
i

Manual for wxTreeLayout 1.0: a tree layout library for wxWindows

Julian Smart
Artificial Intelligence Applications Institute

University of Edinburgh
EH1 1HN

November 1993

i

Contents

1. Introduction ...1

2. Implementation..2

3. wxTreeLayout Class Reference ...3
3.1. wxTreeLayout: wxObject..3

References...8

Index...9

ii

Copyright notice

Copyright (c) 1993 Artificial Intelligence Applications Institute, The University of Edinburgh.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice, author statement
and this permission notice appear in all copies of this software and related documentation.

THE SOFTWARE IS PROVIDED "AS-IS'' AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL THE ARTIFICIAL INTELLIGENCE APPLICATIONS INSTITUTE OR THE
UNIVERSITY OF EDINBURGH BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

1

1. Introduction

This manual describes a tree-drawing class library for wxWindows. It provides layout of simple
trees with one root node, drawn left-to-right, with user-defined spacing between nodes.

wxTreeLayout is an abstract class that must be subclassed. The programmer defines various
member functions which will access whatever data structures are appropriate for the application,
and wxTreeLayout uses these when laying out the tree.

wxStoredTree is a class derived from wxTreeLayout that may be used directly to draw trees on a
canvas. It supplies storage for the nodes, and draws to a device context.

Below is the example tree generated by the program test.cc.

Figure 1: Example tree

2

2. Implementation

The algorithm is due to Gabriel Robins [1], a linear-time algorithm originally implemented in LISP
for AI applications.

The original algorithm has been modified so that both X and Y planes are calculated
simultaneously, increasing efficiency slightly. The basic code is only a page or so long.

3

3. wxTreeLayout Class Reference

The member functions are given in alphabetical order except for the constructors and destructors
which appear first.

3.1. wxTreeLayout: wxObject

This abstract class is used for drawing a tree. You must derive a new class from this, and define
member functions to access the data that wxTreeLayout needs.

Nodes are identified by long integer identifiers. The derived class communicates the actual tree
structure to wxTreeLayout by defining wxTreeLayout::GetChildren and
wxTreeLayout::GetNodeParent functions.

The application should call DoLayout to do the tree layout. Depending on how the derived class
has been defined, either wxTreeLayout::Draw must be called (for example by the OnDraw
member of a wxCanvas) or the application-defined drawing code should be called as normal.

For example, if you have an image drawing system already defined, you may want wxTreeLayout
to position existing node images in that system. So you just need a way for wxTreeLayout to set
the node image positions according to the layout algorithm, and the rest will be done by your own
image drawing system.

wxTreeLayout::wxTreeLayout

void wxTreeLayout(wxDC *dc = NULL)

Constructor.

wxTreeLayout::ActivateNode

void ActivateNode(long id, Bool active)

Define this so wxTreeLayout can turn nodes on and off for drawing purposes (not all nodes may
be connected in the tree). See also NodeActive.

wxTreeLayout::DoLayout

void DoLayout(long topNode = -1)

Calculates the layout for the tree, optionally specifying the top node.

wxTreeLayout::Draw

void Draw(void)

Call this to let wxTreeLayout draw the tree itself, once the layout has been calculated with
DoLayout. The device context must have been set in the constructor or using SetDC.

CHAPTER 3

4

wxTreeLayout::DrawBranch

void DrawBranch(long from, long to)

Defined by wxTreeLayout to draw an arc between two nodes.

wxTreeLayout::DrawBranches

void DrawBranches(void)

Defined by wxTreeLayout to draw the arcs between nodes.

wxTreeLayout::DrawNode

void DrawNode(long id)

Defined by wxTreeLayout to draw a node.

wxTreeLayout::DrawNodes

void DrawNodes(void)

Defined by wxTreeLayout to draw the nodes.

wxTreeLayout::GetChildren

void GetChildren(long id, wxList &list)

Must be defined to return the children of node id in the given list of integers.

wxTreeLayout::GetDC

long GetDC(void)

Gets the (optional) device context associated with the tree.

wxTreeLayout::GetNextNode

long GetNextNode(long id)

Must be defined to return the next node after id, so that wxTreeLayout can iterate through all
relevant nodes. The ordering is not important. The function should return -1 if there are no more
nodes.

wxTreeLayout::GetNodeName

CHAPTER 3

5

char * GetNodeName(long id)

May optionally be defined to get a node's name (for example if leaving the drawing to
wxTreeLayout).

wxTreeLayout::GetNodeSize

void GetNodeSize(long id, float *x, float *y)

Can be defined to indicate a node's size, or left to wxTreeLayout to use the name as an indication
of size.

wxTreeLayout::GetNodeParent

long GetNodeParent(long id)

Must be defined to return the parent node of id. The function should return -1 if there is no parent.

wxTreeLayout::GetNodeX

float GetNodeX(long id)

Must be defined to return the current X position of the node. Note that coordinates are assumed
to be at the top-left of the node so some conversion may be necessary for your application.

wxTreeLayout::GetNodeY

float GetNodeY(long id)

Must be defined to return the current Y position of the node. Note that coordinates are assumed
to be at the top-left of the node so some conversion may be necessary for your application.

wxTreeLayout::GetLeftMargin

float GetLeftMargin(void)

Gets the left margin set with SetMargins.

wxTreeLayout::GetOrientation

Bool GetOrientation(void)

Gets the orientation: TRUE means top-to-bottom, FALSE means left-to-right (the default).

wxTreeLayout::GetTopMargin

float GetTopMargin(void)

CHAPTER 3

6

Gets the top margin set with SetMargins.

wxTreeLayout::GetTopNode

long GetTopNode(void)

wxTreeLayout calls this to get the top of the tree. Don't redefine this; call SetTopNode instead
before calling DoLayout.

wxTreeLayout::GetXSpacing

float GetXSpacing(void)

Gets the horizontal spacing between nodes.

wxTreeLayout::GetYSpacing

float GetYSpacing(void)

Gets the vertical spacing between nodes.

wxTreeLayout::Initialize

void Initialize(void)

Initializes wxTreeLayout. Call from application or overridden Initializeor constructor.

wxTreeLayout::CalcLayout

void CalcLayout(long node_id, int level)

Private function for laying out a branch.

wxTreeLayout::NodeActive

Bool NodeActive(long id)

Define this so wxTreeLayout can know which nodes are to be drawn (not all nodes may be
connected in the tree). See also ActivateNode.

wxTreeLayout::SetNodeName

void SetNodeName(long id, char * name)

May optionally be defined to set a node's name.

CHAPTER 3

7

wxTreeLayout::SetNodeX

void SetNodeX(long id, float x)

Must be defined to set the current X position of the node. Note that coordinates are assumed to
be at the top-left of the node so some conversion may be necessary for your application.

wxTreeLayout::SetNodeY

void SetNodeY(long id, float y)

Must be defined to set the current Y position of the node. Note that coordinates are assumed to
be at the top-left of the node so some conversion may be necessary for your application.

wxTreeLayout::SetOrientation

void SetOrientation(Bool orientation)

Sets the tree orientation: TRUE means top-to-bottom, FALSE means left-to-right (the default).

wxTreeLayout::SetTopNode

void SetTopNode(long id)

Call this to identify the top of the tree to wxTreeLayout.

wxTreeLayout::SetDC

void SetDC(wxDC *dc)

Use this to set the tree's device context, if leaving the drawing up to wxTreeLayout.

wxTreeLayout::SetSpacing

void SetSpacing(float x, float y)

Sets the horizontal and vertical spacing between nodes in the tree.

wxTreeLayout::SetMargins

void SetMargins(float x, float y)

Sets the left and top margins of the whole tree.

8

References

[1] Robins, Gabriel. 1987 (September). The ISI grapher: a portable tool for displaying graphs
pictorially (ISI/RS-87-196). Technical report. University of South California.

9

Index

—A—
ActivateNode, 3

—C—
CalcLayout, 6

—D—
DoLayout, 3
Draw, 3
DrawBranch, 4
DrawBranches, 4
DrawNode, 4
DrawNodes, 4

—G—
GetChildren, 4
GetDC, 4
GetLeftMargin, 5
GetNextNode, 4
GetNodeName, 5
GetNodeParent, 5
GetNodeSize, 5
GetNodeX, 5
GetNodeY, 5
GetOrientation, 5
GetTopMargin, 5
GetTopNode, 6
GetXSpacing, 6
GetYSpacing, 6

—I—
Initialize, 6

—N—
NodeActive, 6

—S—
SetDC, 7

SetMargins, 7
SetNodeName, 6
SetNodeX, 7
SetNodeY, 7
SetOrientation, 7
SetSpacing, 7
SetTopNode, 7

—W—
wxTreeLayout, 3
wxTreeLayout::ActivateNode, 3
wxTreeLayout::CalcLayout, 6
wxTreeLayout::DoLayout, 3
wxTreeLayout::Draw, 3
wxTreeLayout::DrawBranch, 4
wxTreeLayout::DrawBranches, 4
wxTreeLayout::DrawNode, 4
wxTreeLayout::DrawNodes, 4
wxTreeLayout::GetChildren, 4
wxTreeLayout::GetDC, 4
wxTreeLayout::GetLeftMargin, 5
wxTreeLayout::GetNextNode, 4
wxTreeLayout::GetNodeName, 4
wxTreeLayout::GetNodeParent, 5
wxTreeLayout::GetNodeSize, 5
wxTreeLayout::GetNodeX, 5
wxTreeLayout::GetNodeY, 5
wxTreeLayout::GetOrientation, 5
wxTreeLayout::GetTopMargin, 5
wxTreeLayout::GetTopNode, 6
wxTreeLayout::GetXSpacing, 6
wxTreeLayout::GetYSpacing, 6
wxTreeLayout::Initialize, 6
wxTreeLayout::NodeActive, 6
wxTreeLayout::SetDC, 7
wxTreeLayout::SetMargins, 7
wxTreeLayout::SetNodeName, 6
wxTreeLayout::SetNodeX, 7
wxTreeLayout::SetNodeY, 7
wxTreeLayout::SetOrientation, 7
wxTreeLayout::SetSpacing, 7
wxTreeLayout::SetTopNode, 7
wxTreeLayout::wxTreeLayout, 3

