE Multiple-selection list.
wxLB_EXTENDED Extended-selection list (Motif only).
wxHSCROLL Create horizontal scrollbar if contents are too wide (Windows only).

12.1.9. wxMessage styles

There are no styles specific to wxMessage (page 211).

12.1.10. wxRadioBox

The following styles apply to wxRadioBox (page 260) items.

wxVERTICAL Lays the radiobox out in columns.
wxHORIZONTAL Lays the radiobox out in rows.

12.1.11. wxRadioButton

The following styles apply to wxRadioButton (page 263) items.

wxRB_GROUP Specifies the start or end of a group of radio buttons under MS Windows.

12.1.12. wxSlider styles

The following styles apply to wxSlider (page 278) items.

wxHORIZONTAL The item will be created as a horizontal slider.
wxVERTICAL The item will be created as a vertical slider.

12.1.13. wxText/wxMultiText styles

The following styles apply to wxText (page 299) and wxMultiText (page 219) items.

wxTE_PROCESS_ENTER The callback function will receive the event
wxEVENT_TYPE_TEXT_ENTER_COMMAND. Note that this will break tab
traversal for this panel item under Windows. Single-line text only.

wxTE_PASSWORD The text will be echoed as asterisks. Single-line text only.
wxTE_READONLY The text will not be user-editable.
wxHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical

scrollbar is displayed, and lines will be wrapped. This parameter is ignored
under XView. Multi-line text only.

12.1.14. wxTextWindow styles

CHAPTER 12

370

The following styles apply to wxTextWindow (page 302) objects.

wxBORDER Use this style to draw a thin border in Windows 3 (non-native implementation
only).

wxNATIVE_IMPL Use this style to allow editing under Windows 3.1, albeit with a 64K
limitation.

wxREADONLY Use this style to disable editing.
wxHSCROLL Use this style to enable a horizontal scrollbar, or leave it out to allow line

wrapping. Windows and Motif only.

12.1.15. wxPanel styles

The following styles apply to wxPanel (page 228) windows.

wxBORDER Draws a thin border around the panel.
wxUSER_COLOURS Under Windows, overrides standard control processing to allow setting of

the panel background colour.
wxVSCROLL Gives the dialog box a vertical scrollbar (XView only).

12.1.16. wxCanvas styles

The following styles apply to wxCanvas (page 57) windows.

wxBORDER Gives the canvas a thin border (Windows 3 and Motif only).
wxRETAINED Gives the canvas a wxWindows-implemented backing store, making repainting

much faster but at a potentially costly memory premium (XView and Motif only).

12.1.17. wxToolBar styles

The following styles apply to wxToolBar (page 308) objects.

wxTB_3DBUTTONS Gives a 3D look to the buttons, but not to the same extent as
wxButtonBar.

12.2. Run time class information overview

Classes: wxObject (page 221), wxClassInfo (page 72).

One of the failings of C++ is that no run-time information is provided about a class and its position
in the inheritance hierarchy. Another is that instances of a class cannot be created just by
knowing the name of a class, which makes facilities such as persistent storage hard to
implement.

Most C++ GUI frameworks overcome these limitations by means of a set of macros and functions
and wxWindows (from version 1.62) is no exception. Each class that you wish to be known the
type system should have a macro such as DECLARE_DYNAMIC_CLASS just inside the class
declaration. The macro IMPLEMENT_DYNAMIC_CLASS should be in the implementation file.

CHAPTER 12

371

Variations on these macros (page 352) are used for multiple inheritance, and abstract classes
that cannot be instantiated dynamically or otherwise.

DECLARE_DYNAMIC_CLASS inserts a static wxClassInfo declaration into the class, initialized
by IMPLEMENT_DYNAMIC_CLASS. When initialized, the wxClassInfo object inserts itself into a
linked list (accessed through wxClassInfo::first and wxClassInfo::next pointers). The linked list is
fully created by the time all global initialisation is done.

IMPLEMENT_DYNAMIC_CLASS is a macro that not only initialises the static wxClassInfo
member, but defines a global function capable of creating a dynamic object of the class in
question. A pointer to this function is stored in wxClassInfo, and is used when an object should be
created dynamically.

wxObject::IsKindOf uses the linked list of wxClassInfo. It takes a wxClassInfo argument, so use
CLASSINFO(className) to return an appropriate wxClassInfo pointer to use in this function.

The function wxCreateDynamicObject (page 343) can be used to construct a new object of a
given type, by supplying a string name. If you have a pointer to the wxClassInfo object instead,
then you can simply call wxClassInfo::CreateObject.

12.2.1. wxClassInfo

See also Run time class information overview (page 370)

Class: wxClassInfo (page 72)

This class stores meta-information about classes. An application may use macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS to record run-time
information about a class, including:

• its position in the inheritance hierarchy;
• the base class name(s) (up to two base classes are permitted);
• a string representation of the class name;
• a function that can be called to construct an instance of this class.

The DECLARE_... macros declare a static wxClassInfo variable in a class, which is initialized by
macros of the form IMPLEMENT_... in the implementation C++ file. Classes whose instances
may be constructed dynamically are given a global constructor function which returns a new
object.

You can get the wxClassInfo for a class by using the CLASSINFO macro, e.g.
CLASSINFO(wxFrame). You can get the wxClassInfo for an object using wxObject::GetClassInfo.

See also wxObject (page 221) and wxCreateDynamicObject (page 343).

12.2.2. Example

In a header file wx_frame.h:

class wxFrame: public wxWindow
{
 DECLARE_DYNAMIC_CLASS(wxFrame)

CHAPTER 12

372

 private:
 char *frameTitle;
 public:
 ...
};

In a C++ file wx_frame.cc:

IMPLEMENT_DYNAMIC_CLASS(wxFrame, wxWindow)

wxFrame::wxFrame(void)
{
...
}

12.3. Document/view overview

Classes: wxDocument (page 140), wxView (page 315), wxDocTemplate (page 135),
wxDocManager (page 128), wxDocParentFrame (page 134), wxDocChildFrame (page 126),
wxCommand (page 86), wxCommandProcessor (page 89)

The document/view framework is found in most application frameworks, because it can
dramatically simplify the code required to build many kinds of application.

The idea is that you can model your application primarily in terms of documents to store data and
provide interface-independent operations upon it, and views to visualise and manipulate the data.
Documents know how to do input and output given stream objects, and views are responsible for
taking input from physical windows and performing the manipulation on the document data. If a
document's data changes, all views should be updated to reflect the change.

The framework can provide many user-interface elements based on this model. Once you have
defined your own classes and the relationships between them, the framework takes care of
popping up file selectors, opening and closing files, asking the user to save modifications, routing
menu commands to appropriate (possibly default) code, even some default print/preview
functionality and support for command undo/redo. The framework is highly modular, allowing
overriding and replacement of functionality and objects to achieve more than the default
behaviour.

These are the overall steps involved in creating an application based on the document/view
framework:

1. Define your own document and view classes, overriding a minimal set of member
functions e.g. for input/output, drawing and initialization.

2. Define any subwindows (such as a canvas) that are needed for the view(s). You may
need to route some events to views or documents, for example OnPaint needs to be
routed to wxView::OnDraw.

3. Decide what style of interface you will use: Microsoft's MDI (multiple document child
frames surrounded by an overall frame), SDI (a separate, unconstrained frame for each
document), or single-window (one document open at a time, as in Windows Write).

4. Use the appropriate wxDocParentFrame and wxDocChildFrame classes. Construct an
instance of wxDocParentFrame in your wxApp::OnInit, and a wxDocChildFrame (if not
single-window) when you initialize a view. Create menus using standard menu ids (such
as wxID_OPEN, wxID_PRINT), routing non-application-specific identifiers to the base
frame's OnMenuCommand.

5. Construct a single wxDocManager instance at the beginning of your wxApp::OnInit, and

CHAPTER 12

373

then as many wxDocTemplate instances as necessary to define relationships between
documents and views. For a simple application, there will be just one wxDocTemplate.

If you wish to implement Undo/Redo, you need to derive your own class(es) from wxCommand
and use wxCommandProcessor::Submit instead of directly executing code. The framework will
take care of calling Undo and Do functions as appropriate, so long as the wxID_UNDO and
wxID_REDO menu items are defined in the view menu.

Here are a few examples of the tailoring you can do to go beyond the default framework
behaviour:

• Override wxDocument::OnCreateCommandProcessor to define a different Do/Undo
strategy, or a command history editor.

• Override wxView::OnCreatePrintout to create an instance of a derived wxPrintout (page
251) class, to provide multi-page document facilities.

• Override wxDocManager::SelectDocumentPath to provide a different file selector.
• Limit the maximum number of open documents and the maximum number of undo

commands.

Note that to activate framework functionality, you need to use some or all of the wxWindows
predefined command identifiers (page 377) in your menus.

12.3.1. wxDocument overview

See also Document/view framework overview (page 372)

Class: wxDocument (page 140)

The wxDocument class can be used to model an application's file-based data. It is part of the
document/view framework supported by wxWindows, and cooperates with the wxView (page
315), wxDocTemplate (page 135) and wxDocManager (page 128) classes.

Using this framework can save a lot of routine user-interface programming, since a range of
menu commands -- such as open, save, save as -- are supported automatically. The programmer
just needs to define a minimal set of classes and member functions for the framework to call
when necessary. Data, and the means to view and edit the data, are explicitly separated out in
this model, and the concept of multiple views onto the same data is supported.

Note that the document/view model will suit many but not all styles of application. For example, it
would be overkill for a simple file conversion utility, where there may be no call for views on
documents or the ability to open, edit and save files. But probably the majority of applications are
document-based.

See the example application in samples/docview.

To use the abstract wxDocument class, you need to derive a new class and override at least the
member functions SaveObject and LoadObject. SaveObject and LoadObject will be called by the
framework when the document needs to be saved or loaded.

Use the macros DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS in order to
allow the framework to create document objects on demand. When you create a wxDocTemplate
(page 135) object on application initialization, you should pass
CLASSINFO(YourDocumentClass) to the wxDocTemplate constructor so that it knows how to
create an instance of this class.

CHAPTER 12

374

If you do not wish to use the wxWindows method of creating document objects dynamically, you
must override wxDocTemplate::CreateDocument to return an instance of the appropriate class.

12.3.2. wxView overview

See also Document/view framework overview (page 372)

Class: wxView (page 315)

The wxView class can be used to model the viewing and editing component of an application's
file-based data. It is part of the document/view framework supported by wxWindows, and
cooperates with the wxDocument (page 140), wxDocTemplate (page 135)and wxDocManager
(page 128) classes.

See the example application in samples/docview.

To use the abstract wxView class, you need to derive a new class and override at least the
member functions OnCreate, OnDraw, OnUpdate and OnClose. You'll probably want to override
OnMenuCommand to respond to menu commands from the frame containing the view.

Use the macros DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS in order to
allow the framework to create view objects on demand. When you create a wxDocTemplate
(page 135) object on application initialization, you should pass CLASSINFO(YourViewClass) to
the wxDocTemplate constructor so that it knows how to create an instance of this class.

If you do not wish to use the wxWindows method of creating view objects dynamically, you must
override wxDocTemplate::CreateView to return an instance of the appropriate class.

12.3.3. wxDocTemplate overview

See also Document/view framework overview (page 372)

Class: wxDocTemplate (page 135)

The wxDocTemplate class is used to model the relationship between a document class and a
view class. The application creates a document template object for each document/view pair. The
list of document templates managed by the wxDocManager instance is used to create documents
and views. Each document template knows what file filters and default extension are appropriate
for a document/view combination, and how to create a document or view.

For example, you might write a small doodling application that can load and save lists of line
segments. If you had two views of the data -- graphical, and a list of the segments -- then you
would create one document class DoodleDocument, and two view classes (DoodleGraphicView
and DoodleListView). You would also need two document templates, one for the graphical view
and another for the list view. You would pass the same document class and default file extension
to both document templates, but each would be passed a different view class. When the user
clicks on the Open menu item, the file selector is displayed with a list of possible file filters -- one
for each wxDocTemplate. Selecting the filter selects the wxDocTemplate, and when a file is
selected, that template will be used for creating a document and view. Under non-Windows
platforms, the user will be prompted for a list of templates before the file selector is shown, since
most file selectors do not allow a choice of file filters.

CHAPTER 12

375

For the case where an application has one document type and one view type, a single document
template is constructed, and dialogs will be appropriately simplified.

wxDocTemplate is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (page 315), wxDocument (page 140)and wxDocManager (page 128)
classes.

See the example application in samples/docview.

To use the wxDocTemplate class, you do not need to derive a new class. Just pass relevant
information to the constructor including CLASSINFO(YourDocumentClass) and
CLASSINFO(YourViewClass) to allow dynamic instance creation. If you do not wish to use the
wxWindows method of creating document objects dynamically, you must override
wxDocTemplate::CreateDocument and wxDocTemplate::CreateView to return instances of the
appropriate class.

NOTE: the document template has nothing to do with the C++ template construct. C++ templates
are not used anywhere in wxWindows.

12.3.4. wxDocManager overview

See also Document/view framework overview (page 372)

Class: wxDocManager (page 128)

The wxDocManager class is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (page 315), wxDocument (page 140) and wxDocTemplate (page
135) classes.

A wxDocManager instance coordinates documents, views and document templates. It keeps a list
of document and and template instances, and much functionality is routed through this object,
such as providing selection and file dialogs. The application can use this class 'as is' or derive a
class and override some members to extend or change the functionality. Create an instance of
this class near the beginning of your application initialization, before any documents, views or
templates are manipulated.

There may be multiple wxDocManager instances in an application.

See the example application in samples/docview.

12.3.5. wxCommand overview

See also Document/view framework overview (page 372)

Classes: wxCommand (page 86), wxCommandProcessor (page 89)

wxCommand is a base class for modelling an application command, which is an action usually
performed by selecting a menu item, pressing a toolbar button or any other means provided by
the application to change the data or view.

Instead of the application functionality being scattered around switch statements and functions in
a way that may be hard to read and maintain, the functionality for a command is explicitly
represented as an object which can be manipulated by a framework or application. When a user

CHAPTER 12

376

interface event occurs, the application submits a command to a wxCommandProcessor (page
376) object to execute and store.

The wxWindows document/view framework handles Undo and Redo by use of wxCommand and
wxCommandProcessor objects. You might find further uses for wxCommand, such as
implementing a macro facility that stores, loads and replays commands.

An application can derive a new class for every command, or, more likely, use one class
parameterized with an integer or string command identifier.

12.3.6. wxCommandProcessor overview

See also Document/view framework overview (page 372)

Classes: wxCommandProcessor (page 89), wxCommand (page 86)

wxCommandProcessor is a class that maintains a history of wxCommand instances, with
undo/redo functionality built-in. Derive a new class from this if you want different behaviour.

12.3.7. wxFileHistory overview

See also Document/view framework overview (page 372)

Classes: wxFileHistory (page 156), wxDocManager (page 128)

wxFileHistory encapsulates functionality to record the last few files visited, and to allow the user
to quickly load these files using the list appended to the File menu.

Although wxFileHistory is used by wxDocManager, it can be used independently. You may wish
to derive from it to allow different behaviour, such as popping up a scrolling list of files.

By calling wxFileHistory::FileHistoryUseMenu you can associate a file menu with the file history,
that will be used for appending the filenames. They are appended using menu identifiers in the
range wxID_FILE1 to wxID_FILE9.

In order to respond to a file load command from one of these identifiers, you need to handle them
in your wxFrame::OnMenuCommand. Below is the code used by the default document/view
parent frame.

void wxDocParentFrame::OnMenuCommand(int id)
{
 switch (id)
 {
 case wxID_EXIT:
 {
 if (GetEventHandler()->OnClose())
 delete this;
 break;
 }
 case wxID_FILE1:
 case wxID_FILE2:
 case wxID_FILE3:
 case wxID_FILE4:
 case wxID_FILE5:

CHAPTER 12

377

 case wxID_FILE6:
 case wxID_FILE7:
 case wxID_FILE8:
 case wxID_FILE9:
 {
 char *f = docManager->GetHistoryFile(id-wxID_FILE1);
 if (f)
 (void)docManager->CreateDocument(f, wxDOC_SILENT);
 break;
 }
 default:
 {
 docManager->OnMenuCommand(id);
 }
 }
}

12.3.8. wxWindows predefined command identifiers

To allow communication between the application's menus and the document/view framework,
several command identifiers are predefined for you to use in menus. The framework recognizes
them and processes them if you forward commands from wxFrame::OnMenuCommand (or
perhaps from toolbars and other user interface constructs).

• wxID_OPEN (5000)
• wxID_CLOSE (5001)
• wxID_NEW (5002)
• wxID_SAVE (5003)
• wxID_SAVEAS (5004)
• wxID_REVERT (5005)
• wxID_EXIT (5006)
• wxID_UNDO (5007)
• wxID_REDO (5008)
• wxID_HELP (5009)
• wxID_PRINT (5010)
• wxID_PRINT_SETUP (5011)
• wxID_PREVIEW (5012)

12.4. Printing overview

Classes: wxPrintout (page 251), wxPrinter (page 249), wxPrintPreview (page 253), wxPrinterDC
(page 250), wxPrintDialog (page 248).

The printing framework relies on the application to provide classes whose member functions can
respond to particular requests, such as 'print this page' or 'does this page exist in the document?'.
This method allows wxWindows to take over the housekeeping duties of turning preview pages,
calling the print dialog box, creating the printer device context, and so on: the application can
concentrate on the rendering of the information onto a device context. The printing framework is
mainly a Windows feature; PostScript support under non-Windows platforms is emerging but has
not been rigorously tested.

The document/view framework (page 372) creates a default wxPrintout object for every view,
calling wxView::OnDraw to achieve a prepackaged print/preview facility.

CHAPTER 12

378

A document's printing ability is represented in an application by a derived wxPrintout class. This
class prints a page on request, and can be passed to the Print function of a wxPrinter object to
actually print the document, or can be passed to a wxPrintPreview object to initiate previewing.
The following code (from the printing sample) shows how easy it is to initiate printing, previewing
and the print setup dialog, once the wxPrintout functionality has been defined. Notice the use of
MyPrintout for both printing and previewing. All the preview user interface functionality is taken
care of by wxWindows. For details on how MyPrintout is defined, please look at the printout
sample code.

 case WXPRINT_PRINT:
 {
 wxPrinter printer;
 MyPrintout printout("My printout");
 printer.Print(this, &printout, TRUE);
 break;
 }
 case WXPRINT_PREVIEW:
 {
 // Pass two printout objects: for preview, and possible printing.
 wxPrintPreview *preview = new wxPrintPreview(new MyPrintout, new
MyPrintout);
 wxPreviewFrame *frame = new wxPreviewFrame(preview, this, "Demo
Print Preview", 100, 100, 600, 650);
 frame->Centre(wxBOTH);
 frame->Initialize();
 frame->Show(TRUE);
 break;
 }
 case WXPRINT_PRINT_SETUP:
 {
 wxPrintDialog printerDialog(this);
 printerDialog.GetPrintData().SetSetupDialog(TRUE);
 printerDialog.Show(TRUE);
 break;
 }

12.5. Interprocess communication overview

Classes: wxServer (page 277), wxConnection (page 91), wxClient (page 74).

The following describes how wxWindows implements DDE. The following three classes are
central.

1. wxClient. This represents the client application, and is used only within a client program.
2. wxServer. This represents the server application, and is used only within a server

program.
3. wxConnection. This represents the connection from the current client or server to the

other application (server or client), and can be used in both server and client programs.
Most DDE transactions operate on this object.

Messages between applications are usually identified by three variables: connection object, topic
name and item name. A data string is a fourth element of some messages. To create a
connection (a conversation in Windows parlance), the client application sends the message
MakeConnection to the client object, with a string service name to identify the server and a topic
name to identify the topic for the duration of the connection. Under UNIX, the service name must
contain an integer port identifier.

CHAPTER 12

379

The server then responds and either vetos the connection or allows it. If allowed, a connection
object is created which persists until the connection is closed. The connection object is then used
for subsequent messages between client and server.

To create a working server, the programmer must:

1. Derive a class from wxServer.
2. Override the handler OnAcceptConnection for accepting or rejecting a connection, on

the basis of the topic argument. This member must create and return a connection
object if the connection is accepted.

3. Create an instance of your server object, and call Create to activate it, giving it a service
name.

4. Derive a class from wxConnection.
5. Provide handlers for various messages that are sent to the server side of a

wxConnection.

To create a working client, the programmer must:

1. Derive a class from wxClient.
2. Override the handler OnMakeConnection to create and return an appropriate connection

object.
3. Create an instance of your client object.
4. Derive a class from wxConnection.
5. Provide handlers for various messages that are sent to the client side of a

wxConnection.
6. When appropriate, create a new connection by sending a MakeConnection message to

the client object, with arguments host name (processed in UNIX only), service name,
and topic name for this connection. The client object will call OnMakeConnection to
create a connection object of the desired type.

7. Use the wxConnection member functions to send messages to the server.

12.5.1. Data transfer

These are the ways that data can be transferred from one application to another.

• Execute: the client calls the server with a data string representing a command to be
executed. This succeeds or fails, depending on the server's willingness to answer. If the
client wants to find the result of the Execute command other than success or failure, it
has to explicitly call Request.

• Request: the client asks the server for a particular data string associated with a given
item string. If the server is unwilling to reply, the return value is NULL. Otherwise, the
return value is a string (actually a pointer to the connection buffer, so it should not be
deallocated by the application).

• Poke: The client sends a data string associated with an item string directly to the server.
This succeeds or fails.

• Advise: The client asks to be advised of any change in data associated with a particular
item. If the server agrees, the server will send an OnAdvise message to the client along
with the item and data.

The default data type is wxCF_TEXT (ASCII text), and the default data size is the length of the
null-terminated string. Windows-specific data types could also be used on the PC.

CHAPTER 12

380

12.5.2. Examples

See the sample programs server and client in the IPC samples directory. Run the server, then
the client. This demonstrates using the Execute, Request, and Poke commands from the client,
together with an Advise loop: selecting an item in the server list box causes that item to be
highlighted in the client list box.

See also the source for wxHelp, which is a DDE server, and the files wx_help.h and wx_help.cc
which implement the client interface to wxHelp.

12.5.3. Remote Procedure Call

DDE is quite a low level protocol, and all encoding and decoding of messages must be done by
the client and server applications. The wxWindows extension PrologIO implements a remote
procedure call protocol (RPC) so that a server can implement a library of functions for a client to
call. PrologIO makes it easy for applications to pack and unpack the arguments and return
value(s) of procedure calls, and provides a mechanism for the server to register its available calls
and automatically handle the routing of calls to appropriate server callbacks, one to a procedure
definition. All this makes calling or implementing server facilities childishly simple. Since PrologIO
sits on top of the DDE wrapper, it is also platform independent. See the separate PrologIO
manual and PrologIO (page 29).

12.5.4. More DDE details

A wxClient object represents the client part of a client-server DDE (Dynamic Data Exchange)
conversation (available in both Windows and UNIX).

To create a client which can communicate with a suitable server, you need to derive a class from
wxConnection and another from wxClient. The custom wxConnection class will intercept
communications in a 'conversation' with a server, and the custom wxServer is required so that a
user-overriden wxClient::OnMakeConnection (page 74) member can return a wxConnection of
the required class, when a connection is made.

For example:

class MyConnection: public wxConnection
{
 public:
 MyConnection(void)::wxConnection(ipc_buffer, 3999) {}
 ~MyConnection(void) { }
 Bool OnAdvise(char *topic, char *item, char *data, int size, int
format)
 { wxMessageBox(topic, data); }
};

class MyClient: public wxClient
{
 public:
 MyClient(void) {}
 wxConnection *OnMakeConnection(void) { return new MyConnection; }
};

Here, MyConnection will respond to OnAdvise (page 92) messages sent by the server.

CHAPTER 12

381

When the client application starts, it must first call wxIPCInitialize (page 348) before creating an
instance of the derived wxClient. In the following, command line arguments are used to pass the
host name (the name of the machine the server is running on) and the server name (identifying
the server process). Calling wxClient::MakeConnection (page 74) implicitly creates an instance of
MyConnection if the request for a connection is accepted, and the client then requests an Advise
loop from the server, where the server calls the client when data has changed.

 wxIPCInitialize();

 char *server = "4242";
 char hostName[256];
 wxGetHostName(hostName, sizeof(hostName));

 char *host = hostName;

 if (argc > 1)
 server = argv[1];
 if (argc > 2)
 host = argv[2];

 // Create a new client
 MyClient *client = new MyClient;
 the_connection = (MyConnection *)client->MakeConnection(host, server,
"IPC TEST");

 if (!the_connection)
 {
 wxMessageBox("Failed to make connection to server", "Client Demo
Error");
 return NULL;
 }
 the_connection->StartAdvise("Item");

12.6. Font overview

Class: wxFont (page 158)

A font is an object which determines the appearance of text, primarily when drawing text to a
canvas or device context. A font is determined by up to six parameters:

Point size This is the standard way of referring to text size.
Family Supported families are: wxDEFAULT, wxDECORATIVE, wxROMAN,

wxSCRIPT, wxSWISS, wxMODERN. wxMODERN is a fixed pitch font; the
others are either fixed or variable pitch.

Style The value can be wxNORMAL, wxSLANT or wxITALIC.
Weight The value can be wxNORMAL, wxLIGHT or wxBOLD.
Underlining The value can be TRUE or FALSE.
Face name An optional string specifying the actual typeface to be used. If NULL, a default

typeface will chosen based on the family.

Specifying a family, rather than a specific typeface name, ensures a degree of portability across
platforms because a suitable font will be chosen for the given font family.

Under Windows, the face name can be one of the installed fonts on the user's system. Since the

CHAPTER 12

382

choice of fonts differs from system to system, either choose standard Windows fonts, or if
allowing the user to specify a face name, store the family id with any file that might be transported
to a different Windows machine or other platform.

Under X, the situation is more complicated because X does not support a simple naming scheme
that will allow consistent naming of screen and printer fonts. To address this, wxWindows
implements a font name directory (page 382) with a naming convention to support screen and
PostScript fonts. Under this scheme, the 'family' parameter can also be used as a font identifier.
However, if you wish, you may still use the family parameter in exactly the same way as before
without needing to understand the enhanced usage.

Note: There is currently a difference between the appearance of fonts on the two platforms, if the
mapping mode is anything other than MM_TEXT. Under X, font size is always specified in points.
Under MS Windows, the unit for text is points but the text is scaled according to the current
mapping mode. However, user scaling on a device canvas will also scale fonts under both
environments.

12.6.1. Font name directory overview

Class: wxFontNameDirectory (page 164)

The font name directory helps implement the portable font scheme used in the X versions of
wxWindows, and optionally under Windows.

To draw text, you need a font id, weight, style, size, and underline flag. The combination font id x
weight x style maps to a"real" platform-specific font.

Every font id is associated to one of a fixed number of family ids. Each of these family ids can be
used as a font id, specifying a default font for that family. When font information is stored in a
document that may cross platforms, the family id should be specified so that a reasonable default
font can be selected on the new platform.

Each font id is associated to a name (corresponding to the "facename" in Windows). This name
should be used to store information about a font on disk, since the font id used for a particular
font name can change when a wxWindows application is restarted.

The font constructor:

 wxFont(int pointSize, int damilyOrFontId, int style, int weight,
 Bool underline = FALSE, char *faceName = NULL);

has changed if the new scheme is in operation. When faceName is NULL, familyOrFontId
(formerly familyId) can be any font id. Recall that a family id can always be used as a font id.
When faceName is not NULL, then familyOrFontId must be a family id. If the specified faceName
cannot be found, then a default font for the family id (passed as familyOrFontId) will be used.

The mappings:

• font id, weight, style to real screen/PostScript font
• font id to font name
• font id to family
• font name to font id

are managed by a single instance of wxFontNameDirectory.

CHAPTER 12

383

12.7. Device context overview

Classes: wxDC (page 108), wxPostScriptDC (page 240), wxMetaFileDC (page 213),
wxMemoryDC (page 205), wxPrinterDC (page 250), wxScreenDC (page 275).

A wxDC is a device context onto which graphics and text can be drawn. It is intended to represent
a number of output devices in a generic way, so a canvas has a device context and a printer also
has a device context. In this way, the same piece of code may write to a number of different
devices, if the device context is used as a parameter.

To determine whether a device context is colour or monochrome, test the Colour Bool member
variable. To override wxWindows monochrome graphics drawing behaviour, set this member to
TRUE.

wxDC is abstract and cannot be used to create device context objects. Instead, use a derived
class. wxCanvasDC (page 68) is a context that cannot be created by the user but can be
retrieved from a wxCanvas (page 57) by using wxCanvas::GetDC (page 61).

When writing code to draw into a device context, use wxDC as a parameter whenever possible,
to allow the most general use of your drawing code. You can then pass a device context object
of any derived type. See the demo in samples/hello for code which uses this device-
independent method of drawing.

12.8. wxApp overview

Classes: wxApp (page 44)

A wxWindows application does not have a main procedure; the equivalent is the OnInit (page 46)
member defined for a class derived from wxApp. OnInit must create and return a main window
frame as a bare minimum. If NULL is returned from OnInit, the application will exit. Note that the
program's command line arguments, represented by argc and argv, are available from within
wxApp member functions.

An application closes by destroying all windows. Because all frames must be destroyed for the
application to exit, it is advisable to use parent frames wherever possible when creating new
frames, so that deleting the top level frame will automatically delete child frames. The alternative
is to explicitly delete child frames in the top-level frame's wxFrame::OnClose (page 176) member.

In emergencies the wxExit (page 345) function can be called to kill the application.

An example of defining an application follows:

class DerivedApp: public wxApp
{
 public:
 wxFrame *OnInit(void);
};

wxFrame *DerivedApp::OnInit(void)
{
 wxFrame *the_frame = new wxFrame(NULL, argv[0]);
 ...
 return the_frame;
}

CHAPTER 12

384

MyApp DerivedApp;

12.9. Bitmaps overview

Classes: wxBitmap (page 48), wxIcon (page 183), wxCursor (page 94).

The wxBitmap class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour. Platform-specific methods for creating a wxBitmap object from an existing
file are catered for, and this is an occasion where conditional compilation will probably be
required.

A bitmap created dynamically or loaded from a file can be selected into a memory device context
(instance of wxMemoryDC (page 205)). This enables the bitmap to be copied to a canvas or
memory device context using wxDC::Blit (page 108), or to be used as a drawing surface. The
wxToolBar class was implemented using bitmaps, and the toolbar demo shows one of the
toolbar bitmaps being used for drawing a miniature version of the graphic which appears on the
main canvas.

wxWindows contains code to 'grey out' a bitmap when used in an insensitive panel item. Under X,
this code is contained in the wxBitmap class. Under Windows, the user-contributed Fafa library is
responsible for this.

See wxMemoryDC (page 205) for an example of drawing onto a bitmap.

The following shows the conditional compilation required to load a bitmap in X and in Windows 3.
The alternative is to use the string version of the bitmap constructor, which loads a file under X
and a resource under Windows 3, but has the disadvantage of requiring the X icon file to be
available at run-time.

#ifdef wx_x
#include "aiai.xbm"
#endif
#ifdef wx_msw
 wxIcon *icon = new wxBitmap("aiai");
#endif
#ifdef wx_x
 wxIcon *icon = new wxBitmap(aiai_bits, aiai_width, aiai_height);
#endif

12.9.1. Loading bitmaps: further information

See also the DIB and wxImage libraries distributed with wxWindows. DIB allows loading of .BMP
files under Windows, and wxImage allows loading of a variety of bitmap formats under X.
wxBuilder makes use of both of these packages: search for wxLoadBitmap for example of usage.

There is now (from version 1.61) extra provision for a number of bitmap formats via the standard
wxBitmap class. These extra facilities can be enabled using settings in wx_setup.h; by default
they are switched off.

XPM colour pixmaps may be loaded and saved under Windows and X, with some restrictions
imposed by the lack of colourmap facility when using XPM files. The user may elect to use XPM
files as a cross-platform stabdard, or translate between XPM and BMP files using a suitable utility
(one is under preparation for wxWindows users).

CHAPTER 12

385

Also, under Windows, DIBs (device independent bitmaps with extension BMP) may be
dynamically loaded and saved. Under X, GIF and BMP files may be loaded but not saved.

12.10. Dialog box overview

Classes: wxDialogBox (page 123), wxEnhDialogBox (page 146)

A dialog box is similar to a panel, in that it is a window which can be used for placing panel items,
with the following exceptions:

1. A surrounding frame is implicitly created.

2. Extra functionality is automatically given to the dialog box, such as tabbing between
items (currently Windows only).

3. If the dialog box is modal, the calling program is blocked until the dialog box is
dismissed.

Under XView, some panel items may display incorrectly in a modal dialog, and two modal dialogs
may not be open simultaneously. This can be corrected using a patch (see install/install.txt and
install/xview.txt).

Under implementations that permit it, wxDialogBox inherits from wxCanvas via wxPanel, and has
a wxPanelDC that the application can draw on.

The panel device context associated with wxDialogBox behaves slightly differently than for a
panel or canvas: drawing to it requires enclosing code in BeginDrawing, EndDrawing calls. This is
because under Windows, dialog box device contexts are not 'retained' and settings would be lost
if the device context were retrieved and released for each drawing operations.

Under Windows 3, modal dialogs have to be emulated using modeless dialogs and a message
loop. This is because Windows 3 expects the contents of a modal dialog to be loaded from a
resource file or created on receipt of a dialog initialization message. This is too restrictive for
wxWindows, where any window may be created and displayed before its contents are created.

For a set of dialog convenience functions, including file selection, see Dialog functions (page
333).

See also wxPanel (page 228) and wxWindow (page 319) for inherited member functions.

12.11. Common dialogs overview

Classes and functions: wxColourDialog (page 80), wxFontDialog (page 162), wxPrintDialog (page
248), dialog functions (page 333)

Common dialog classes and functions encapsulate commonly-needed dialog box requirements.
They are mostly 'modal', grabbing the flow of control until the user dismisses the dialog, to make
them easy to use within an application.

Some dialogs have both platform-dependent and platform-independent implementations, so that
if underlying windowing systems that do not provide the required functionality, the generic classes
and functions can stand in. For example, under MS Windows, wxColourDialog uses the standard
colour selector. There is also an equivalent called wxGenericColourDialog for other platforms,
and a macro defines wxColourDialog to be the same as wxGenericColourDialog on non-MS
Windows platforms. However, under MS Windows, the generic dialog can also be used, for

CHAPTER 12

386

testing or other purposes.

Not all common dialogs have classes; some are still in functional form, awaiting an object-
oriented make-over, such as the message box and file selector dialogs. A few familiar MS
Windows-style common dialogs have yet to be implemented, such as the text search dialog and a
directory selector.

12.11.1. wxColourDialog overview

Classes: wxColourDialog (page 80), wxColourData (page 78)

The wxColourDialog presents a colour selector to the user, and returns with colour information.

The MS Windows colour selector

Under Windows, the native colour selector common dialog is used. This presents a dialog box
with three main regions: at the top left, a palette of 48 commonly-used colours is shown. Under
this, there is a palette of 16 'custom colours' which can be set by the application if desired.
Additionally, the user may open up the dialog box to show a right-hand panel containing controls
to select a precise colour, and add it to the custom colour palette.

The generic colour selector

Under non-MS Windows platforms, the colour selector is a simulation of most of the features of
the MS Windows selector. Two palettes of 48 standard and 16 custom colours are presented,
with the right-hand area containing three sliders for the user to select a colour from red, green
and blue components. This colour may be added to the custom colour palette, and will replace
either the currently selected custom colour, or the first one in the palette if none is selected. The
RGB colour sliders are not optional in the generic colour selector. The generic colour selector is
also available under MS Windows; use the name wxGenericColourDialog.

wxColourDialog is available under Motif and Windows. Under XView there seem to be some
problems, probably related to modal dialogs.

Example

In the samples/dialogs directory, there is an example of using the wxColourDialog class. Here is
an excerpt, which sets various parameters of a wxColourData object, including a grey scale for
the custom colours. If the user did not cancel the dialog, the application retrieves the selected
colour and uses it to set the background of a canvas.

 wxColourData data;
 data.SetChooseFull(TRUE);
 for (int i = 0; i < 16; i++)
 {
 wxColour colour(i*16, i*16, i*16);
 data.SetCustomColour(i, colour);
 }

 wxColourDialog dialog(this, &data);
 if (dialog.Show(TRUE))
 {
 wxColourData retData = dialog.GetColourData();
 wxColour col = retData.GetColour();
 wxBrush *brush = wxTheBrushList->FindOrCreateBrush(&col, wxSOLID);

CHAPTER 12

387

 myCanvas->SetBackground(brush);
 myCanvas->Clear();
 myCanvas->Refresh();
 }

12.11.2. wxFontDialog overview

Classes: wxFontDialog (page 162), wxFontData (page 160)

The wxFontDialog presents a font selector to the user, and returns with font and colour
information.

The MS Windows font selector

Under Windows, the native font selector common dialog is used. This presents a dialog box with
controls for font name, point size, style, weight, underlining, strikeout and text foreground colour.
A sample of the font is shown on a white area of the dialog box. Note that in the translation from
full MS Windows fonts to wxWindows font conventions, strikeout is ignored and a font family
(such as Swiss or Modern) is deduced from the actual font name (such as Arial or Courier). The
full range of Windows fonts cannot be used in wxWindows at present.

wxFontDialog is available under Motif and Windows. Under XView there seem to be some
problems, probably related to modal dialogs.

The generic font selector

Under non-MS Windows platforms, the font selector is simpler. Controls for font family, point size,
style, weight, underlining and text foreground colour are provided, and a sample is shown upon a
white background. The generic font selector is also available under MS Windows; use the name
wxGenericFontDialog.

In both cases, the application is responsible for deleting the new font returned from calling
wxFontDialog::Show (if any). This returned font is guaranteed to be a new object and not one
currently in use in the application.

Example

In the samples/dialogs directory, there is an example of using the wxFontDialog class. The
application uses the returned font and colour for drawing text on a canvas. Here is an excerpt:

 wxFontData data;
 data.SetInitialFont(canvasFont);
 data.SetColour(*canvasTextColour);

 wxFontDialog dialog(this, &data);
 if (dialog.Show(TRUE))
 {
 wxFontData retData = dialog.GetFontData();
 canvasFont = retData.GetChosenFont();
 (*canvasTextColour) = retData.GetColour();
 myCanvas->Refresh();
 }

12.11.3. wxPrintDialog overview

CHAPTER 12

388

Classes: wxPrintDialog (page 248), wxPrintData (page 245)

This class represents the print and print setup common dialogs. You may obtain a wxPrinterDC
(page 250) device context from a successfully dismissed print dialog.

The samples/printing example shows how to use it: see Printing overview (page 377) for an
excerpt from this example.

12.12. Constraints overview

Classes: wxLayoutConstraints (page 196), wxIndividualLayoutConstraint (page 189).

Objects of class wxLayoutConstraint can be associated with a window to define the way its
subwindows are laid out, with respect to their siblings or parent.

The class consists of the following eight constraints of class wxIndividualLayoutConstraint, some
or all of which should be accessed directly to set the appropriate constraints.

• left: represents the left hand edge of the window
• right: represents the right hand edge of the window
• top: represents the top edge of the window
• bottom: represents the bottom edge of the window
• width: represents the width of the window
• height: represents the height of the window
• centreX: represents the horizontal centre point of the window
• centreY: represents the vertical centre point of the window

Most constraints are initially set to have the relationship wxUnconstrained, which means that their
values should be calculated by looking at known constraints. The exceptions are width and
height, which are set to wxAsIs to ensure that if the user does not specify a constraint, the
existing width and height will be used, to be compatible with panel items which often have take a
default size. If the constraint is wxAsIs, the dimension will not be changed.

To call the wxWindow::Layout (page 323) function which evaluates constraints, you can either
call wxWindow::SetAutoLayout to tell default OnSize handlers to call Layout, or override OnSize
and call Layout yourself.

12.12.1. Constraint layout: more detail

By default, windows do not have a wxLayoutConstraints object. In this case, much layout must be
done explicitly, by performing calculations in OnSize members, except for the case of frames that
have one subwindow, where wxFrame::OnSize takes care of resizing the child.

To avoid the need for these rather awkward calculations, the user can create a
wxLayoutConstraints object and associate it with a window with wxWindow::SetConstraints. This
object contains a constraint for each of the window edges, two for the centre point, and two for
the window size. By setting some or all of these constraints appropriately, the user can achieve
quite complex layout by defining relationships between windows.

In wxWindows, each window can be constrained relative to either its siblings on the same
window, or the parent. The layout algorithm therefore operates in a top-down manner, finding the
correct layout for the children of a window, then the layout for the grandchildren, and so on. Note
that this differs markedly from native Motif layout, where constraints can ripple upwards and can

CHAPTER 12

389

eventually change the frame window or dialog box size. We assume in wxWindows that the user
is always 'boss' and specifies the size of the outer window, to which subwindows must conform.
Obviously, this might be a limitation in some circumstances, but it suffices for most situations, and
the simplification avoids some of the nightmarish problems associated with programming Motif.

When the user sets constraints, many of the constraints for windows edges and dimensions
remain unconstrained. For a given window, the wxWindow::Layout algorithm first resets all
constraints in all children to have unknown edge or dimension values, and then iterates through
the constraints, evaulating them. For unconstrained edges and dimensions, it tries to find the
value using known relationships that always hold. For example, an unconstrained width may be
calculated from the left and right edges, if both are currently known. For edges and dimensions
with user-supplied constraints, these constraints are evaulated if the inputs of the constraint are
known.

The algorithm stops when all child edges and dimension are known (success), or there there are
unknown edges or dimensions but there has been no change in this cycle (failure).

It then sets all the window positions and sizes according to the values it has found.

Because the algorithm is iterative, the order in which constraints are considered is irrelevant.

12.12.2. Window layout examples

12.12.2.1. Example 1: subwindow layout

This example specifies a panel and a canvas side by side, with a text subwindow below it.

 frame->panel = new wxPanel(frame, 0, 0, 1000, 500, 0);
 frame->canvas = new MyCanvas(frame, 0, 0, 400, 400, wxRETAINED);
 frame->text_window = new MyTextWindow(frame, 0, 250, 400, 250,
wxNATIVE_IMPL);

 // Set constraints for panel subwindow
 wxLayoutConstraints *c1 = new wxLayoutConstraints;

 c1->left.SameAs (frame, wxLeft);
 c1->top.SameAs (frame, wxTop);
 c1->right.PercentOf (frame, wxWidth, 50);
 c1->height.PercentOf (frame, wxHeight, 50);

 frame->panel->SetConstraints(c1);

 // Set constraints for canvas subwindow
 wxLayoutConstraints *c2 = new wxLayoutConstraints;

 c2->left.SameAs (frame->panel, wxRight);
 c2->top.SameAs (frame, wxTop);
 c2->right.SameAs (frame, wxRight);
 c2->height.PercentOf (frame, wxHeight, 50);

 frame->canvas->SetConstraints(c2);

 // Set constraints for text subwindow
 wxLayoutConstraints *c3 = new wxLayoutConstraints;

CHAPTER 12

390

 c3->left.SameAs (frame, wxLeft);
 c3->top.Below (frame->panel);
 c3->right.SameAs (frame, wxRight);
 c3->bottom.SameAs (frame, wxBottom);

 frame->text_window->SetConstraints(c3);

12.12.2.2. Example 2: panel item layout

This example sizes a button width to 80 percent of the panel width, and centres it horizontally. A
listbox and multitext item are placed below it. The listbox takes up 40 percent of the panel width,
and the multitext item takes up the remainder of the width. Margins of 5 pixels are used.

 // Create some panel items
 wxButton *btn1 = new wxButton(frame->panel, (wxFunction)NULL, "A
button") ;

 wxLayoutConstraints *b1 = new wxLayoutConstraints;
 b1->centreX.SameAs (frame->panel, wxCentreX);
 b1->top.SameAs (frame->panel, wxTop, 5);
 b1->width.PercentOf (frame->panel, wxWidth, 80);
 b1->height.PercentOf (frame->panel, wxHeight, 10);
 btn1->SetConstraints(b1);

 wxListBox *list = new wxListBox(frame->panel, (wxFunction)NULL, "A
list",
 wxSINGLE, -1, -1, 200, 100);

 wxLayoutConstraints *b2 = new wxLayoutConstraints;
 b2->top.Below (btn1, 5);
 b2->left.SameAs (frame->panel, wxLeft, 5);
 b2->width.PercentOf (frame->panel, wxWidth, 40);
 b2->bottom.SameAs (frame->panel, wxBottom, 5);
 list->SetConstraints(b2);

 wxMultiText *mtext = new wxMultiText(frame->panel, (wxFunction)NULL,
"Multiline text", "Some text",
 -1, -1, 150, 100);

 wxLayoutConstraints *b3 = new wxLayoutConstraints;
 b3->top.Below (btn1, 5);
 b3->left.RightOf (list, 5);
 b3->right.SameAs (frame->panel, wxRight, 5);
 b3->bottom.SameAs (frame->panel, wxBottom, 5);
 mtext->SetConstraints(b3);

12.13. Event handling overview

Classes: wxEvtHandler (page 150), wxWindow (page 319)

To handle events that are generated by the windowing system (usually in response to a user's
action), the programmer must derive a class from the window that is sent the event, and define
appropriate behaviour. For example, to respond to OnPaint messages from a wxCanvas, you
would derive a new class MyCanvas and define the function MyCanvas::OnPaint. Within this
function, you paint the canvas as necessary for your application.

CHAPTER 12

391

To respond to a user closing a window, define OnClose; to intercept character input from a
canvas, define OnChar, and so on. These events are listed in the class description for
wxEvtHandler (page 150), which is the base class for all window classes.

In fact, you don't have to derive a new class from a window class if you don't want to. You can
derive a new class from wxEvtHandler instead, overriding the appropriate member function, and
then call wxWindow::SetEventHandler (page 327) to make this event handler the object that
responds to events. This way, you can avoid a lot of class derivation, and use the same event
handler object to handle events from instances of different classes. If you ever have to call a
window's event handler manually, use the GetEventHandler function to retrieve the window's
event handler and use that to call the member function. By default, GetEventHandler returns a
pointer to the window itself unless an application has redirected event handling using
SetEventHandler.

You could use this technique to respond to panel item commands. Normally, you supply a
function of type wxFunction to the panel item constructor, and it will be called with references to
the panel item and command event. Instead, you could use a single wxEvtHandler object for
handling one or more panel items, setting the event handler object for the panel item just after
item construction. This handler could even be the panel or dialog box.

Another use of SetEventHandler is to temporarily or permanently change the behaviour of the
GUI. For example, you might want to invoke a dialog editor in your application that changes
aspects of dialog boxes. You can grab all the input for an existing dialog box, and edit it 'in situ',
before restoring its behaviour to normal. So even if the application has derived new classes to
customize behaviour, your utility can indulge in a spot of body-snatching. It could be a useful
technique for on-line tutorials, too, where you take a user through a serious of steps and don't
want them to diverge from the lesson. Here, you can examine the events coming from buttons
and windows, and if acceptable, pass them through to the original event handler. Use
Set/GetNextHandler and Set/GetPreviousHandler to form a chain of event handlers, taking care
to pass events along the chain.

12.14. Toolbar overview

Classes: wxToolBar (page 308), wxButtonBar (page 55)

The wxToolBar class gives wxWindows programs an extra, and increasingly popular, user
interface component: a set of bitmap buttons or toggles. A toolbar gives faster access to an
application's facilities than menus, which have to be popped up and selected rather laboriously.
Besides which, a toolbar looks prettier than a purely menu-based interface.

wxToolBar uses a canvas subwindow for drawing bitmaps, and so bitmap images cannot be
mixed with panel items, but in most cases this won't be important. A toolbar might appear as a
single row of images under the menubar, or it might be in a separate frame layout in several rows
and columns. The class handles the layout of the images, unless explicit positioning is requested.

A tool is a bitmap which can either be a button (there is no 'state', it just generates an event when
clicked) or it can be a toggle. If a toggle, a second bitmap can be provided to depict the 'on' state;
if the second bitmap is omitted, either the inverse of the first bitmap will be used (for monochrome
displays) or a thick border is drawn around the bitmap (for colour displays where inverting will not
have the desired result).

Mouse click events for a given button are sent to a member called OnLeftClick, and so an
application must derive from wxToolBar in order to use it. The application can also handle
OnMouseEnter events for the tools, to give the user extra feedback about the tools as the mouse
moves over them.

CHAPTER 12

392

This toolbar class does not give as slick an appearance as, or the responsiveness of,
conventional Windows toolbars. The buttons are not given a 3D appearance and do not depress
like normal buttons. However, you can use the optimized wxButtonBar library for greatly improved
Windows behaviour, and behaviour under X identical to wxToolBar. See The wxButtonBar library
(page 392).

12.14.1. Using the toolbar library

Include the file wx_tbar.h to use this class.

An example of toolbar use is given in the sample program contained in test.cc and test.h.
This creates a main window, and two toolbars: a floating toolbar with 24 tools, and a toolbar along
the top of the main drawing canvas, divided into groups. The icons for this second toolbar would
normally be quite small.

The test program defines a general-purpose derived frame called wxFrameWithToolBar which
can manage a frame with one main subwindow and one horizontal toolbar.

Note that one of the bitmaps on the floating toolbar is a small version of the main graphic: this
demonstrates how a memory device context can be used to draw into a bitmap. An application
which allowed the user to build up a symbol library dynamically might create this kind of bitmap.

Left clicks and movements over the toolbars are intercepted and information is displayed on the
status line.

The following fragment illustrates the essence of creating a toolbar.

 toolBarBitmaps[0] = new wxBitmap("icon1");
 toolBarBitmaps[1] = new wxBitmap("icon2");
 toolBarBitmaps[2] = new wxBitmap("icon3");
 ...

 toolBarFrame = new wxFrame(NULL, "Tools", 0, 0, 300, 200,
 wxSDI | wxDEFAULT_FRAME | wxSTAY_ON_TOP);

 // 5 rows
 toolBar = new TestToolBar(toolBarFrame, 10, 10, -1, -1, 0,
wxVERTICAL, 5);
 toolBar->SetMargins(2, 2);
 toolBar->GetDC()->SetBackground(wxGREY_BRUSH);

 for (int i = 10; i < 25; i++)
 toolBar->AddTool(i, toolBarBitmaps[i], NULL, TRUE);

 toolBar->Layout();
 float maxWidth, maxHeight;
 toolBar->GetMaxSize(&maxWidth, &maxHeight);
 toolBarFrame->SetClientSize((int)maxWidth, (int)maxHeight);
 toolBarFrame->Show(TRUE);

12.14.2. The wxButtonBar library

CHAPTER 12

393

See also wxToolBar overview (page 391)

Class: wxButtonBar (page 55)

wxToolBar does the job, but it isn't as slick as it could be. The wxButtonBar library class presents
an almost identical Application Programming Interface, but under Windows, the buttons are 3D
and depress properly.

Under Windows, it expects 16-colour bitmaps that are 16 pixels wide and 15 pixels high. If you
want to use a different size, call wxButtonBar::SetDefaultSize as the demo shows, before
adding tools to the button bar. Don't supply more than one bitmap for each tool, because
wxButtonBar generates all three images (normal, depressed and checked) from the single bitmap
you give it.

Include the file wx_bbar.h to use this class.

X-optimized (or generic) button bar code may follow at a future date.

12.14.2.1. Windows 95 differences

Under Windows 95, wxButtonBar behaves slightly differently than under generic WIN32, since it
uses the Windows 95 toolbar common control.

1. CreateTools must be called after the tools have been added.
2. No absolute positioning is supported but you can specify the number of rows, and add

tool separators with AddSeparator. Layout does nothing.
3. Tooltips are supported.
4. OnRightClick is not supported.
5. The device context support is limited, though there is enough to support drawing a

border from within OnPaint.
6. OnEvent and OnChar are not supported.
7. Scrollbars are not supported.

Note: under Windows 95, a wxButtonBar cannot be moved to any position other than the top-left
of the frame. If this is a problem, you may wish to alter wx_bbar.h and wx_bbar.cc to compile
the non-Windows 95 code instead.

12.15. Database classes overview

Classes: wxDatabase (page 96), wxRecordSet (page 264), wxQueryCol (page 256),
wxQueryField (page 259)

IMPORTANT NOTE: The ODBC classes are a preliminary release and incomplete. Please take
this into account when using them. Feedback and bug fixes are appreciated, as always. The
classes are being developed by Olaf Klein (oklein@smallo.ruhr.de) and Patrick Halke
(patrick@zaphod.ruhr.de).

wxWindows provides a set of classes for accessing a subset of Microsoft's ODBC (Open
Database Connectivity) product. Currently, this wrapper is available under MS Windows only,
although ODBC may appear on other platforms, and a generic or product-specific SQL emulator
for the ODBC classes may be provided in wxWindows at a later date.

ODBC presents a unified API (Application Programmer's Interface) to a wide variety of
databases, by interfacing indirectly to each database or file via an ODBC driver. The language for

CHAPTER 12

394

most of the database operations is SQL, so you need to learn a small amount of SQL as well as
the wxWindows ODBC wrapper API. Even though the databases may not be SQL-based, the
ODBC drivers translate SQL into appropriate operations for the database or file: even text files
have rudimentry ODBC support, along with dBASE, Access, Excel and other file formats.

The run-time files for ODBC are bundled with many existing database packages, including MS
Office. The required header files, sql.h and sqlext.h, are bundled with several compilers including
MS VC++ and Watcom C++. The only other way to obtain these header files is from the ODBC
SDK, which is only available with the MS Developer Network CD-ROMs -- at great expense. If
you have odbc.dll, you can make the required import library odbc.lib using the tool 'implib'. You
need to have odbc.lib in your compiler library path.

The minimum you need to distribute with your application is odbc.dll, which must go in the
Windows system directory. For the application to function correctly, ODBC drivers must be
installed on the user's machine. If you do not use the database classes, odbc.dll will be loaded
but not called (so ODBC does not need to be setup fully if no ODBC calls will be made).

A sample is distributed with wxWindows in samples/odbc. You will need to install the sample
dbf file as a data source using the ODBC setup utility, available from the control panel if ODBC
has been fully installed.

12.15.1. Procedures for writing an ODBC application

You first need to create a wxDatabase object. If you want to get information from the ODBC
manager instead of from a particular database (for example using wxRecordSet::GetDataSources
(page 268)), then you do not need to call wxDatabase::Open (page 100). If you do wish to
connect to a datasource, then call wxDatabase::Open. You can reuse your wxDatabase object,
calling wxDatabase::Close and wxDatabase::Open multiple times.

Then, create a wxRecordSet object for retrieving or sending information. For ODBC manager
information retrieval, you can create it as a dynaset (retrieve the information as needed) or a
snapshot (get all the data at once). If you are going to call wxRecordSet::ExecuteSQL (page
267), you need to create it as a snapshot. Dynaset mode is not yet implemented for user data.

Having called a function such as wxRecordSet::ExecuteSQL or wxRecordSet::GetDataSources,
you may have a number of records associated with the recordset, if appropriate to the operation.
You can now retrieve information such as the number of records retrieved and the actual data
itself. Use wxRecordSet::GetFieldData (page 269) orwxRecordSet::GetFieldDataPtr (page 269)
to get the data or a pointer to it, passing a column index or name. The data returned will be for
the current record. To move around the records, use wxRecordSet::MoveNext (page 274),
wxRecordSet::MovePrev (page 274) and associated functions.

You can use the same recordset for multiple operations, or delete the recordset and create a new
one.

Note that when you delete a wxDatabase, any associated recordsets also get deleted, so beware
of holding onto invalid pointers.

12.15.2. wxDatabase overview

See also Database classes overview (page 393)

Class: wxDatabase (page 96)

CHAPTER 12

395

Every database object represents an ODBC connection. To do anything useful with a database
object you need to bind a wxRecordSet object to it. All you can do with wxDatabase is
opening/closing connections and getting some info about it (users, passwords, and so on).

12.15.3. wxQueryCol overview

See also Database classes overview (page 393)

Class: wxQueryCol (page 256)

Every data column is represented by an instance of this class. It contains the name and type of a
column and a list of wxQueryFields where the real data is stored. The links to user-defined
variables are stored here, as well.

12.15.4. wxQueryField overview

See also Database classes overview (page 393)

Class: wxQueryField (page 259)

As every data column is represented by an instance of the class wxQueryCol, every data item of
a specific column is represented by an instance of wxQueryField. Each column contains a list of
wxQueryFields. If wxRecordSet is of the type wxOPEN_TYPE_DYNASET, there will be only one
field for each column, which will be updated every time you call functions like wxRecordSet::Move
or wxRecordSet::GoTo. If wxRecordSet is of the type wxOPEN_TYPE_SNAPSHOT, all data
returned by an ODBC function will be loaded at once and the number of wxQueryField instances
for each column will depend on the number of records.

12.15.5. wxRecordSet overview

See also Database classes overview (page 393)

Class: wxRecordSet (page 264)

Each wxRecordSet represents a database query. You can make multiple queries at a time by
using multiple wxRecordSets with a wxDatabase or you can make your queries in sequential
order using the same wxRecordSet.

12.15.6. ODBC SQL data types

See also Database classes overview (page 393)

These are the data types supported in ODBC SQL. Note that there are other, extended level
conformance types, not currently supported in wxWindows.

CHAR(n) A character string of fixed length n.
VARCHAR(n) A varying length character string of maximum length n.
LONG VARCHAR(n) A varying length character string: equivalent to VARCHAR for the

purposes of ODBC.
DECIMAL(p, s) An exact numeric of precision p and scale s.

CHAPTER 12

396

NUMERIC(p, s) Same as DECIMAL.
SMALLINT A 2 byte integer.
INTEGER A 4 byte integer.
REAL A 4 byte floating point number.
FLOAT An 8 byte floating point number.
DOUBLE PRECISION Same as FLOAT.

These data types correspond to the following ODBC identifiers:

SQL_CHAR A character string of fixed length.
SQL_VARCHARA varying length character string.
SQL_DECIMAL An exact numeric.
SQL_NUMERIC Same as SQL_DECIMAL.
SQL_SMALLINTA 2 byte integer.
SQL_INTEGER A 4 byte integer.
SQL_REAL A 4 byte floating point number.
SQL_FLOAT An 8 byte floating point number.
SQL_DOUBLE Same as SQL_FLOAT.

12.15.7. A selection of SQL commands

See also Database classes overview (page 393)

The following is a very brief description of some common SQL commands, with examples.

12.15.7.1. Create

Creates a table.

Example:

CREATE TABLE Book
 (BookNumber INTEGER PRIMARY KEY
 , CategoryCode CHAR(2) DEFAULT 'RO' NOT NULL
 , Title VARCHAR(100) UNIQUE
 , NumberOfPages SMALLINT
 , RetailPriceAmount NUMERIC(5,2)
)

12.15.7.2. Insert

Inserts records into a table.

Example:

INSERT INTO Book
 (BookNumber, CategoryCode, Title)
 VALUES(5, 'HR', 'The Lark Ascending')

CHAPTER 12

397

12.15.7.3. Select

The Select operation retrieves rows and columns from a table. The criteria for selection and the
columns returned may be specified.

Examples:

SELECT * FROM Book

Selects all rows and columns from table Book.

SELECT Title, RetailPriceAmount FROM Book WHERE RetailPriceAmount >
20.0

Selects columns Title and RetailPriceAmount from table Book, returning only the rows that match
the WHERE clause.

SELECT * FROM Book WHERE CatCode = 'LL' OR CatCode = 'RR'

Selects all columns from table Book, returning only the rows that match the WHERE clause.

SELECT * FROM Book WHERE CatCode IS NULL

Selects all columns from table Book, returning only rows where the CatCode column is NULL.

SELECT * FROM Book ORDER BY Title

Selects all columns from table Book, ordering by Title, in ascending order. To specify descending
order, add DESC after the ORDER BY Title clause.

SELECT Title FROM Book WHERE RetailPriceAmount >= 20.0 AND
RetailPriceAmount <= 35.0

Selects records where RetailPriceAmount conforms to the WHERE expression.

12.15.7.4. Update

Updates records in a table.

Example:

UPDATE Incident SET X = 123 WHERE ASSET = 'BD34'

This example sets a field in column 'X' to the number 123, for the record where the column
ASSET has the value 'BD34'.

12.16. Debugging overview

Classes: wxDebugContext (page 120), wxDebugStreamBuf (page 123), wxObject (page 221)

IMPORTANT NOTE: The debugging facilities in wxWindows are new (June 1995) so please be
careful when using them. Since they operate at a low level by redefining memory allocation
operators, there may be unforeseen problems on specific platforms. Proceed with caution!

CHAPTER 12

398

Various classes, functions and macros are provided in wxWindows to help you debug your
application. Most of these are only available if you compile both wxWindows, your application and
all libraries that use wxWindows with the DEBUG flag set to 1 or more.

wxDebugContext is a class that never gets instantiated, but ties together various functions and
variables. It allows you to set the debugging stream, dump all objects to that stream, write
statistics about object allocation, and check memory for errors.

You can use the WXTRACE (page 355) macro to output debugging information in DEBUG mode;
it will be defined to nothing for non-debugging code.

It is good practice to define a Dump member function for each class you derive from a
wxWindows class, so that wxDebugContext::Dump can call it and give valuable information about
the state of the application.

For wxDebugContext to do its work, the new and delete operators for wxObject have been
redefined to store extra information about dynamically allocated objects (but not statically
declared objects). This slows down a debugging version of an application, but can in theory find
difficult-to-detect memory leaks (objects are not deallocated), overwrites (writing past the end of
your object) and underwrites (writing to memory in front of the object).

If you have difficulty tracking down a memory leak, recompile in debugging mode and call
wxDebugContext::Dump and wxDebugContext::Statistics at appropriate places. They will tell you
what objects have not yet been deleted, and what kinds of object they are.

If you use the macro WXDEBUG_NEW instead of the normal 'new', the debugging output (and
error messages reporting memory problems) will also tell you what file and on what line you
allocated the object.

To avoid the need for replacing existing new operators with WXDEBUG_NEW, you can write this
at the top of each application file:

#define new WXDEBUG_NEW

In non-debugging mode, this will revert to the usual interpretation of new. Note that for this not to
mess up new-based allocation of non-wxObject derived classes and built-in types, there are
global definitions of new and delete which match the syntax required for storing filename and line
numbers. These merely call malloc and free, and so do not do anything interesting. The
definitions may possibly cause multiple symbol problems for some compilers and so might need
to be omitted by setting the USE_GLOBAL_MEMORY_OPERATORS to 0 in wx_setup.h

12.16.1. wxDebugContext overview

See also Debugging overview (page 397)

Class: wxDebugContext (page 120)

wxDebugContext is a class for performing various debugging and memory tracing operations.
wxDebugContext, and the related macros and function WXTRACE and wxTrace, are only present
if USE_DEBUG_CONTEXT is used.

This class has only static data and function members, and there should be no instances.
Probably the most useful members are SetFile (for directing output to a file, instead of the default
standard error or debugger output); Dump (for dumping the dynamically allocated objects) and
PrintStatistics (for dumping information about allocation of objects). You can also call Check to

CHAPTER 12

399

check memory blocks for integrity.

Here's an example of use. The SetCheckpoint ensures that only the allocations done after the
checkpoint will be dumped. Unfortunately the define of new to WXDEBUG_NEW does not work
for Borland C++ (and perhaps other compilers) because it fails to find the correct overloaded
operator for non-object usage of new. Instead, you need to use WXDEBUG_NEW explicitly if
there are any examples of non-object new usage in the file.

#define new WXDEBUG_NEW

 wxDebugContext::SetCheckpoint();

 wxDebugContext::SetFile("c:\\temp\\debug.log");

 wxString *thing = new wxString;

 // Proves that defining 'new' to be 'WXDEBUG_NEW' doesn't mess up
 // non-object allocation. Doesn't work for Borland C++.
 char *ordinaryNonObject = new char[1000];

 wxDebugContext::Dump();
 wxDebugContext::PrintStatistics();

You can use wxDebugContext if DEBUG is 1 or more, or you can use it at any other time (if
USE_DEBUG_CONTEXT is 1). It is not disabled for DEBUG = 1 (as in earlier versions of
wxWindows) because you may not wish to recompile wxWindows and your entire application just
to make use of the error logging facility. This is especially true in a Windows NT or Windows 95
environment, where you cannot easily output to a debug window: wxDebugContext can be used
to write to log files instead.

12.17. wxString overview

Class: wxString (page 286)

Strings are used very frequently in most programs. There is no direct support in the C++
language for strings. A string class can be useful in many situations: it not only makes the code
shorter and easier to read, it also provides more security, because we don't have to deal with
pointer acrobatics.

wxString is available in two versions: a cut-down wxWindows, copyright-free version, and a much
more powerful GNU-derived version. The default is the GNU-derived, fully-featured version,
ported and revised by Stefan Hammes.

For backward compatibility most of the member functions of the original wxWindows wxString
class have been included, except some 'dangerous' functions.

wxString can be compiled under MSW, UNIX and VMS (see below). The function names have
been capitalized to be consistent with the wxWindows naming scheme.

The reasons for not using the GNU string class directly are:

• It is not available on all systems (generally speaking, it is available only on some UNIX
systems).

• We can make changes and extensions to the string class as needed and are not forced
to use 'only' the functionality of the GNU string class.

CHAPTER 12

400

The GNU code comes with certain copyright restrictions. If you can't live with these, you will need
to use the cut-down wxString class instead, by editing wx_setup.h and appropriate wxWindows
makefiles.

12.17.1. Copyright of the original GNU code portion

Copyright (C) 1988, 1991, 1992 Free Software Foundation, Inc. written by Doug Lea
(dl@rocky.oswego.edu)

This file is part of the GNU C++ Library. This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Library General Public License for more details. You should have
received a copy of the GNU Library General Public License along with this library; if not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.

12.17.2. Features/Additions/Modifications

The wxString class offers many string handling functions and a support for regular expressions.
This gives powerful, easy-to-use pattern-matching functionality. See below for a discussion of the
GNU features of wxString. See also the header file 'wxstrgnu.h' which shows all member
functions.

As stated above, there are extensions to the wxString class. This includes the including of the
'old' wxString class member functions. Below is a list of the additional member functions:

• Access to the internal representation. Should be used with care:
 char* GetData() const;

• To make a copy of 'this' (only for compatibility):
 wxString Copy() const;

• For case sensitive and case insensitive comparisons:
 enum caseCompare {exact, ignoreCase};
 int CompareTo(const char* cs, caseCompare cmp = exact)
const;
 int CompareTo(const wxString& st, caseCompare cmp = exact)
const;

• For case sensitive and case insensitive containment check:
 Bool Contains(const char* pat, caseCompare cmp = exact)
const;
 Bool Contains(const wxString& pat, caseCompare cmp = exact)
const;

• For case sensitive and case insensitive index calculation:
 int Index(const char* pat, int i=0, caseCompare cmp = exact)

CHAPTER 12

401

const;
 int Index(const wxString& s, int i=0, caseCompare cmp = exact)
const;

• For element access in addition to the [] operator:
 char& operator()(int); // Indexing with bounds checking

• To put something in front of a string:
 wxString& Prepend(const char*); // Prepend a
character string
 wxString& Prepend(const wxString& s);
 wxString& Prepend(char c, int rep=1); // Prepend c rep times

• For concatenation:
 wxString& Append(const char* cs);
 wxString& Append(const wxString& s);
 wxString& Append(char c, int rep=1); // Append c rep times

• To get the first and last occurrence of a char or string:
 int First(char c) const;
 int First(const char* cs) const;
 int First(const wxString& cs) const;
 int Last(char c) const;
 int Last(const char* cs) const;
 int Last(const wxString& cs) const;

• To insert something into a string
 wxString& Insert(int pos, const char*);
 wxString& Insert(int pos, const wxString&);

• To remove data (in addition to the 'Del' functions):
 wxString& Remove(int pos); // Remove pos to end of
string
 wxString& Remove(int pos, int n); // Remove n chars starting at
pos
 wxString& RemoveLast(void); // It removes the last char
of a string

• To replace data:
 wxString& Replace(int pos, int n, const char*);
 wxString& Replace(int pos, int n, const wxString&);

• Alternative names for compatibility:
 void LowerCase(); // Change self to lower-case
 void UpperCase(); // Change self to upper-case

• Edward Zimmermann's additions:

CHAPTER 12

402

 wxString SubString(int from, int to);

• Formatted assignment:
 void sprintf(const char *fmt, ...);

We do not use the 'sprintf' constructor of the old wxString class anymore, because with
that constructor, every initialisation with a string would go through sprintf and this is not
desirable, because sprintf interprets some characters. With the above function we can
write:

 wxString msg; msg.sprintf("Processing item %d\n",count);

• Strip chars at the front and/or end. This can be useful for trimming strings:
 enum StripType {leading = 0x1, trailing = 0x2, both =
0x3};
 wxSubString Strip(StripType s=trailing, char c=' ');

• Line input: Besides the stream I/O functions this function can be used for non-standard
formatted I/O with arbitrary line terminators.
 friend int Readline(FILE *f, wxString& x,
 char terminator = '\\n',
 int discard_terminator = 1);

• The GNU wxString class lacks some classification functions:
 int IsAscii() const;
 int IsWord() const;
 int IsNumber() const;
 int IsNull() const;
 int IsDefined() const;

• The meaning of nil has been changed. A wxString x is only nil, if it has been declared
'wxString x'. In all other cases it is NOT nil. This seems to me more logical than to let a
'wxString x=""' be nil as it was in the original GNU code.

• IMPORTANT:the following is a very, very, very ugly macro, but it makes things more
transparent in cases, where a library function requires a (char*) argument. This is
especially the case in wxWindows, where most char-arguments are (char*) and not
(const char*). this macro should only be used in such cases and NOT to modify the
internal data. The standard type conversion function of wxString returns a '(const char*)'.
The conventional way would be 'function((char*)string.Chars())'. With the macro this can
be achieved by 'function(wxCHARARG(string))'. Whis makes it clearer that the usage
should be confined to arguments. See below for examples.

#define wxCHARARG(s) ((char*)(s).Chars())

12.17.3. Function calls

CHAPTER 12

403

When using wxString objects as parameters to other functions you should note the following:

void f1(const char *s){}
void f2(char *s){}

main(){
 wxString aString;
 f1(aString); // ok
 f2(aString); // error
 f2(wxCHARARG(aString)); // ok
 printf("%s",aString); // NO compilation error, but a runtime error.
 printf("%s",aString.Chars()); // ok
 printf("%s",wxCHARARG(aString)); // ok
}

12.17.4. Header files

For DOS and UNIX we use a stub-headerfile include/base/wxstring.h which includes the
two headerfiles in the contrib/wxstring directory, namely
contrib/wxstring/wxstrgnu.h and contrib/wxstring/wxregex.h. If there is a
headerfile contrib/wxstring/wxstring.h, please delete it. It will cause problems in the
VMS compilation.

For VMS we have to do an addition due to the not very intelligent inclusion mechanism of the
VMS C++ compiler: In the VMS-Makefile, the include-file search path is augmented with the
contrib/wxstring directory, so that the correct headerfiles can be included.

So you have only to specify

#define USE_GNU_WXSTRING 1

in include/base/wx_setup.h to use the wxString class.

12.17.5. Test program

Stefan Hammes has included a test program test.cc in the contrib/wxstring directory for many
features of wxString and wxRegex. It also tests Stefan's extensions. When running the compiled
program, there should be NO assert-errors if everything is OK. When compiling the test program,
you can ignore warnings about unused variables. They occur because Stefan has used a special
method of initializing all variables to the same start values before each test.

12.17.6. Compilers

wxString and wxRegex have been compiled successfully with the following compilers (it should
work on nearly every C++ compiler):

• PC MS-Visual C++ 1.0, 1.5
• UNIX gcc v2.6.3
• UNIX Sun SunPro compiler under Solaris 2.x
• VMS DEC C++ compiler (on VAX and AXP)

CHAPTER 12

404

Warnings about type conversion or assignments can be ignored.

12.17.7. GNU Documentation

Below is the original GNU wxString and wxRegex documentation. It describes most functions of
the classes. The function names have been capitalized to be consistent with the wxWindows
naming scheme. The examples are integrated into the test program.

Copyright (C) 1988, 1991, 1992 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled "GNU Library General
Public License" is included exactly as in the original, and provided that the entire resulting derived
work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that the section entitled "GNU Library
General Public License" and this permission notice may be included in translations approved by
the Free Software Foundation instead of in the original English.

12.17.7.1. The wxString class

The 'wxString' class is designed to extend GNU C++ to support string processing capabilities
similar to those in languages like Awk. The class provides facilities that ought to be convenient
and efficient enough to be useful replacements for 'char*' based processing via the C string
library (i.e., 'strcpy, strcmp,' etc.) in many applications. Many details about wxString
representations are described in the Representation section.

A separate 'wxSubString' class supports substring extraction and modification operations. This is
implemented in a way that user programs never directly construct or represent substrings, which
are only used indirectly via wxString operations.

Another separate class, 'wxRegex' is also used indirectly via wxString operations in support of
regular expression searching, matching, and the like. The wxRegex class is based entirely on the
GNU Emacs regex functions. See Regular Expressions (page 409) for a full explanation of
regular expression syntax. (For implementation details, see the internal documentation in files
wxregex.h and wxregex.cc).

12.17.7.2. Constructor examples

Strings are initialized and assigned as in the following examples:

wxString x; Set x to the nil string. This is different from the original GNU code which sets a
strings also to nil when it is assign 0 or "".

wxString x = "Hello"; wxString y("Hello"); Set x and y to a copy of the string
"Hello".

wxString x = 'A'; wxString y('A'); Set x and y to the string value "A".

CHAPTER 12

405

wxString u = x; wxString v(x); Set u and v to the same string as wxString x

wxString u = x.At(1,4); wxString v(x.At(1,4)); Set u and v to the length 4
substring of x starting at position 1 (counting indexes from 0).

wxString x("abc", 2); Sets x to "ab", i.e., the first 2 characters of "abc".

There are no directly accessible forms for declaring wxSubString variables.

The declaration wxRegex r("[a-zA-Z_][a-zA-Z0-9_]*"); creates compiled regular
expression suitable for use in wxString operations described below. (In this case, one that
matches any C++ identifier). The first argument may also be a wxString. Be careful in
distinguishing the role of backslashes in quoted GNU C++ 'char*' constants versus those in
Regexes. For example, a wxRegex that matches either one or more tabs or all strings beginning
with "ba" and ending with any number of occurrences of "na" could be declared as

 wxRegex r = "\\(\t+\\)\\|\\(ba\\(na\\)*\\)"

Note that only one backslash is needed to signify the tab, but two are needed for the
parenthesization and virgule, since the GNU C++ lexical analyzer decodes and strips
backslashes before they are seen by wxRegex.

There are three additional optional arguments to the wxRegex constructor that are less commonly
useful:

fast (default 0) 'fast' may be set to true (1) if the wxRegex should be "fast-compiled". This
causes an additional compilation step that is generally worthwhile if the wxRegex will be used
many times.

bufsize (default max(40, length of the string)) This is an estimate of the size of
the internal compiled expression. Set it to a larger value if you know that the expression will
require a lot of space. If you do not know, do not worry: realloc is used if necessary.

transtable (default none == 0) The address of a byte translation table (a char[256])
that translates each character before matching.

As a convenience, several Regexes are predefined and usable in any program. Here are their
declarations from wxString.h.
 extern wxRegex RXwhite; // = "[\n\t]+"
 extern wxRegex RXint; // = "-?[0-9]+"
 extern wxRegex RXdouble; // = "-?\\(\\([0-9]+\\.[0-9]*\\)\\|
 // \\([0-9]+\\)\\|
 // \\(\\.[0-9]+\\)\\)
 // \\([eE][---+]?[0-9]+\\)?"
 extern wxRegex RXalpha; // = "[A-Za-z]+"
 extern wxRegex RXlowercase; // = "[a-z]+"
 extern wxRegex RXuppercase; // = "[A-Z]+"
 extern wxRegex RXalphanum; // = "[0-9A-Za-z]+"
 extern wxRegex RXidentifier; // = "[A-Za-z_][A-Za-z0-9_]*"

12.17.7.3. Examples

Most wxString class capabilities are best shown via example. The examples below use the

CHAPTER 12

406

following declarations.

 wxString x = "Hello";
 wxString y = "world";
 wxString n = "123";
 wxString z;
 char *s = ",";
 wxString lft, mid, rgt;
 wxRegex r = "e[a-z]*o";
 wxRegex r2("/[a-z]*/");
 char c;
 int i, pos, len;
 double f;
 wxString words[10];
 words[0] = "a";
 words[1] = "b";
 words[2] = "c";

12.17.7.4. Comparing, Searching and Matching examples

The usual lexicographic relational operators ('==, !=, <, <=, >, >=') are defined. A functional form
'compare(wxString, wxString)' is also provided, as is 'fcompare(wxString, wxString)', which
compares Strings without regard for upper vs. lower case.

All other matching and searching operations are based on some form of the (non-public) 'match'
and 'search' functions. 'match' and 'search' differ in that 'match' attempts to match only at the
given starting position, while 'search' starts at the position, and then proceeds left or right looking
for a match. As seen in the following examples, the second optional 'startpos' argument to
functions using 'match' and 'search' specifies the starting position of the search: If non-negative, it
results in a left-to-right search starting at position 'startpos', and if negative, a right-to-left search
starting at position 'x.Length() + startpos'. In all cases, the index returned is that of the beginning
of the match, or -1 if there is no match.

Three wxString functions serve as front ends to 'search' and 'match'. 'index' performs a search,
returning the index, 'matches' performs a match, returning nonzero (actually, the length of the
match) on success, and 'contains' is a boolean function performing either a search or match,
depending on whether an index argument is provided:

x.Index("lo") Returns the zero-based index of the leftmost occurrence of substring "lo" (3, in
this case). The argument may be a wxString, wxSubString, char, char*, or wxRegex.

x.Index("l", 2) Returns the index of the first of the leftmost occurrence of "l" found starting
the search at position x[2], or 2 in this case.

x.Index("l", -1) Returns the index of the rightmost occurrence of "l", or 3 here.

x.Index("l", -3) Returns the index of the rightmost occurrence of "l" found by starting the
search at the 3rd to the last position of x, returning 2 in this case.

pos = r.Search("leo", 3, len, 0) Returns the index of r in the char* string of length
3, starting at position 0, also placing the length of the match in reference parameter len.

x.Contains("He") Returns nonzero if the wxString x contains the substring "He". The
argument may be a wxString, wxSubString, char, char*, or wxRegex.

CHAPTER 12

407

x.Contains("el", 1) Returns nonzero if x contains the substring "el" at position 1. As in this
example, the second argument to 'contains', if present, means to match the substring only at that
position, and not to search elsewhere in the string.

x.Contains(RXwhite); Returns nonzero if x contains any whitespace (space, tab, or
newline). Recall that 'RXwhite' is a global whitespace wxRegex.

x.Matches("lo", 3) Returns nonzero if x starting at position 3 exactly matches "lo", with no
trailing characters (as it does in this example).

x.Matches(r) Returns nonzero if wxString x as a whole matches wxRegex r.

int f = x.Freq("l") Returns the number of distinct, nonoverlapping matches to the
argument (2 in this case).

12.17.7.5. Substring extraction examples

Substrings may be extracted via the 'at', 'before', 'through', 'from', and 'after' functions. These
behave as either lvalues or rvalues.

z = x.At(2, 3) Sets wxString z to be equal to the length 3 substring of wxString x starting at
zero-based position 2, setting z to "llo" in this case. A nil wxString is returned if the arguments
don't make sense.

x.At(2, 2) = "r" Sets what was in positions 2 to 3 of x to "r", setting x to "Hero" in this case.
As indicated here, wxSubString assignments may be of different lengths.

x.At("He") = "je"; x("He") is the substring of x that matches the first occurrence of it's
argument. The substitution sets x to "jello". If "He" did not occur, the substring would be nil, and
the assignment would have no effect.

x.At("l", -1) = "i"; Replaces the rightmost occurrence of "l" with "i", setting x to "Helio".

z = x.At(r) Sets wxString z to the first match in x of wxRegex r, or "ello" in this case. A nil
wxString is returned if there is no match.

z = x.Before("o") Sets z to the part of x to the left of the first occurrence of "o", or "Hell" in
this case. The argument may also be a wxString, wxSubString, or wxRegex. (If there is no
match, z is set to "".)

x.Before("ll") = "Bri"; Sets the part of x to the left of "ll" to "Bri", setting x to "Brillo".

z = x.Before(2) Sets z to the part of x to the left of x[2], or "He" in this case.

z = x.After("Hel") Sets z to the part of x to the right of "Hel", or "lo" in this case.

z = x.Through("el") Sets z to the part of x up and including "el", or "Hel" in this case.

z = x.From("el") Sets z to the part of x from "el" to the end, or "ello" in this case.

x.After("Hel") = "p"; Sets x to "Help";

CHAPTER 12

408

z = x.After(3) Sets z to the part of x to the right of x[3] or "o" in this case.

z = " ab c"; z = z.After(RXwhite) Sets z to the part of its old string to the right of the
first group of whitespace, setting z to "ab c"; Use GSub(below) to strip out multiple occurrences of
whitespace or any pattern.

x[0] = 'J'; Sets the first element of x to 'J'. x[i] returns a reference to the ith element of x, or
triggers an error if i is out of range.

CommonPrefix(x, "Help") Returns the wxString containing the common prefix of the two
Strings or "Hel" in this case.

CommonSuffix(x, "to") Returns the wxString containing the common suffix of the two
Strings or "o" in this case.

12.17.7.6. Concatenation examples

z = x + s + ' ' + y.At("w") + y.After("w") + "."; Sets z to "Hello, world."

x += y; Sets x to "Helloworld".

Cat(x, y, z) A faster way to say z = x + y.

Cat(z, y, x, x) Double concatenation; A faster way to say x = z + y + x.

y.Prepend(x); A faster way to say y = x + y.

z = Replicate(x, 3); Sets z to "HelloHelloHello".

z = Join(words, 3, "/") Sets z to the concatenation of the first 3 Strings in wxString array
words, each separated by "/", setting z to "a/b/c" in this case. The last argument may be "" or 0,
indicating no separation.

12.17.7.7. Other manipulation examples

z = "this string has five words"; i = Split(z, words, 10, RXwhite); Sets
up to 10 elements of wxString array words to the parts of z separated by whitespace, and returns
the number of parts actually encountered (5 in this case). Here, words[0] = "this", words[1] =
"string", etc. The last argument may be any of the usual. If there is no match, all of z ends up in
words[0]. The words array is *not* dynamically created by split.

int nmatches x.GSub("l","ll") Substitutes all original occurrences of "l" with "ll", setting
x to "Hellllo". The first argument may be any of the usual, including wxRegex. If the second
argument is "" or 0, all occurrences are deleted. gsub returns the number of matches that were
replaced.

z = x + y; z.Del("loworl"); Deletes the leftmost occurrence of "loworl" in z, setting z
to "Held".

z = Reverse(x) Sets z to the reverse of x, or "olleH".

z = Upcase(x) Sets z to x, with all letters set to uppercase, setting z to "HELLO".

CHAPTER 12

409

z = Downcase(x) Sets z to x, with all letters set to lowercase, setting z to "hello"

z = Capitalize(x) Sets z to x, with the first letter of each word set to uppercase, and all
others to lowercase, setting z to "Hello"

x.Reverse(), x.Upcase(), x.Downcase(), x.Capitalize() in-place, self-modifying
versions of the above.

12.17.7.8. Reading, Writing and Conversion examples

cout << x Writes out x.

cout << x.At(2, 3) Writes out the substring "llo".

cin >> x Reads a whitespace-bounded string into x.

x.Length() Returns the length of wxString x (5, in this case).

s = (const char*)x Can be used to extract the 'char*' char array. This coercion is useful for
sending a wxString as an argument to any function expecting a 'const char*' argument (like 'atoi',
and 'File::open'). This operator must be used with care, since the conversion returns a pointer to
'wxString' internals without copying the characters: The resulting '(char*)' is only valid until the
next wxString operation, and you must not modify it. (The conversion is defined to return a const
value so that GNU C++ will produce warning and/or error messages if changes are attempted.)

12.17.8. Regular Expressions

The following are extracts from GNU documentation.

12.17.8.1. Regular Expression Overview

Regular expression matching allows you to test whether a string fits into a specific syntactic
shape. You can also search a string for a substring that fits a pattern.

A regular expression describes a set of strings. The simplest case is one that describes a
particular string; for example, the string 'foo' when regarded as a regular expression matches 'foo'
and nothing else. Nontrivial regular expressions use certain special constructs so that they can
match more than one string. For example, the regular expression 'foo\|bar' matches either the
string 'foo' or the string 'bar'; the regular expression 'c[ad]*r' matches any of the strings 'cr', 'car',
'cdr', 'caar', 'cadddar' and all other such strings with any number of 'a''s and 'd''s.

The first step in matching a regular expression is to compile it. You must supply the pattern string
and also a pattern buffer to hold the compiled result. That result contains the pattern in an internal
format that is easier to use in matching.

Having compiled a pattern, you can match it against strings. You can match the compiled pattern
any number of times against different strings.

12.17.8.2. Syntax of Regular Expressions

CHAPTER 12

410

Regular expressions have a syntax in which a few characters are special constructs and the rest
are "ordinary". An ordinary character is a simple regular expression which matches that character
and nothing else. The special characters are '\$', '^', '.', '*', '+', '?', '[', ']' and '\'. Any other
character appearing in a regular expression is ordinary, unless a '\' precedes it.

For example, 'f' is not a special character, so it is ordinary, and therefore 'f' is a regular expression
that matches the string 'f' and no other string. (It does *not* match the string 'ff'.) Likewise, 'o' is a
regular expression that matches only 'o'.

Any two regular expressions A and B can be concatenated. The result is a regular expression
which matches a string if A matches some amount of the beginning of that string and B matches
the rest of the string.

As a simple example, we can concatenate the regular expressions 'f' and 'o' to get the regular
expression 'fo', which matches only the string 'fo'. Still trivial.

Note: for Unix compatibility, special characters are treated as ordinary ones if they are in contexts
where their special meanings make no sense. For example, '*foo' treats '*' as ordinary since there
is no preceding expression on which the '*' can act. It is poor practice to depend on this behavior;
better to quote the special character anyway, regardless of where is appears.

The following are the characters and character sequences which have special meaning within
regular expressions. Any character not mentioned here is not special; it stands for exactly itself
for the purposes of searching and matching.

• . is a special character that matches anything except a newline. Using concatenation,
we can make regular expressions like a.bwhich matches any three-character string
which begins with aand ends with b.

• * is not a construct by itself; it is a suffix, which means the preceding regular expression
is to be repeated as many times as possible. In fo*, the * applies to the o, so
fo*matches f followed by any number of o's.

The case of zero o's is allowed: fo* does match f.

* always applies to the *smallest* possible preceding expression. Thus, fo* has a
repeating o, not a repeatingfo.

The matcher processes a * construct by matching, immediately, as many repetitions as
can be found. Then it continues with the rest of the pattern. If that fails, backtracking
occurs, discarding some of the matches of the *'d construct in case that makes it
possible to match the rest of the pattern. For example, matching c[ad]*ar against the
string caddaar, the[ad]* first matches addaa, but this does not allow the nexta in the
pattern to match. So the last of the matches of[ad] is undone and the following a is
tried again. Now it succeeds.

• + is like * except that at least one match for the preceding pattern is required for +.
Thus, c[ad]+r does not matchcr but does match anything else that c[ad]*r would
match.

CHAPTER 12

411

• ? is like * except that it allows either zero or one match for the preceding pattern. Thus,
c[ad]?r matches cr orcar or cdr, and nothing else.

• [begins a "character set", which is terminated by a]. In the simplest case, the
characters between the two form the set. Thus, [ad] matches either a or d, and [ad]*
matches any string of a's and d's (including the empty string), from which it follows that
c[ad]*r matches car, etc.

Character ranges can also be included in a character set, by writing two characters with
a - between them. Thus, [a-z]matches any lower-case letter. Ranges may be
intermixed freely with individual characters, as in [a-z$%.], which matches any lower
case letter or $, % or period.

Note that the usual special characters are not special any more inside a character set. A
completely different set of special characters exists inside character sets:], - and ^.

To include a] in a character set, you must make it the first character. For example, [
]a] matches] or a. To include a -, you must use it in a context where it cannot
possibly indicate a range: that is, as the first character, or immediately after a range.

• [^ begins a "complement character set", which matches any character except the ones
specified. Thus, [^a-z0-9A-Z]matches all characters except letters and digits.

• ^ is not special in a character set unless it is the first character. The character following
the ^ is treated as if it were first (it may be a - or a]).

^ is a special character that matches the empty string -- but only if at the beginning of a
line in the text being matched. Otherwise it fails to match anything. Thus, ^foo matches
afoo which occurs at the beginning of a line.

• $ is similar to ^ but matches only at the end of a line. Thus,xx*$ matches a string of
one or more x's at the end of a line.

• \ has two functions: it quotes the above special characters (including \), and it
introduces additional special constructs.

Because \ quotes special characters, \$ is a regular expression which matches only $,
and \

[is a regular expression which matches only [, and so on.

For the most part, \ followed by any character matches only that character. However,
there are several exceptions: characters which, when preceded by \, are special
constructs. Such characters are always ordinary when encountered on their own.

No new special characters will ever be defined. All extensions to the regular expression
syntax are made by defining new two-character constructs that begin with \.

CHAPTER 12

412

• \| specifies an alternative. Two regular expressions A and B with\| in between form
an expression that matches anything that either A or B will match.

Thus, foo\|bar matches either foo or bar but no other string.

\| applies to the largest possible surrounding expressions. Only a surrounding \(...
\) grouping can limit the grouping power of \|.

Full backtracking capability exists when multiple \|'s are used.

• \(... \) is a grouping construct that serves three purposes:

1. To enclose a set of \| alternatives for other operations. Thus,
\(foo\|bar\)x matches either foox or barx.

2. To enclose a complicated expression for the postfix * to operate on. Thus,
ba\(na\)* matches bananana, etc., with any (zero or more) number of na's.

3. To mark a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping; it is a
separate feature which happens to be assigned as a second meaning to the same \(
... \) construct because there is no conflict in practice between the two meanings.
Here is an explanation of this feature:

• \DIGIT After the end of a \(... \) construct, the matcher remembers the
beginning and end of the text matched by that construct. Then, later on in the regular
expression, you can use \followed by DIGIT to mean "match the same text matched the
DIGIT'th time by the \(... \) construct." The \(... \)constructs are numbered
in order of commencement in the regexp.

The strings matching the first nine \(... \) constructs appearing in a regular
expression are assigned numbers 1 through 9 in order of their beginnings. \1 through
\9 may be used to refer to the text matched by the corresponding \(... \)
construct.

For example, \(.*\)\1 matches any string that is composed of two identical halves.
The \(.*\) matches the first half, which may be anything, but the \1 that follows must
match the same exact text.

• \b matches the empty string, but only if it is at the beginning or end of a word. Thus,
\bfoo\b matches any occurrence of fooas a separate word. \bball\(s\|\)\b
matches ball or ballsas a separate word.

• \B matches the empty string, provided it is *not* at the beginning or end of a word.

• \< matches the empty string, but only if it is at the beginning of a word.

CHAPTER 12

413

• \> matches the empty string, but only if it is at the end of a word.

• \w matches any word-constituent character.

• \W matches any character that is not a word-constituent.

12.18. Writing a wxWindows application: a rough guide

To set a wxWindows application going, you'll need to derive a wxApp (page 44) class.

An application must have a top-level wxFrame (page 172) window (returned by wxApp::OnInit
(page 46)), each frame containing one or more instances of wxPanel (page 228), wxTextWindow
(page 302) or wxCanvas (page 57).

A frame can have a wxMenuBar (page 209), a status line, and a wxIcon (page 183) for when the
frame is iconized.

A wxPanel (page 228) is used to place items (classes derived from wxItem (page 191)) which are
used for user interaction. Examples of items are wxButton (page 54), wxCheckBox (page 68),
wxChoice (page 69), wxListBox (page 201), wxSlider (page 278), wxRadioBox (page 260).

Instances of wxDialogBox (page 123) can also be used for panels, items and they have the
advantage of not requiring a separate frame.

Instead of creating a dialog box and populating it with items, it is possible to choose one of the
convenient dialog functions (page 333), such as wxMessageBox (page 335) and wxFileSelector
(page 333).

If you want to draw arbitrary graphics, you'll need a wxCanvas (page 57). In fact, you never draw
directly onto a canvas---you use a device context (DC). wxDC (page 108) is the base for
wxCanvasDC (page 68), wxMemoryDC (page 205), wxPostScriptDC (page 240), wxMemoryDC
(page 205), wxMetaFileDC (page 213) and wxPrinterDC (page 250). If your drawing functions
have wxDC as a parameter, you can pass any of these DCs to the function, and thus use the
same code to draw to several different devices. You can draw using the member functions of
wxDC, such as wxDC::DrawLine (page 110) and wxDC::DrawText (page 112). Control colour on
a canvas (wxColour (page 76)) with brushes (wxBrush (page 51)) and pens (wxPen (page 237)).

On a canvas, you will probably need to intercept key events by overriding the wxCanvas::OnChar
(page 62) member, and mouse events by overriding wxCanvas::OnEvent (page 63).

Most modern applications will have an on-line, hypertext help system; for this, you need wxHelp
and the wxHelpInstance (page 187) class to control wxHelp. To add sparkle, you might use the
wxToolBar class (documented separately) which makes heavy use of the wxBitmap (page 48).

GUI applications aren't all graphical wizardry. List and hash table needs are catered for by wxList
(page 197), wxStringList (page 297) and wxHashTable (page 185). You will undoubtedly need
some platform-independent file functions (page 328), and you may find it handy to maintain and
search a list of paths using wxPathList (page 235). There's a miscellany (page 342) of operating

CHAPTER 12

414

system and other functions.

If you have several communicating applications, you can try out the DDE-like functions, by using
the three classes wxClient (page 74), wxServer (page 277) and wxConnection (page 91). These
use DDE under Windows, and a simulation using sockets under UNIX.

12.19. The wxWindows resource system

From version 1.61, wxWindows has an optional resource file facility, which allows separation of
dialog, menu, bitmap and icon specifications from the application code.

It is similar in principle to the Windows resource file (whose ASCII form is suffixed .RC and whose
binary form is suffixed .RES). The wxWindows resource file is currently ASCII-only, suffixed
.WXR. Note that under Windows, the .WXR file does not replace the native Windows resource
file, it merely supplements it. There is no existing native resource format in X (except for the
defaults file, which has limited expressive power).

Using wxWindows resources for panels and dialogs has an effect on how you deal with panel
item callbacks: you can't specify a callback function in a resource file, so how do you achieve the
same effect as with programmatic panel construction? The solution is similar to that adopted by
Windows, which is to use the parent panel or dialog to intercept user events.

From 1.61, wxWindows routes panel item events that do not have a callback to the OnCommand
(page 231) member of the panel (or dialog). So, to use panel or dialog resources, you need to
derive a new class and override the default (empty) OnCommand member. The first argument is
a reference to a wxWindow, and the second is a reference to a wxCommandEvent. Check the
name of the panel item that's generating an event by using the wxWindow::GetName (page 322)
function and a string comparison function such as wxStringEq (page 332). You may need to cast
the reference to an appropriate specific type to perform some operations.

To obtain a pointer to a panel item when you only have the name (for example, when you need to
set a value of a text item from outside of the OnCommand function), use the function
wxFindWindowByName (page 345).

For details of functions for manipulating resource files and loading user interface elements, see
wxWindows resource functions (page 355).

12.19.1. The format of a .WXR file

A wxWindows resource file may look a little odd at first. It's C++ compatible, comprising mostly of
static string variable declarations with PrologIO syntax within the string.

Here's a sample .WXR file:

/*
 * wxWindows Resource File
 * Written by wxBuilder
 *
 */

#include "noname.ids"

static char *aiai_resource = "bitmap(name = 'aiai_resource',\
 bitmap = ['aiai', wxBITMAP_TYPE_BMP_RESOURCE, 'WINDOWS'],\
 bitmap = ['aiai.xpm', wxBITMAP_TYPE_XPM, 'X']).";

CHAPTER 12

415

static char *menuBar11 = "menu(name = 'menuBar11',\
 menu = \
 [\
 ['&File', 1, '', \
 ['&Open File', 2, 'Open a file'],\
 ['&Save File', 3, 'Save a file'],\
 [],\
 ['E&xit', 4, 'Exit program']\
],\
 ['&Help', 5, '', \
 ['&About', 6, 'About this program']\
]\
]).";

static char *project_resource = "icon(name = 'project_resource',\
 icon = ['project', wxBITMAP_TYPE_ICO_RESOURCE, 'WINDOWS'],\
 icon = ['project_data', wxBITMAP_TYPE_XBM, 'X']).";

static char *panel3 = "dialog(name = 'panel3',\
 style = '',\
 title = 'untitled',\
 button_font = [14, 'wxSWISS', 'wxNORMAL', 'wxBOLD', 0],\
 label_font = [10, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0],\
 x = 0, y = 37, width = 292, height = 164,\
 control = [wxButton, 'OK', '', 'button5', 23, 34, -1, -1,
'aiai_resource'],\
 control = [wxMessage, 'A Label', '', 'message7', 166, 61, -1, -1,
'aiai_resource'],\
 control = [wxText, 'Text', 'wxVERTICAL_LABEL', 'text8', 24, 110, -1,
-1]).";

As you can see, C++-style comments are allowed, and apparently include files are supported too:
but this is a special case, where the included file is a file of defines shared by the C++ application
code and resource file to relate identifiers (such as FILE_OPEN) to integers.

Each resource object is of standard PrologIO syntax, that is, an object name such as dialog or
icon, then an open parenthesis, a list of comma-delimited attribute/value pairs, a closing
parenthesis, and a full stop. Backslashes are required to escape newlines, for the benefit of C++
syntax. If double quotation marks are used to delimit strings, they need to be escaped with
backslash within a C++ string (so it's easier to use single quotation marks instead).

A note on PrologIO string syntax: A string that begins with an alphabetic character, and contains
only alphanumeric characters, hyphens and underscores, need not be quoted at all. Single
quotes and double quotes may be used to delimit more complex strings. In fact, single-quoted
and no-quoted strings are actually called words, but are treated as strings for the purpose of the
resource system.

A resource file like this is typically included in the application main file, as if it were a normal C++
file. This eliminates the need for a separate resource file to be distributed alongside the
executable. However, the resource file can be dynamically loaded if desired (for example by a
non-C++ language such as CLIPS, Prolog or Python).

Once included, the resources need to be 'parsed' (interpreted), because so far the data is just a
number of static string variables. The function ::wxResourceParseData is called early on in
initialization of the application (usually in wxApp::OnInit) with a variable as argument. This may

CHAPTER 12

416

need to be called a number of times, one for each variable. However, more than one resource
'object' can be stored in one string variable at a time, so you can get all your resources into one
variable if you want to.

::wxResourceParseData parses the contents of the resource, ready for use by functions such as
::wxResourceCreateBitmap and wxPanel::LoadFromResource.

If a wxWindows resource object (such as a bitmap resource) refers to a C++ data structure, such
as static XBM or XPM data, a further call (::wxResourceRegisterBitmapData) needs to be
made on initialization to tell wxWindows about this data. The wxWindows resource object will
refer to a string identifier, such as 'project_data' in the example file above. This identifier will be
looked up in a table to get the C++ static data to use for the bitmap or icon.

In the C++ fragment below, the WXR resource file is included, and appropriate resource
initialization is carried out in OnInit. Note that at this stage, no actual wxWindows dialogs, menus,
bitmaps or icons are created; their 'templates' are merely being set up for later use.

/*
 * File: noname.cc
 * Purpose: main application module, generated by wxBuilder.
 */

#include "wx.h"
#include "wx_help.h"
#include "noname.h"

// Includes the dialog, menu etc. resources
#include "noname.wxr"

// Includes XBM data
#include "project.xbm"

// Declare an instance of the application: allows the program to start
AppClass theApp;

// Called to initialize the program
wxFrame *AppClass::OnInit(void)
{
#ifdef wx_x
 wxResourceRegisterBitmapData("project_data", project_bits,
project_width, project_height);
#endif
 wxResourceParseData(menuBar11);
 wxResourceParseData(aiai_resource);
 wxResourceParseData(project_resource);
 wxResourceParseData(panel3);
 ...
}

12.19.2. Dialog resource format

A dialog resource object may be used for either panels or dialog boxes, and consists of the
following attributes. In the following, a font specification is a list consisting of point size, family,
style, weight, underlined, optional facename.

CHAPTER 12

417

Attribute Value
name The name of the resource.
style Optional dialog box or panel window style.
title The title of the dialog box (unused if a panel).
.modal Whether modal: 1 if modal, 0 if modeless, absent if a panel resource.
button_font The font used for control buttons: a list comprising point size (integer), family

(string), font style (string), font weight (string) and underlining (0 or 1).
label_font The font used for control labels: a list comprising point size (integer), family

(string), font style (string), font weight (string) and underlining (0 or 1).
x The x position of the dialog or panel.
y The y position of the dialog or panel.
width The width of the dialog or panel.
height The height of the dialog or panel.
background_colour The background colour of the dialog or panel. Only valid if the style

includes wxUSER_COLOURS.
label_colour The default label colour for the children of the dialog or panel. Only valid if the

style includes wxUSER_COLOURS.
button_colour The default button text colour for the children of the dialog or panel. Only valid if

the style includes wxUSER_COLOURS.
label_font Font spec
button_font Font spec

Then comes zero or more attributes named 'control' for each control (panel item) on the dialog or
panel. The value is a list of further elements. In the table below, the names in the first column
correspond to the first element of the value list, and the second column details the remaining
elements of the list.

Control Values
wxButton title (string), window style (string), name (string), x, y, width, height, button

bitmap resource (optional string), button font spec
wxCheckBox title (string), window style (string), name (string), x, y, width, height, default value

(optional integer, 1 or 0), label font spec
wxChoice title (string), window style (string), name (string), x, y, width, height, values

(optional list of strings), label font spec, button font spec
wxComboBox title (string), window style (string), name (string), x, y, width, height, default text

value, values (optional list of strings), label font spec, button font spec
wxGauge title (string), window style (string), name (string), x, y, width, height, value

(optional integer), range (optional integer), label font spec, button font spec
wxGroupBox title (string), window style (string), name (string), x, y, width, height, label font

spec
wxListBox title (string), window style (string), name (string), x, y, width, height, values

(optional list of strings), multiple (optional string, wxSINGLE or wxMULTIPLE),
label font spec, button font spec

wxMessage title (string), window style (string), name (string), x, y, width, height, message
bitmap resource (optional string), label font spec

wxMultiText title (string), window style (string), name (string), x, y, width, height, default value
(optional string), label font spec, button font spec

wxRadioBox title (string), window style (string), name (string), x, y, width, height, values
(optional list of strings), number of rows or cols, label font spec, button font spec

wxRadioButton title (string), window style (string), name (string), x, y, width, height, default value
(optional integer, 1 or 0), label font spec

wxScrollBar title (string), window style (string), name (string), x, y, width, height, value
(optional integer), page length (optional integer), object length (optional integer),
view length (optional integer)

wxSlider title (string), window style (string), name (string), x, y, width, height, value

CHAPTER 12

418

(optional integer), minimum (optional integer), maximum (optional integer), label
font spec, button font spec

wxText title (string), window style (string), name (string), x, y, width, height, default value
(optional string), label font spec, button font spec

12.19.3. Menubar resource format

A menubar resource object consists of the following attributes.

Attribute Value
name The name of the menubar resource.
menu A list containing all the menus, as detailed below.

The value of the menu attribute is a list of menu item specifications, where each menu item
specification is itself a list comprising:

• title (a string)
• menu item identifier (a string or non-zero integer, see below)
• help string (optional)
• 0 or 1 for the 'checkable' parameter (optional)
• optionally, further menu item specifications if this item is a pulldown menu.

If the menu item specification is the empty list ([]), this is interpreted as a menu separator.

If further (optional) information is associated with each menu item in a future release of
wxWindows, it will be placed after the help string and before the optional pulldown menu
specifications.

Note that the menu item identifier must be an integer if the resource is being included as C++
code and then parsed on initialisation. Unfortunately, #define substitution is not performed inside
strings, and therefore the program cannot know the mapping. However, if the .WXR file is being
loaded dynamically, wxWindows will attempt to replace string identifiers with #defined integers,
because it is able to parse the included #defines.

12.19.4. Bitmap resource format

A bitmap resource object consists of a name attribute, and one or more bitmap attributes. There
can be more than one of these to allow specification of bitmaps that are optimum for the platform
and display.

• Bitmap name or filename.
• Type of bitmap; for example, wxBITMAP_TYPE_BMP_RESOURCE. See class

reference under wxBitmap for a full list).
• Platform this bitmap is valid for; one of WINDOWS, X, MAC and ANY.
• Number of colours (optional).
• X resolution (optional).
• Y resolution (optional).

12.19.5. Icon resource format

CHAPTER 12

419

An icon resource object consists of a name attribute, and one or more icon attributes. There can
be more than one of these to allow specification of icons that are optimum for the platform and
display.

• Icon name or filename.
• Type of icon; for example, wxBITMAP_TYPE_ICO_RESOURCE. See class reference

under wxBitmap for a full list).
• Platform this bitmap is valid for; one of WINDOWS, X, MAC and ANY.
• Number of colours (optional).
• X resolution (optional).
• Y resolution (optional).

12.19.6. Resource format design issues

The .WXR file format is a recent addition and subject to change. The use of an ASCII resource
file format may seem rather inefficient, but this choice has a number of advantages:

• Since it is C++ compatible, it can be included into an application's source code,
eliminating the problems associated with distributing a separate resource file with the
executable. However, it can also be loaded dynamically from a file, which will be
required for non-C++ programs that use wxWindows.

• No extra binary file format and separate converter need be maintained for the
wxWindows project (although others are welcome to add the equivalent of the Windows
'rc' resource parser and a binary format).

• It would be difficult to append a binary resource component onto an executable in a
portable way.

• The file format is essentially the PrologIO object format, for which a parser already
exists, so parsing is easy. For those programs that use PrologIO anyway, the size
overhead of the parser is minimal.

The disadvantages of the approach include:

• Parsing adds a small execution overhead to program initialization.
• Under 16-bit Windows especially, global data is at a premium. Using a .RC resource

table for some wxWindows resource data may be a partial solution, although .RC strings
are limited to 255 characters.

• Without a resource preprocessor, it is not possible to substitute integers for identifiers
(so menu identifiers have to be written as integers in the resource object, in addition to
providing #defines for application code convenience).

12.19.7. Compiling the resource system

To enable the resource system, set USE_WX_RESOURCES to 1 in wx_setup.h. If your
wxWindows makefile supports it, set the same name in the makefile to 1.

You will also need to compile the PrologIO utility (not always the easiest task): you will need
YACC, and LEX (or FLEX). DOS versions of these are available on the AIAI ftp site under
/pub/wxwin/tools.

12.20. Notes on using the reference

CHAPTER 12

420

In the descriptions of the wxWindows classes and their member functions, note that descriptions
of inherited member functions are not duplicated in derived classes unless their behaviour is
different. So in using a class such as wxCanvas, be aware that wxWindow functions may be
relevant.

Note also that arguments with default values may be omitted from a function call, for brevity. Size
and position arguments may usually be given a value of -1 (the default), in which case
wxWindows will choose a suitable value.

From version 1.50 beta (j), string return values are allocated and deallocated by wxWindows.
Therefore, return values should always be copied for long-term use, especially since the same
buffer is often used by wxWindows.

The member functions are given in alphabetical order except for constructors and destructors
which appear first.

12.21. wxSplitterWindow overview

Class: wxSplitterWindow (page 280)

A wxSplitterWindow manages one or two subwindows, allowing the user to change the position of
a sash.

12.21.1. Example

The following fragment shows how to create a splitter window, creating two subwindows and
hiding one of them.

 splitter = new wxSplitterWindow(this, 0, 0, 400, 400, wxSP_3D);

 leftCanvas = new MyCanvas(splitter);
 leftCanvas->SetBackground(wxRED_BRUSH);
 leftCanvas->SetScrollbars(20, 20, 50, 50, 4, 4);

 rightCanvas = new MyCanvas(splitter);
 rightCanvas->SetBackground(wxCYAN_BRUSH);
 rightCanvas->SetScrollbars(20, 20, 50, 50, 4, 4);
 rightCanvas->Show(FALSE);

 splitter->Initialize(leftCanvas);

 // Set this to prevent unsplitting
// splitter->SetMinimumPaneSize(20);

The next fragment shows how the splitter window can be manipulated after creation.

 void MyFrame::OnMenuCommand(int id)
 {
 switch (id)
 {
 case SPLIT_VERTICAL :

CHAPTER 12

421

 if (splitter->IsSplit())
 splitter->Unsplit();
 leftCanvas->Show(TRUE);
 rightCanvas->Show(TRUE);
 splitter->SplitVertically(leftCanvas, rightCanvas);
 break;
 case SPLIT_HORIZONTAL :
 if (splitter->IsSplit())
 splitter->Unsplit();
 leftCanvas->Show(TRUE);
 rightCanvas->Show(TRUE);
 splitter->SplitHorizontally(leftCanvas, rightCanvas);
 break;
 case SPLIT_UNSPLIT :
 if (splitter->IsSplit())
 splitter->Unsplit();

break;
 case SPLIT_QUIT:
 this->Close(TRUE);
 break;
 default:
 break;
 }
 }

CHAPTER 12

422

423

References

[1] Boggan, Scott and Fakas, David and Welinske, Joe. 1993. Developing on-line help for
Windows. Sams Publishing. 11711 North College, Carmel, Indiana 46032, USA.

[2] Wong, William. 1993. Plug and play programming. M and T Books. 115 West 18th Street,
New York, New York 10011.

[3] Pree, Wolfgang. 1994. Design patterns for object-oriented software development. Addison-
Wesley. Reading, MA.

[4] Gamma, Erich and Helm, Richard and Johnson, Ralph and Vlissides, John. 1994. Design
patterns: elements of reusable object-oriented software. Addison-Wesley. Reading, MA.

[5] Smart, Julian. 1995. wxCLIPS User Manual. University of Edinburgh. Artificial Intelligence
Applications Institute. 80 South Bridge, Edinburgh, EH1 1HN.

[6] Smart, Julian. 1995. Tex2RTF User Manual. University of Edinburgh. Artificial Intelligence
Applications Institute. 80 South Bridge, Edinburgh, EH1 1HN.

INDEX

424

425

Index

—:—
::copystring, 332
::Dos2UnixFilename, 328
::NewId, 342
::RegisterId, 343
::wxAddPrimaryEventHandler, 337
::wxAddSecondaryEventHandler, 337
::wxBeginBusyCursor, 343
::wxBell, 343
::wxCleanUp, 343
::wxClipboardOpen, 341
::wxCloseClipboard, 341
::wxColourDisplay, 335
::wxConcatFiles, 329
::wxCopyFile, 329
::wxCreateDynamicObject, 343
::wxDebugMsg, 343
::wxDirExists, 328
::wxDisplayDepth, 336
::wxDisplaySize, 344
::wxEmptyClipboard, 341
::wxEndBusyCursor, 344
::wxEntry, 344
::wxEnumClipboardFormats, 341
::wxError, 344
::wxExecute, 344
::wxExit, 345
::wxFatalError, 345
::wxFileExists, 328
::wxFileNameFromPath, 328
::wxFileSelector, 333
::wxFindFirstFile, 328
::wxFindMenuItemId, 345
::wxFindNextFile, 329
::wxFindWindowByLabel, 345
::wxFindWindowByName, 345
::wxGetActiveWindow, 346
::wxGetClipboardData, 341
::wxGetClipboardFormatName, 342
::wxGetDisplayName, 346
::wxGetElapsedTime, 346
::wxGetEmailAddress, 330
::wxGetFreeMemory, 346
::wxGetHomeDir, 346
::wxGetHostName, 329, 346
::wxGetMousePosition, 347
::wxGetMultipleChoice, 334
::wxGetOsVersion, 347
::wxGetPrinterCommand, 338
::wxGetPrinterFile, 338
::wxGetPrinterMode, 339
::wxGetPrinterOptions, 339
::wxGetPrinterOrientation, 339
::wxGetPrinterPreviewCommand, 339
::wxGetPrinterScaling, 339
::wxGetPrinterTranslation, 339

::wxGetResource, 347
::wxGetSingleChoice, 334
::wxGetSingleChoiceData, 335
::wxGetSingleChoiceIndex, 334
::wxGetTempFileName, 331
::wxGetTextFromUser, 333
::wxGetUserId, 330, 348
::wxGetUserName, 330, 348
::wxGetWorkingDirectory, 330
::wxInitClipboard, 348
::wxIPCCleanUp, 348
::wxIPCInitialize, 348
::wxIsAbsolutePath, 329
::wxIsBusy, 348
::wxIsClipboardFormatAvailable, 342
::wxIsWild, 331
::wxKill, 348
::wxLoadUserResource, 349
::wxMakeMetaFilePlaceable, 336
::wxMatchWild, 331
::wxMessageBox, 335
::wxMkdir, 331
::wxNotifyEvent, 337
::wxNow, 349
::wxOpenClipboard, 342
::wxPathOnly, 329
::wxPostDelete, 349
::wxRegisterClipboardFormat, 342
::wxRegisterEventClass, 337
::wxRegisterEventName, 338
::wxRegisterExternalEventHandlers, 338
::wxRemoveFile, 331
::wxRemoveSecondaryEventHandler, 338
::wxRenameFile, 331
::wxResourceAddIdentifier, 355
::wxResourceClear, 355
::wxResourceCreateBitmap, 355
::wxResourceCreateIcon, 356
::wxResourceCreateMenuBar, 356
::wxResourceGetIdentifier, 356
::wxResourceParseData, 357
::wxResourceParseFile, 357
::wxResourceParseString, 357
::wxResourceRegisterBitmapData, 358
::wxResourceRegisterIconData, 358
::wxRmdir, 331
::wxSendEvent, 338
::wxSetClipboardData, 342
::wxSetCursor, 336
::wxSetDisplayName, 349
::wxSetPrinterCommand, 339
::wxSetPrinterFile, 340
::wxSetPrinterMode, 340
::wxSetPrinterOptions, 340
::wxSetPrinterOrientation, 340
::wxSetPrinterPreviewCommand, 340
::wxSetPrinterScaling, 340
::wxSetPrinterTranslation, 340
::wxSetWorkingDirectory, 332

INDEX

426

::wxShell, 350
::wxSleep, 350
::wxStartTimer, 350
::wxStringEq, 332
::wxStringMatch, 332
::wxStripMenuCodes, 350
::wxSubType, 350
::wxToLower, 351
::wxToUpper, 351
::wxTrace, 351
::wxTraceLevel, 351
::wxTransferFileToStream, 332
::wxTransferStreamToFile, 332
::wxUnix2DosFilename, 329
::wxWriteResource, 351
::wxYield, 352

—_—
__type, 222

—~—
~wxApp, 44
~wxBitmap, 49
~wxBrush, 52
~wxButton, 55
~wxCanvas, 57
~wxCheckBox, 69
~wxChoice, 70
~wxColourData, 78
~wxColourDialog, 81
~wxColourMap, 81
~wxComboBox, 83
~wxCommand, 87
~wxCommandProcessor, 90
~wxCursor, 96
~wxDatabase, 96
~wxDate, 102
~wxDC, 108
~wxDialogBox, 124
~wxDocChildFrame, 127
~wxDocManager, 129
~wxDocParentFrame, 134
~wxDocTemplate, 138
~wxDocument, 141
~wxEnhDialogBox, 147
~wxEvent, 149
~wxEvtHandler, 151
~wxFileHistory, 157
~wxFont, 159
~wxFontData, 160
~wxFontDialog, 163
~wxFontNameDirectory, 164
~wxForm, 168
~wxFrame, 173
~wxGauge, 181
~wxGroupBox, 183
~wxHashTable, 186
~wxIcon, 184
~wxList, 199
~wxListBox, 203

~wxMenu, 207
~wxMenuBar, 209
~wxMessage, 212
~wxMetaFile, 213
~wxMetaFileDC, 214
~wxPageSetupData, 223
~wxPageSetupDialog, 227
~wxPanel, 228
~wxPen, 237
~wxPreviewCanvas, 241
~wxPreviewControlBar, 243
~wxPreviewFrame, 244
~wxPrintData, 245
~wxPrintDialog, 248
~wxPrinter, 249, 254
~wxPrintout, 251
~wxQueryCol, 257
~wxQueryField, 259
~wxRadioBox, 261
~wxRadioButton, 264
~wxRecordSet, 265
~wxScrollBar, 276
~wxSlider, 279
~wxSplitterWindow, 281
~wxString, 286
~wxStringList, 298
~wxText, 300
~wxTextWindow, 303
~wxTimer, 308
~wxToolBar, 309
~wxView, 316
~wxWindow, 319

—A—
A minimal wxWindows program, 36
A selection of SQL commands, 396
Abort, 249
Above, 190
Absolute, 190
Activate, 316
ActivateView, 129
Add, 168, 236, 298
AddBrush, 53
AddChild, 319
AddCmd, 148
AddDocument, 129
AddEnvList, 236
AddFileToHistory, 129, 157
AddFont, 164
AddMonths, 102
AddNew, 265
AddPen, 240
AddSeparator, 309
AddTool, 309
AddType, 314
AddView, 141
AddWeeks, 102
AddYears, 102
Advise, 92
After, 287
aligning items, 368

INDEX

427

Alloc, 286
Allocating and deleting wxWindows objects, 22
Allocation, 286
AllocData, 259
AllowDoubleClick, 58
Append, 71, 83, 199, 203, 207, 209, 287
AppendField, 258
AppendSeparator, 207
argc, 44
argv, 44
AsIs, 190
Assigment, 363
AssociatePanel, 168
AssociateTemplate, 130
At, 287

—B—
Before, 287
BeginDrawing, 58, 108
BeginFind, 186
BeginQuery, 265
BeginTrans, 96
BeingReplaced, 76
Below, 190
BindVar, 257, 265
Bitmap resource format, 418
Blit, 108
Blue, 77
bottom, 196
Break, 207
Button, 216
ButtonDClick, 216
ButtonDown, 216
buttonFlags, 242
buttonFont, 242
ButtonUp, 216

—C—
CanAppend, 265
Cancel, 96, 266
CanRestart, 266
CanScroll, 266
CanTransact, 97, 266
CanUndo, 87, 90
CanUpdate, 97, 266
Capitalize, 287
CaptureMouse, 319
Cat, 288
Center, 319
Centre, 124, 173, 192, 320
centreX, 197
centreY, 197
Chars, 288
Check, 120, 207, 210
Check Windows debug messages, 43
Checked, 89, 208, 210
childDocument, 126
childView, 126
Classification, 363
CLASSINFO, 352

Clear, 58, 71, 83, 109, 186, 199, 203, 303
ClearCommands, 90
ClearData, 259
clientData, 88
ClientToScreen, 320
Close, 97, 141, 214, 317, 320
closeButton, 242
Command, 174, 192
commandInt, 88
commandString, 88
CommitTrans, 97
CommonPrefix, 296
CommonSuffix, 296
Compare, 296
CompareTo, 289
Comparing, Searching and Matching examples,

406
Comparison operators, 296
Comparisons (case sensitive and insensitive),

363
Compilers, 403
Compiling the resource system, 419
Composition and Concatenation, 364
Concatenation examples, 408
Constraint layout: more detail, 388
Constraints on form items, 166
ConstructDefaultSQL, 266
Constructor examples, 404
Constructors/Destructors, 364
Contains, 289
controlBar, 244
controlDown, 193, 214
ControlDown, 195, 216
Conversions, 364
Copy, 83, 289, 300, 303
Copyright of the original GNU code portion, 400
copystring, 332
Create, 49, 55, 58, 69, 71, 82, 83, 124, 174, 181,

183, 203, 212, 229, 261, 264, 276, 278, 279,
300, 303, 396

CreateAbortWindow, 249
CreateButtons, 243
CreateCanvas, 245
CreateControlBar, 245
CreateDocument, 130, 138
CreateItem, 229
CreateObject, 73
CreateStatusLine, 174
CreateTools, 310
CreateView, 130, 138
CrossHair, 58, 109
currentView, 128
Cut, 84, 300, 303

—D—
Data, 221
Data transfer, 379
DECLARE_ABSTRACT_CLASS, 352
DECLARE_CLASS, 353
DECLARE_DYNAMIC_CLASS, 353
defaultDocumentNameCounter, 128

INDEX

428

Definition of constructors, 24
Del, 289
delete, 223
Delete, 84, 168, 186, 203, 266, 298
DeleteAllViews, 142
DeleteContents, 199
DeleteNode, 199
DeleteObject, 200
Deletion/Insertion, 364
Deselect, 84, 203
DestroyChildren, 320
DestroyClippingRegion, 58, 109
DeviceToLogicalX, 109
DeviceToLogicalXRel, 109
DeviceToLogicalY, 109
DeviceToLogicalYRel, 109
Dialog resource format, 416
DisassociateTemplate, 130
DiscardEdits, 303
Disconnect, 92
Dispatch, 45
DisplayBlock, 188
DisplayContents, 188
DisplaySection, 188
Do, 87, 90
documentFile, 140
documentModified, 140
documentTemplate, 140
documentTitle, 141
documentTypeName, 141
documentViews, 141
Dos2UnixFilename, 328
Downcase, 290
DragAcceptFiles, 320
Dragging, 217
DrawAllStaticItems, 229
DrawArc, 58, 110
DrawBlankPage, 254
DrawEllipse, 59, 110
DrawEllipticArc, 110
DrawIcon, 110
DrawLine, 59, 110
DrawLines, 59, 110
DrawPoint, 59, 111
DrawPolygon, 59, 111
DrawRectangle, 60, 111
DrawRoundedRectangle, 60, 111
DrawSpline, 60, 112
DrawText, 60, 112
DrawTool, 310
Dump, 120, 222
Duplication, 364

—E—
Edges and relationships, 189
Edit, 266
Elem, 290
Element access, 364
Empty, 290
Enable, 208, 210, 262, 321
EnableEffects, 160

EnableHelp, 223, 245
EnableMargins, 224
EnableOrientation, 224
EnablePageNumbers, 246
EnablePaper, 224
EnablePrinter, 224
EnablePrintToFile, 246
EnableScrolling, 60
EnableSelection, 246
EnableTool, 310
EnableTop, 210
EndDoc, 112
EndDrawing, 61, 112
EndPage, 112
EndQuery, 267
EnsureFileAccessible, 236
Entering, 217
Error, 290
ErrorOccured, 97
ErrorSnapshot, 97
eventClass, 149
eventHandle, 149
eventObject, 149
eventType, 149
Example, 167, 371, 420
Example 1: subwindow layout, 389
Example 2: panel item layout, 390
Examples, 380, 405
Execute, 92
ExecuteSQL, 267
ExitMainLoop, 46
Extraction of Substrings, 364
extraLong, 88

—F—
FCompare, 296
Features/Additions/Modifications, 400
fileHistory, 128, 156
FileHistoryLoad, 130, 157
fileHistoryN, 156
FileHistorySave, 130, 157
FileHistoryUseMenu, 131, 157
fileMaxFiles, 156
fileMenu, 157
FillVar, 257
FillVars, 267
Find, 200
FindClass, 73
FindColour, 80
FindItem, 168, 208
FindItemById, 210
FindItemForId, 208
FindMenuItem, 210
FindName, 80
FindOrCreateBrush, 54
FindOrCreateFont, 164
FindOrCreateFontId, 164
FindOrCreatePen, 240
FindString, 71, 84, 204, 262
FindTemplateForPath, 131
FindToolForPosition, 310

INDEX

429

FindValidPath, 236
First, 200, 290
Firstchar, 290
Fit, 148, 174, 229
FloodFill, 61, 112
Font name directory overview, 382
Form appearance, 166
FormatDate, 102
formats, 76
Freq, 290
From, 290, 291
Function calls, 402
Functions for making form items and constraints,

170

—G—
General features, 18
Genetic mutation, 42
Get, 77, 186
GetAFMName, 165
GetAllowSymbols, 160
GetAllPages, 246
GetAppName, 45
GetBackground, 113
GetBackgroundColour, 192, 230
GetBaseClassName1, 73
GetBaseClassName2, 73
GetBezelFace, 181
GetBrush, 113
GetButtonColour, 192, 230
GetButtonFont, 229
GetCanvas, 254
GetCap, 237
GetCharHeight, 113, 321
GetCharWidth, 113, 321
GetCheckPrevious, 121
GetChildren, 321
GetChooseFull, 78
GetChosenFont, 161
GetClassInfo, 222
GetClassName, 45, 73
GetClientData, 84, 89, 151, 204
GetClientSize, 321
GetClipboardClient, 75
GetClipboardData, 75
GetClipboardString, 75
GetClippingBox, 113
GetCmd, 148
GetCollate, 246
GetColName, 267
GetColour, 52, 78, 161, 237
GetColourData, 81
GetColourMap, 49
GetColType, 267
GetColumns, 71, 267
GetCommandProcessor, 142
GetCommands, 90
GetConstraints, 321
GetContents, 303
GetCurrentDocument, 131
GetCurrentPage, 254

GetCurrentRecord, 268
GetCurrentView, 131
GetCursor, 229
GetCustomColour, 78
GetDashes, 238
GetData, 76, 257, 259, 291
GetDatabase, 268
GetDatabaseName, 97
GetDataSource, 97
GetDataSources, 268
GetDay, 103
GetDayOfWeek, 103
GetDayOfWeekName, 103
GetDayOfYear, 103
GetDaysInMonth, 103
GetDC, 61, 251
GetDebugMode, 121
GetDefaultButtonHeight, 56
GetDefaultButtonWidth, 56
GetDefaultConnect, 269
GetDefaultExtension, 138
GetDefaultInfo, 226
GetDefaultItem, 229
GetDefaultMinMargins, 225
GetDefaultSQL, 269
GetDepth, 49
GetDescription, 138
GetDirectory, 138
GetDocument, 127, 317
GetDocumentManager, 138, 142, 317
GetDocumentName, 139, 142
GetDocuments, 131
GetDocumentTemplate, 142
GetDocumentWindow, 142
GetEditMenu, 91
GetEnableEffects, 161
GetEnableHelp, 225
GetEnableMargins, 225
GetEnableOrientation, 225
GetEnablePaper, 225
GetEnablePrinter, 225
GetErrorClass, 98
GetErrorCode, 98, 269
GetErrorMessage, 98
GetErrorNumber, 98
GetEventClass, 150
GetEventHandler, 321
GetEventObject, 150
GetEventType, 150
GetExitOnDelete, 45
GetFaceName, 159
GetFamily, 159, 165
GetFieldData, 269
GetFieldDataPtr, 269, 270
GetFileFilter, 139
GetFileHistory, 131
GetFilename, 142
GetFilter, 270
GetFirstDayOfMonth, 103
GetFirstView, 143
GetFlags, 139
GetFont, 113

INDEX

430

GetFontData, 163
GetFontId, 159, 165
GetFontName, 165
GetFrame, 254, 317
GetFromPage, 246
GetGrandParent, 322
GetHandle, 322
GetHDBC, 98
GetHeight, 50, 185
GetHelpString, 208, 210
GetHENV, 98
GetHorizontalSpacing, 230
GetInfo, 98, 99
GetInitialFont, 161
GetInsertionPoint, 84, 300, 304
GetJoin, 238
GetJulianDate, 103
GetLabel, 192, 208, 211, 322
GetLabelColour, 192, 230
GetLabelFont, 230
GetLabelTop, 211
GetLastPosition, 84, 300, 304
GetLevel, 121
GetLineLength, 220, 304
GetLineText, 220, 304
GetLogicalFunction, 113
GetMapMode, 114
GetMarginBottomRight, 224
GetMarginTopLeft, 224, 226
GetMax, 279
GetMaxCommands, 90
GetMaxDocsOpen, 131
GetMaxFiles, 158
GetMaxPage, 246, 255
GetMaxSize, 310
GetMenuBar, 174
GetMin, 279
GetMinimumPaneSize, 281
GetMinMarginBottomRight, 225
GetMinMarginTopLeft, 224
GetMinPage, 247, 255
GetMonth, 103
GetMonthEnd, 104
GetMonthName, 104
GetMonthStart, 104
GetName, 87, 257, 314, 322
GetNewFontId, 165
GetNextHandler, 151
GetNoCopies, 247
GetNoHistoryFiles, 132, 158
GetNumberCols, 271
GetNumberFields, 271
GetNumberOfLines, 220, 304
GetNumberParams, 271
GetNumberRecords, 271
GetObjectType, 150
GetODBCVersionFloat, 99
GetODBCVersionString, 99
GetOptimization, 114
GetOptions, 271
GetOrientation, 225
GetPageInfo, 251

GetPageSetupData, 227
GetPageSizeMM, 251
GetPageSizePixels, 252
GetPanelDC, 230
GetPanelItem, 172
GetPaperSize, 224
GetParent, 322
GetPassword, 99
GetPen, 114
GetPixel, 114
GetPointSize, 159
GetPosition, 322
GetPostScriptName, 165
GetPPIPrinter, 252
GetPPIScreen, 252
GetPreviousHandler, 151
GetPrimaryKeys, 270, 271
GetPrintableName, 143
GetPrintData, 248, 250, 255
GetPrintDC, 249
GetPrintMode, 45
GetPrintout, 255
GetPrintoutForPrinting, 255
GetPrintPreview, 243
GetRange, 181
GetResultSet, 271
GetSashPosition, 281
GetScreenName, 165
GetScrollPage, 61
GetScrollPixelsPerUnit, 61
GetScrollPos, 61
GetScrollRange, 61
GetScrollUnitsPerPage, 62
GetSelection, 71, 85, 89, 204, 262
GetSelections, 204
GetShowHelp, 161
GetSize, 73, 114, 258, 259, 322
GetSortString, 272
GetSplitMode, 281
GetSQL, 272
GetStipple, 52, 238
GetStream, 121, 241
GetStreamBuf, 121
GetString, 71, 72, 85, 89, 204, 263
GetStringSelection, 72, 85, 204, 262
GetStyle, 52, 159, 238
GetTableName, 272
GetTables, 272
GetTextBackground, 114
GetTextExtent, 115, 323
GetTextForeground, 115
GetTitle, 125, 143, 174, 208
GetToolBar, 175
GetToolClientData, 311
GetToolEnabled, 311
GetToolLongHelp, 311
GetToolShortHelp, 311
GetToolState, 311
GetToPage, 247
GetTopWindow, 45
GetType, 257, 260, 272
GetUnderlined, 160

INDEX

431

GetUserEditMode, 323
GetUsername, 99
GetValue, 69, 85, 181, 220, 264, 277, 279, 300
GetValues, 277
GetVerticalSpacing, 230
GetView, 127
GetViewName, 139, 317
GetVirtualSize, 62
GetWeekOfMonth, 104
GetWeekOfYear, 104
GetWeight, 160
GetWidth, 50, 185, 238, 315
GetWindow1, 281
GetWindow2, 282
GetWindowStyleFlag, 323
GetX, 315
GetY, 315
GetYear, 104
GetYearEnd, 104
GetYearStart, 104
GetZoomControl, 243
GNU Documentation, 404
GoTo, 272
Green, 77
GSub, 291

—H—
HasPage, 252
HasStream, 121
Header files, 403
height, 197

—I—
Icon resource format, 418
Iconize, 125, 175
Iconized, 125, 175
IMPLEMENT_ABSTRACT_CLASS, 353
IMPLEMENT_ABSTRACT_CLASS2, 354
IMPLEMENT_CLASS, 354
IMPLEMENT_CLASS2, 354
IMPLEMENT_DYNAMIC_CLASS, 354
IMPLEMENT_DYNAMIC_CLASS2, 354
Index, 291
Initialize, 80, 91, 132, 165, 187, 245, 282
InitializeClasses, 74
Initialized, 46
Input/Output, 365
Insert, 200, 291, 396
IntDrawLine, 62, 115
IntDrawLines, 62, 115
Interval, 308
InWaitForDataSource, 100
IsAscii, 291
IsBOF, 272
IsButton, 217
IsColNullable, 273
IsDefined, 291
IsDeleted, 273
IsDirty, 260
IsEditable, 169

IsEOF, 273
IsFieldDirty, 273
IsFieldNull, 273
IsKindOf, 74, 222
IsLeapYear, 105
IsModal, 125
IsModified, 143
IsModify, 143
IsNull, 292
IsNullable, 258
IsNumber, 292
IsOpen, 100, 273
IsPreview, 252
IsRetained, 62
IsRowDirty, 258
IsSelection, 89
IsShown, 323
IsSplit, 282
IsVisible, 139
IsWord, 292

—J—
Join, 297

—K—
keyCode, 194
KeyCode, 195
KeywordSearch, 188

—L—
Last, 200, 292
Lastchar, 292
Layout, 311, 323
Leaving, 217
left, 197
LeftDClick, 217
leftDown, 214, 215
LeftDown, 217
LeftIsDown, 217
LeftOf, 190
LeftUp, 218
Length, 292
ListToArray, 298
LoadAccelerators, 175
LoadFile, 50, 188, 304
LoadFromResource, 231
Loading bitmaps: further information, 384
LoadObject, 143, 222
LogicalToDeviceX, 115
LogicalToDeviceXRel, 115
LogicalToDeviceY, 116
LogicalToDeviceYRel, 116
Lower, 323
LowerCase, 292

—M—
MainLoop, 46

INDEX

432

MakeConnection, 74
MakeDefaultName, 132
MakeKey, 186
MakeModal, 323
Matches, 292, 293
maxDocsOpen, 128
Maximize, 175
MaxX, 116
MaxY, 116
MDI versus SDI, 9
Member, 200, 236, 298
Menubar resource format, 418
MiddleDClick, 218
middleDown, 214
MiddleDown, 218
MiddleIsDown, 218
MiddleUp, 218
MinX, 116
MinY, 116
mnDocs, 128
mnFlags, 128
mnTemplates, 129
Modified, 305
Module definition file, 21
More advanced features: the hello demo, 38
More DDE details, 380
Move, 274, 324
MoveFirst, 274
MoveLast, 274
MoveNext, 274
MovePrev, 274
Moving, 218

—N—
new, 223
NewId, 342
NewLine, 231
Next, 186, 221
nextHandler, 150
nextPageButton, 242
Notify, 308
Nth, 200
Number, 72, 85, 201, 204, 262

—O—
ODBC SQL data types, 395
Ok, 50, 77, 116, 213, 255
OK, 293
OnAcceptConnection, 278
OnActivate, 127, 151, 175
OnActivateView, 317
OnAdvise, 92
OnBeginDocument, 252
OnBeginPrinting, 253
OnCancel, 169
OnChangedViewList, 144
OnChangeFilename, 317
OnChar, 62, 152, 305
OnCharHook, 46, 125, 152
OnClose, 127, 135, 152, 176, 245, 318

OnCloseDocument, 144
OnCommand, 152, 231
OnCreate, 144, 318
OnCreateCommandProcessor, 144
OnCreateFileHistory, 132
OnCreatePrintout, 318
OnDefaultAction, 152, 231
OnDisconnect, 93
OnDoubleClickSash, 282
OnDropFiles, 152
OnEndDocument, 253
OnEndPrinting, 253
OnEvent, 63, 153, 232
OnExecute, 93
OnExit, 46
OnFileClose, 132
OnFileNew, 132
OnFileOpen, 132
OnFileSave, 133
OnFileSaveAs, 133
OnHelp, 169
OnInit, 47
OnItemEvent, 153, 232
OnItemLeftClick, 153, 232
OnItemMove, 153, 232
OnItemRightClick, 153, 233
OnItemSelect, 154
OnItemSize, 154, 233
OnKillFocus, 154
OnLeftClick, 154, 233, 311
OnMakeConnection, 74
OnMenuCommand, 127, 133, 135, 154, 176
OnMenuSelect, 155, 177
OnMouseEnter, 312
OnMove, 155
OnNewDocument, 144
OnOk, 169
OnOpenDocument, 144
OnPaint, 63, 155, 233, 241, 243
OnPoke, 93
OnPreparePrinting, 253
OnPrintPage, 253
OnQuit, 189
OnRequest, 93
OnRevert, 169
OnRightClick, 154, 233, 312
OnSaveDocument, 145
OnSaveModified, 145
OnScroll, 64, 155
OnSelect, 155
OnSetFocus, 155
OnSetOptions, 100
OnSize, 156, 178
OnStartAdvise, 93
OnStopAdvise, 93
OnUnsplit, 283
OnUpdate, 169, 318
OnWaitForDataSource, 100
Open, 100
operator -, 106
operator --, 107
operator !=, 107, 296, 297

INDEX

433

operator (), 287, 295
operator [], 295
operator +, 106, 297
operator ++, 106, 315
operator +=, 106, 295
operator <, 107, 296, 297
operator <<, 107, 295, 307
operator <=, 107, 296, 297
operator =, 77, 79, 162, 295
operator -=, 106
operator ==, 107, 296, 297
operator >, 107, 296, 297
operator >=, 107, 296, 297
operator >>, 295
operator char *, 106
operator const char*, 295
Other manipulation examples, 408

—P—
PaintPage, 255
PaintSelectionHandles, 234
Paste, 85, 301, 305
Pending, 47
PercentOf, 191
Play, 213
Pointers to functions, 24
Poke, 93
PopupMenu, 324
Position, 196, 218
PositionToXY, 220, 305
Positive thinking, 41
Precompiled headers, 25
Prepend, 293
previewCanvas, 244
Previous, 221
previousHandler, 151
previousPageButton, 242
Print, 250, 256
PrintClasses, 121
PrintDialog, 250
printPreview, 242, 244
PrintStatistics, 122
Procedures for writing an ODBC application, 394
ProcessMessage, 47
Put, 187

—Q—
Query, 274
Quit, 189

—R—
Raise, 324
ReadEvent, 150
Reading, Writing and Conversion examples, 409
Readline, 293
RecordCountFinal, 274
Red, 77
Refresh, 324
RegisterId, 343

Regular Expression Overview, 409
Regular Expressions, 409
ReleaseMouse, 324
Remote Procedure Call, 380
Remove, 85, 293, 301, 305
RemoveBrush, 54
RemoveDocument, 133
RemoveFont, 164
RemoveLast, 293
RemovePen, 240
RemoveView, 145
RenderPage, 256
Replace, 86, 293, 301, 306
Replicate, 293
ReportError, 250
Requery, 274
Request, 94
Resource file, 21
Resource format design issues, 419
Reverse, 293, 294
RevertValues, 170
right, 197
RightDClick, 219
rightDown, 215
RightDown, 219
RightIsDown, 219
RightOf, 191
RightUp, 219
RollbackTrans, 100

—S—
SameAs, 191
Save, 145
SaveAs, 145
SaveFile, 50, 306
SaveObject, 145, 223
ScreenToClient, 325
Scroll, 64
Searching/Matching, 365
Select, 397
SelectDocumentPath, 133
SelectDocumentType, 134
Selected, 205
SelectObject, 206
SelectViewType, 134
Set, 78, 105, 170, 191, 205
SetAllowSymbols, 161
SetAppName, 47
SetAutoLayout, 325
SetBackground, 65, 117
SetBackgroundColour, 193, 234
SetBackgroundMode, 117
SetBezelFace, 182
SetBrush, 65, 117
SetButtonColour, 193, 234
SetButtonFont, 193, 235
SetCanvas, 256
SetCap, 238
SetCheckpoint, 122
SetCheckPrevious, 123
SetChooseFull, 79

INDEX

434

SetChosenFont, 162
SetClassName, 47
SetClientData, 85, 156, 205
SetClientSize, 326
SetClipboard, 213
SetClipboardClient, 75
SetClipboardString, 76
SetClippingRegion, 65, 117
SetCollate, 247
SetColour, 52, 53, 79, 162, 238
SetColourMap, 51, 117, 326
SetColumns, 72
SetCommandProcessor, 146
SetConstraints, 325
SetCurrentPage, 256
SetCursor, 327
SetDashes, 239
SetData, 221, 258, 260
SetDataSource, 100
SetDebugMode, 122
SetDefault, 55
SetDefaultExtension, 139
SetDefaultInfo, 227
SetDefaultMinMargins, 227
SetDefaultSize, 57
SetDefaultSQL, 275
SetDescription, 139
SetDeviceOrigin, 116
SetDirectory, 139
SetDirty, 260
SetDocument, 127, 318
SetDocumentManager, 140
SetDocumentName, 146
SetDocumentTemplate, 146
SetDoubleClick, 325
SetEditable, 170, 301, 306
SetEditMenu, 91
SetEventHandler, 327
SetExitOnDelete, 47
SetFieldDirty, 258, 274
SetFieldNull, 275
SetFile, 122
SetFileFilter, 140
SetFilename, 146
SetFirstItem, 205
SetFlags, 140
SetFocus, 325
SetFont, 65, 118, 306
SetFormat, 105
SetFrame, 256, 319
SetFromPage, 247
SetHelpString, 209, 211
SetHorizontalSpacing, 234, 235
SetIcon, 178
SetInitialFont, 162
SetInsertionPoint, 86, 301, 306
SetInsertionPointEnd, 86, 301, 306
SetJoin, 239
SetLabel, 55, 69, 193, 209, 211
SetLabelColour, 193, 235
SetLabelFont, 193, 235
SetLabelPosition, 234

SetLabelTop, 211
SetLevel, 122
SetLogicalFunction, 65, 118
SetLoginTimeout, 100
SetMapMode, 118
SetMarginBottomRight, 226
SetMargins, 312
SetMaxDocsOpen, 134
SetMaxPage, 247
SetMenuBar, 179
SetMinimumPaneSize, 283
SetMinMarginBottomRight, 226
SetMinMarginTopLeft, 226
SetMinPage, 247
SetModal, 126
SetName, 258, 325
SetNextHandler, 156
SetNoCopies, 247
SetNullable, 258
SetObjectLength, 277
SetOptimization, 119
SetOption, 105
SetOptions, 275
SetOrientation, 226
SetPageLength, 277
SetPaperSize, 226
SetPassword, 100
SetPen, 66, 119
SetPin, 148
SetPreviousHandler, 156
SetPrintMode, 48
SetPrintout, 256
SetPrintToFile, 248
SetQueryTimeout, 101
SetRange, 162, 182, 279
SetSashPosition, 283
SetScrollbars, 66
SetScrollPage, 67
SetScrollPos, 67
SetScrollRange, 67
SetSelection, 72, 86, 205, 262, 301, 304
SetSetupDialog, 248
SetShadowWidth, 182
SetShowHelp, 162
SetSize, 260, 325, 326
SetSizeHints, 326
SetSplitMode, 284
SetStandardError, 123
SetStatus, 148
SetStatusText, 179
SetStatusWidths, 179
SetStipple, 53, 239
SetStream, 123
SetString, 205
SetStringSelection, 72, 205, 262
SetStyle, 53, 239
SetSynchronousMode, 101
SetTableName, 275
SetTextBackground, 67, 119
SetTextForeground, 67, 120
SetTitle, 126, 146, 179, 209, 327
SetToolBar, 179

INDEX

435

SetToolLongHelp, 312
SetToolPacking, 312
SetToolSeparation, 312
SetToolShortHelp, 312
SetToPage, 248
SetType, 259, 260, 275
Setup, 250
SetUserEditMode, 327
SetUsername, 101
SetUserScale, 120
SetValue, 69, 86, 182, 264, 277, 280, 301
SetVerticalSpacing, 235
SetView, 127
SetViewLength, 277
SetViewName, 319
SetWidth, 239
SetZoom, 256
SetZoomControl, 244
shiftDown, 195, 215
ShiftDown, 196, 219
Show, 81, 126, 148, 163, 228, 249, 263, 327
ShowPosition, 220, 306
Simplify the problem, 42
Sort, 201, 298
Split, 297
SplitHorizontally, 284
SplitVertically, 285
sprintf, 294
Start, 308
StartAdvise, 94
StartDoc, 120
StartPage, 120
Status, 365
StatusLineExists, 180
Stop, 308
StopAdvise, 94
Strip, 294
Submit, 91
Substitution, 365
SubString, 294
Substring extraction examples, 407
Syntax of Regular Expressions, 409

—T—
Tab, 235
tDefaultExt, 136
tDescription, 136
tDirectory, 136
tDocClassInfo, 136
tDocTypeName, 136
tDocumentManager, 136
Templates, 24
Test program, 403
tFileFilter, 136
tFlags, 136
The format of a .WXR file, 414
The IPC demo, 40
The MDI demo, 39
The purpose of the form class, 166
The wxButtonBar library, 392
The wxString class, 404

The wxWindows event system, 11
Through, 294
ToggleTool, 313
top, 197
Transformations, 365
tViewClassInfo, 137
tViewTypeName, 137

—U—
Unconstrained, 190
Undo, 87, 91
UNIX makefiles, 21
Unsplit, 285
Upcase, 294
Update, 275, 397
UpdateValues, 170
UpperCase, 294
Use a debugger, 42
Use ASSERT, 41
Use relative positioning or constraints, 41
Use tracing code, 42
Use wxObject::Dump and the wxDebugContext

class, 43
Use wxString in preference to character arrays,

41
Use wxWindows resource files, 41
userPanel, 147
Using the toolbar library, 392
Utilities, 365

—V—
ValidHost, 75
viewDocument, 316
viewFrame, 316
ViewStart, 67
viewTypeName, 316

—W—
WarpPointer, 68
What wxWindows has, 15
width, 197
Window layout examples, 389
Windows 95 differences, 393
Windows and NT features, 19
Windows makefiles, 20
work_proc, 45
WriteEvent, 150
WriteText, 307
wx_class, 44
wxAddPrimaryEventHandler, 337
wxAddSecondaryEventHandler, 337
wxALWAYS_SB, 368
wxApp, 44
wxApp::~wxApp, 44
wxApp::argc, 44
wxApp::argv, 44
wxApp::Dispatch, 45
wxApp::ExitMainLoop, 46
wxApp::GetAppName, 45

INDEX

436

wxApp::GetClassName, 45
wxApp::GetExitOnDelete, 45
wxApp::GetPrintMode, 45
wxApp::GetTopWindow, 45
wxApp::Initialized, 46
wxApp::MainLoop, 46
wxApp::OnCharHook, 46
wxApp::OnExit, 46
wxApp::OnInit, 46
wxApp::Pending, 47
wxApp::ProcessMessage, 47
wxApp::SetAppName, 47
wxApp::SetClassName, 47
wxApp::SetExitOnDelete, 47
wxApp::SetPrintMode, 48
wxApp::work_proc, 45
wxApp::wx_class, 44
wxApp::wxApp, 44
wxBeginBusyCursor, 343
wxBell, 343
wxBitmap, 48
wxBitmap::~wxBitmap, 49
wxBitmap::Create, 49
wxBitmap::GetColourMap, 49
wxBitmap::GetDepth, 49
wxBitmap::GetHeight, 49
wxBitmap::GetWidth, 50
wxBitmap::LoadFile, 50
wxBitmap::Ok, 50
wxBitmap::SaveFile, 50
wxBitmap::SetColourMap, 51
wxBitmap::wxBitmap, 48
wxBITMAP_TYPE_BMP, 49, 50, 184
wxBITMAP_TYPE_BMP_RESOURCE, 49, 50
wxBITMAP_TYPE_CUR, 95
wxBITMAP_TYPE_CUR_RESOURCE, 95
wxBITMAP_TYPE_GIF, 49, 50, 184
wxBITMAP_TYPE_ICO, 95, 184
wxBITMAP_TYPE_ICO_RESOURCE, 184
wxBITMAP_TYPE_RESOURCE, 49, 50
wxBITMAP_TYPE_XBM, 49, 50, 51, 95, 184
wxBITMAP_TYPE_XPM, 49, 50, 51, 184
wxBORDER, 370
wxBrush, 51, 52
wxBrush::~wxBrush, 52
wxBrush::GetColour, 52
wxBrush::GetStipple, 52
wxBrush::GetStyle, 52
wxBrush::SetColour, 52
wxBrush::SetStipple, 53
wxBrush::SetStyle, 53
wxBrush::wxBrush, 51
wxBrushList, 53
wxBrushList::AddBrush, 53
wxBrushList::FindOrCreateBrush, 54
wxBrushList::RemoveBrush, 54
wxBrushList::wxBrushList, 53
wxButton, 54
wxButton styles, 368
wxButton::~wxButton, 55
wxButton::Create, 55
wxButton::SetDefault, 55

wxButton::SetLabel, 55
wxButton::wxButton, 54
wxButtonBar, 56
wxButtonBar::GetDefaultButtonHeight, 56
wxButtonBar::GetDefaultButtonWidth, 56
wxButtonBar::SetDefaultSize, 56
wxButtonBar::wxButtonBar, 56
wxCanvas, 57
wxCanvas styles, 370
wxCanvas::~wxCanvas, 57
wxCanvas::AllowDoubleClick, 57
wxCanvas::BeginDrawing, 58
wxCanvas::Clear, 58
wxCanvas::Create, 58
wxCanvas::CrossHair, 58
wxCanvas::DestroyClippingRegion, 58
wxCanvas::DrawArc, 58
wxCanvas::DrawEllipse, 59
wxCanvas::DrawLine, 59
wxCanvas::DrawLines, 59
wxCanvas::DrawPoint, 59
wxCanvas::DrawPolygon, 59
wxCanvas::DrawRectangle, 60
wxCanvas::DrawRoundedRectangle, 60
wxCanvas::DrawSpline, 60
wxCanvas::DrawText, 60
wxCanvas::EnableScrolling, 60
wxCanvas::EndDrawing, 60
wxCanvas::FloodFill, 61
wxCanvas::GetClippingBox, 113
wxCanvas::GetDC, 61
wxCanvas::GetScrollPage, 61
wxCanvas::GetScrollPixelsPerUnit, 61
wxCanvas::GetScrollPos, 61
wxCanvas::GetScrollRange, 61
wxCanvas::GetScrollUnitsPerPage, 62
wxCanvas::GetVirtualSize, 62
wxCanvas::IntDrawLine, 62
wxCanvas::IntDrawLines, 62
wxCanvas::IsRetained, 62
wxCanvas::OnChar, 62
wxCanvas::OnEvent, 63
wxCanvas::OnPaint, 63
wxCanvas::OnScroll, 64
wxCanvas::Scroll, 64
wxCanvas::SetBackground, 64
wxCanvas::SetBrush, 65
wxCanvas::SetClippingRegion, 65
wxCanvas::SetFont, 65
wxCanvas::SetLogicalFunction, 65
wxCanvas::SetPen, 66
wxCanvas::SetScrollbars, 66
wxCanvas::SetScrollPage, 67
wxCanvas::SetScrollPos, 67
wxCanvas::SetScrollRange, 67
wxCanvas::SetTextBackground, 67
wxCanvas::SetTextForeground, 67
wxCanvas::ViewStart, 67
wxCanvas::WarpPointer, 68
wxCanvas::wxCanvas, 57
wxCanvasDC, 68
wxCanvasDC::GetClippingBox, 68

INDEX

437

wxCanvasDC::wxCanvasDC, 68
wxCAPTION, 367
wxCB_DROPDOWN, 368
wxCB_READONLY, 368
wxCB_SIMPLE, 368
wxCB_SORT, 368
wxCHARARG, 295
wxCheckBox, 68
wxCheckBox::~wxCheckBox, 69
wxCheckBox::Create, 69
wxCheckBox::GetValue, 69
wxCheckBox::SetLabel, 69
wxCheckBox::SetValue, 69
wxCheckBox::wxCheckBox, 68
wxChoice, 70
wxChoice::~wxChoice, 70
wxChoice::Append, 71
wxChoice::Clear, 71
wxChoice::Create, 71
wxChoice::FindString, 71
wxChoice::GetColumns, 71
wxChoice::GetSelection, 71
wxChoice::GetString, 71, 72
wxChoice::GetStringSelection, 72
wxChoice::Number, 72
wxChoice::SetColumns, 72
wxChoice::SetSelection, 72
wxChoice::SetStringSelection, 72
wxChoice::wxChoice, 70
wxClassInfo, 73, 371
wxClassInfo::CreateObject, 73
wxClassInfo::FindClass, 73
wxClassInfo::GetBaseClassName1, 73
wxClassInfo::GetBaseClassName2, 73
wxClassInfo::GetClassName, 73
wxClassInfo::GetSize, 73
wxClassInfo::InitializeClasses, 74
wxClassInfo::IsKindOf, 74
wxClassInfo::wxClassInfo, 73
wxCleanUp, 343
wxClient, 74
wxClient::MakeConnection, 74
wxClient::OnMakeConnection, 74
wxClient::ValidHost, 75
wxClient::wxClient, 74
wxClipboard::GetClipboardClient, 75
wxClipboard::GetClipboardData, 75
wxClipboard::GetClipboardString, 75
wxClipboard::SetClipboardClient, 75
wxClipboard::SetClipboardString, 76
wxClipboardClient::BeingReplaced, 76
wxClipboardClient::formats, 76
wxClipboardClient::GetData, 76
wxClipboardOpen, 341
wxCloseClipboard, 341
wxColour, 77
wxColour::Blue, 77
wxColour::Get, 77
wxColour::Green, 77
wxColour::Ok, 77
wxColour::operator =, 77
wxColour::Red, 77

wxColour::Set, 77
wxColour::wxColour, 77
wxColourData, 78
wxColourData::~wxColourData, 78
wxColourData::GetChooseFull, 78
wxColourData::GetColour, 78
wxColourData::GetCustomColour, 78
wxColourData::operator =, 79
wxColourData::SetChooseFull, 79
wxColourData::SetColour, 79
wxColourData::SetCustomColour, 79
wxColourData::wxColourData, 78
wxColourDatabase, 80
wxColourDatabase::FindColour, 80
wxColourDatabase::FindName, 80
wxColourDatabase::Initialize, 80
wxColourDatabase::wxColourDatabase, 80
wxColourDialog, 80
wxColourDialog overview, 386
wxColourDialog::~wxColourDialog, 80
wxColourDialog::GetColourData, 81
wxColourDialog::Show, 81
wxColourDialog::wxColourDialog, 80
wxColourDisplay, 336
wxColourMap, 81
wxColourMap::~wxColourMap, 81
wxColourMap::Create, 81
wxColourMap::wxColourMap, 81
wxComboBox, 82, 368
wxComboBox::~wxComboBox, 83
wxComboBox::Append, 83
wxComboBox::Clear, 83
wxComboBox::Copy, 83
wxComboBox::Create, 83
wxComboBox::Cut, 84
wxComboBox::Delete, 84
wxComboBox::Deselect, 84
wxComboBox::FindString, 84
wxComboBox::GetClientData, 84
wxComboBox::GetInsertionPoint, 84
wxComboBox::GetLastPosition, 84
wxComboBox::GetSelection, 84
wxComboBox::GetString, 85
wxComboBox::GetStringSelection, 85
wxComboBox::GetValue, 85
wxComboBox::Number, 85
wxComboBox::Paste, 85
wxComboBox::Remove, 85
wxComboBox::Replace, 86
wxComboBox::SetClientData, 85
wxComboBox::SetInsertionPoint, 86
wxComboBox::SetInsertionPointEnd, 86
wxComboBox::SetSelection, 86
wxComboBox::SetValue, 86
wxComboBox::wxComboBox, 82
wxCommand, 86
wxCommand overview, 375
wxCommand::~wxCommand, 87
wxCommand::CanUndo, 87
wxCommand::Do, 87
wxCommand::GetName, 87
wxCommand::Undo, 87

INDEX

438

wxCommand::wxCommand, 86
wxCommandEvent, 88
wxCommandEvent::Checked, 89
wxCommandEvent::clientData, 88
wxCommandEvent::commandInt, 88
wxCommandEvent::commandString, 88
wxCommandEvent::extraLong, 88
wxCommandEvent::GetClientData, 89
wxCommandEvent::GetSelection, 89
wxCommandEvent::GetString, 89
wxCommandEvent::IsSelection, 89
wxCommandEvent::wxCommandEvent, 88
wxCommandProcessor, 90
wxCommandProcessor overview, 376
wxCommandProcessor::~wxCommandProcessor

, 90
wxCommandProcessor::CanUndo, 90
wxCommandProcessor::ClearCommands, 90
wxCommandProcessor::Do, 90
wxCommandProcessor::GetCommands, 90
wxCommandProcessor::GetEditMenu, 90
wxCommandProcessor::GetMaxCommands, 90
wxCommandProcessor::Initialize, 91
wxCommandProcessor::SetEditMenu, 91
wxCommandProcessor::Submit, 91
wxCommandProcessor::Undo, 91
wxCommandProcessor::wxCommandProcessor,

90
wxConcatFiles, 329
wxConnection, 92
wxConnection::Advise, 92
wxConnection::Disconnect, 92
wxConnection::Execute, 92
wxConnection::OnAdvise, 92
wxConnection::OnDisconnect, 93
wxConnection::OnExecute, 93
wxConnection::OnPoke, 93
wxConnection::OnRequest, 93
wxConnection::OnStartAdvise, 93
wxConnection::OnStopAdvise, 93
wxConnection::Poke, 93
wxConnection::Request, 94
wxConnection::StartAdvise, 94
wxConnection::StopAdvise, 94
wxConnection::wxConnection, 92
wxConstraintFunction, 172
wxCopyFile, 329
wxCreateDynamicObject, 343
wxCursor, 94, 95
wxCursor::~wxCursor, 96
wxCursor::wxCursor, 94
wxDatabase, 96
wxDatabase overview, 394
wxDatabase::~wxDatabase, 96
wxDatabase::BeginTrans, 96
wxDatabase::Cancel, 96
wxDatabase::CanTransact, 97
wxDatabase::CanUpdate, 97
wxDatabase::Close, 97
wxDatabase::CommitTrans, 97
wxDatabase::ErrorOccured, 97
wxDatabase::ErrorSnapshot, 97

wxDatabase::GetDatabaseName, 97
wxDatabase::GetDataSource, 97
wxDatabase::GetErrorClass, 98
wxDatabase::GetErrorCode, 98
wxDatabase::GetErrorMessage, 98
wxDatabase::GetErrorNumber, 98
wxDatabase::GetHDBC, 98
wxDatabase::GetHENV, 98
wxDatabase::GetInfo, 98
wxDatabase::GetODBCVersionFloat, 99
wxDatabase::GetODBCVersionString, 99
wxDatabase::GetPassword, 99
wxDatabase::GetUsername, 99
wxDatabase::InWaitForDataSource, 99
wxDatabase::IsOpen, 100
wxDatabase::OnSetOptions, 100
wxDatabase::OnWaitForDataSource, 100
wxDatabase::Open, 100
wxDatabase::RollbackTrans, 100
wxDatabase::SetDataSource, 100
wxDatabase::SetLoginTimeout, 100
wxDatabase::SetPassword, 100
wxDatabase::SetQueryTimeout, 101
wxDatabase::SetSynchronousMode, 101
wxDatabase::SetUsername, 101
wxDatabase::wxDatabase, 96
wxDate, 101
wxDate::~wxDate, 102
wxDate::AddMonths, 102
wxDate::AddWeeks, 102
wxDate::AddYears, 102
wxDate::FormatDate, 102
wxDate::GetDay, 102
wxDate::GetDayOfWeek, 103
wxDate::GetDayOfWeekName, 103
wxDate::GetDayOfYear, 103
wxDate::GetDaysInMonth, 103
wxDate::GetFirstDayOfMonth, 103
wxDate::GetJulianDate, 103
wxDate::GetMonth, 103
wxDate::GetMonthEnd, 104
wxDate::GetMonthName, 104
wxDate::GetMonthStart, 104
wxDate::GetWeekOfMonth, 104
wxDate::GetWeekOfYear, 104
wxDate::GetYear, 104
wxDate::GetYearEnd, 104
wxDate::GetYearStart, 104
wxDate::IsLeapYear, 105
wxDate::operator -, 106
wxDate::operator --, 106
wxDate::operator !=, 107
wxDate::operator +, 106
wxDate::operator ++, 106
wxDate::operator +=, 106
wxDate::operator <, 107
wxDate::operator <<, 107
wxDate::operator <=, 107
wxDate::operator -=, 106
wxDate::operator ==, 107
wxDate::operator >, 107
wxDate::operator >=, 107

INDEX

439

wxDate::operator char *, 106
wxDate::Set, 105
wxDate::SetFormat, 105
wxDate::SetOption, 105
wxDate::wxDate, 101
wxDC, 108
wxDC::~wxDC, 108
wxDC::BeginDrawing, 108
wxDC::Blit, 108
wxDC::Clear, 109
wxDC::CrossHair, 109
wxDC::DestroyClippingRegion, 109
wxDC::DeviceToLogicalX, 109
wxDC::DeviceToLogicalXRel, 109
wxDC::DeviceToLogicalY, 109
wxDC::DeviceToLogicalYRel, 109
wxDC::DrawArc, 110
wxDC::DrawEllipse, 110
wxDC::DrawEllipticArc, 110
wxDC::DrawIcon, 110
wxDC::DrawLine, 110
wxDC::DrawLines, 110
wxDC::DrawPoint, 111
wxDC::DrawPolygon, 111
wxDC::DrawRectangle, 111
wxDC::DrawRoundedRectangle, 111
wxDC::DrawSpline, 112
wxDC::DrawText, 112
wxDC::EndDoc, 112
wxDC::EndDrawing, 112
wxDC::EndPage, 112
wxDC::FloodFill, 112
wxDC::GetBackground, 113
wxDC::GetBrush, 113
wxDC::GetCharHeight, 113
wxDC::GetCharWidth, 113
wxDC::GetFont, 113
wxDC::GetLogicalFunction, 113
wxDC::GetMapMode, 114
wxDC::GetOptimization, 114
wxDC::GetPen, 114
wxDC::GetPixel, 114
wxDC::GetSize, 114
wxDC::GetTextBackground, 114
wxDC::GetTextExtent, 115
wxDC::GetTextForeground, 115
wxDC::IntDrawLine, 115
wxDC::IntDrawLines, 115
wxDC::LogicalToDeviceX, 115
wxDC::LogicalToDeviceXRel, 115
wxDC::LogicalToDeviceY, 116
wxDC::LogicalToDeviceYRel, 116
wxDC::MaxX, 116
wxDC::MaxY, 116
wxDC::MinX, 116
wxDC::MinY, 116
wxDC::Ok, 116
wxDC::SetBackground, 117
wxDC::SetBackgroundMode, 117
wxDC::SetBrush, 117
wxDC::SetClippingRegion, 117
wxDC::SetColourMap, 117

wxDC::SetDeviceOrigin, 116
wxDC::SetFont, 118
wxDC::SetLogicalFunction, 118
wxDC::SetMapMode, 118
wxDC::SetOptimization, 119
wxDC::SetPen, 119
wxDC::SetTextBackground, 119
wxDC::SetTextForeground, 119
wxDC::SetUserScale, 120
wxDC::StartDoc, 120
wxDC::StartPage, 120
wxDC::wxDC, 108
WXDEBUG_NEW, 352
wxDebugContext overview, 398
wxDebugContext::Check, 120
wxDebugContext::Dump, 120
wxDebugContext::GetCheckPrevious, 121
wxDebugContext::GetDebugMode, 121
wxDebugContext::GetLevel, 121
wxDebugContext::GetStream, 121
wxDebugContext::GetStreamBuf, 121
wxDebugContext::HasStream, 121
wxDebugContext::PrintClasses, 121
wxDebugContext::PrintStatistics, 122
wxDebugContext::SetCheckpoint, 122
wxDebugContext::SetCheckPrevious, 122
wxDebugContext::SetDebugMode, 122
wxDebugContext::SetFile, 122
wxDebugContext::SetLevel, 122
wxDebugContext::SetStandardError, 123
wxDebugContext::SetStream, 123
wxDebugMsg, 343
wxDEFAULT_DIALOG_STYLE, 367
wxDEFAULT_FRAME, 367
wxDialogBox, 124
wxDialogBox styles, 367
wxDialogBox::~wxDialogBox, 124
wxDialogBox::Centre, 124
wxDialogBox::Create, 124
wxDialogBox::GetTitle, 125
wxDialogBox::Iconize, 125
wxDialogBox::Iconized, 125
wxDialogBox::IsModal, 125
wxDialogBox::OnCharHook, 125
wxDialogBox::SetModal, 125
wxDialogBox::SetTitle, 126
wxDialogBox::Show, 126
wxDialogBox::wxDialogBox, 123
wxDirExists, 328
wxDisplayDepth, 336
wxDisplaySize, 344
wxDocChildFrame, 126
wxDocChildFrame::~wxDocChildFrame, 127
wxDocChildFrame::childDocument, 126
wxDocChildFrame::childView, 126
wxDocChildFrame::GetDocument, 127
wxDocChildFrame::GetView, 127
wxDocChildFrame::OnActivate, 127
wxDocChildFrame::OnClose, 127
wxDocChildFrame::OnMenuCommand, 127
wxDocChildFrame::SetDocument, 127
wxDocChildFrame::SetView, 127

INDEX

440

wxDocChildFrame::wxDocChildFrame, 126
wxDocManager, 129
wxDocManager overview, 375
wxDocManager::~wxDocManager, 129
wxDocManager::ActivateView, 129
wxDocManager::AddDocument, 129
wxDocManager::AddFileToHistory, 129
wxDocManager::AssociateTemplate, 129
wxDocManager::CreateDocument, 130
wxDocManager::CreateView, 130
wxDocManager::currentView, 128
wxDocManager::defaultDocumentNameCounter,

128
wxDocManager::DisassociateTemplate, 130
wxDocManager::fileHistory, 128
wxDocManager::FileHistoryLoad, 130
wxDocManager::FileHistorySave, 130
wxDocManager::FileHistoryUseMenu, 131
wxDocManager::FindTemplateForPath, 131
wxDocManager::GetCurrentDocument, 131
wxDocManager::GetCurrentView, 131
wxDocManager::GetDocuments, 131
wxDocManager::GetFileHistory, 131
wxDocManager::GetMaxDocsOpen, 131
wxDocManager::GetNoHistoryFiles, 131
wxDocManager::Initialize, 132
wxDocManager::MakeDefaultName, 132
wxDocManager::maxDocsOpen, 128
wxDocManager::mnDocs, 128
wxDocManager::mnFlags, 128
wxDocManager::mnTemplates, 129
wxDocManager::OnCreateFileHistory, 132
wxDocManager::OnFileClose, 132
wxDocManager::OnFileNew, 132
wxDocManager::OnFileOpen, 132
wxDocManager::OnFileSave, 133
wxDocManager::OnFileSaveAs, 133
wxDocManager::OnMenuCommand, 133
wxDocManager::RemoveDocument, 133
wxDocManager::SelectDocumentPath, 133
wxDocManager::SelectDocumentType, 134
wxDocManager::SelectViewType, 134
wxDocManager::SetMaxDocsOpen, 134
wxDocManager::wxDocManager, 129
wxDocParentFrame, 134
wxDocParentFrame::~wxDocParentFrame, 134
wxDocParentFrame::OnClose, 135
wxDocParentFrame::OnMenuCommand, 135
wxDocParentFrame::wxDocParentFrame, 134
wxDocTemplate, 137
wxDocTemplate overview, 374
wxDocTemplate::~wxDocTemplate, 138
wxDocTemplate::CreateDocument, 138
wxDocTemplate::CreateView, 138
wxDocTemplate::GetDefaultExtension, 138
wxDocTemplate::GetDescription, 138
wxDocTemplate::GetDirectory, 138
wxDocTemplate::GetDocumentManager, 138
wxDocTemplate::GetDocumentName, 139
wxDocTemplate::GetFileFilter, 139
wxDocTemplate::GetFlags, 139
wxDocTemplate::GetViewName, 139

wxDocTemplate::IsVisible, 139
wxDocTemplate::SetDefaultExtension, 139
wxDocTemplate::SetDescription, 139
wxDocTemplate::SetDirectory, 139
wxDocTemplate::SetDocumentManager, 140
wxDocTemplate::SetFileFilter, 140
wxDocTemplate::SetFlags, 140
wxDocTemplate::tDefaultExt, 135
wxDocTemplate::tDescription, 136
wxDocTemplate::tDirectory, 136
wxDocTemplate::tDocClassInfo, 136
wxDocTemplate::tDocTypeName, 136
wxDocTemplate::tDocumentManager, 136
wxDocTemplate::tFileFilter, 136
wxDocTemplate::tFlags, 136
wxDocTemplate::tViewClassInfo, 137
wxDocTemplate::tViewTypeName, 137
wxDocTemplate::wxDocTemplate, 137
wxDocument, 141
wxDocument overview, 373
wxDocument::~wxDocument, 141
wxDocument::AddView, 141
wxDocument::Close, 141
wxDocument::DeleteAllViews, 142
wxDocument::documentFile, 140
wxDocument::documentModified, 140
wxDocument::documentTemplate, 140
wxDocument::documentTitle, 141
wxDocument::documentTypeName, 141
wxDocument::documentViews, 141
wxDocument::GetCommandProcessor, 142
wxDocument::GetDocumentManager, 142
wxDocument::GetDocumentName, 142
wxDocument::GetDocumentTemplate, 142
wxDocument::GetDocumentWindow, 142
wxDocument::GetFilename, 142
wxDocument::GetFirstView, 143
wxDocument::GetPrintableName, 143
wxDocument::GetTitle, 143
wxDocument::IsModified, 143
wxDocument::LoadObject, 143
wxDocument::Modify, 143
wxDocument::OnChangedViewList, 144
wxDocument::OnCloseDocument, 144
wxDocument::OnCreate, 144
wxDocument::OnCreateCommandProcessor,

144
wxDocument::OnNewDocument, 144
wxDocument::OnOpenDocument, 144
wxDocument::OnSaveDocument, 145
wxDocument::OnSaveModified, 145
wxDocument::RemoveView, 145
wxDocument::Save, 145
wxDocument::SaveAs, 145
wxDocument::SaveObject, 145
wxDocument::SetCommandProcessor, 145
wxDocument::SetDocumentName, 146
wxDocument::SetDocumentTemplate, 146
wxDocument::SetFilename, 146
wxDocument::SetTitle, 146
wxDocument::wxDocument, 141
wxEdge, 189

INDEX

441

wxEmptyClipboard, 341
wxEndBusyCursor, 344
wxEnhDialogBox, 147
wxEnhDialogBox::~wxEnhDialogBox, 147
wxEnhDialogBox::AddCmd, 148
wxEnhDialogBox::Fit, 148
wxEnhDialogBox::GetCmd, 148
wxEnhDialogBox::SetPin, 148
wxEnhDialogBox::SetStatus, 148
wxEnhDialogBox::Show, 148
wxEnhDialogBox::userPanel, 147
wxEnhDialogBox::wxEnhDialogBox, 147
wxEntry, 344
wxEnumClipboardFormats, 341
wxError, 344
wxEvent, 149
wxEvent::~wxEvent, 149
wxEvent::eventClass, 149
wxEvent::eventHandle, 149
wxEvent::eventObject, 149
wxEvent::eventType, 149
wxEvent::GetEventClass, 149
wxEvent::GetEventObject, 150
wxEvent::GetEventType, 150
wxEvent::GetObjectType, 150
wxEvent::ReadEvent, 150
wxEvent::WriteEvent, 150
wxEvent::wxEvent, 149
wxEvtHandler, 151
wxEvtHandler::~wxEvtHandler, 151
wxEvtHandler::GetClientData, 151
wxEvtHandler::GetNextHandler, 151
wxEvtHandler::GetPreviousHandler, 151
wxEvtHandler::nextHandler, 150
wxEvtHandler::OnActivate, 151
wxEvtHandler::OnChar, 151
wxEvtHandler::OnCharHook, 152
wxEvtHandler::OnClose, 152
wxEvtHandler::OnCommand, 152
wxEvtHandler::OnDefaultAction, 152
wxEvtHandler::OnDropFiles, 152
wxEvtHandler::OnEvent, 153
wxEvtHandler::OnItemEvent, 153
wxEvtHandler::OnItemLeftClick, 153
wxEvtHandler::OnItemMove, 153
wxEvtHandler::OnItemRightClick, 153
wxEvtHandler::OnItemSelect, 154
wxEvtHandler::OnItemSize, 154
wxEvtHandler::OnKillFocus, 154
wxEvtHandler::OnLeftClick, 154
wxEvtHandler::OnMenuCommand, 154
wxEvtHandler::OnMenuSelect, 155
wxEvtHandler::OnMove, 155
wxEvtHandler::OnPaint, 155
wxEvtHandler::OnRightClick, 154
wxEvtHandler::OnScroll, 155
wxEvtHandler::OnSelect, 155
wxEvtHandler::OnSetFocus, 155
wxEvtHandler::OnSize, 155
wxEvtHandler::previousHandler, 151
wxEvtHandler::SetClientData, 156
wxEvtHandler::SetNextHandler, 156

wxEvtHandler::SetPreviousHandler, 156
wxEvtHandler::wxEvtHandler, 151
wxExecute, 345
wxExit, 345
wxFatalError, 345
wxFileExists, 328
wxFileHistory, 157
wxFileHistory overview, 376
wxFileHistory::~wxFileHistory, 157
wxFileHistory::AddFileToHistory, 157
wxFileHistory::fileHistory, 156
wxFileHistory::FileHistoryLoad, 157
wxFileHistory::fileHistoryN, 156
wxFileHistory::FileHistorySave, 157
wxFileHistory::FileHistoryUseMenu, 157
wxFileHistory::fileMaxFiles, 156
wxFileHistory::fileMenu, 157
wxFileHistory::GetMaxFiles, 158
wxFileHistory::GetNoHistoryFiles, 158
wxFileHistory::wxFileHistory, 157
wxFileNameFromPath, 328
wxFileSelector, 333
wxFindFirstFile, 328, 329
wxFindMenuItemId, 345
wxFindWindowByLabel, 345
wxFindWindowByName, 346
wxFIXED_LENGTH, 368
wxFont, 158
wxFont::~wxFont, 159
wxFont::GetFaceName, 159
wxFont::GetFamily, 159
wxFont::GetFontId, 159
wxFont::GetPointSize, 159
wxFont::GetStyle, 159
wxFont::GetUnderlined, 160
wxFont::GetWeight, 160
wxFont::wxFont, 158
wxFontData, 160
wxFontData::~wxFontData, 160
wxFontData::EnableEffects, 160
wxFontData::GetAllowSymbols, 160
wxFontData::GetChosenFont, 161
wxFontData::GetColour, 161
wxFontData::GetEnableEffects, 161
wxFontData::GetInitialFont, 161
wxFontData::GetShowHelp, 161
wxFontData::operator =, 162
wxFontData::SetAllowSymbols, 161
wxFontData::SetChosenFont, 162
wxFontData::SetColour, 162
wxFontData::SetInitialFont, 162
wxFontData::SetRange, 162
wxFontData::SetShowHelp, 162
wxFontData::wxFontData, 160
wxFontDialog, 163
wxFontDialog overview, 387
wxFontDialog::~wxFontDialog, 163
wxFontDialog::GetFontData, 163
wxFontDialog::Show, 163
wxFontDialog::wxFontDialog, 163
wxFontList, 163
wxFontList::AddFont, 164

INDEX

442

wxFontList::FindOrCreateFont, 164
wxFontList::RemoveFont, 164
wxFontList::wxFontList, 163
wxFontNameDirectory, 164
wxFontNameDirectory::~wxFontNameDirectory,

164
wxFontNameDirectory::FindOrCreateFontId, 164
wxFontNameDirectory::GetAFMName, 165
wxFontNameDirectory::GetFamily, 165
wxFontNameDirectory::GetFontId, 165
wxFontNameDirectory::GetFontName, 165
wxFontNameDirectory::GetNewFontId, 165
wxFontNameDirectory::GetPostScriptName, 165
wxFontNameDirectory::GetScreenName, 165
wxFontNameDirectory::Initialize, 165
wxFontNameDirectory::wxFontNameDirectory,

164
wxForm, 167
wxForm::~wxForm, 168
wxForm::Add, 168
wxForm::AssociatePanel, 168
wxForm::Delete, 168
wxForm::FindItem, 168
wxForm::IsEditable, 169
wxForm::OnCancel, 169
wxForm::OnHelp, 169
wxForm::OnOk, 169
wxForm::OnRevert, 169
wxForm::OnUpdate, 169
wxForm::RevertValues, 169
wxForm::Set, 170
wxForm::SetEditable, 170
wxForm::UpdateValues, 170
wxForm::wxForm, 167
wxFormItem::GetPanelItem, 172
wxFrame, 172
wxFrame styles, 367
wxFrame::~wxFrame, 173
wxFrame::Centre, 173
wxFrame::Command, 174
wxFrame::Create, 174
wxFrame::CreateStatusLine, 174
wxFrame::Fit, 174
wxFrame::GetMenuBar, 174
wxFrame::GetTitle, 174
wxFrame::GetToolBar, 174
wxFrame::Iconize, 175
wxFrame::Iconized, 175
wxFrame::LoadAccelerators, 175
wxFrame::Maximize, 175
wxFrame::OnActivate, 175
wxFrame::OnClose, 176
wxFrame::OnMenuCommand, 176
wxFrame::OnMenuSelect, 177
wxFrame::OnSize, 178
wxFrame::SetIcon, 178
wxFrame::SetMenuBar, 178
wxFrame::SetStatusText, 179
wxFrame::SetStatusWidths, 179
wxFrame::SetTitle, 179
wxFrame::SetToolBar, 179
wxFrame::StatusLineExists, 180

wxFrame::wxFrame, 172
wxFunction, 180
wxGA_HORIZONTAL, 368
wxGA_PROGRESSBAR, 368
wxGA_VERTICAL, 368
wxGauge, 180
wxGauge styles, 368
wxGauge::~wxGauge, 181
wxGauge::Create, 181
wxGauge::GetBezelFace, 181
wxGauge::GetRange, 181
wxGauge::GetValue, 181
wxGauge::SetBezelFace, 182
wxGauge::SetRange, 182
wxGauge::SetShadowWidth, 182
wxGauge::SetValue, 182
wxGauge::wxGauge, 180
wxGetActiveWindow, 346
wxGetClipboardData, 341
wxGetClipboardFormatName, 342
wxGetDisplayName, 346
wxGetElapsedTime, 346
wxGetEmailAddress, 330
wxGetFreeMemory, 346
wxGetHomeDir, 346
wxGetHostName, 329, 346
wxGetMousePosition, 347
wxGetMultipleChoice, 334
wxGetOsVersion, 347
wxGetPrinterCommand, 338
wxGetPrinterFile, 339
wxGetPrinterMode, 339
wxGetPrinterOptions, 339
wxGetPrinterOrientation, 339
wxGetPrinterPreviewCommand, 339
wxGetPrinterScaling, 339
wxGetPrinterTranslation, 339
wxGetResource, 347
wxGetSingleChoice, 334
wxGetSingleChoiceData, 335
wxGetSingleChoiceIndex, 334
wxGetTempFileName, 331
wxGetTextFromUser, 334
wxGetUserId, 330, 348
wxGetUserName, 330, 348
wxGetWorkingDirectory, 330
wxGroupBox, 182
wxGroupBox styles, 368
wxGroupBox::~wxGroupBox, 183
wxGroupBox::Create, 183
wxGroupBox::wxGroupBox, 182
wxHashTable, 185
wxHashTable::~wxHashTable, 185
wxHashTable::BeginFind, 186
wxHashTable::Clear, 186
wxHashTable::Delete, 186
wxHashTable::Get, 186
wxHashTable::MakeKey, 186
wxHashTable::Next, 186
wxHashTable::Put, 187
wxHashTable::wxHashTable, 185
wxHelpInstance, 187

INDEX

443

wxHelpInstance::~wxHelpInstance, 187
wxHelpInstance::DisplayBlock, 188
wxHelpInstance::DisplayContents, 188
wxHelpInstance::DisplaySection, 188
wxHelpInstance::Initialize, 187
wxHelpInstance::KeywordSearch, 188
wxHelpInstance::LoadFile, 188
wxHelpInstance::OnQuit, 188
wxHelpInstance::Quit, 189
wxHelpInstance::wxHelpInstance, 187
wxHORIZONTAL, 369
wxHORIZONTAL_LABEL, 368
wxHSCROLL, 369, 370
wxIcon, 183, 184
wxIcon::~wxIcon, 184
wxIcon::GetHeight, 185
wxIcon::GetWidth, 185
wxIcon::wxIcon, 183
wxICONIZE, 367
wxIndividualLayoutConstraint, 190
wxIndividualLayoutConstraint::Above, 190
wxIndividualLayoutConstraint::Absolute, 190
wxIndividualLayoutConstraint::AsIs, 190
wxIndividualLayoutConstraint::Below, 190
wxIndividualLayoutConstraint::LeftOf, 190
wxIndividualLayoutConstraint::PercentOf, 191
wxIndividualLayoutConstraint::RightOf, 191
wxIndividualLayoutConstraint::SameAs, 191
wxIndividualLayoutConstraint::Set, 191
wxIndividualLayoutConstraint::Unconstrained,

190
wxIndividualLayoutConstraint::wxIndividualLayou

tConstraint, 189
wxInitClipboard, 348
wxIntPoint, 191
wxIntPoint::wxIntPoint, 191
wxIPCCleanUp, 348
wxIPCInitialize, 348
wxIsAbsolutePath, 329
wxIsBusy, 349
wxIsClipboardFormatAvailable, 342
wxIsWild, 331
wxItem styles, 368
wxItem::Centre, 192
wxItem::Command, 192
wxItem::GetBackgroundColour, 192
wxItem::GetButtonColour, 192
wxItem::GetLabel, 192
wxItem::GetLabelColour, 192
wxItem::SetBackgroundColour, 193
wxItem::SetButtonColour, 193
wxItem::SetButtonFont, 193
wxItem::SetLabel, 193
wxItem::SetLabelColour, 193
wxItem::SetLabelFont, 193
wxKeyEvent, 195
wxKeyEvent::controlDown, 193
wxKeyEvent::ControlDown, 195
wxKeyEvent::keyCode, 194
wxKeyEvent::KeyCode, 195
wxKeyEvent::Position, 196
wxKeyEvent::shiftDown, 195

wxKeyEvent::ShiftDown, 196
wxKeyEvent::wxKeyEvent, 195
wxKill, 348
wxLayoutConstraints, 196
wxLayoutConstraints::bottom, 196
wxLayoutConstraints::centreX, 197
wxLayoutConstraints::centreY, 197
wxLayoutConstraints::height, 197
wxLayoutConstraints::left, 197
wxLayoutConstraints::right, 197
wxLayoutConstraints::top, 197
wxLayoutConstraints::width, 197
wxLayoutConstraints::wxLayoutConstraints, 196
wxLB_ALWAYS_SB, 369
wxLB_EXTENDED, 369
wxLB_MULTIPLE, 369
wxLB_NEEDED_SB, 368
wxLB_SINGLE, 369
wxList, 198
wxList::~wxList, 199
wxList::Append, 199
wxList::Clear, 199
wxList::DeleteContents, 199
wxList::DeleteNode, 199
wxList::DeleteObject, 199
wxList::Find, 200
wxList::First, 200
wxList::Insert, 200
wxList::Last, 200
wxList::Member, 200
wxList::Nth, 200
wxList::Number, 201
wxList::Sort, 201
wxList::wxList, 198
wxListBox, 202
wxListBox styles, 368
wxListBox::~wxListBox, 203
wxListBox::Append, 203
wxListBox::Clear, 203
wxListBox::Create, 203
wxListBox::Delete, 203
wxListBox::Deselect, 203
wxListBox::FindString, 204
wxListBox::GetClientData, 204
wxListBox::GetSelection, 204
wxListBox::GetSelections, 204
wxListBox::GetString, 204
wxListBox::GetStringSelection, 204
wxListBox::Number, 204
wxListBox::Selected, 204
wxListBox::Set, 205
wxListBox::SetClientData, 205
wxListBox::SetFirstItem, 205
wxListBox::SetSelection, 205
wxListBox::SetString, 205
wxListBox::SetStringSelection, 205
wxListBox::wxListBox, 202
wxLoadUserResource, 349
wxMakeConstraintFunction, 171
wxMakeConstraintRange, 172
wxMakeConstraintStrings, 171
wxMakeFormBool, 171

INDEX

444

wxMakeFormButton, 170
wxMakeFormDouble, 171
wxMakeFormFloat, 171
wxMakeFormLong, 170
wxMakeFormMessage, 170
wxMakeFormNewLine, 170
wxMakeFormShort, 171
wxMakeFormString, 171
wxMakeMetaFilePlaceable, 336
wxMatchWild, 331
wxMAXIMIZE, 367
wxMAXIMIZE_BOX, 367
wxMDI_CHILD, 367
wxMDI_PARENT, 367
wxMemoryDC, 206
wxMemoryDC::SelectObject, 206
wxMemoryDC::wxMemoryDC, 206
wxMenu, 207
wxMenu::~wxMenu, 207
wxMenu::Append, 207
wxMenu::AppendSeparator, 207
wxMenu::Break, 207
wxMenu::Check, 207
wxMenu::Checked, 208
wxMenu::Enable, 208
wxMenu::FindItem, 208
wxMenu::FindItemForId, 208
wxMenu::GetHelpString, 208
wxMenu::GetLabel, 208
wxMenu::GetTitle, 208
wxMenu::SetHelpString, 209
wxMenu::SetLabel, 209
wxMenu::SetTitle, 209
wxMenu::wxMenu, 207
wxMenuBar, 209
wxMenuBar::~wxMenuBar, 209
wxMenuBar::Append, 209
wxMenuBar::Check, 210
wxMenuBar::Checked, 210
wxMenuBar::Enable, 210
wxMenuBar::EnableTop, 210
wxMenuBar::FindItemById, 210
wxMenuBar::FindMenuItem, 210
wxMenuBar::GetHelpString, 210
wxMenuBar::GetLabel, 211
wxMenuBar::GetLabelTop, 211
wxMenuBar::SetHelpString, 211
wxMenuBar::SetLabel, 211
wxMenuBar::SetLabelTop, 211
wxMenuBar::wxMenuBar, 209
wxMessage, 211, 212
wxMessage styles, 369
wxMessage::~wxMessage, 212
wxMessage::Create, 212
wxMessage::wxMessage, 211
wxMessageBox, 335
wxMetaFile, 212
wxMetaFile::~wxMetaFile, 213
wxMetaFile::Ok, 213
wxMetaFile::Play, 213
wxMetaFile::SetClipboard, 213
wxMetaFile::wxMetaFile, 212

wxMetaFileDC, 214
wxMetaFileDC::~wxMetaFileDC, 214
wxMetaFileDC::Close, 214
wxMetaFileDC::wxMetaFileDC, 214
wxMINIMIZE, 367
wxMINIMIZE_BOX, 367
wxMkdir, 331
wxMouseEvent, 215
wxMouseEvent::Button, 216
wxMouseEvent::ButtonDClick, 216
wxMouseEvent::ButtonDown, 216
wxMouseEvent::ButtonUp, 216
wxMouseEvent::controlDown, 214
wxMouseEvent::ControlDown, 216
wxMouseEvent::Dragging, 216
wxMouseEvent::Entering, 217
wxMouseEvent::IsButton, 217
wxMouseEvent::Leaving, 217
wxMouseEvent::LeftDClick, 217
wxMouseEvent::leftDown, 214, 215
wxMouseEvent::LeftDown, 217
wxMouseEvent::LeftIsDown, 217
wxMouseEvent::LeftUp, 217
wxMouseEvent::MiddleDClick, 218
wxMouseEvent::middleDown, 214
wxMouseEvent::MiddleDown, 218
wxMouseEvent::MiddleIsDown, 218
wxMouseEvent::MiddleUp, 218
wxMouseEvent::Moving, 218
wxMouseEvent::Position, 218
wxMouseEvent::RightDClick, 219
wxMouseEvent::rightDown, 215
wxMouseEvent::RightDown, 219
wxMouseEvent::RightIsDown, 219
wxMouseEvent::RightUp, 219
wxMouseEvent::shiftDown, 215
wxMouseEvent::ShiftDown, 219
wxMouseEvent::wxMouseEvent, 215
wxMouseEvent::x, 215
wxMouseEvent::y, 215
wxMultiText::GetLineLength, 220
wxMultiText::GetLineText, 220
wxMultiText::GetNumberOfLines, 220
wxMultiText::GetValue, 220
wxMultiText::PositionToXY, 220
wxMultiText::ShowPosition, 220
wxMultiText::XYToPosition, 221
wxNATIVE_IMPL, 370
wxNEEDED_SB, 368
wxNode::Data, 221
wxNode::Next, 221
wxNode::Previous, 221
wxNode::SetData, 221
wxNotifyEvent, 337
wxNow, 349
wxObject::__type, 222
wxObject::Dump, 222
wxObject::GetClassInfo, 222
wxObject::IsKindOf, 222
wxObject::LoadObject, 222
wxObject::operator delete, 223
wxObject::operator new, 223

INDEX

445

wxObject::SaveObject, 223
wxOpenClipboard, 342
wxPageSetupData, 223
wxPageSetupData::~wxPageSetupData, 223
wxPageSetupData::EnableHelp, 223
wxPageSetupData::EnableMargins, 223
wxPageSetupData::EnableOrientation, 224
wxPageSetupData::EnablePaper, 224
wxPageSetupData::EnablePrinter, 224
wxPageSetupData::GetDefaultInfo, 226
wxPageSetupData::GetDefaultMinMargins, 225
wxPageSetupData::GetEnableHelp, 225
wxPageSetupData::GetEnableMargins, 225
wxPageSetupData::GetEnableOrientation, 225
wxPageSetupData::GetEnablePaper, 225
wxPageSetupData::GetEnablePrinter, 225
wxPageSetupData::GetMarginBottomRight, 224
wxPageSetupData::GetMarginTopLeft, 224
wxPageSetupData::GetMinMarginBottomRight,

225
wxPageSetupData::GetMinMarginTopLeft, 224
wxPageSetupData::GetOrientation, 225
wxPageSetupData::GetPaperSize, 224
wxPageSetupData::SetDefaultInfo, 227
wxPageSetupData::SetDefaultMinMargins, 227
wxPageSetupData::SetMarginBottomRight, 226
wxPageSetupData::SetMarginTopLeft, 226
wxPageSetupData::SetMinMarginBottomRight,

226
wxPageSetupData::SetMinMarginTopLeft, 226
wxPageSetupData::SetOrientation, 226
wxPageSetupData::SetPaperSize, 226
wxPageSetupData::wxPageSetupData, 223
wxPageSetupDialog, 227
wxPageSetupDialog::~wxPageSetupDialog, 227
wxPageSetupDialog::GetPageSetupData, 227
wxPageSetupDialog::Show, 228
wxPageSetupDialog::wxPageSetupDialog, 227
wxPanel, 228
wxPanel styles, 370
wxPanel::~wxPanel, 228
wxPanel::Create, 229
wxPanel::CreateItem, 229
wxPanel::DrawAllStaticItems, 229
wxPanel::Fit, 229
wxPanel::GetBackgroundColour, 230
wxPanel::GetButtonColour, 230
wxPanel::GetButtonFont, 229
wxPanel::GetCursor, 229
wxPanel::GetDefaultItem, 229
wxPanel::GetHorizontalSpacing, 230
wxPanel::GetLabelColour, 230
wxPanel::GetLabelFont, 230
wxPanel::GetPanelDC, 230
wxPanel::GetVerticalSpacing, 230
wxPanel::LoadFromResource, 230
wxPanel::NewLine, 231
wxPanel::OnCommand, 231
wxPanel::OnDefaultAction, 231
wxPanel::OnEvent, 232
wxPanel::OnItemEvent, 232
wxPanel::OnItemLeftClick, 232

wxPanel::OnItemMove, 232
wxPanel::OnItemRightClick, 233
wxPanel::OnItemSize, 233
wxPanel::OnLeftClick, 233
wxPanel::OnPaint, 233
wxPanel::OnRightClick, 233
wxPanel::PaintSelectionHandles, 234
wxPanel::SetBackgroundColour, 234
wxPanel::SetButtonColour, 234
wxPanel::SetButtonFont, 234
wxPanel::SetHorizontalSpacing, 234, 235
wxPanel::SetLabelColour, 235
wxPanel::SetLabelFont, 235
wxPanel::SetLabelPosition, 234
wxPanel::SetVerticalSpacing, 235
wxPanel::Tab, 235
wxPanel::wxPanel, 228
wxPathList, 236
wxPathList::Add, 236
wxPathList::AddEnvList, 236
wxPathList::EnsureFileAccessible, 236
wxPathList::FindValidPath, 236
wxPathList::Member, 236
wxPathList::wxPathList, 236
wxPathOnly, 329
wxPen, 237
wxPen::~wxPen, 237
wxPen::GetCap, 237
wxPen::GetColour, 237
wxPen::GetDashes, 238
wxPen::GetJoin, 238
wxPen::GetStipple, 238
wxPen::GetStyle, 238
wxPen::GetWidth, 238
wxPen::SetCap, 238
wxPen::SetColour, 238
wxPen::SetDashes, 239
wxPen::SetJoin, 239
wxPen::SetStipple, 239
wxPen::SetStyle, 239
wxPen::SetWidth, 239
wxPen::wxPen, 237
wxPenList, 239
wxPenList::AddPen, 240
wxPenList::FindOrCreatePen, 240
wxPenList::RemovePen, 240
wxPenList::wxPenList, 239
wxPoint, 240
wxPoint::wxPoint, 240
wxPostDelete, 349
wxPostScriptDC, 241
wxPostScriptDC::GetStream, 241
wxPostScriptDC::wxPostScriptDC, 240
wxPreviewCanvas, 241
wxPreviewCanvas::~wxPreviewCanvas, 241
wxPreviewCanvas::OnPaint, 241
wxPreviewCanvas::wxPreviewCanvas, 241
wxPreviewControlBar, 243
wxPreviewControlBar::~wxPreviewControlBar,

243
wxPreviewControlBar::buttonFlags, 242
wxPreviewControlBar::buttonFont, 242

INDEX

446

wxPreviewControlBar::closeButton, 242
wxPreviewControlBar::CreateButtons, 243
wxPreviewControlBar::GetPrintPreview, 243
wxPreviewControlBar::GetZoomControl, 243
wxPreviewControlBar::nextPageButton, 242
wxPreviewControlBar::OnPaint, 243
wxPreviewControlBar::previousPageButton, 242
wxPreviewControlBar::printPreview, 242
wxPreviewControlBar::SetZoomControl, 244
wxPreviewControlBar::wxPreviewControlbar, 243
wxPreviewControlBar::zoomControl, 242
wxPreviewFrame, 244
wxPreviewFrame::~wxPreviewFrame, 244
wxPreviewFrame::controlBar, 244
wxPreviewFrame::CreateCanvas, 245
wxPreviewFrame::CreateControlBar, 244
wxPreviewFrame::Initialize, 245
wxPreviewFrame::OnClose, 245
wxPreviewFrame::previewCanvas, 244
wxPreviewFrame::printPreview, 244
wxPreviewFrame::wxPreviewFrame, 244
wxPrintData, 245
wxPrintData::~wxPrintData, 245
wxPrintData::EnableHelp, 245
wxPrintData::EnablePageNumbers, 246
wxPrintData::EnablePrintToFile, 246
wxPrintData::EnableSelection, 246
wxPrintData::GetAllPages, 246
wxPrintData::GetCollate, 246
wxPrintData::GetFromPage, 246
wxPrintData::GetMaxPage, 246
wxPrintData::GetMinPage, 246
wxPrintData::GetNoCopies, 247
wxPrintData::GetToPage, 247
wxPrintData::SetCollate, 247
wxPrintData::SetFromPage, 247
wxPrintData::SetMaxPage, 247
wxPrintData::SetMinPage, 247
wxPrintData::SetNoCopies, 247
wxPrintData::SetPrintToFile, 248
wxPrintData::SetSetupDialog, 248
wxPrintData::SetToPage, 248
wxPrintData::wxPrintData, 245
wxPrintDialog, 248
wxPrintDialog overview, 387
wxPrintDialog::~wxPrintDialog, 248
wxPrintDialog::GetPrintData, 248
wxPrintDialog::GetPrintDC, 248
wxPrintDialog::Show, 249
wxPrintDialog::wxPrintDialog, 248
wxPrinter, 249
wxPrinter::~wxPrinter, 249
wxPrinter::Abort, 249
wxPrinter::CreateAbortWindow, 249
wxPrinter::GetPrintData, 250
wxPrinter::Print, 250
wxPrinter::PrintDialog, 250
wxPrinter::ReportError, 250
wxPrinter::Setup, 250
wxPrinter::wxPrinter, 249
wxPrinterDC, 250
wxPrinterDC::wxPrinterDC, 250

wxPrintout, 251
wxPrintout::~wxPrintout, 251
wxPrintout::GetDC, 251
wxPrintout::GetPageInfo, 251
wxPrintout::GetPageSizeMM, 251
wxPrintout::GetPageSizePixels, 252
wxPrintout::GetPPIPrinter, 252
wxPrintout::GetPPIScreen, 252
wxPrintout::HasPage, 252
wxPrintout::IsPreview, 252
wxPrintout::OnBeginDocument, 252
wxPrintout::OnBeginPrinting, 253
wxPrintout::OnEndDocument, 253
wxPrintout::OnEndPrinting, 253
wxPrintout::OnPreparePrinting, 253
wxPrintout::OnPrintPage, 253
wxPrintout::wxPrintout, 251
wxPrintPreview, 254
wxPrintPreview::~wxPrintPreview, 254
wxPrintPreview::DrawBlankPage, 254
wxPrintPreview::GetCanvas, 254
wxPrintPreview::GetCurrentPage, 254
wxPrintPreview::GetFrame, 254
wxPrintPreview::GetMaxPage, 255
wxPrintPreview::GetMinPage, 255
wxPrintPreview::GetPrintData, 255
wxPrintPreview::GetPrintout, 255
wxPrintPreview::GetPrintoutForPrinting, 255
wxPrintPreview::Ok, 255
wxPrintPreview::PaintPage, 255
wxPrintPreview::Print, 256
wxPrintPreview::RenderPage, 256
wxPrintPreview::SetCanvas, 256
wxPrintPreview::SetCurrentPage, 256
wxPrintPreview::SetFrame, 256
wxPrintPreview::SetPrintout, 256
wxPrintPreview::SetZoom, 256
wxPrintPreview::wxPrintPreview, 254
wxQueryCol, 257
wxQueryCol overview, 395
wxQueryCol::~wxQueryCol, 257
wxQueryCol::AppendField, 258
wxQueryCol::BindVar, 257
wxQueryCol::FillVar, 257
wxQueryCol::GetData, 257
wxQueryCol::GetName, 257
wxQueryCol::GetSize, 258
wxQueryCol::GetType, 257
wxQueryCol::IsNullable, 258
wxQueryCol::IsRowDirty, 258
wxQueryCol::SetData, 258
wxQueryCol::SetFieldDirty, 258
wxQueryCol::SetName, 258
wxQueryCol::SetNullable, 258
wxQueryCol::SetType, 259
wxQueryCol::wxQueryCol, 257
wxQueryField, 259
wxQueryField overview, 395
wxQueryField::~wxQueryField, 259
wxQueryField::AllocData, 259
wxQueryField::ClearData, 259
wxQueryField::GetData, 259

INDEX

447

wxQueryField::GetSize, 259
wxQueryField::GetType, 260
wxQueryField::IsDirty, 260
wxQueryField::SetData, 260
wxQueryField::SetDirty, 260
wxQueryField::SetSize, 260
wxQueryField::SetType, 260
wxQueryField::wxQueryField, 259
wxRadioBox, 260, 261, 369
wxRadioBox::~wxRadioBox, 261
wxRadioBox::Create, 261
wxRadioBox::Enable, 262
wxRadioBox::FindString, 262
wxRadioBox::GetSelection, 262
wxRadioBox::GetString, 263
wxRadioBox::GetStringSelection, 262
wxRadioBox::Number, 262
wxRadioBox::SetSelection, 262
wxRadioBox::SetStringSelection, 262
wxRadioBox::Show, 263
wxRadioBox::wxRadioBox, 260
wxRadioButton, 263, 369
wxRadioButton::~wxRadioButton, 264
wxRadioButton::Create, 264
wxRadioButton::GetValue, 264
wxRadioButton::SetValue, 264
wxRadioButton::wxRadioButton, 263
wxRB_GROUP, 369
wxREADONLY, 370
wxRecordSet, 264
wxRecordSet overview, 395
wxRecordSet::~wxRecordSet, 265
wxRecordSet::AddNew, 265
wxRecordSet::BeginQuery, 265
wxRecordSet::BindVar, 265
wxRecordSet::CanAppend, 265
wxRecordSet::Cancel, 265
wxRecordSet::CanRestart, 266
wxRecordSet::CanScroll, 266
wxRecordSet::CanTransact, 266
wxRecordSet::CanUpdate, 266
wxRecordSet::ConstructDefaultSQL, 266
wxRecordSet::Delete, 266
wxRecordSet::Edit, 266
wxRecordSet::EndQuery, 267
wxRecordSet::ExecuteSQL, 267
wxRecordSet::FillVars, 267
wxRecordSet::GetColName, 267
wxRecordSet::GetColType, 267
wxRecordSet::GetColumns, 267
wxRecordSet::GetCurrentRecord, 268
wxRecordSet::GetDatabase, 268
wxRecordSet::GetDataSources, 268
wxRecordSet::GetDefaultConnect, 269
wxRecordSet::GetDefaultSQL, 269
wxRecordSet::GetErrorCode, 269
wxRecordSet::GetFieldData, 269
wxRecordSet::GetFieldDataPtr, 269
wxRecordSet::GetFilter, 270
wxRecordSet::GetForeignKeys, 270
wxRecordSet::GetNumberCols, 271
wxRecordSet::GetNumberFields, 271

wxRecordSet::GetNumberParams, 271
wxRecordSet::GetNumberRecords, 271
wxRecordSet::GetOptions, 271
wxRecordSet::GetPrimaryKeys, 271
wxRecordSet::GetResultSet, 271
wxRecordSet::GetSortString, 272
wxRecordSet::GetSQL, 272
wxRecordSet::GetTableName, 272
wxRecordSet::GetTables, 272
wxRecordSet::GetType, 272
wxRecordSet::GoTo, 272
wxRecordSet::IsBOF, 272
wxRecordSet::IsColNullable, 273
wxRecordSet::IsDeleted, 273
wxRecordSet::IsEOF, 273
wxRecordSet::IsFieldDirty, 273
wxRecordSet::IsFieldNull, 273
wxRecordSet::IsOpen, 273
wxRecordSet::Move, 273
wxRecordSet::MoveFirst, 274
wxRecordSet::MoveLast, 274
wxRecordSet::MoveNext, 274
wxRecordSet::MovePrev, 274
wxRecordSet::Query, 274
wxRecordSet::RecordCountFinal, 274
wxRecordSet::Requery, 274
wxRecordSet::SetDefaultSQL, 275
wxRecordSet::SetFieldDirty, 274
wxRecordSet::SetFieldNull, 275
wxRecordSet::SetOptions, 275
wxRecordSet::SetTableName, 275
wxRecordSet::SetType, 275
wxRecordSet::Update, 275
wxRecordSet::wxRecordSet, 264
wxRegisterClipboardFormat, 342
wxRegisterEventClass, 337
wxRegisterEventName, 338
wxRegisterExternalEventHandlers, 338
wxRelationship, 189
wxRemoveFile, 331
wxRemoveSecondaryEventHandler, 338
wxRenameFile, 331
wxRESIZE_BORDER, 367
wxResourceAddIdentifier, 355
wxResourceClear, 355
wxResourceCreateBitmap, 355
wxResourceCreateIcon, 356
wxResourceCreateMenuBar, 356
wxResourceGetIdentifier, 357
wxResourceParseData, 357
wxResourceParseFile, 357
wxResourceParseString, 357
wxResourceRegisterBitmapData, 358
wxRETAINED, 370
wxRmdir, 331
wxScreenDC, 275
wxScreenDC::wxScreenDC, 275
wxScrollBar, 276
wxScrollBar::~wxScrollBar, 276
wxScrollBar::Create, 276
wxScrollBar::GetValue, 277
wxScrollBar::GetValues, 277

INDEX

448

wxScrollBar::SetObjectLength, 277
wxScrollBar::SetPageLength, 277
wxScrollBar::SetValue, 277
wxScrollBar::SetViewLength, 277
wxScrollBar::wxScrollBar, 276
wxSDI, 367
wxSendEvent, 338
wxServer, 278
wxServer::Create, 278
wxServer::OnAcceptConnection, 278
wxServer::wxServer, 278
wxSetClipboardData, 342
wxSetCursor, 336
wxSetDisplayName, 349
wxSetPrinterCommand, 339
wxSetPrinterFile, 340
wxSetPrinterMode, 340
wxSetPrinterOptions, 340
wxSetPrinterOrientation, 340
wxSetPrinterPreviewCommand, 340
wxSetPrinterScaling, 340
wxSetPrinterTranslation, 340
wxSetWorkingDirectory, 332
wxShell, 350
wxSleep, 350
wxSlider, 278
wxSlider styles, 369
wxSlider::~wxSlider, 279
wxSlider::Create, 279
wxSlider::GetMax, 279
wxSlider::GetMin, 279
wxSlider::GetValue, 279
wxSlider::SetRange, 279
wxSlider::SetValue, 280
wxSlider::wxSlider, 278
wxSP_3D, 280
wxSP_BORDER, 280
wxSP_NOBORDER, 280
wxSplitterWindow, 280
wxSplitterWindow::~wxSplitterWindow, 281
wxSplitterWindow::GetMinimumPaneSize, 281
wxSplitterWindow::GetSashPosition, 281
wxSplitterWindow::GetSplitMode, 281
wxSplitterWindow::GetWindow1, 281
wxSplitterWindow::GetWindow2, 282
wxSplitterWindow::Initialize, 282
wxSplitterWindow::IsSplit, 282
wxSplitterWindow::OnDoubleClickSash, 282
wxSplitterWindow::OnUnsplit, 283
wxSplitterWindow::SetMinimumPaneSize, 283
wxSplitterWindow::SetSashPosition, 283
wxSplitterWindow::SetSplitMode, 284
wxSplitterWindow::SplitHorizontally, 284
wxSplitterWindow::SplitVertically, 285
wxSplitterWindow::Unsplit, 285
wxSplitterWindow::wxSplitterWindow, 280
wxStartTimer, 350
wxSTAY_ON_TOP, 367
wxString, 286
wxString::~wxString, 286
wxString::After, 287
wxString::Alloc, 286

wxString::Allocation, 286
wxString::Append, 287
wxString::At, 287
wxString::Before, 287
wxString::Capitalize, 287
wxString::Cat, 288
wxString::Chars, 288
wxString::CompareTo, 289
wxString::Contains, 289
wxString::Copy, 289
wxString::Del, 289
wxString::DownCase, 290
wxString::Elem, 290
wxString::Empty, 290
wxString::Error, 290
wxString::First, 290
wxString::Firstchar, 290
wxString::Freq, 290
wxString::From, 290
wxString::GetData, 291
wxString::GSub, 291
wxString::Index, 291
wxString::Insert, 291
wxString::IsAscii, 291
wxString::IsDefined, 291
wxString::IsNull, 292
wxString::IsNumber, 292
wxString::IsWord, 292
wxString::Last, 292
wxString::Lastchar, 292
wxString::Length, 292
wxString::LowerCase, 292
wxString::Matches, 292
wxString::OK, 293
wxString::operator (), 295
wxString::operator [], 295
wxString::operator +=, 295
wxString::operator <<, 295
wxString::operator =, 294
wxString::operator >>, 295
wxString::operator const char *, 295
wxString::Prepend, 293
wxString::Readline, 293
wxString::Remove, 293
wxString::Replace, 293
wxString::Replicate, 293
wxString::Reverse, 293
wxString::sprintf, 294
wxString::Strip, 294
wxString::SubString, 294
wxString::Through, 294
wxString::Upcase, 294
wxString::UpperCase, 294
wxString::wxString, 286
wxStringEq, 332
wxStringList, 298
wxStringList::~wxStringList, 298
wxStringList::Add, 298
wxStringList::Delete, 298
wxStringList::ListToArray, 298
wxStringList::Member, 298
wxStringList::Sort, 298

INDEX

449

wxStringList::wxStringList, 298
wxStringMatch, 332
wxStripMenuCodes, 350
wxSubType, 350
wxSYSTEM_MENU, 367
wxTB_3DBUTTONS, 370
wxTE_PASSWORD, 369
wxTE_PROCESS_ENTER, 369
wxTE_READONLY, 369
wxText, 299
wxText/wxMultiText styles, 369
wxText::~wxText, 300
wxText::Copy, 300
wxText::Create, 300
wxText::Cut, 300
wxText::GetInsertionPoint, 300
wxText::GetLastPosition, 300
wxText::GetValue, 300
wxText::Paste, 300
wxText::Remove, 301
wxText::Replace, 301
wxText::SetEditable, 301
wxText::SetInsertionPoint, 301
wxText::SetInsertionPointEnd, 301
wxText::SetSelection, 301
wxText::SetValue, 301
wxText::wxText, 299
wxTextWindow, 302
wxTextWindow styles, 369
wxTextWindow::~wxTextWindow, 303
wxTextWindow::Clear, 303
wxTextWindow::Copy, 303
wxTextWindow::Create, 303
wxTextWindow::Cut, 303
wxTextWindow::DiscardEdits, 303
wxTextWindow::GetContents, 303
wxTextWindow::GetInsertionPoint, 304
wxTextWindow::GetLastPosition, 304
wxTextWindow::GetLineLength, 304
wxTextWindow::GetLineText, 304
wxTextWindow::GetNumberOfLines, 304
wxTextWindow::LoadFile, 304
wxTextWindow::Modified, 305
wxTextWindow::OnChar, 305
wxTextWindow::operator <<, 307
wxTextWindow::Paste, 305
wxTextWindow::PositionToXY, 305
wxTextWindow::Remove, 305
wxTextWindow::Replace, 305
wxTextWindow::SaveFile, 306
wxTextWindow::SetEditable, 306
wxTextWindow::SetFont, 306
wxTextWindow::SetInsertionPoint, 306
wxTextWindow::SetInsertionPointEnd, 306
wxTextWindow::SetSelection, 304
wxTextWindow::ShowPosition, 306
wxTextWindow::WriteText, 307
wxTextWindow::wxTextWindow, 302
wxTextWindow::XYToPosition, 307
wxTHICK_FRAME, 367
wxTimer, 307
wxTimer::~wxTimer, 307

wxTimer::Interval, 308
wxTimer::Notify, 308
wxTimer::Start, 308
wxTimer::Stop, 308
wxTimer::wxTimer, 307
wxTINY_CAPTION_HORIZ, 367
wxTINY_CAPTION_VERT, 367
wxToLower, 351
wxToolBar, 308
wxToolBar styles, 370
wxToolBar::~wxToolBar, 309
wxToolBar::AddSeparator, 309
wxToolBar::AddTool, 309
wxToolBar::CreateTools, 310
wxToolBar::DrawTool, 310
wxToolBar::EnableTool, 310
wxToolBar::FindToolForPosition, 310
wxToolBar::GetMaxSize, 310
wxToolBar::GetToolClientData, 310
wxToolBar::GetToolEnabled, 311
wxToolBar::GetToolLongHelp, 311
wxToolBar::GetToolShortHelp, 311
wxToolBar::GetToolState, 311
wxToolBar::Layout, 311
wxToolBar::OnLeftClick, 311
wxToolBar::OnMouseEnter, 312
wxToolBar::OnRightClick, 312
wxToolBar::SetMargins, 312
wxToolBar::SetToolLongHelp, 312
wxToolBar::SetToolPacking, 312
wxToolBar::SetToolSeparation, 312
wxToolBar::SetToolShortHelp, 312
wxToolBar::ToggleTool, 313
wxToolBar::wxToolBar, 308
wxToUpper, 351
wxTrace, 351
WXTRACE, 355
wxTraceLevel, 351
WXTRACELEVEL, 355
wxTransferFileToStream, 332
wxTransferStreamToFile, 332
wxTypeTree, 314
wxTypeTree::AddType, 314
wxTypeTree::GetName, 314
wxTypeTree::wxTypeTree, 314
wxUnix2DosFilename, 329
wxUpdateIterator, 315
wxUpdateIterator::GetHeight, 315
wxUpdateIterator::GetWidth, 315
wxUpdateIterator::GetX, 315
wxUpdateIterator::GetY, 315
wxUpdateIterator::operator ++, 315
wxUpdateIterator::wxUpdateIterator, 315
wxUSER_COLOURS, 367, 370
wxVERTICAL, 369
wxVERTICAL_LABEL, 368
wxView, 316
wxView overview, 374
wxView::~wxView, 316
wxView::Activate, 316
wxView::Close, 317
wxView::GetDocument, 317

INDEX

450

wxView::GetDocumentManager, 317
wxView::GetFrame, 317
wxView::GetViewName, 317
wxView::OnActivateView, 317
wxView::OnChangeFilename, 317
wxView::OnClose, 318
wxView::OnCreate, 318
wxView::OnCreatePrintout, 318
wxView::OnUpdate, 318
wxView::SetDocument, 318
wxView::SetFrame, 318
wxView::SetViewName, 319
wxView::viewDocument, 316
wxView::viewFrame, 316
wxView::viewTypeName, 316
wxView::wxView, 316
wxVSCROLL, 367, 370
wxWindow, 319
wxWindow::~wxWindow, 319
wxWindow::AddChild, 319
wxWindow::CaptureMouse, 319
wxWindow::Center, 319
wxWindow::Centre, 320
wxWindow::ClientToScreen, 320
wxWindow::Close, 320
wxWindow::DestroyChildren, 320
wxWindow::DragAcceptFiles, 320
wxWindow::Enable, 320
wxWindow::GetCharHeight, 321
wxWindow::GetCharWidth, 321
wxWindow::GetChildren, 321
wxWindow::GetClientSize, 321
wxWindow::GetConstraints, 321
wxWindow::GetEventHandler, 321
wxWindow::GetGrandParent, 321
wxWindow::GetHandle, 322
wxWindow::GetLabel, 322
wxWindow::GetName, 322
wxWindow::GetParent, 322
wxWindow::GetPosition, 322
wxWindow::GetSize, 322
wxWindow::GetTextExtent, 322
wxWindow::GetUserEditMode, 323
wxWindow::GetWindowStyleFlag, 323

wxWindow::IsShown, 323
wxWindow::Layout, 323
wxWindow::Lower, 323
wxWindow::MakeModal, 323
wxWindow::Move, 324
wxWindow::PopupMenu, 324
wxWindow::Raise, 324
wxWindow::Refresh, 324
wxWindow::ReleaseMouse, 324
wxWindow::ScreenToClient, 324
wxWindow::SetAutoLayout, 325
wxWindow::SetClientSize, 326
wxWindow::SetColourMap, 326
wxWindow::SetConstraints, 325
wxWindow::SetCursor, 327
wxWindow::SetDoubleClick, 325
wxWindow::SetEventHandler, 327
wxWindow::SetFocus, 325
wxWindow::SetName, 325
wxWindow::SetSize, 325
wxWindow::SetSizeHints, 326
wxWindow::SetTitle, 327
wxWindow::SetUserEditMode, 327
wxWindow::Show, 327
wxWindow::wxWindow, 319
wxWindows predefined command identifiers, 377
wxWriteResource, 351
wxYield, 352

—X—
x, 191, 215, 240
X features, 19
XYToPosition, 221, 307

—Y—
y, 191, 215, 240

—Z—
zoomControl, 242

