HOSP\TON =OPERATLHERORX,

19°th Annual Tcl Association
Tcl/Tk Conference
Proceedings
Chicago, IL
November 14-16, 2012

Publications ~=>

—
o

TCL Association Publications

©Copyright 2012 Tcl Association

All Rights Reserved

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form, or by any means electronic, mechanical, photo-

copying, recording orothewise without the prior consent of the publisher.

Individual authors retain full re-distribution rights for their contributions to
these proceedings.

Proceedings of the 18’th Annual Tcl/Tk Conference
ISBN: TBA

Special thanks to Dawson Cowals for designing
the Tcl Association logo. T ~

For graphic design or web development consult- CI |

ing please visit him on the web at Publications ~=>
http://www.dawsoncowals.com/

Table Of Contents

Bringing Context to the Internet of Things

D L <Y cTe o 3
WTK for APWTCL

A, WIedemanmouiiieiitiiiiiie i ie e e 20
Toward RESTful Desktop Applications

W, H. DUQUELEE ot e et ee e as 31
KineTecl

AL KU P IOS ottt ettt e r e aeanaaas 47

Lifecycle Object Generators (LOG)
N T B e Yo S O 52

Exploring Tecl Iteration Interfaces
P.Brooks oneiiiii e 65

Pulling Out All the Stops - Part 11
P BrooKS .viuiiiiiiii e 79

editable A Generic Display and Edit Widget for Database Applications
R L 7 o X 89

Customizable Keyboard Shortcuts
R WoOLd e 105

A Guided debugging of EDA software with various components of
Tcl/Tk GUI

R. Lalwani, A. SIngh ..o 119

An Efficient Method for Rendering Design Schematics Using
Tcl/Tk, and Distributed Relational Databases
M. Goel, A. GROShH .o, 127

iii

iv

Tcl 2012
Chicago, IL
November 14-16, 2012

HOSP\TON =OPERAT LT RORX,

Session 1
November 14, 10:45-12:15

19'th Anuual Tcl Association Tcl/Tk conference 1 Chicago, IL November 14-16, 2012

19'th Anuual Tcl Association Tcl/Tk conference 2 Chicago, IL November 14-16, 2012

Bringing Context to the Internet of Things

Dr. Emmanuel Frécon

This paper is dedicated to my newly become wife

Abstract—The context manager is aimed at being
the hub of the house, a place where all sensors
report (directly or indirectly) their data, sometimes in
aggregated form, but also where all applications will
search for information relevant to them, i.e. sensor
values, location or information about their surround-
ings. The context is instantiated from a dynamic
model to fit the needs of a variety of scenarios and
settings. The manager provides an easy-to-use Web
API and integrates external cloud services relevant
for applications running in the house.

Index Terms—IoT, Tcl, REST, JSON, Web, Inte-
gration, Web Services, Sensors, Actuators, Middle-
ware, Energy, Smart Homes

I. INTRODUCTION

HE Internet of Things promises a near future

where domestic and work environments, but
also cities and factories, are augmented with sensors
and actuators that all are Internet entities. The
deployment of IPv6 is key to this evolution by
enabling each sensor or actuator to be accessed
from any Internet enabled application or user, thus
from almost anywhere. The Internet of Things
is often seen as the catalyst of more intelligent
environments, where applications will use Things
to perform actions and sense on our behalf, with
little human intervention.

As the number of connected Things will grow,
making sense of what is accessible and can be done
and how they relate to one another will be harder
and harder. For taking good and qualified decisions,
applications will not only need to know how to
access the sensors and actuators, but also where

Emmanuel Frécon is with the Interactive Collaborative
Environments Laboratory, Swedish Institute of Computer
Science, Box 1263, SE-16429 Kista, Sweden, e-mail: em-
manuel @sics.se.

19'th Anuual Tcl Association Tcl/Tk conference

these are located, the people in their vicinity, their
immediate neighbouring Things, etc. The context
manager is a modular Tcl[1] web service that
attempts to provide this contextual information to
applications, i.e. the extra logical layer empowering
applications with the overlaying of dynamic sensor
data on top of locational data of more static na-
ture. While the context manager primarily targets
home environments, it can also be used in other
environments. The context manager relies on simple
PubSub[2] and pull mechanisms to account for the
low resources available on sensors. It also offers a
streaming interface based on WebSockets for push
and pull of sensor and actuator data.

II. RELATED WORK

There starts to exist a number of cloud-based
services that target the IoT (Internet of Things) and
provide APIs to store and later retrieve data that
has been sent for storage into the cloud. Probably
the most well-known of these services is COSM!
(formerly known as pachube). But there are a
number of other services such as sen.se?, nimbits®
or thingspeak* to mention a few. Common to all
those services is a web-based API that is easily
integrated directly from sensor platforms, providing
tiny (connected) sensors or gateways off-site stor-
age. The same API can be used to retrieve data from

!Cosm is available at https://www.cosm.com/ and is open
for new account registration.

2Sen.se is available at http://open.sen.se/ and is open for beta
testing by the way of invitations only.

3Nimbits is available at http://www.nimbits.com/ and is open
for new account registration. Nimbits also touts private cloud
solutions by allowing the integration of the nimbits solution
within existing architectures.

*Thingspeak is available at https://www.thingspeak.com/ and
is open for new account registration

Chicago, IL November 14-16, 2012

the web services, thus opening up for data-mining
activities if ever necessary. Common to those APIs
is the use of REST[3] and JSON[4] for retrieving
and posting data from and to the cloud. This
is to ease integration from low-power consumer-
oriented hardware platforms such as arduino[5] or
gadgeteer[6].

In addition to providing an “infinite” data stor-
age for sensors and actuators, the power of these
services lies in the community of people around
them and the ability to integrate values from several
sources to reason in improved and more sensible
ways. In short, these services provide a whole
ecosystem of devices, applications and people, by
being able to pinpoint sensors using location ser-
vices and providing ways to get notified whenever
their value change. From the point of view of a
house and household, sen.se seeks to take a step
further by allowing users to build user interfaces to
control their houses. Sen.se provides ways for its
users to visually create applications by connecting
sensors to web-side logic boxes and finally present
the resulting “computation” through its dashboard,
a web-based Ul combining output of values with
input of commands to be utterly received by actu-
ators.

However, these services fail to provide more
information about the context within which all these
sensors and actuators are being placed, especially
when it comes to smaller scale installations such as
a house or a building. In order to be able to make
energy-smart decisions, leading to smart actuation
of the devices that are accessible to them, appli-
cations need to know about inhabitants, relative
locations of sensors, external conditions, etc. So far,
the merging of the Semantic Web[7] with sensor
networks, also known as the Sensor Web or the
Sensor Internet [8][9][10][11] has focused on the
creation of specifications for different functional-
ities related to the management of sensor-based
data (observations, measurements, sensor network
descriptions, transducers, data streaming, etc.), and
for the different types of services that may handle
these data sources (planning, alert, observation and
measurement collection and management, etc.). The

19'th Anuual Tcl Association Tcl/Tk conference

cost of providing network abstraction and ontolo-
gies often comes with increased complexity. So
while these middlewares effectively provides ways
to reason about devices and actuators at a high level,
they seldom solve the problem of providing the
general context while still lowering the threshold
for regular users.

III. GOALS

The context manager is aimed at being the nav of
the house, i.e. the place where all relevant sensors
report (directly or indirectly) their data, sometimes
in aggregated form, but also where all applications
will dig for information that is relevant to them,
i.e. both values from some sensors, but also their
location or information about their surroundings.
Being such a nav, the context manager is designed
to be placed and hosted in a home gateway, i.e. a
“number crunching” appliance that provides com-
puting power and intelligence at a lower price in
a central place’. In this context, houses are taken
in their larger forms and can be entire buildings
if necessary, and the design should open up for
federations of context managers to adapt to the
needs and privacy concerns of both building owners
and flat owners (or inhabitants).

The main goal of the context manager is to
provide dynamic ways to model the context, e.g. a
house and all its online devices, be them sensors or
actuators. The dynamism of the context is essential
at different levels: first it is important to be able
to host new devices as they are installed in the
house, secondly it is important to be able to model
the context in various ways because all houses are
far from being the same and because there might
be cultural differences between location that have
an impact on the context itself. Consequently, the
context manager takes an object-oriented approach,
where the possible content of the context, i.e. the
objects themselves is driven and controlled by a
simple schema, i.e. a model of what objects can
be made available in the context, but also a model

5The current implementation of the context manager has
been verified to be fully functional on the open source Beagle-
Board xM, an ARM A8 development board.

Chicago, IL November 14-16, 2012

of their relations. The use of schemas could intro-
duce complexity to the conceptual approach, so the
context manager features a simplified schema with
few rules and in a human-readable format. Several
schemas can be aggregated, allowing for experts
to provide base schemas, perhaps somewhat more
complex in their form while still providing power
to the end users and the inhabitants, so as to adapt
to the specific needs of a household, a building or
a custom-made online sensor.

The context manager seeks to provide an open
API that follows the current trends within Web-
based services and development. Web asynchronous
communication is slowly moving from SOAP[12]
and XML][13] standards into REST and JSON for a
number of reasons. One of the advantages of these
new standards are their ease of reading, i.e. core
communication can be tested directly in the web
browser, and the results from a query are easily
read in a textual format that is much more compact
than XML. It is out of the scope of this document
to advocate for either one or the other standard, but
since the context manager aims at providing an easy
interface to application programmers, REST/JSON
are more suitable to the task. Apart from allowing
programmers to test queries against an existing
instance, both the format of the queries and of the
result are in general less cumbersome to parse, thus
easily integrated into existing code and onto low-
power platforms such as mobile phones or even
sensor platforms.

IV. DESIGN
A. Schema and Model

In order to cope with different sorts of environ-
ments and to account for the cultural differences
between housings in various regions of the world,
the context manager is based on a dynamic schema
that directs the content of the objects that will
be instantiated to describe a house or any other
environment. The schema can include remote (web)
schemas, thus providing ways for experts and/or
interested users to collaborate, but also providing
for the inclusion of new classes of objects that
will support newly created sensors. In order to

19'th Anuual Tcl Association Tcl/Tk conference

easily be accessible to technically inclined users,
the schema supports few paradigms: single inher-
itance, a few base types (Boolean, Integer,
Float, String, Timestamp[l4] and arrays)
and constraints. Constraints describe rules to which
field values should comply to, providing minimum
and maximum bounds or constraining only a few
possible values. Constraints offer a way to model
physical units and laws: for example, temperature
can be expressed in Celsius and is always greater
than -274.15. The syntax for the schema minimises
idioms and is designed to be human-readable with
lesser effort.

Objects modeling the context are instantiated
from the schema, and sensors and/or external ser-
vices will update the fields of these objects as new
values are measured, made available or acquired.
Initial instantiation will provide decent default val-
ues for all fields and subsequent updates will always
be checked against the possible constraints that
direct the content of one or several fields. The
context manager provides a number of techniques
for remote services to be notified when objects and
their contained fields are modified as time passes.

B. Data Flow and Storage

The context manager reads its schema (and in-
cluded schemas) during initialisation, subsequently
reading a file describing the initial context. Typi-
cally, the initial context will be composed of more
or less transient information such as the rooms com-
posing a house together with their interconnections,
but also an initial instantiation of the objects that
will be involved in the dynamic representation of
devices, sensors, actuators and inhabitants, together
with their spatial relations. Modification of fields
in objects, and queries for the inter-relationships is
supported by a REST/JSON inspired API.

The API supports (basic) authentication and
HTTPS[15] encryption if necessary, because of
their widespread use and their ability to scale down
to the few resources available on sensors. As times
goes by, all values set are automatically mirrored to
a noSQL database (cluster) implemented on top of
REDIS[16]. The API supports access to historical

Chicago, IL November 14-16, 2012

data. It also enables setting values in the future,
thus supporting prediction. Whenever the scheduled
time is reached, a value will automatically be set
to the one that had been set in the future. The
API also permits setting values in the past for
the automated storage of historical data. So-called
triggers implement a PubSub mechanism, allowing
remote Web services, applications and sensors to
be notified whenever value(s) in objects change
upon given conditions. Finally, WebSockets[17] can
be kept opened against particular objects, offering
both a way to stream updates from the object as
time passes, but also to update its fields whenever
needed.

C. Extensibility through Conduits

The context manager is extensible through the
concept of “conduits”. Conduits are logical entities
connected to external web services that will direct
data into or from the context depending on a num-
ber of conditions. Typically, conduits will perform
some transformation on the data to or from the ex-
ternal web service, while also retaining data that is
specific to the remote service, e.g. login credentials,
authorisation details, session information, etc. At
present, there are conduits for Twitter, for import
and export of data to the COSM cloud service, to
remote context managers, to nearby UPnP objects
and services and for the control of objects’ values
according to Google calendar bookings. Conduits
are loaded as a set of plugins during the initialisa-
tion phase, they access the context manager through
its modular internal API.

V. IMPLEMENTATION

A. Functionality

The context manager roughly provides the fol-

lowing set of functionality:

o It takes a schema and a model to provide a
logical context of a building. This context can
be accessed and modified using REST/JSON
calls for maximised flexibility and integration.
This means that most operations to and from

19'th Anuual Tcl Association Tcl/Tk conference

Web Services
and Apps

model <«——— schema

get,

‘ triggers g/'

find

conduits

cosm

twitter

noSQL cluster remote context

e

locate
Google calendar

UPnP

Context Manager

UPnP

Figure 1. The API of the context manager provides
REST/JSON entry points both to query the state of the context,
but also to modify it. In addition, it supports external known
and generic Web Services, while being able to predict and
automatically store historical data through a connected noSQL
database.

the context can actually be made (tested?) from
the comfort of any Web browser®.
e The context manager provides a number of

ground operations to:

— Get the content of whole or part of the
context, including the values of the fields
of the instantiated objects and including
values from the past, whenever they are
accessible.

— Modify values of objects that already are
instantiated, which will be an operation
that is often used when the value of a
sensor changes.

— Provides means to search for objects by
the content of their field, the name of their
class, etc.

— Provides means to understand arrays as a
technique to organise (part of) the model
in a hierarchy and to find specific objects
within such a hierarchy.

— Provides means to trigger external web
services whenever (part of) an object has
changed, i.e. to mediate the content of the
object to remote Web Services. Triggers
offer enough flexibility so as to be able
to:

®There are several JSON formatting extensions for most
of the Web browsers. Such an extension will be necessary
since the context manager minimises output by removing all
unnecessary indentation or line breaks.

Chicago, IL November 14-16, 2012

+ Restrict which field of the object are
under watch and how to mediate their
value to the remote service, i.e. as part
of the URL, in the body of the posted
data, etc.

+x Specify in details the headers, the
MIME type and the method of the
HTTP request (GET, POST, PUT,
DELETE).

* Control the maximum frequency of this
mediation to avoid flooding the net-
work.

+x Mediate only under certain conditions,
expressed as a mathematical expression
involving any of the fields of the object
(based on the Tcl expr command).

+ Control if mediation should happen ev-
ery time the value is updated, or only
if it has changed since last time (the
default).

— Provides means to stream the flow of
changes to remote clients via WebSock-
ets, expressed as JSON representations
of the object. This interface provides ap-
proximately the same level of control as
the triggers described above’. WebSockets
have two advantages:

* They easily pass through firewalls and
multi-level NAT hierarchies, thus mak-
ing sure that even clients at the edges of
the network can be notified of changes.

* Once the connection has been estab-
lished, packets containing object data
are kept to a minimal (with almost no
additional overhead or verbose header),
which makes them suitable for trans-
mission across WSN (wireless sensor
networks).

— Automatically saves versions of objects to
a database for later retrieval. Given the
unstructured nature of the context, noSQL

"All control that is only relevant to how the HTTP request
to the external Web service should be made are left aside
since this is not relevant in the case of WebSockets, i.e. in
a framework that keeps the connection opened at all time.

19'th Anuual Tcl Association Tcl/Tk conference

databases are a perfect match, especially
since they form the base of a number of
data-mining techniques.

e The context manager offers a pluggable ar-

chitecture through the concept of “conduits”,
i.e. logical entities connected to external web
services that will direct data to or from the
model depending on a number of conditions.
Typically, conduits will perform some trans-
formation on the data to or from the external
web service, while also retaining data that
is specific to the remote service, e.g. login
credentials, authorisation details, session infor-
mation, etc. There are a number of conduits
already available:

— The COSM conduit is able to pull and
push data from the COSM Cloud service.
The conduit supports both the access of
non-public feeds via an API key and
to public feeds, polling their content at
the necessary frequency whenever needed.
Data can be transformed on the way to
and from the feeds, matching feed names
against fields names in the context man-
ager, but also performing any mathemat-
ical operation supported by the expr
command at copy time.

— The remote context conduit is able to
pull and push data from remote context
managers, using triggers at the remote
managers to get notified of changes. The
conduit can be forced to poll for data
instead to ease firewall and NAT traver-
sal. As for the COSM conduit, data can
be transformed on the way to and from
the remote context. Being able to incor-
porate (parts of) remote context into a
local context opens up for the creation
of federations of context, and the ability
to (re)use the sensors of your neighbours
when taking decisions.

— The local context conduit is a simplifi-
cation of the remote conduit that only
acts between local objects. It allows for
the transfer (and transformation) of fields

Chicago, IL November 14-16, 2012

values between different objects of the
context, whenever some conditions are
met.

— The Google calendar conduit binds the
events of a given calendar to a Boolean
that will turn on when there is a booking
in the calendar, and of £ when there is no
booking. Combined to local conduits and
actuation (see section VII-B2), this can be
used to specify when some devices should
be turned on or off.

— The UPnP[18] conduit is able to pull
and push data from remote UPnP ser-
vices. The conduit is built on top of an
SSDP discovery mechanism, thus being
able to bind objects of the context man-
ager to a service that has a given (discov-
ered) name, or to a service that is at a
given known location. While the conduit
has been designed to bridge the context
manager to objects within the LinkSmart
middleware[11], it makes a number of
assumptions to be able to be used in
more generic cases. Similarly to the other
conduits, the UPnP conduit is able to push
and pull data to and from the known state
variable of a UPnP server. For this to work
in a generic way, the conduit assumes
that the service has methods which name
contains the name of the state variable and
that contain the keywords ‘“get” or “set”
to get or set the content of the variable.

B. Security Mechanisms

There are two intertwined security mechanisms
that will control the access to the context manager.
First of all, the context manager is able to run
on top of HTTPS[15] thus providing encryption
of both requests and their results, so as to avoid
eavesdropping from external parties. HTTPS was
chosen because it is a well-established protocol that
is widely supported across languages and platforms.
The context manager supports both self-signed and
authorised certificates.

Secondly, all web accesses can be controlled by a
user name and password that will be mediated to the

19'th Anuual Tcl Association Tcl/Tk conference

context manager using Basic Authentication[19].
Control should occur at the (virtual) directory level
so as to provide for finer grained access restrictions
if necessary. The goal is to refrain some users from,
for example, setting the values of some objects of
the context. Again, basic authentication was chosen
because it is widely supported across languages and
platforms. Basic Authentication sends the password
from the client to the server unencrypted, however
it should be used in conjunction with HTTPS.

There might be cases where HTTPS encryption
is too heavy for the client platform in terms of
computing resources, for example if sensors send
directly their data to the context and/or need to
reason about other sensors in their vicinity to take
decisions. For those cases, the context manager is
able to provide regular HTTP access. This HTTP
access should be secured by a set of firewalling
rules that will prevent access to the context manager
from any remote client except the ones that need
to access the manager for the reasons detailed
above. Since these cases are most likely to occur
within home networks and since most current home
installations and Internet accesses are based on
NAT techniques, the security risks introduced by
unencrypted access in those cases are deemed to
be low. In those cases, wires or proximity ensures
physical security. This security relies however on
proper configuration of the Internet access and the
different firewalls involved.

C. Startup and Initialisation

On startup, the context manager will perform the
following operations in sequence:

1) The context manager will start a web server
with the proper credentials (see V-B) and
proper encryption settings. Alternatively, the
context manager can be embedded in an
existing server framework if more suitable.

2) The web server will expose the schema and
model that will define the context of the
building or the house that the manager is
controlling and modeling.

3) It will read the schema (see VI-A) that will
describe what classes of objects are allowed

Chicago, IL November 14-16, 2012

to appear in the context. This includes possi-
ble access to remote schemas that might be
included from the main schema. Reading of
the main schema might be through accessing
the internal web service if necessary®.

4) It will then read the model (see VI-B) that
describes the particular building that it is
modeling and controlling. All constraints im-
plied by the schema that has just been read
will be applied as the model is being read.

5) All objects instantiated as part of the model
are bound to the noSQL engine so that further
write operations will automatically lead to
new versions of the object being stored and
so that later get operations will be able to get
older data, whenever possible.

6) It will initialise all conduits that are acces-
sible to this context manager. Conduits are
conceptually separated from the remaining of
the code and are plugins communicating with
the remaining of the context manager through
a tiny and well-defined (internal) APIL.

7) It will read an initial “pairing” state (see
VI-C) that is used to initialise a number of
conduits and to bind a number of objects
to remote services. Pairing is explained later
and mostly a helper functionality that aims
at reinitialising the context manager every
time that it starts and reaching a similar
functioning state.

VI. FILE INTERFACES

Instead of providing an entire specification of
the file formats that are understood by the context
manager, this section focuses on providing real-life
(shortened) examples. These examples are anno-
tated and explained, bringing further insights to the
internal of the context manager and all the facilities
that it offers.

8 Actually, reading the main schema via the web is encour-
aged since this will enforce UUIDs that remain constant over
time and are bound to the specific installation. Preferably,
a hostname will be involved in the main URL to bind the
instantiated objects, classes and their UUIDs to a specific and
logical place.

19'th Anuual Tcl Association Tcl/Tk conference

A. Schema

As highlighted before, the context manager pro-
vides techniques to specify the schema that will be
used to describe the context itself. A key require-
ment to the provision of this schema is that it should
be easily approachable not only by IT specialists,
but also by less-knowledgeable people. To this end
the schema brings in object-orientation concepts but
simplifies them to their outermost. For example, it
provides simple inheritance and mixes both object
field specifications and inheritance’. The schema
does not provide concepts such as private variables
or similar, once again for the sake of simplification.

Below is a cut-down example of a schema,
providing a flavour of how a schema looks and
feels like. Roughly, this example schema divides
the space into a number of possible floors and
rooms within a building, and enables each part of
the space to carry a number of devices (inhabitants
are left aside on purpose). The example sports a
single type of device, namely a thermometer, which
demonstrates the (definition and) use of constraints
to provide for a richer expression of units and
properties of the physical world. The constraint
defines temperature (in Celsius) as a floating point
value that always is above the OK.

Space {
name String
contains Spacel]
devices Devicel]

Outside {

}

Building {
address Address
pos Coordinate

}

Apartment {
number Integer

}

Floor {
above Floor
below Floor

}

Room {

"While mixing class hierarchy and description in the same
flow might surprise, this solution was chosen for the sake of
simplicity. It has the advantage of presenting all data relevant
to a given schema at a glance.

Chicago, IL November 14-16, 2012

Kitchen {
}

Bedroom {
}

Office {

}

Bathroom {

}

}

Address {
street String
streetNumber Integer
areaCode Integer
city String
country String

}

Coordinate {
latitude Float
longitude Float

}

Temperature:Float {

intervals {[-273.15, [}
unit "celsius"

}

Device {

name String
SensorDevice {

Weather {

Thermometer {

value Temperature

To simplify the approach by non-technical experts,
no forward declaration of classes or constraints is
necessary. All new “types” that are discovered will
be understood as (empty) classes as a start and
converted when their real definition occurs. While
this has the drawback of more complicated parsing
and the possibility of duplicates or of unknown state
— what to do when a class with a given name is
then specified as a constraint under the same name
— these problems are considered minor compared
to the necessity to forward declare classes or con-
straints before being able to use them.

19'th Anuual Tcl Association Tcl/Tk conference

B. Model

The schema only specifies and constraints the
types of the objects that should be placed in a
model. While the schema is essential to the context
manager since it provides guidelines to what can be
instantiated within the model, achieving a concep-
tual model of a home and all its online devices is
the ultimate goal of the context manager. To this
end, the context manager provides a file format
that is easily approachable, allowing people to
quickly model their own house. At later stages, and
depending on the success of the approach, graphical
tools would certainly provide help in specifying the
final model, perhaps based on existing drawings
(blueprints or CAD).

Below is an extract of a model, based on the ex-
ample schema above. The purpose of this example
is to set the scene and provide a flavour for how
model files could look like. Complete models tend
to be more extensive, so the example below is not
complete.

Outside pHatarenl {

name "PositivHatarenl"
contains {myHouse}
devices {

outsideTemp

}
Address aSodermanlO {
street "August Soédermansvag"
streetNumber 10
areaCode 12938
city "Hagersten"
country "Sweden"
}
Approximate center of our lot.
Coordinate myPosition {
latitude 59.299428
longitude 17.970209
}
The house contains three floors,
which will contain the rooms.
Building myHouse {
name "House Frecon-Waller"
address aSodermanlO
pos myPosition
contains {
ground cellar top

Chicago, IL November 14-16, 2012

The different floors in the house,
here only one for the sake of

concision.

Floor ground {

name "Ground Floor"
contains {

hall kitchen diningRoom
livingRoom bath vilma

}
above cellar
below top

}

FHEHEHE

Devices

Thermometer outsideTemp {

name sensor outside"

}

The model uses the schema to control the content
of objects that are created within the model. Every
instance of a class is referenced using an iden-
tifier. Using techniques similar to those used for
the schema, objects can be referenced before they
are actually used, but the model provides enough
feedback whenever the data that is specified does
not correspond to the schema that controls what can
be specified.

In the resulting model, both instantiated objects
within the model and classes are identified by a
UUID[20]. The UUID is of type 3 or 5 and built
using a concatenation of the URL to the model (or
to the schema), the class name and (when relevant)
the reference to the object. This ensures that, even
upon restarts, objects and classes will keep their
UUIDs as long as the file structure, content and
location has not changed.

"Temp.

C. Pairing

In order to be able to restart from a similar state
at all times, the context manager is able to read
from a pairing configuration file once the schema
and the model have been read. The purpose of this
file is to establish all the necessary conduit con-
nections to well-known services. Pairing is made
at the conduit level, thus at the REST/JSON level.
In other words, when initialising the pairing, the
context manager behaves as if it was an external
client to itself. This is to be able to support new

19'th Anuual Tcl Association Tcl/Tk conference

conduits in the future and to fail nicely if some
conduit initialisation did not succeed properly.
Below is an annotated example file showing
how pairing can be initialised at start, the syn-
tax provides some visual markup to highlight the
source and destination objects and uses a number
of heuristics to detect which conduit to use for data
migration. An integer is understood as a COSM
feed, a UUID as an object from the local context
manager, a URL ending with a UUID as an object
in a remote context manager, a URN starting with
gcal: as a Google calendar and a URN starting
with UPnP: as a UPnP service. The “arrow” of the
markup can specify and/or force polling frequency
and indentation is used to further specify how the
value of fields are carried to the remote entity.

Map my heat pump to the COSM feed with

identifier 53880. Non-matching

fields/datastream names will be ignored.

API key is picked up from the configuration
of the context manager.
55851044-b290-56a5-3c88-d64ffbfa75e9 —-> 53880
Another COSM mapping, making sure the COSM

datastream “inside” is mapped to 4 times the

value of the field “value” in the context

object,
20ecdbed-8459-5636-6146-71c618badc71l -> 53882
%$inside% = 4.0x%value$%

Reverse COSM mapping, datastream called “2”

in feed 55180 at COSM is brought the field

“wvalue” in the context object.

55180 —--—>
$values =

%2%

Pick up the weather station of somebody else,
field names / datastream mappings and

do some
force polling to occur every 180 seconds.

45036 -180-> 684c4el9-c4ed-5861-£127-59109a41bb56

Stemperature% = %$OutsideTemprature$

%$pressure$ = $ABSPressure$%

Shumidity$% = %$OutsideHumidity$

%$rain% = %Rain%

$windDirection% = $WindDir$%

$windSpeed% = %$WindSpeed%
Send status of context object to the UPnP
service named "Dev"

5d9%9a66e5-9738-598c-d0b0-e707eb0e2a36 —> UPnP:Dev

VII. APPLICATIONS AND EXAMPLES

This work has been carried out within the frame-
work of a European project looking into energy
optimisation. The project uses traditional home
automation in order to attain energy savings while
still offering the same level of comfort. The project

Chicago, IL November 14-16, 2012

929494fb-84el-50cb-beea-c04aecdal88a

also seeks to offer “soft” actuation mechanisms, i.e.
providing enough (summarised) information about
some of the decisions taken by devices in the
home to let inhabitants take the final necessary
steps. Ambient displays are used to carry out this
type of information in a form that is aesthetically
acceptable. A number of prototype pilot houses
have been equipped with sensors and actuators of
various forms in order to gather data for future
data-mining activities, but also to experiment with
how smart actuation can turn into energy savings or
reduction of CO, emissions. This section describes
one of these prototype installations, located in the
outskirts of Stockholm. There are several other
installations, featuring a slightly different feature
set of software and hardware so as to adapt to the
particularities of these households: type of heating,
electricity meter, etc.

A. Heating and (Inner) Climate

1) Heat Pump Analysis (and Control): Live
status from a heat pump (IVT Greenline HT+)
is picked up via its service serial interface using
software from a small Swedish company called
Husdata'®. This is connected to a PC running
Windows sitting on top of the pipe system in the
direct vicinity of the heat pump. The default settings
within StatLink, the software provided by Husdata
as part of their offering have been slightly modify
to increase the number of sensors being read and to
regularly dump sensor data to a particular location
on the PC, a location that is served by a tiny
web server!!. Raw dump data is (remotely) polled
by a Tcl script at regular intervals and pushed to
the context manager after naming transformations.
Within the context manager, a conduit forwards

"Husdata http://www.husdata.se/ offers a number of hard-
ware modules to connect a computer to a range of heat pump
commonly found in Sweden, from several manufacturers.

""The current installation relies on mongoose, available at
https://github.com/valenok/mongoose.

19'th Anuual Tcl Association Tcl/Tk conference

acquired data to two COSM feeds'?.

Figure 2. Husdata provides a hardware module to connect
to the service serial interface of the heat pump, together with
Windows software for analysing the decisions taken by the
pump over time.

Figure 3. A Windows PC collects data from the heat pump,
it is placed on top of a number of copper pipes in direct
connection to the pump. The module with an antenna is the
root node of the WSN network that collects temperature and
main electricity data (see sections VII-A2 and VII-B1).

The current solution only provides gathering of
heat pump sensor data. This has been immensely
valuable since we can now perform long-term anal-
ysis of the behaviour of the heat pump using data-
mining techniques, so as to be able to detect with

2Converted pump data is pushed to https://cosm.com/feeds/
53880, temperature is pushed to one of the datastreams of
https://cosm.com/feeds/53882, additionally raw data, as taken
directly from the husdata software is pushed to https://cosm.
com/feeds/52002. This is being used mainly for debugging
purposes and for detecting possible failures in the context
manager and in the surveillance PC network connection.

Chicago, IL November 14-16, 2012

this given household will need warm water. It opens
up for predicting when it will use warm water in the
future, so as to shutdown warm water production
during peak hours and start again at off-hours, be-
fore warm water is needed again. However, taking
these last steps implies being able to control the
internal logic of the heat pump, using the serial pro-
tocol described at http://rago600.sourceforge.net/.

2) Inner Temperature: A TinyNode[21] board
running Contiki[22] and carrying a temperature
sensor is hidden behind a photo frame. Measure-
ments are sent along a mesh network at regular
intervals, captured via the pump computer and sent
on via UDP to a Tcl script. The script automatically
pushes data into an object of the context manager,
and further to COSM!? via a conduit.

Figure 4. The TinyNode measuring temperature hides itself
behind a photo frame in the living room, so as to break the
aesthetics as little as possible. It has been slightly pushed aside
for the sake of documentation and picture taking.

This particular heat pump installation only con-
tains an outside temperature sensor, with which
all decisions are taken when it comes to heating.
The pump is able to host an inner temperature
sensor (cabled) to take better decisions about when

PTemperature is pushed to one of the feeds https://cosm.
com/feeds/53882 that already is used to publish the outside
temperature acquired via the heat pump, though to another
datastream.

19'th Anuual Tcl Association Tcl/Tk conference

and when not to generate heat. Combined with the
planned implementation of serial connection and
control of the pump, the provision of a wireless
inner sensor could provide for better inner climate
without the wiring that is required by regular in-
stallations.

3) Weather: A specially written Tcl script can
be used to update (in the future) an object of the
context manager to reflect the weather forecast for
a given location. The script uses the REST/JSON
API from the Weather Underground'# to access an
hourly forecast for the coming 10 days. As updates
are made in the future for those specific times, they
are automatically stored in the noSQL cluster and
set back as the “current” value as time passes. The
script can be run once in a while or continuously.
It will thus keep updating the object with an up-to-
date weather forecast, allowing other applications
using the context manager to reason about the
current and future weather situation. For example,
an application that would control heating could
make the decision to accept temporary temperature
drops if the outside temperature is only going to
decrease for a few hours/days. The object that the
script sends its data share the same model as a
weather station, thus implementing a virtual private
weather station in combination with the script.

B. Electricity and Energy Consumption

1) Total Measurement: The past decade has seen
the progressive replacement of all electricity meters
in Sweden in favours of so-called smart meters.
These meters are able to report the hourly electricity
consumption to the utility company as time passes,
so as to bed for refined billing and better dimen-
sioning of the grid. Pulses from the electricity meter
are captured by another TinyNode sensor running
Contiki, manufactured by CRL Sweden. Data is
pushed out of the sensor network to the same Tcl

“Documentation for the API is available at http://www.
wunderground.com/weather/api/. There are numerous other
services offering the same type of data, Weather Underground
was chosen because of its ability to chunk several questions
into one request, but also because it is also uses ideas from the
Internet of Things: forecast are improved using the data from
private weather stations, whenever possible.

Chicago, IL November 14-16, 2012

bridge as in section VII-A2. The bridge forwards
to another object of the context manager, and thus
automatically to COSM">. This publishes an history
of the instantaneous power used by the household
over time. As electricity is one of these hidden
cost that is seldom understood, an ambient display
is at the planning stage; a display that will both
visualise how much electricity has been used so
far, but also provides feedback to the instantaneous
variations, thus to power, required by new devices
being switched on (or off).

Figure 5. All electricity meters installed in Sweden host a
LED (IR or visible) that flashes a number of time for each
number of Watts used. The pulse metering node, sitting on top
of the meter itself, continuously count these pulses and reports
the total count for the latest period via the WSN network.

2) Measurement and Control at the Device
Level: PlugWise are smart plugs manufactured
by a Dutch company. They form a ZigBee mesh
radio network, allowing access and control from a
computer to which a specific USB key is connected.
They offer three key features.

1) They host a relay, meaning that they are able
to turn on or off all the devices connected to
the plug and this from a distance. The state
of the physical relay can be queried at any
time.

2) They measure the instantaneous power being
used by all devices connected to the plug, a
value that can be requested from a distance.

'SThe COSM feed https://cosm.com/feeds/60040 is updated
at two minutes interval with the current power consumption of
the whole house

19'th Anuual Tcl Association Tcl/Tk conference

3) They keep an hourly log of the electricity
consumption related to the plug. As this log
is kept in memory in the plug itself, historical
data for the plug can be accessed from a
distance at later time if necessary. The log
rotates with time but keeps a few days worth
of hourly data.

A Tcl script couples one or several objects from
the context manager to as many smart plugs as
there are objects. At the core of the Tcl bridge is a
wrapper library around the command line interface
of one[23] of the open source libraries created to
access the PlugWise hardware and network. The
bridging script connects to object representations
of the plugs in the context manager using the
WebSocket API'® and pushes all information, in-
cluding relay state and historical data, gathered
from the plug. The state of the relay is represented
by a Boolean and turning the field on and off
in the context manager will be propagated to the
physical plug, allowing to turn on and off connected
electrical devices.

Figure 6. The form factor of the smart plugs from PlugWise
(white plugs on the picture) make them easy to install across
the house in order to measure the consumption of particular
devices, but also to automatically turn on and off (sets of)
devices based on heuristic such as the time of the day, the
day of the week, or more advanced schemes in response to
Demand/Response requirements from the grid.

'%In order to be able to resist to network equipment that
restrict the use of WebSockets, the plugwise bridge is also able
to poll at regular intervals for the desired state of the physical
relay.

Chicago, IL November 14-16, 2012

3) Spot Prices: The Swedish electricity market
has been deregulated for a number of years and
prices vary on an hourly basis, dividing Sweden
in four different geographical regions. Nord Pool
Spot runs the power market in Sweden and offers
day-ahead prices to its customers. A Tcl script
continuously acquire the prices!” for all regions
and updates one or several objects of the context
to reflect the current price at that location.

C. Ambient Interfaces

An off-the-shelf multi-coloured lamp is put under
the control of a REST-based server written in
Tcl. Controlling of the lamp is via the IR from
Dangerous Prototypes'®. At present and for time
reason, the solution only works on Windows, on top
of WinLIRC. The lamp can take a wide number of
colours and the REST interface accepts any RGB
codes, approximating to the closest available colour
on the lamp.

Figure 7. The design of the lamp makes it an acceptable
display for home “events” in a number of cases.

A second Tcl REST server offers a Web interface
to “tune” the lamp to various data sources present
in the context manager. The user interface is kept

7Prices are scraped from http://www.nordpoolspot.com/ for
historical reasons.

'"8The IR toy is a set of open source hardware and soft-
ware available at http://dangerousprototypes.com/docs/USB_
IR_Toy_v2 to record and (re)play the IR codes of most
infrared-based remote controls.

19'th Anuual Tcl Association Tcl/Tk conference

to a bare minimum, but is easily accessible from
both computers and mobile devices, which is the
expected future scenario. Using colours, the lamp
can visualise the live status of the heat pump (from
green when not working to purple when using
external heat), the temperature inside or outside,
the price of the electricity on Spot, etc.

fLamp Source Switchors temperature

|0

Figure 8. In the figure above, the lamp is tuned to the outside
temperature and the user interface is shown on nearby TV for
demo purposes. The Ul uses the COSM connection to display
relevant historical graphs.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented the context manager,
a central hub designed both to provide contextual
data to IoT applications and a storage for historical,
present and future sensor and actuator data. The
context manager is designed to lower the learning
curve, letting less technically inclined people model
and reason about their smart homes. Concepts such
as pairing, conduits and triggers lean themselves
easily to be controlled and specified via user in-
terfaces rather than via the file formats that have
been summarised in this document. As such, these
concepts already contain parts of the logic that
would control the flow of data between different
objects, combined to both actuation and visualisa-
tion through external services. Possible extensions
would consist in looking into visual programming
efforts such as App Inventor[24] and ways to in-
corporate some of these ideas into the IoT domain.
Already, colleagues have started to work on the

Chicago, IL November 14-16, 2012

building blocks of an “appification” of the home,
i.e. the installations of “apps” that can control parts
of your homes to attain some energy savings, while
providing a (mobile) user interface to input settings
and refine controlling. For this “appification” to
take place, applications will need to be able to
reason about the context in order to adapt to the
specificities of as many homes as possible. They
cannot rely on users or hard-coded objects, instead
the location and search facilities of the context
manager will be key to reasoning about the context
and answers questions such as “give me all the
lamp sources in that room” or “Have all inhabitants
left home now?”. In its current implementation, the
context manager is starting to be able to provide an
answer to this type of questions.

APPENDIX A
INTEGRATING WSN SENSORS AND ACTUATORS

Apart from the TinyNode deployment that has
been described in section VII, additional Tcl scripts
have been written in order to interface with IPv6-
based WSN, one of the areas where the OS
Contiki[22] is widely used. In meshing WSN, it is
essential to restrict the size and number of packets
to a strict minimum in order to keep power require-
ments low. The current implementation of these
scripts relies on the HTTP capabilities of the motes.
HTTP leads to sizable headers and the necessity
to keep the TCP state across the network. Future
directions will look into UDP'® and WebSockets.

Scripts bridging motes to the context manager
will receive or poll for mote data and push this
data as updates to the field of one or several
objects in the context manager. The simplest script
will regularly poll for data at given motes with a
given frequency. However, the more complex script
is inspired by techniques initiated by CoAP[26].
It combines a UDP and HTTP servers, in order
to both support regular HTTP POST and GET
operations, but also to entertain WebSockets con-
nections. On startup, the script contacts all relevant

"Problems with the current UDP implementations in Tcl 8.6
(and in combination with IPv6) have unfortunately put part of
the development on hold.

19'th Anuual Tcl Association Tcl/Tk conference

Figure 9. Two of the supported motes. To the left is a mote
from Tyndall[25] that sports a stackable and pluggable interface
for various sorts of sensors (temperature and humidity on the
picture). To the right is a commercial mote from Flexibility
(see http://www.flexibity.com/) implementing a thermometer,
hygrometer and barometer.

motes and subscribes itself (the proper root/details
to the servers that it implements), together with
a frequency for reception of data. Consequently,
motes will, whenever needed push data to the script,
which will forward it further to the appropriate
objects of the context manager, depending on its
configuration.

ACKNOWLEDGMENTS

Most of the work has been sponsored by the Eu-
ropean ARTEMIS project me>gas, with valuable in-
put from M. Westbergh (CRL Sweden), S. Duquen-
noy (SICS), J. Eriksson (SICS), P. Kool (CNet), P.
Hansson(SICS) and L. Moore (Tyndall). Most of
the code has been opened source at the following
project location: http://code.google.com/p/efr-tools/

REFERENCES

[1] B. Welch, K. Jones, and J. Hobbs, Practical Program-
ming in Tcl and Tk. Prentice Hall, 20 June 2003.

[2] K. P. Birman and T. A. Joseph, “Exploiting virtual
synchrony in distributed systems,” in ACM Symposium
on Operating Systems Principles (SOSP’87), pp. 123—
138, 1987.

[3] R. Fielding, Architectural Styles and the Design of
Network-based Software Architectures, ch. 5, pp. 76—106.
2000.

Chicago, IL November 14-16, 2012

(4]

(5]
(6]
(7]
(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]
(16]
(17]

(18]

[19]

[20]

D. Crockford, “The application/json Media Type for
JavaScript Object Notation (JSON).” RFC 4627 (Infor-
mational), July 2006.

M. Banzi, Gerting Started with Arduino. Make:Books,
O’Reilly Media, Inc., Aug. 2011.

S. Monk, Getting Started with .NET Gadgeteer.
Make:Books, O’Reilly Media Inc., 4 May 2012.

T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Scientific American, 17 May 2001.

K. Aberer, M. Hauswirth, and A. Salehi, “A Middleware
For Fast And Flexible Sensor Network Deployment,” in
Proceedings of VLDB’06, pp. 1199-1202, 2006.

P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan,
“IrisNet: An Architecture for a Worldwide Sensor Web,”
IEEE Pervasive Computing, vol. 2, pp. 22-33, Oct-Dec
2003.

D. Halvik, G. Schimak, R. Denzer, and B. Stevenot,
“Introduction to SANY (Sensors Anywhere) Integrated
Project,” in Proceedings of ENVIRONINFO, Sept. 2006.
P. Kostelnik, M. Sarnovsk, and K. Furdik, “The Semantic
Middleware for Networked Embedded Systems Applied
in the Internet of Things and Services Domain,” Scalable
Computing: Practice and Experience, vol. 3, no. 12,
pp- 307-315, 2011.

M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
H. Frystyk Nielsen, A. Karmarkar, and Y. Lafon,
“SOAP Version 1.2 Part 1: Messaging Framework (Sec-
ond Edition).” W3C Recommendation, 27 Apr. 2007.
http://www.w3.org/TR/soap12/.

T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and
F. Yergeau, “Extensible Markup Language (XML) 1.0
(Fifth Edition).” W3C Recommendation, 26 Nov. 2008.
http://www.w3.org/TR/xml/.

G. Klyne and C. Newman, “Date and Time on the
Internet: Timestamps.” RFC 3339 (Proposed Standard),
July 2002.

E. Rescorla, “HTTP Over TLS.” RFC 2818 (Informa-
tional), May 2000. Updated by RFC 5785.

S. Sanfilippo and P. Noordhuis, “Redis,”
http://redis.io/.

I. Fette and A. Melnikov, “The WebSocket Protocol.”
RFC 6455 (Proposed Standard), Dec. 2011.

A. Presser, L. Farrell, D. Kemp, W. Lupton, S. Tsu-
ruyama, S. Albright, A. Donoho, J. Ritchie, B. Roe,
M. Walker, T. Nixon, C. Evans, H. Rawas, T. Free-
man, J. Park, C. Chan, F. Reynolds, J. Costa-Requena,
Y. Ye, T. McGee, G. Knapen, M. Bodlaender, J. Guidi,
L. Heerink, J. Gildred, A. Messer, Y. Kim, M. Wischy,
A. Fiddian-Green, B. Fairman, J. Tourzan, and J. Fuller,
“UPnP Device Architecture 1.1,” tech. rep., UPnP Forum,
15 Oct. 2008.

J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart, “HTTP Authen-
tication: Basic and Digest Access Authentication.” RFC
2617 (Draft Standard), June 1999.

P. Leach, M. Mealling, and R. Salz, “A Universally
Unique IDentifier (UUID) URN Namespace.” RFC 4122
(Proposed Standard), July 2005.

2012.

19'th Anuual Tcl Association Tcl/Tk conference

17

[21]

(22]

(23]

[24]

[25]

[26]

H. Dubois-Ferriere, L. Fabre, R. Meier, and P. Metrailler,
“Tinynode: a comprehensive platform for wireless sensor
network applications,” in Proceedings of the 5th inter-
national conference on Information processing in sensor
networks, IPSN *06, (New York, NY, USA), pp. 358-365,
ACM, 2006.

A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors,” in Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks,
pp. 455-462, 20 Dec. 2004.

S. Petai, “python-plugwise.” Bitbucket Project, 20
Mar. 2011. https://bitbucket.org/hadara/python-
plugwise/wiki/Home.

D. Wolber, H. Abelson, E. Spertus, and L. Looney, App
Inventor. O’Reilly Series, O’Reilly Media, Inc., 15 Apr.
2011.

A. Lynch, K. Aherne, P. Angove, J. Barton, Harte S.,
D. Diamond, and F. Regan, “The Tyndall Mote. Enabling
Wireless Research and Practical Sensor Application De-
velopment.,” in Adjunct Proceedings, Advances in Perva-
sive Computing, pp. 21-26, May 2006.

Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Con-
strained Application Protocol (CoAP),” Internet Draft
draft-ietf-core-coap-12, IETF, 1 Oct. 2012.

Dr. Emmanuel Frécon is a senior
researcher at the Swedish Institute of
Computer Science (SICS). He received
his Ph.D. from the IT university of
Gothenburg in 2004. He has (co-
)authored a number of articles in books,
refereed conferences and journals, as
well as edited a book in the field of
computer science. Across the years his

research 1nterests have slowly shifted from collaborative virtual
environments to ubiquitous computing, not forgetting ambient
displays and novel interaction techniques. He strongly believes
in the feedback loop between technology and users.

Dr. Emmanuel Frécon is also an entrepreneur and has co-
founded two companies. He is on leave from his second
company, JoiceCare, where he worked as a system architect
and CTO. JoiceCare sells products for the elderly market:
a SIP-based video telephone and a video-based supervision
system. He also believes that industry and research have a lot
to bring to one another and intends to alternate workplaces as
opportunities present themselves.

Chicago, IL November 14-16, 2012

WTK for APWTCL

An implementation of TK like Widgets for APWTCL.

A paper for the Nineteenth Annual Tcl/Tk Conference

19'th Anuual Tcl Association Tcl/Tk conference 18 Chicago, IL November 14-16, 2012

Abstract

During first half year of 2012 APWTCL (the successor of itcl in javascript) has been
implemented and based on the javascript version two additional versions have been
implemented for better native performance: APWTCL (Java) for Android based handhelds
and APWTCL (Objective-C) for iPhone. To have running something comparable to Tk for
APWTCL, there was the decision to use wtk from Mark Roseman
(https://github.com/roseman/wtk) as a base. This package splits up the administration and
data of a widget to be handled with Tcl (snit classes and objects) from the representation
(displaying on the screen), which uses native support from the environment it is running on.
Original wtk was dedicated to support javascript only, my implementation inserts an
environment independent message interface (using a string based protocol) in between and
then uses native support for displaying and handling the widgets and events. The action
handling on the events is done by passing the information back to the Tcl part, which is
modifying the (Tcl side) data and calling Tcl callback scripts if necessary.

19'th Anuual Tcl Association Tcl/Tk conference 19 Chicago, IL November 14-16, 2012

Contact information
Arnulf Wiedemann
Lechstr. 10
D-86931 Prittriching

Email: arnulf@wiedemann-pri.de

19'th Anuual Tcl Association Tcl/Tk conference 20 Chicago, IL November 14-16, 2012

1 The ldea

Already during implementing itcl in javascript there was the decision to use wtk as the
frontend for GUI building. WTK (WebTk) is a Tk like implementation of some widgets
(frame, entry, button, label, checkbutton and canvas) and a rudimentary implemenation of a
grid manager. It is based on the idea to separate the data and administration part of the GUI
from the presentation part. The communication between the two parts can be done in different
ways:

* Using a direct function call to the wtk client side functions

* Using a client/server solution which is running the client part (the presentation part in
javascript) in the browser and the server part (the Tcl part) on the serving machine

The base for the above implementation is a snit class widget, which can create and
administrate a widget. It is (from the comment of the implementation of Mark Roseman):

A 'generic' widget object, which handles routines common to all widgets like assigning it an
id, keeping track of whether or not it has been created, etc. Purely for convenience, we also
include some code here that manages widgets that use -text or -textvariable, though not every
widget will do so.

The “mega”widgets like frame, button, entry etc. are built with snit classes, which delegate a
lot of functionality to the widget base class. Again a comment from Mark Roseman from the
implementation:

Stuff for defining different widget types here. Note that all widgets are expected to implement
the " createjs" method. This is called by the generic widget code, and should return a
Javascript command that can be used to create the widget on the web side of things (i.e. calls
routines in wtk.js).

Widgets that support -text and -textvariable are expected to implement the " textchangejs"
method, which is called by the text handling pieces of the generic widget code, and should
return a Javascript command that will change the text of the widget on the web side to match
the current internal state of the widget here.

Widgets that receive events from the Javascript side are expected to implement the " _event"
method, which is passed the widget-specific type of event and any parameters.

Wtk js is a set of functions building the base of the repesentation/displaying (client side) part.

Communication between the administrative side and the displaying side is done using two
global procs:

e toclient
e fromclient

These classes and procs have been used to implement a running version in itclinjavascript
using a few javascript classes to allow the direct communication with the interpreter written
in javascript.

19'th Anuual Tcl Association Tcl/Tk conference 21 Chicago, IL November 14-16, 2012

2 How the current version started

As can be seen in my presentation APWTCL at the 10th European Tcl/Tk User Meeting ths
year and on the wiki page there has been a reimplementation of itclinjavascript based on
JimTcl. This version was the first version wtk from Mark Roseman as an interface for
handling basic widget support. Following that APWTCL (Javascript) version there was
another implementation of APWTCL in Java for supporting Android smartphones and an
implementation in Objective-C for support of iPhones.

When arriving at the point for building support for wtk widgets the first approach was to use
the administrative part of wtk mostly as it was and to replace sending of javascript code to the
displaying part by a generic message (string based) interface.

On the client side there should be a small interpreter for decoding the messages and for
switching and dispatching to the appropriate functions for doing the displaying and event
handling work.

This was first implemented for the 10OS version, later on there was a port of that code to Java
to support Android.

19'th Anuual Tcl Association Tcl/Tk conference 22 Chicago, IL November 14-16, 2012

3 The Message Interface

For the message interface a simple string based protocol was implemented, which had the the
message itself and the parts encoded as length and info parts. A Message is generally built
similar to a Tcl proc call in having a command and some parameters for the command. The
command is normally a class object and the first parameter is the action to be executed on a
GUI element. The parameter is normally a handle for the GUI element to be worked on and
the other parameters are additional info for the action like option and value pairs. The first
character of the message shows the type of the message normally M and there will eventually
be a type E for end of a message block. That way the protocol is extensible with other types.
Right now there exist no other types.

The layout of the message interface is as follows:
Mc<length of message>:<message>

99,99

<length of message> is the length of the following message text (not including the ”:””) as an
integer number

and a message is composed of 1 .. n parts with the following layout:
<length of part>:<part>

99,99

<length of part> is the length of the following message text (not including the :”) as an
integer number

<part> is a sequence of printable ASCII characters.

These messages are interpreted on the client side (or the part which acts as a client for
example some class methods).

Some examples:

MS53:9:wtkcelientl 1:createLabel4:0bj120:1abel: Hello Chicago
M33:9:wtkclient7:newGrid4:0bj05:grid0
M38:9:wtkclient4:grid5:grid09:insertRow1:0
M48:9:wtkclient4:grid5:grid03:row1:010:insertCell1:0
M70:9:wtkclient4:grid5:grid03:row1:04:cell1:011:appendChild7:widgets4:obj1
M47:9:wtkclient12:createButton4:0bj213:Hello Chicago
M70:9:wtkclient4:grid5:grid03:row1:04:cell1:011:appendChild7:widgets4:0bj2
M38:9:wtkclient12:createButton4:0bj34:Quit
M70:9:wtkelientd:grid5:grid03:row1:04:cell1:011:appendChild7:widgets4:0bj3

19'th Anuual Tcl Association Tcl/Tk conference 23 Chicago, IL November 14-16, 2012

4 The Client Side

The client side is responsible for creating and displaying the GUI elements like a button or a
label.

The implementation of the GUI part started with the iPhone version, the Java version was
done some time later.

Some details of the client side:

The client side is implemented as a class with methods for the GUI elements and other parts.
There is one object of that class instantiated at the beginning and when starting the
application the implementation of the toclient and fromclient methods is defined.

Toclient encodes the message and uses the instantiated client object as the object and calls the
decode message implemented there.

A reference to the fromclient method is set by an appropriate setter call to the client object.

The client side decode method decodes and interprets the messages sent via the message
interface

For example for this message:.
M53:9:wtkclient11:createLabel4:0bj120:1abel: Hello Chicago
After decoding we get a Tcl like list with the following contents:
{wtkclient createLabel obj1 {label: Hello Chicago}}

The first two parts build the client objects method to be called (after some mangling):
wtkclientCreateLabel and there are two parameters: objl and {label: Hello Chicago} for that
message.

As i0S and Java both can call class method using a text string with reflection/selectors this is
the technique used.

Method wtkclientCreateLabel is responsible for creating a GUI element label with the text:
“label: Hello Chicago”

First approach for crating GUI elements was, to use the native GUI elements available on
iPhone namely the UI* classes. Using that approach, there is a rather limited implementation
of a button and label support. Rather limited in that respect only means there is no completely
compatible environment available as for a Tk Button.

Instead of a mouse click there is the possibility to hit the button using a touch screen event.
When this event fires a native method is called, which in turn can call another method (in our
case come method inside the client class. This method is implemented to forward that “event”
to the Tcl wtk part in calling the fromclient method with parameters. Via that way the
notification for an event is reaching the Tcl part, which in turn can handle the administrative
part of the event and eventually is sending back some other message to be handled, for
example to change the text of a button when the button is hit.

19'th Anuual Tcl Association Tcl/Tk conference 24 Chicago, IL November 14-16, 2012

5 Different Approach for GUI Elements

Very soon the implementation reached a point (at least on the iPhone side) where it was
obvious, that there is a lot of functionality missing, when looking for Tk like widgets. That
might be partially because Apple wants to look all their GUI stuff look like they want it to be
dispayed.

At that time some experiments with OpenGL ES started. OpenGL ES is a cut down version of
OpenGL running on i0OS and on Android and as part of WebGL in javascript for browsers too.

The experiments were based on the idea to use screen buffer implementation of OpenGL ES
as a base for displaying pixels on the screen and to use some primitive functions of OpenGL
ES like drawing a line or a rectangle or a polygon and filling some area with colors. For
displaying text the idea is to use a freetype font implementation, also available for the iPhone.

Using that approach, it would be possible to use 3-D elements to be shown and also rotation
of text would be very easy using OpenGL Es functionality.

As OpenGL ES is also used as a base for some games on iOS the guess was, that it should be
fast enough for the implementation of a Tk GUI.

Having some small knowledge of OpenGL from the implementation of ntk widget the
decision was made to give OpenGL ES a try, to see, what can be done using that.

19'th Anuual Tcl Association Tcl/Tk conference 25 Chicago, IL November 14-16, 2012

6 Use of OpenGL ES

The implementation of OpenGL ES for iOS (iPhone) has a rather simple interface to work
with. There is an OpenGL graphic context, which can be used to display OpenGL ES
primitives like a screen buffer.

OpenGL ES also offers primitives for drawing lines and polygons and to fill areas. Areas are
built using for example triangles (there is no support for rectangles, which can be built using
two triangles). Lines and triangles are built using vertices. There is an advanced interface
available for using arrays of vertices for building graphics elements.

There were some successful experiments in building a Tk button using two triangles for the
inner rectangle part and using a combination of some lines for building borders.

It is possible to add an event handling function to be called when a user fires a touch screen
event in hitting at some point on the screen. This event also contains the x and y coordinates,
where the event happen, Using that information and knowing where on the screen is the area
of the simulated button it is possible, to detect when the touch screen event was fired inside
the button rectangle area.

When the touch event happened inside the button area it is possible to emulate the Tk like
press and release events of a button in setting different border colors for the four borders built
using some lines. That way it is possible to make the button look sunken or raised. Depending
on the touch screen event.

Experimenting with that implementation the idea came up to eventually use the ideas behind
themed Tk (tile or ttk). Looking at the implementation of ttk it seems to be feasible, to
implement some modified version of themed Tk widgets using OpenGL ES as the graphic
context for displaying the stuff on the screen. Going that way, it would be rather simple too to
rotate elements including text. For displaying text there are still some experiments necessary
as there is nreal experience yet on how freetype2 fonts are supported on the iPhone (i0S).
There is a port/adaption af freetype fonts called freetype2 from David Petrie for iOS and
there if a ftgl library called ftgles also from David Petrie which can be compiled, but I was
not yet able to make a demo running also it can be linked and started, but the display stays
black. Seems to be a problem of adapting to i10S5, as the original was designed for 10S4.

The implementation of themed Tk functionality itself seems to be straight forward, just a
matter of doing the work in Objective-C respectively Java.

During testing the implementation there were some problems in building rounded corners for
button corners. There have been implemented some different algorithms, but without final
success. There were always problems with rendering in getting something looking nice.
There is some more time needed to find something suitable, as it seems to be possible looking
at i10S button with rounded corners. It has to be found out, if there is a problem with the
algorithms used or with OpenGL ES or how to use the same rendering as iOS UI
functions/algorithms are using.

19'th Anuual Tcl Association Tcl/Tk conference 26 Chicago, IL November 14-16, 2012

7 Status

It seems the suggested way is doable.
It also seems, that using OpenGL ES as the base is a rather platform independent way.
Making work freetype fonts and ftgles to be done.

The complete implementation of themed Tk support is not yet started, it should be relatively
easy using enough time to do the work, as the existing implementation for Tk is available.

It seems not to be possible to use native fonts with OpenGL ES.
The implementation of the widgets using OpenGL ES commands is at the beginning.
There is the need for test cases..

There is also the need for examples/demos.

19'th Anuual Tcl Association Tcl/Tk conference 27 Chicago, IL November 14-16, 2012

19'th Anuual Tcl Association Tcl/Tk conference 28 Chicago, IL November 14-16, 2012

Tcl 2012
Chicago, IL
November 14-16, 2012

HOSP\TON =OPERAT LT RORX,

Session 2
November 14, 13:15-14:15

19'th Anuual Tcl Association Tcl/Tk conference 29 Chicago, IL November 14-16, 2012

19'th Anuual Tcl Association Tcl/Tk conference 30 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Applications

William H. Duquette
Jet Propulsion Laboratory, California Institute of Technology
William.H.Duquette@jpl.nasa.gov

Abstract

The REpresentational State Transfer (REST) architecture includes: the use of Uniform Resource
Locators (URLs) to place a universe of data into a single namespace; the use of URL links within
the data to allow applications and users to navigate the universe of data; HTML/CSS for the
presentation of data; a limited set of operations that are available for all URLs; multiple content
types; and content negotiation when retrieving data from a URL. REST is primarily used in web
applications; however, pure desktop applications can also benefit from RESTful concepts and
technologies, and especially from the integration of web-like technologies with classic
application software. This paper describes how REST concepts and technology have been used
in the Athena simulation to present a vast sea of heterogeneous data to the user.

1. Background

The Athena Stability & Recovery Operations (S&RO) Simulation is a model of political actors
and the effects of their actions in a particular region of the world. The region is divided into
neighborhoods, in which reside various civilian groups. The actors have a variety of assets,
including money, military and police forces, and means of communication, which they use to
achieve their political ends. The extent to which they succeed depends on the attitudes of the
civilians, which change in response to current events. The model runs for a period of months to
years, and produces a vast quantity of data, all of which needs to be presented to the analyst in
some form or other.

The Problem

Athena stores most of its data in an SQLite3 run-time database (RDB). In Athena V2.0 most
data was made available to the user by taking the output of a particular database table or view
and throwing it into a tablelist-based browser.[1] Such a tabular display is useful; but when
the information about a particular entity, an actor, say, is extremely heterogeneous, one tabular
display cannot tell the whole story. It is possible to collect together the information about the
actor by looking across a number of tabular browsers...but not surprisingly our users thought
that the application ought to be doing this for them.

If only there was an easy way of presenting heterogeneous data to the user, while taking
advantage of relationships within the data as an aid to navigation....

19'th Anuual Tcl Association Tcl/Tk conference 31 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

The Solution

HTML/CSS is a powerful, well-understood means of presenting heterogeneous data to the user.
Uniform Resource Indicators (URIs) are a powerful means of identifying specific resources to
present to the user from within a vast sea of such resources. Links to URIs embedded in the data
are a powerful means of allowing the user (or the application) to navigate the sea of data. The
resource pointed at by a URI can exist in multiple content-types; through content negotiation, the
client can retrieve the content-type that is most useful for its purposes. These have generally
been used in web applications. However, there is no reason why these concepts cannot be
fruitfully used in the desktop environment within the context of a single application with no
network interfaces, when the application’s data model calls for it.

2. The Desktop REST Architecture

HTML, URIs, and the rest of the web technologies described above were created to support an
architecture called REpresentational State Transfer (REST) [2]; an application that uses REST is
called a RESTful application. REST is a web architecture; this section describes how we have
modified the basic concept to create a desktop REST architecture within our application.

REST: A Summary

A RESTful application, or client, accesses resources: collections of data, or indeed any kind of
entity, by means of Uniform Resource Indicators (URIs), of which there are two kinds, Uniform
Resource Locators (URLs), for resources that can be located and retrieved on-line, and Uniform
Resource Names, which are unique names for entities that exist off-line.

The client accesses these resources by means of a handful of verbs, which in principle apply to
all resources. In a traditional REST app, which uses HTTP for its transport, these are usually
GET, PUT, POST, and DELETE.

The resources are provided to the client by a server, and the server provides the data in a form
called the content type. Content types are typically expressed as MIME types such as
text/plainand text/html. A single resource might be available in any number of content
types, and the precise data returned for the resource might differ from one content-type to the
next. (E.g., text/html contains structure in a way that text /plain does not.)

The client accesses a server using an agent. The client gives the agent the URI of a resource, and

a verb, and the agent locates the server and accesses it on the client’s behalf. In particular, the
agent handles content negotiation: given the content types the client is prepared to handle, the

19'th Anuual Tcl Association Tcl/Tk conference 32 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

agent works with the server to provide the resources to the client in the content type it would
most prefer.

A resource’s content frequently contains URIs linking to related resources. The client can make
use of these URISs to navigate the sea of resources.

The most common content type is text /html, because it provides a way to display the
resource data attractively and allows the user to navigate the data space by clicking on links.
These days, HTML documents typically use Cascading Style Sheets (CSS) for formatting and
Javascript for interactivity. In a Tcl/Tk application, naturally, Tcl replaces Javascript.

These concepts and technologies provide just the thing to display heterogeneous, highly linked
data to the user.

Why Not a Web App?

The advantages of the REST architecture would seem to be an argument for implementing
Athena as a web application, yet there are compelling reasons for not doing so.

e Athena already exists as a single-user desktop application; moving to the web would
change the architecture considerably.

e Network interfaces come with security headaches. And although Athena is not classified,
it is often used in classified environments where network resources are tightly controlled
and security is taken very seriously.

e Ease of installation is key; we do not want to require the users to install a web server. We
could work around the installation issue by embedding something like TCIHTTPD in
Athena; but that still leaves us with the security headaches.

e We’ve not been asked to, nor do we have funding to make such significant changes, or to
come fully up to speed on robust, secure web applications.

Adapting REST to the Desktop

So the question becomes, how do we use these RESTful concepts in a desktop application? We
need to:

e Define a set of URIs that give access to various application resources.

e Determine the relevant content types. We use standard content types like text /
html, but also types relevant to the desktop environment, such as tk/image
and tk/widget.

19'th Anuual Tcl Association Tcl/Tk conference 33 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

e Implement a content server, and an agent with which to access it. Because the
server resides within the application itself, access can be synchronous; the
protocol reduces to a set of procedure calls.

e Specify tools for parsing URIs. We use the uri package from Tcllib.[3]

e Create tools for generating HTML output. (Yes, I wrote yet another HTML-
formatting module. It’s just something I do.)

e Choose a widget for displaying HTML/CSS

e Implement a web-browser-like mega-widget on top of TkHTML 3.0.

e Implement other widgets that can take advantage of server content.

With the RESTful components added, Athena’s architecture is as shown in the following
diagram; the new components are shown with a shaded background.

UserInterface
mybrowser] [Other Widgets
Y Y

myagent Other GUI

Y Y Y

appsener] [helpserver] [rdbserver
A
Events Queries Qrders
Y Y
Model

The Model represents the non-GUI portion of the application, including all management of
scenario data and the simulation proper. As described in [4], Athena’s User Interface interacts
with the Model via three mechanisms. First, the UI can query the Model in any way it likes,
provided that the queries do not affect the content of the Model in any way. Second, it can send
orders to the model; all changes to Model content and operation are triggered by these orders.
Third, the Model can send events to the U, to notify it of particular happenings within the
model. This portion of the Athena architecture remains unchanged from previous versions.

As a consequence of this existing architecture, we have not implemented the PUT, POST or
DELETE verbs of the REST architecture; the existing mechanisms handle these operations

19'th Anuual Tcl Association Tcl/Tk conference 34 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

perfectly well. Instead, we have focused on the GET operation, which is what we chiefly need to
present information to the user.

At present, Athena includes three servers. The helpserver serves up on-line help pages from
a pre-compiled help database. The rdbserver provides access to the schema and content of
the application’s run-time database as an aid to development and debugging. The appserver
is the most important of the three, as it provides access to the Model’s resources. These servers
are all instances of the myserver type.

Each of these servers is registered with the myagent module; instances of myagent provide
GET access to the servers, and also do content negotiation.

Instances of mybrowser can be used to browse the content of these servers in the usual way;
and there are other widgets that access the servers as well.

3. Displaying HTML/CSS

Desktop REST stands or falls on the application’s ability to display HTML content. And in order
to display HTML content, or at least HTML-like content, in a Tcl/Tk application, you need to
have an HTML widget. There is no perfect choice; this is a place where Tcl/Tk is sadly lacking.
The available options are these:

e Solutions based on the Tk text widget

e TKHTML 2.0

e TKHTML 3.0 [5]

e A wrapper around Gecko or some similar engine HTML engine.

It is possible to do a mostly adequate job of displaying an early version of HTML in a Tk text
widget; it handles links and interaction perfectly well, and it can even display images and
embedded widgets. HTML-style tables are a problem, however, and tools to position images and
embedded widgets precisely relative to the text (e.g., wrapping paragraphs around an image) are
lacking. In short, the Tk text widget is a solution, but only a mediocre one for this purpose.
(Were we to use it, we’d probably abandon HTML in favor of a Tcl-based presentation language,
to avoid parsing.)

Athena 1.0 and 2.0 had a help browser based upon TkKHTML 2.0. It is stable, having been
abandoned long ago, but it is highly quirky and its HTML support is archaic. Font support is
problematic; for example, you can have monospace type or bold type, but not both at the same
time. It claims to support embedded widgets but in our experience all attempts to do so end in a

19'th Anuual Tcl Association Tcl/Tk conference 35 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

crash. In our experience TKHTML 2.0 edges out the Tk text widget for display of rich content,
primarily due to its support for tables, but it is not very satisfactory.

Another option is TkGecko [6], a Tk wrapper for Mozilla’s Gecko HTML engine. It is clear
from the TkGecko paper that Gecko is very much a moving target, and that wrapping it in a
robust way is by no means easy. It would be an interesting choice if we wished to display live
web content from over the network, but we do not; and stability is crucial.

TkHTML 3.0 is an HTML/CSS renderer implemented as the basis for a Tcl/Tk web browser.
Abandoned some years ago, it has not kept up with the latest web standards. It has more than
enough horsepower for displaying application data, however, including tables, embedded
images, embedded widgets, and complex formatting. The bare widget lacks event bindings and
other features that were provided by the web browser within which it was to be embedded, but
once these are provided it becomes quite satisfying to use. It is fast, versatile, and sufficiently
stable for our use, and is what we have opted to use.

4. The URI Scheme

Athena uses two distinct URI schemes, neither one of which is found in the wild: the my: / /
scheme and the gui :// scheme.

The my:// Scheme

The most usual URI scheme used in Athena is the “my: / /” scheme, which is a simplification of
the familiar http: // scheme. my:// URLs have the same syntax as http:// URLs, with
the unnecessary parts (port numbers, passwords, etc.) omitted:

my://server/path..?query#tanchor

Here the server is the name of a myserver registered with myagent, and the path, query, and
anchor are defined as usual.

We chose the name “my :” for this scheme because the named resource belongs to the
application itself, rather than to some other entity out in the network. We considered abusing the
http:// scheme but rejected this for two reasons. First, we wanted to make it absolutely clear
that Athena has no network interface; it is not pulling resources down from the web. Second, it
allows us to modify the standards for http:// URLs without causing confusion to future
developers.

19'th Anuual Tcl Association Tcl/Tk conference 36 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

The gui:// Scheme

The gui:// scheme is a set of Uniform Resource Names (URN5) for entities in the Athena
GUI. Links using this scheme are not handled directly by the myagent/myserver
infrastructure; instead, the mybrowser widget hands them to its parent object via a callback,
which hands to the application for handling. The upshot is that the user can click on a link in a
browser, and the application will take them to some other tab in the GUI, or pop up an order
dialog. For ease of parsing, the gui:// scheme also uses a subset of the usual http://

syntax.

5. Content Types

The myserver component allows each instance of the server to serve up content of any
imaginable type. The standard MIME types text/html and text/plain are used for
HTML and plain text context respectively; for consistency, application-specific content types are
named in the same style, with “t k / t ype” used for Tk-specific content and “tcl/ type” used
for other kinds of data. The application-specific content types currently in use described in the
following subsections.

The tk/image Content Type

The content consists of the name of a Tk image. An instance of mybrowser can display
tk/image content directly and as the src of an HTML tag.

The tk/widget Content Type

The content consists of a Tcl script to create the widget so that it can be displayed in an HTML
page. The HTML <object> tag is used to embed widgets in pages; for example, the following
HTML embeds a time plot in the page:

<object data="my://app/plot/time?start=2+vars=basecoop"
width="100%" height="3in"></object><p>

The query portion of the URL specifies the variables to plot, and the start time of the interval for
which they should be plotted. The server uses these to customize the widget options, and then
returns the script to create the widget. (The TkHTML 3.0 widget handles the width and height
itself.) For example:

timechart %W -vars basecoop -start 2

19'th Anuual Tcl Association Tcl/Tk conference 37 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

The server doesn’t know the window name to use, so it inserts a “$W” in place of the window
name. The mybrowser substitutes in the window name and creates the widget, which then
appears in the web page.

The Netscape Tcl plugin was never so easy.

The tcl/enumlist Content Type

This content type is simply a Tcl list of enumerated values; it is usually used to populate
pulldowns in HTML forms, but can also be used by non-browser widgets.

The tcl/enumdict Content Type

This content type is similar to tc1/enumlist, but the value is a dictionary of enumerated
values and their human-readable equivalents. It is also used to populate pulldowns in HTML
forms.

The tcl/linkdict Content Type

This content type is used to represent trees of links. A tcl/1linkdict is a nested dictionary
mapping URLs (relative to the current server) to link metadata, primarily a human readable
label and a 1istIcon, a Tk image to display next to the label. As such it represents one
node in the tree, and its immediate children. By recursively retrieving tcl/1inkdicts for the
URLSs, a component like the 1inktree widget can build up a tree of model entities or help

pages.
6. Software Components

The Athena infrastructure includes the following software components.
The myagent Component

The myagent component is responsible for managing all interaction between clients and the
various myserver instances. Servers register themselves with the myagent module, and
instances of myagent retrieve data from the servers, doing all necessary URI resolution and
content negotiation.

When creating an instance of myagent, the client specifies the content types it is prepared to
handle, and the default server to contact:

19'th Anuual Tcl Association Tcl/Tk conference 38 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

myagent S$agent \
—-defaultserver app \
-contenttypes {text/html text/plain}

The client can then retrieve a URI’s content as follows:

set cdict [Sagent get Surl]

The agent will throw a NOTFOUND error if the data cannot be retrieved; otherwise, it returns a
dictionary with three keys: url, contentType, and content, which the client can do with
as it pleases. If desired, the client can specify the desired content type or types explicitly:

set cdict [Sagent get Surl tk/widget]

Instances of mybrowser will normally accept text/html, text/plain, and tk/image,
but will explicitly ask for tk/widget when handling an <object> element.

The myserver Component

Instances of the myserver component are registered with myagent, and thus become
accessible to the application. Each instance of myserver defines the set of URLSs that it can
handle, and the content types for each:

myserver ::appserver
myagent register app ::appserver

appserver register / {/?} \
text/html [list /:html] \
{Athena Welcome Page}

appserver register /actor/{a} {actor/(\w+)/?} \
text/html [list /actor:html] \
"Detail page for actor {a}."

Each of these calls technically registers a pattern, rather than a specific URL; the handler handles
all URLs that match the pattern. The first pattern registered above is simply “/”, the top-level
page for the server; the second registers a URL with a place holder for an actor’s symbolic name.

For each pattern, we specify a unique name, e.g., /actor/{a}, and a documentation string;
these are used in the server’s /urlhelp page, which every instance of myserver provides
automatically. Next, we provide a regular expression, which matches URLs of the correct

19'th Anuual Tcl Association Tcl/Tk conference 39 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

pattern. (Note that “*” and “$” are added to the expression automatically.) The regular
expression may include parentheses to indicate match parameters; these will be provided to the
handler. Finally, for each URL we specify a set of content types and handler commands.

Thus, when the server is given a URI it matches it against the registered resources; if a match is
found, and the URI has a compatible content type, the handler for that content type is called. For
example:

proc /actor:html {udict matchArray} ({
upvar 1 $matchArray ""

set actor [string toupper $(1)]

if {![actor exists S$Sactor]} {
return -code error -errorcode NOTFOUND \
"Unknown entity: [dict get s$udict url]"

return Scontent

The udict parameter is a dictionary of the components of the URI: the path, the query, and so
forth, as returned by uri: :split. The matchArray parameter is the name of an array variable
containing the matches from the regular expression; in this case, the actor’s symbolic name. The
handler may make use of both the udict and the matchArray or neither.

The mybrowser Component

The mybrowser component is a web-browser-like widget built on top of TkHTML 3.0. It has
its own instance of myagent, and thus can retrieve resources from servers. In addition to the
normal browser navigation tools, it has the following capabilities:

e Display text/html, text/plain, and tk/image resources.

e Embed tk/widget contentin text/html pages, when specified using the
<object> tag.

e Support HTML forms.

19'th Anuual Tcl Association Tcl/Tk conference 40 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

The following figure shows an instance of mybrowser. The toolbar, scroll bars, html pane, and
the paned window widget that allows the side bar to be resized, are all provided by
mybrowser; the sidebar itself is an instance of 1inktree (see Section The linktree

Component).

‘ ‘. e& + my:/app/actor/ GOV Search:

Objects | 72

¥ Overview

=% 2etors

. ~®EPP: Flitian Peo
. -#GoV: Elitian Gov
{ L4 DELF: Peonian Li
-‘ Heighborhoods

B Civ. Groups

-.*. Force Groups

B Org. Groups

[Drivers

% Contributions

$ Econ

#T caps

- Y Semantic Hooks
HE ToMs

[H-# Model Parameters

Actaor
GOV: Elitian Government

m

Goals | Sphere of Influence | Power Base | ENI Funding | CAP Ownership | Force
Deployment | Attack Status | Defense Status | Significant Events

Fiscal assets: $5.000M per week, with $0.00 cash on hand and $0.00 in resemne.
Groups owned: ARMY

Goals

. ‘ Maintain Control (goal=2)

Sphere of Influence

-

Actor GOV has support from groups in the following neighborhoods. Mote that an

4 | »

The browser’s support for HTML forms is robust but idiosyncratic. Athena has its own set of
data entry field widgets which do not entirely match up to the standard HTML form fields;
consequently, it provides its own mapping of <input> types and attributes to data entry fields,
ignoring the standard HTML input types completely. For example, this HTML creates a form
consisting of a single “enum” field, essentially a pulldown containing items from an enumerated
list. The list of values comes from URL my: //app/enum/sortby, which must provide
content type tcl/enumdict. The default value for the pulldown is “name”.

<form action="my://app/page/Cal" autosubmit="yes">

<label for="sortby"s>Sort Cells By:</label>

<input name="sortby" type="enum" content="tcl/enumdict"
src="my://app/enum/sortby" value="name">

</form>

The form looks like this in use:

19'th Anuual Tcl Association Tcl/Tk conference 41 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

Model Page: Cal

Sort Cells By: Cell Name -

When the form is submitted, which will happen automatically when the user selects a new value
from the pulldown, the form’s values will be appended to the action URL as a query, and the
URL will be retrieved:

my://app/page/Cal?sortby=name

At present, mybrowser supports enum, text, and submit input types.

The myhtmlpane Component

The myhtmlpane component is essentially a mybrowser without the navigation controls. It
is intended to display a single page, retrieved from a myserver, as an alternative to a window
defined using normal Tk widgets. If the user clicks on a link on the page, the URI is passed
along to the application for display in the application’s main browser.

The linktree Component

The 1inktree component is a Tk treectr] widget configured to display a tree of resource links
retrieved from a given URL. The widget retrieves its top-level items from the URL, and then
works its way recursively down the tree, retrieving tc1/1inkdict content at each node. The
descent ends when a leaf no longer has any tc1/1inkdict content associated with it.
Optionally, the 1inktree can retrieve content for non-leaf nodes when they are first expanded.

The sidebar in the browser screenshot in Section The mybrowser Component shows a linktree of
simulation entities.

The htmlframe Component

Although not actually part of the RESTful infrastructure, the html f rame widget has proven to
be a useful addition to the toolkit. It is simply a TkHTML 3.0 widget configured to layout its
children according to an HTML layout string. For example:

19'th Anuual Tcl Association Tcl/Tk conference 42 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

htmlframe .f
ttk::entry .f.first
ttk::entry .f.last

.f layout {
First Name: <input name="first”><p>
Last Name: <input name="last” ><p>

}

It includes a set method to set attributes of HTML elements by id; thus, the application can
customize the appearance by setting CSS classes or styles on particular elements dynamically, or
simply by providing a new layout. And since the TkHTML 3.0 widget supports scrolling, it is
easier to create a scrolling window than it is using a standard frame widget.

This can be a much simpler way to create a complicated GUI layout than using the normal Tk
geometry managers.

7. Status and Future Work

The infrastructure described in this paper is currently in use in two applications: the Athena
simulation proper and in a separate development tool used to debug certain kinds of models. It
has proven to be powerful, effective, and easy to use. The Athena application defines three
servers and over sixty distinct URL patterns, many of them with placeholders. Many pages use
forms and embedded objects, and that number is expected to increase over time.

It is possible that future applications may opt to extend the myagent/myserver pair with
PUT, POST, and DELETE operations, and make use of these instead of Athena’s existing “order”
mechanism for editing and creating application data. Such an application would be truly
RESTHful, rather than merely “accidentally RESTful”, as now.

8. A Bit of Advocacy

Tk needs a robust, solid, well-documented HTML widget for uses like those shown here, and the
existing TkHTML 3.0 widget makes a good starting point. The secret is to stop chasing the big
browsers; we will never have enough development horsepower to keep up with Mozilla,
Microsoft, and Google, and even if we could produce a widget that was completely up to date
and could display any HTML page on the web, it would be out-of-date in months, if not weeks.

But this is OK. An HTML widget need not be capable of doing everything Firefox does to be
useful to the application.

19'th Anuual Tcl Association Tcl/Tk conference 43 Chicago, IL November 14-16, 2012

Toward RESTful Desktop Apps 19th Tcl/Tk Conference

9. References

[1] Nemethi, Csaba, Tablelist Widget, http://www.nemethi.de/.

[2] Sletten, Brian, “Resource-Oriented Architectures: Being ‘In the Web’,” in Beautiful
Architectures, pp 89-109, 2009, O’Reilly & Associates, ISBN: 978-0-596-51798-4.

[3] Kupries, Andreas, and Ball, Steve, uri URI Utilities package, found in Tcllib, http: //
tcllib.sourceforge.net/doc/uri.html.

[4] Duquette, William H., "The State Controller Pattern: An Alternative to Actions", 17" Tcl/
Tk Conference,
http://www.tclcommunityassociation.org/wub/proceedings/Proc

eedings—-2010/WillDuguette/Statecontroller.pdf.

[5] Kennedy, Dan, TkKHTML 3.0 Widget, http://tkhtml.tcl.tk/tkhtml.html.

[6] Petasis, Georgios, “TkGecko: Another Attempt for an HTML Renderer for Tk, 17"
Tcl/Tk Conference,
http://www.tclcommunityvassociation.org/wub/proceedings/Proc
eedings-2010/GeorgePetasis/TkGecko.pdf

10. Acknowledgements
This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration, during the
development of the Athena Stability & Recovery Operations Simulation (Athena) for the
TRADOC G2 Intelligence Support Activity (TRISA) at Fort Leavenworth, Kansas.

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

19'th Anuual Tcl Association Tcl/Tk conference 44 Chicago, IL November 14-16, 2012

Tcl 2012
Chicago, IL
November 14-16, 2012

HOSP\TON =OPERAT LT RORX,

Session 4
November 15 10:45-12:15

19'th Anuual Tcl Association Tcl/Tk conference 45 Chicago, IL November 14-16, 2012

19'th Anuual Tcl Association Tcl/Tk conference 46 Chicago, IL November 14-16, 2012

KineTcl

Andreas Kupries ActiveState Software Inc. 409 Granville Vancouver, BC CA
andreask@ActiveState.com

ABSTRACT

This paper describes a package enabling Tcl scripts to talk
to Microsoft’s Kinect and related devices.

Technically KineTcl is a binding to the OpenNI framework
and thus provides access to all depth sensor devices for which
a sensor plugin exists. The best known device so far in that
category is the Kinect.

The paper will describe the internal structure of the pack-
age (i.e. how it matches to the OpenNI API, and weaves
both C and Tcl [12] together to make use of each others
strengths) and point to supporting packages and tools used
in the implementation.

1. OVERVIEW

KineTcl [2] is a new Tcl package providing a binding to
Microsoft’s Kinect [9], and related devices.

The project was started at the behest of the National
Museum of Health and Medicine, Chicago[1] (short: NMHMC)
for use in its exhibition space as one of the pieces of software
linking real world activities and actions to interactive virtual
displays.

Research into existing open source software for Kinect lo-
cated two existing projects, OpenKinect [5] (aka libfreenect),
and Open Natural Interaction (OpenNI [6]).

OpenKinect was created by the OSS and OSH communi-
ties through reverse engineering the Kinect’s USB protocol.
It is a low-level library providing access to the device without
having to care about this USB protocol and the like. While
not quite as low-level as a driver, it is not much higher. The
developers have planned an analysis library for higher level
operations (e.g. user detection and gesture recognition) but
this was not yet implemented at the time of the research.

OpenNI, is a framework abstracting away from hardware
devices and image processing for particular tasks (like user-,
hand-, and skeleton-tracking). It was created and is main-
tained by PrimeSense (8], the developer and manufacturer
of the depth sensor used in the Kinect. OpenNI is also
“an industry-led, not-for-profit organization formed to cer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Tcl*2012 Chicago, IL, USA

19'th Anuual Tcl Association Tcl/Tk conference 47

tify and promote the compatibility and interoperability of
Natural Interaction (NI) devices, applications and middle-
ware.”[6]. Both the framework itself and a generic sensor
driver “node” for the PrimeSense sensor are available in
source, under the LGPL. A derivative of the latter, special-
ized to the Kinect is available on github[10].

At this point of the research both possibilities were seen
as roughly equivalent.

OpenNI was chosen because of the existence of the
NITE [11] extensions, encapsulating all of the necessary higher
level algorithms (i.e user detection, skeleton/joint tracking,
gesture recognition, etc).

Given the time frame of the project (started in January
2012, a working system needed by May) it was considered
difficult or impossible to invent and write such algorithms
from scratch, as would be needed when using libfreenect.
Having access to these through NITE outweighed the con-
sideration that this part of the system is only available in
binary, and not in source.

The next chapter gives a general overview of KineTcl’s
design, implementation, and features. Following that, chap-
ters 3 and 4 discuss limitations, possible applications and
future directions for the package.

2. DESIGN & IMPLEMENTATION

2.1 OpenNI

OpenNI’s API is written in C, with an underlying class hi-
erarchy ! where the leaves represent the various data streams
coming from a depth sensor, and the higher classes pro-
vide the general functionality and APIs. This is shown in
figure 1. Note that the classes not only represent data
streams from physical sensors, but also data coming out of
higher level algorithms like user detection and tracking (i.e.
virtual sensors).

These APIs contain the mandatory minimum supported
functions for each class. For sensors going beyond these,
OpenNI defines a series of standard “capabilities” they may
provide. From a different point of view these could be called
aspects, or mixins. As an example, figure 2 shows the capa-
bilities which are defined for user detection and tracking.

For full details, see OpenNI’s reference documentation|7].

2.2 Basic Design

Generally all OpenNT classes and instances are represented
as classes and instances to the Tcl script as well. Whenever

!Underneath the C API is actually C++

Chicago, IL November 14-16, 2012

{ f |)

generator ‘ player | |reoorder | script |
| audio | | gesture | hands ‘ map | | user ‘
‘ depth ‘ ‘ image ‘ ir ‘ | scene

Figure 1: OpenNI class hierarchy

hand touching
[fov edge
. POsE
user 7 detection
frame sync
A | skeleton
alternate N
)) generator
viewpoint [
mirror ; error state
base
general int

Figure 2: OpenNI User Tracking Capabilities

we mention a class in the future, we will also specify which
of the three layers (OpenNI, C, or Tcl) we are talking about
if it is not clear from the context.

Following the spirit of Poli-C [13] the binding is written
using layers, with a low-level C layer implementing only the
bare necessities which are then glued by the Tcl layer into
the final user-visible API.

As mentioned, the C layer wraps each OpenNI “class”
(which includes capabilities) into a Tcl class command whose
methods map pretty much directly to OpenNI API functions.
This is very much like Tk widgets. However, these classes do
not know about the class hierarchy and superclasses. Each
C class implements a binding to just the methods of their
OpenNI class without regard for inherited methods.

This layering and the connections between the parts in the
different layers is shown in figure 3, using the stack of classes
for “depth image generator” nodes as example. We see not
only the classes, but also the inheritance relationships (in
blue), including the fact that KineTcl’s C layer does not
use inheritance, and the use of instances (in red). The Tcl
level depth image instances contain the C level instances of
their class and all the required superclasses, which share the
OpenNI handle for the node. This last point will be explained
further in section 2.3.

This, and the mixin of the supported capabilities, is all
handled in the Tcl layer. Here all the underlying classes
are wrapped by Tcl00 [14] classes which instantiate all the
required C classes so that the user may have access to the
full set of methods, direct and inherited. The connection
from the externally visible methods to the C methods is
done through TclOO forwards, which also allows us to hide

19'th Anuual Tcl Association Tcl/Tk conference 48

Kinetcl Tel Kinetcl C : OpenNI

eventbase

nodeevents

Figure 3: Package Layering

all special C methods needed by the Tcl layer which are
irrelevant from the user’s perspective. This includes, for
example, the various introspection methods used to manage
callbacks/events and capability mixing.

2.3 Object Construction

One tricky point in all this is that the various C instances
constructed for the Tcl instance all have to operate on a sin-
gle OpenNI handle for the object in question (see
figure 3). How do we disseminate this information?

First, only the leaf C classes can create a new handle, a
property the binding inherits directly from OpenNI. Know-
ing that the Tcl glue will construct the leaf first then walk
up the Tcl class hierarchy to construct the required C level
superclass instances, the code for a leaf class saves the ob-
tained handle into a per-interpreter structure of the package.
The superclasses’ code then retrieves the handle from there.
Doing things in this manner avoids having to expose and
pass a C level pointer through the Tcl layer.

It should be further noted that the C base class provides
a special method (@unmark) to explicitly clear this handle
store. This is not done automatically by the C base class
during its construction, because of the capabilities. The
handle storage has to be kept around until the Tcl glue has
mixed them in, thus the responsibility to signal its release
falls to the Tcl layer.

2.4 Object to Handle Conversion

Another issue which has to be solved in the cooperation
of C and Tel layers is that various OpenNI (and thus C)
methods take a second handle as input, requiring us to con-
vert from a Tcl object command to the underlying OpenNI
handle.

At the C level, this is managed by calling out to the Tcl
procedure ::kinetcl::Valid which performs both valida-
tion of a Tcl_-Obj* as a proper Tcl object (command) and
its conversion, leaving the resulting OpenNI handle in the
same storage area as used during object construction. The

Chicago, IL November 14-16, 2012

caller can retrieve it from there after the procedure returns.

At the Tcl level, ::kinetcl::Valid uses a dictionary of
the active instances managed by the base class to validate
the argument as a Kinetcl object. For the arguments passing
this test ::kinetcl::Valid then uses its knowledge of the
Tcl object internals, namely the existence and name of the
C base class instance in the object to directly access it and
invoke the special C method (@mark) which will store the
desired handle in the storage area for the C level to pick it
up from.

TelC

can-sync-withfnode)

1
i

i R
|

!
,T?,&‘,’K:I‘?"‘E?

Figure 4: Object to Handle validation and conver-
sion

Figure 4 shows all of the above in a UML sequence dia-
gram.

2.5 Events and Callbacks

The last area of cooperation to talk about are the 34
OpenNI callbacks. Unfortunately, they are invoked from
OpenNI’s internal threads, making it impossible to use them
7as is” (i.e. let them directly call up into Tecl).

This issue was mainly solved by converting the callbacks
into events, for which we have Tcl APT functions to safely en-
queue them regardless of which thread they come from and
are going to. However, even with that we had two problems
left.

First, one of the callbacks is very high-rate, generated
several times per second. I am talking about the 'new frame’
event for all the map generators, signaling the presence of
a new image frame (image, depth, IR, ...). Because a single
such signal is good enough this event is throttled by allowing
only one per object into the event queue and discarding the
remainder until the event in the queue has been processed.

The other remaining issue arises again from the fact that
events are generated by threads outside of Tcl’s control. It
means that new events not only can, but will arrive while
Tecl is processing the queued events. Without safeguards
Tcl’s event queue will never be empty, and the processing
loop will never end, starving out idle-events processing.

While a solution was found for this, it doesn’t look very
nice. Readers of the example applications will see code
like that shown in listing 1. This is essentially an emula-
tion of Tcl’s event loop using while and update, and in-
serting the necessary calls to (a) drive OpenNI’s processing
(waitUpdate) and (b) safeguard (estart, estop) Tcl’s event
loop while processing events. estop causes the system to de-
fer incoming events into a spill-over queue, whereas estart
restores regular processing and moves all defered events into
the main Tcl event queue.

With the pressure for getting a working system now gone,

19'th Anuual Tcl Association Tcl/Tk conference 49

Listing 1: Event loop
while {1} {
kinetcl waitUpdate
kinetcl estop
update
kinetcl estart

better solutions for the event integration should be investi-
gated (e.g. Tcl’s API for “Event Sources”).

While OpenNI’s C API for callbacks allows the registration
of an arbitrary number of actual callbacks for a specific event
the C classes were kept simpler, handling only one actual
callback per specific event, managed by associated set and
unset methods.

The distribution of events to many observers is then again
handled by the Tcl glue code, in two TclOO classes which
are superclasses to the nomimal Tcl base class for OpenNT in-
stances (see figure 3). These two classes, kinetcl: :eventbase
and kinetcl: :nodeevents, provide a more event-like API,
where users can bind to and unbind from events. The var-
ious Tcl sub-classes register the events they support with
them, after using the C classes’ method introspection facili-
ties to determine this set. A small detail of the implementa-
tion is that a C level callback is set if and only if observers
have been bound to the event it will be invoked for. This
part of the functionality relies on a feature of the internally
used uevent [15] package. That is, its ability to watch for
and invoke commands when event bindings are set and re-
moved (available since version 0.3.1).

2.6 Implementation

Now, how do we implement 39 C classes (14 core, 25 ca-
pabilities) quickly yet safely, especially in light of the large
amount of virtually identical boilerplate needed to manage
the class and instance commands and associated data struc-
tures?

By automating as much as possible.

Thus, a significant part of the time was not spent on writ-
ing the binding directly, but on writing the critcl::class
generator package to encapsulate all the boilerplate and its
templating. Having this generator in place, writing the bind-
ing became almost trivial, at least in most places. An only
slighly abbreviated example is shown in listing 2.

Please note that the code in this listing represents the
state of the Kinetcl head and of the critcl::class head
officially released with critcl 3.1 [4], which also makes
use of the additional features for custom argument and result
type processing.

The code currently in use by the NMHMC, found at the
tag “nmhmc” in the KineTcl and critcl repositories is
less streamlined, containing various argument- and result-
processing C code fragments multiple times. For the class
shown, the difference is only about half a kilobyte (4 versus
4.5 KB). This class gets converted into roughly 25 KB of
C code. From this we can estimate that about 84% of the
result is boilerplate code, generated, instead of manually
written.

This was further simplified by agressively using Tcl’s meta
coding abilities to factor out the common parts of the various
classes (leaf vs inner classes, the integer capability classes),

Chicago, IL November 14-16, 2012

Listing 2: kinetcl::map implementation excerpt
critcl::class def ::kinetcl::Map {
itkt_abstract_class

method bytes—per—pixel proc {} int {
return xnGetBytesPerPixel (instance—>handle);
}

method modes proc {} ok {
XnStatus s;
int Ic;
Tcl_Objxx lv = NULL;
XnMapOutputModex modes ;

lc = xnGetSupportedMapOutputModesCount (instance—>handle);
if (lc) {

int i;
modes = (XnMapOutputModex) ckalloc (lc * sizeof (XnMapOutputMode));
s = xnGetSupportedMapOutputModes (instance—>handle, modes, &lc);
CHECK-STATUS.GOTO;

lv. = (Tcl_Obj**) ckalloc (lc % sizeof (Tcl_-Objx));
for (i = 0; i < le; i++) {

}

ckfree ((charx) modes);

}
Tcl_SetObjResult (interp, Tcl_-NewListObj (lc, 1v));
if (le) {

ckfree ((charx) lv);

return TCL.OK;

error:
ckfree ((chars) modes);
return TCLERROR;

}

method @mode? proc {} ok {
XnStatus S
KXnMapOutputMode mode;
Tcl_-Objx mv [3];

s = xnGetMapOutputMode (instance—>handle, &mode);
CHECK_STATUS RETURN

Tcl_SetObjResult (interp, Tcl-NewListObj (3, mv));
return TCL.OK;

}

method @mode: proc {int xres int yres int fps} XnStatus {
XnMapOutputMode mode;

mode.nXRes = xres;

return xnSetMapOutputMode (instance—>handle, &mode);

}

i:kt_callback mode \
xnRegisterToMapOutputModeChange \
xnUnregisterFromMapOutputModeChange \

1SIRE;

support
#define kinetc NUM_PIXELFORMATS (5)

19'th Anuual Tcl Association Tcl/Tk conference 50 Chicago, IL November 14-16, 2012

and generating the whole of the callback support from short
descriptions as seen in listing 3.

Listing 3: Callback definition
i:kt_callback user—enter \
xnRegisterToUserReEnter \
xnUnregisterFromUserReEnter \
{{XnUserID u}} {

CBDETAIL (”user”, Tcl-NewIntObj
}

(u));

This last was made relatively simple by the very regular
nature of OpenNI's API for the (de)registration of callbacks,
including the callback signatures. Even the places where
two or even three callbacks were managed by a single pair
of (de)registration functions could be fitted in.

3. LIMITATIONS

A number of OpenNI’s features were not given full atten-
tion, or not implemented at all, because KineTcl’s intended
use in the NMHMC did not require them. These are:

1. The audio, player, recorder, and script classes are mainly

shells without full implementation. They are certainly
not tested.

2. Instances are constructed using only default arguments.

OpenNI actually has an API allowing the user to con-
figure a query object/structure to limit the search for
the type of instance to specific vendors, versions, and
the like. None of this is used.

Create a “user generator”, for example, and the system
will simply provide a handle it believes is the best.

3. Similarly OpenNI has functionality to query it for the
set of installed modules, their vendors, versions, pro-
vided node types, etc. This also includes the ability
to query what node stacks exist (i.e. coherent col-
lections of nodes able to perform a task). For exam-
ple, a “hands tracker” may need a “user generator”
and if multiple modules provide implementations of
either, OpenNI can construct different processing net-
works (node stacks) by mixing and matching them.

None of this functionality is exposed by KineTcl.

4. FUTURE DIRECTIONS

Some of the things we can/may do in the future of KineTcl
are obvious. Just look at the limitations listed in the previ-
ous chapter.

Another relatively obvious direction is to write additional
processing classes directly in Tcl (e.g. implement various
types of gesture recognition). Some work on this has actu-
ally been done, but is not complete (and buggy). See the
files stance.tcl and examples/dance for the experiment
with a FAAST [16] inspired system.

Finally, there is the currently used hack for the final in-
tegration of events. Better solutions for this, such as Tcl’s
API for “Event Sources”, should be investigated.

19'th Anuual Tcl Association Tcl/Tk conference

51

APPENDIX

A. REFERENCES
1

National Museum of Health and Medicine, Chicago

http://www.nmhmchicago.org/

[2] Andreas Kupries, KineTcl. https://chiselapp.com/
user/andreas_kupries/repository/KineTcl

[3] Andreas Kupries, CRIMP.
http://wiki.tcl.tk/crimp

[4] Andreas Kupries, Steve Landers, Jean-Claude
Wippler, CriTcl. http://jcw.github.com/critcl/

[5] Various. OpenKinect, libfreenect.
http://openkinect.org/wiki/Main_Page

[6] PrimeSense. OpenNI organization and framework.
http://www.openni.org

[7] PrimeSense. OpenNI API Reference. http://openni.
org/Documentation/Reference/index.html

[8] PrimeSense. http://www.primesense.com

[9] Microsoft. Kinect.

http://www.xbox.com/en-US/kinect/

Avin. SensorKinect.

https://github.com/avin2/SensorKinect

PrimeSense. NITE.

http://www.primesense.com/technology/nite3

Various, Tcl. https://tcl.sourceforge.net

Jean-Claude Wippler, Poli-C.

http://wiki.tcl.tk/polic

Donal Fellows, TclOO http://core.tcl.tk/tcloo

Various, Tecllib. https://tcllib.sourceforge.net

ICT, Flexible Action & Articulated Skeleton Toolkit

http://projects.ict.usc.edu/mxr/faast/

(10]
(11]

(12]
(13]

(14]

(15]
(16]

Chicago, IL November 14-16, 2012

Lifecycle Object
Generators (LOG

Presented to the 19th Annual Tcl Developer’s Conference (Tcl'2012)
Chicago, IL
November 12-14, 2012

Sean Deely Woods

Senior Developer

Test and Evaluation Solutions, LLC
400 Holiday Court

Suite 204

Warrenton, VA 22185

Email: yoda@etoyoc.com
Website: http://www.etoyoc.com

Abstract:

This paper describes a design concept call "Lifecycle Object Generators", or LOG for
short. It involves a combination of coroutines, TclOO, and basic data structures to
create objects that can readily transition from one class to another throughout the
course of an application. This paper will describe the basic mechanisms required, and
how this architecture can be applied to any complex problem from GUI design to
Artificial Intelligence.

This paper is based on experience developing the Integrated Recovery Model for
T&E Solutions.

19'th Anuual Tcl Association Tcl/Tk conference 52 Chicago, IL November 14-16, 2012

Introduction

Most interesting computer models try to
describe the actions and interactions of living,
or at the very least animate, things. (The
study of most dead an inanimate objects
requiring a bit less computer power.) Living
things have a tendency to change behavior.
Until now modeling that change in behavior
has required keeping track of state as
variables and encoding every method with a
patchwork of if/then/switch statements.

This paper will describe a new technique
that exploits the ability of an object in TclOO
to change class dynamically. TclOO is
available as a package for Tcl 8.5, and is
integrated into the core of the upcoming Tcl
8.6.

Style Guide

In this paper, I will be using the following
style conventions:

Built in Tcl command/ 0o::class
keyword
Name of an class, class_bar
object, or variable
Block of example code | # comment

set foo bar

Nickel Tour of TclOO

This paper exploits many advanced features
of TclOO. But before we play with the
advanced features, it may be helpful to go
back over the basic ones.

A new class is declared with the oo: :class
command:

00::class create classname {
superclasses ancestor ancestor ...

method methodname arguments {
Body of method

}

}

19'th Anuual Tcl Association Tcl/Tk conference

53

Within the body, one declares the structure
of the class. The keywords we’ll be focusing
on in this paper are:

constructor | Defines the constructor

destructor | Defines the destructor

forward Forward calls for a
method to another
command

method Define a method

superclass | Define the ancestors of
this class

Once created, a class is a command. A
command with several methods, the most
important is create.

Create a new object with a known name
classname create objectname

Create a new object with a
dynamically generated name
set obj [classname new]

And once an object is created, it lives as a
command. To call a method:

objectname method $argl arg2 [arg3]
Save a value returned from a method
set var [objectname method $arg]

If methods look and act a lot like
procedures, that is by design. They can return
a value, just like a standard Tcl proc. They
can also call several built in commands,
specific to the TclOO environment:

my Exercise a method of the current
object

next | Call on an ancestor’s
implementation of this class

self | Returns a the fully qualified name
of this object

Chicago, IL November 14-16, 2012

The my command is an unambiguous way
for the Tcl parser to discern what commands
are local to the object, and what commands
should be resolved globally. It also makes for
easier reading on the part of the programmer.

proc noop {string} {
puts “global - $string”
}
00::class create noop {
method noop string {
puts “[self] - $string”
}
method test {} {
my noop “Hello World”
noop “Hello World”

}
¥

noop create testobj
testobj test

testobj - Hello World
global - Hello World

In addtion to the oo: :class command,
TclOO provides oo: :define and
00: :0bjdefine. 0o: :define is used to
modify a class dynamically. oo::objdefine
is used to modify an object dynamically.
TclOO also enhances the info command with
two new methods: info class and info
object, As you can imagine, info class
provides introspection for classes, and info
object provides introspection for objects.

Destroying a class

Classes in TclOO are implemented as
objects, with their own constructors,
destructors, and methods.

If you destroy a class, you automatically
destroy any classes or objects derived from
that class. And of course for every class that
is destroyed as a result of destroying a class
you destroy all of its derivatives, and so on.
Taking our example from above:

info command obj*

obja objb objc objd obje objf
a destroy

info command obj*

~ Empty "

19'th Anuual Tcl Association Tcl/Tk conference

Be careful though, destroying objects by
destroying their class prevents the object
destructor from being called.

Multiple Inheritance

One matter that will come up as we develop
complex hierarchies of classes will be
multiple inheritance. Given a choice between
method implementations, TclOO will always
choose the latest one defined.

00::class create a {

method noop {} { return a }
}
00::class create b {
superclass a

method noop {} { return b }
}
00::class create c {superclass a b}
00::class create d {superclass b a}
00::class create e {

superclass c

method noop {} { return e }

}

00::class create f {superclass a b e}
00::class create g {superclass a b c d e}
00::class create h {superclass a b d c e}
00::class create i {superclass e d c b a}

a is a common ancestor to the rest, and it

provides an basic implementation of a method
called noop. b is a descendent of a that

provides its own implementation of noop. ¢
and d inherit both a and b explicitly, but in a
different order. e is a descendent of b that
provides its own implementation of noop. f
is a descendent of all of the classes a-e. g-1i
demonstrate various combinations of a-e.

foreach class {a b cde f} {

$class create obj$class

puts [list obj$class [obj$class noop]]
}
obja
objb
objc
objd
obje
objf
objg
objh
obji

™ ®®m®Mm®MM®OCOCOC o

Chicago, IL November 14-16, 2012

You will see that in every example, the
latest version of the noop that is defined is the

one that is used. Since b is a descendent of a,
given a choice between b’s implementation of
a method and a’s implementation of a
method, b will always be preferred. Likewise,
e is a descendent of b. e’s version of a
method will always be preferred to b’s.

If we do the example differently, sans b
inheriting a and e inheriting b, we would get a
different results, and the order in which
classes are specified in the superclasses
keyword becomes more important:

00::class create a {

method noop {} { return a }
3
00::class create b {

method noop {} { return b }
}
00::class create c {
superclass a b

b
00::class create d {
superclass b a

3
00::class create e {

method noop {} { return e }

}

00::class create f {superclass a b e}
00::class create g {superclass a b c d e}
00::class create h {superclass a b d c e}
00::class create i {superclass e d c b a}
foreach class {abcdefghi} {

$class create obj$class

puts [list obj$class [obj$class noop]]
}
obja
objb
objc
objd
obje
objf
objg
objh
obji

™ Q9 T MO L T L

19'th Anuual Tcl Association Tcl/Tk conference

55

Objects Changing Classes

Within the oo: :objdefine command is the
ability for an object to change class:

|oo: :objdefine $object class $newclass !

An object can even alter it’s own class from
within a method:

00::class create moac {
method morph newclass {
00::0bjdefine [self] class $newclass

}

}

To demonstrate this process in action,
imagine two classes, classa and classb:

00::class create classa {
superclass moac
method testfunc {} {
return “I am a classa object”
}
3
00::class create classb {
superclass classa
method testfunc {} {
return “I am a classb object”
}
}

Both classes have their own
implementation of testfunc. The value that
testfunc returns isn’t as important as the fact
that the values returned are different for the
two different classes. Now with the help of a
sufficiently rigged demo:

classb create test

test testfunc

I am a classb object

Change class with oo::objdefine
00::0bjdefine testfunc class classa
test testfunc

I am a classa object

Ask the system what class test is
info object class test

::classa

Change class with the morph method
test morph classb

test testfunc

I am a classb object

Ask the system what class test is
info object class test

::classb

Chicago, IL November 14-16, 2012

You can see that oo: :objdefine $object class 0o::class create baz {
. . . 5 method do_somethin
takes effect immediately. And it doesn’t puts “Meh” e {34
matter whether the call to change class occurs }
from within the object or externally. We can method morph newclass {
even change class several times during the OB BOe TR [[SE0H] eSS HsTeees
. my do_something
execution of a method: }
00::define classb { b
method confusing_demo {} { 00::class create fubar {
Store our present class method event_morph {} {
set myclass [info object [self] \ puts “I have morphed”
class] ¥
puts “Start” method morph newclass {
puts “1 - [my testfunc]” 00: :0bjdefine [self] class $newclass
Become a different class my event_morph
my morph classa ¥
puts “2 - [my testfunc]” 3
Return to our original class
my morph $myclass Now, suppose we convert this object from
puts “3 - £my testfunc] Fubar to baz:
puts “Done
} fubar create test
¥ test morph baz
p

. error: Unknown method “event_morph”
The classb class now has an additional

method, confusing_demo. Note, that through We get an error! And we get that error
because the object assumes the new class
instantly. We just happened to pick a class
that doesn’t implement the event_morph

the miracle of modern science, changes to the
class automatically apply to all objects that
are instances of that class. So we can now call

on this new method from our existing zest method, which the script the object is running
object. through tries to call on the next line.

test confusing_demo Note, even though we encountered an error,
Start test remains class baz. So if we run the morph

1 - I am a classb object

2 - I am a classa object method again:

3 - I am a classb object test morph baz
Done Meh
The body of confusing_demo is simply calling It runs successfully. We can even make test
the same method three times. In between the back into a fubar:
calls, we change the class of the object with Info object class test
the morph method. The different baz
implementations of testfunc give different ;z;t morph fubar
output. info object class test
. . fubar
Beware of Disappearing Methods test morph fubar
There are plenty of ways to confuse matters I have morphed

by swapping an object’s class. In this
scenario, we have an event that is
programmed to go off when an object
changes class.

19'th Anuual Tcl Association Tcl/Tk conference 56 Chicago, IL November 14-16, 2012

What Happens [next]

Another interesting wrinkle in changing
classes is how the next keyword resolves
within a method that changes the object’s
class. Lets say we have an class that uses next
to exercise the ancestral implementation of
the same method.

00::class create a {

superclass moac

method testfunc {} {
puts “a - [info object [self] class]”
}

}

00::class create b {
superclass a
method testfunc {} {
next
puts “b - [info object [self] class]”
}
}

00::class create c {
superclass b
method testfunc {} {
my morph a
next
puts “c - [info object [self] class]”

}
}

For interactions between a and b, things are
quite straightforward.

a create test
test testfunc
a - a
test morph b
test testfunc
a-b
b -b

c is our complex case. Its implementation
of testfunc changes the class of the object.

And worse, it changes the class to one in
which there is no ancestor for the next

operator to hop to.

You would expect the system to die horribly
along the lines of:

19'th Anuual Tcl Association Tcl/Tk conference

57

c create test

test testfunc

no next method implementation
while executing

"next "

Instead we see:

c create test
test testfunc

a - a
b - a
c - a

Note, the object really has changed
class

info object class test

a

The pathway through the next calls is
computed before the method is invoked.

Chicago, IL November 14-16, 2012

Design Patterns

Now that we have covered the basics, it is
time to start to develop the LOG framework.

Storing Properties

When an object expects to change class,
there is often information specific to that class
that we would like to access. A variable isn’t
a good fit for this purpose as its value doesn’t
change when the class changes. So I like to
employ methods that return hard coded
values.

The simplest way would be to declare a
method for every value we would want to
return:

00::class create a {

method color {} { return green }
method flavor {} { return lime }
}
00::class create b {

method color {} { return green }
method flavor {} { return apple }
¥
00::class create c {

method color {} { return red }
method flavor {} { return cherry }

}

For the lazy programmer this system has
several drawbacks. First, it is difficult to
distinguish between a method that is a
property and a, shall we say, livelier method.
Second, the notation is verbose. It introduces
the temptation to cut and paste. Third, we
have no fallback mechanism should a part of
the system call for a property that has not
been configured yet, or is simply not
applicable to the object in question.

LOG adds two new methods:
property define and properties.
property_define creates a single value.
properties allow us to specify a key/value

list. We can do this easily within TclOO
because, behind the scenes, classes are merely
a special kind of object. The just happen to be
of class oo::class.

19'th Anuual Tcl Association Tcl/Tk conference

00::define o0o::class {
method property_define {field value} {
00::define [self] method prop_$field \
{} [list return $value]

method properties dict {
foreach {var val} $dict {
my property $var $val
}

¥
method property {field args} {

set methods [info object methods [self] \
-all -private]
if {"prop_$field" in $methods } {
return [my prop_$field {*}$args]
}
}

}

We also need to configure all of our client
classes with a version of the property method.

00::class create moac {
method property {field args} {
set methods [info object methods [self] \
-all -private]
if {"prop_$field" in $methods } {
return [my prop_$field {*}$args]
}
¥
3

So to configure a class:

00::class create a {superclass moac}
a property_define color green

a properties {

flavor lime

}
a create test

test property color
green

At the same time, if I ask for an item that is
not configured (or configured yet), I get back
an empty list instead of an error.

test property speed

~ Empty List ~

And if we are modeling a system worthy of
a Lewis Carroll novel, we can alter the
property of a class on the fly too.

a property define speed very fast
test property speed
very_ fast

Chicago, IL November 14-16, 2012

Using Classes to Represent State

State machine code becomes notoriously
complex when there are more than a handful
of states. I am going to introduce an easier
way: create a separate class for each state an
object can be in. Thus, if a method has to
behave differently, we can just define that
change for the particular state.

Let us begin with a few ground rules for
changing an object’s class. Even better, let’s
have a library of base classes that enforce
those rules. All classes that are eligible to
change class will be descendants of a
common baseclass: state_machine.

state_machine provides several methods:

state_change | Change the class (and
this state) of an object.
Takes an additional
argument which can
pass additional data to
event scripts.

00::class create state_machine {
superclass moac ; # For “property” method
constructor {} { my state_enter {} }
Return the current state
method state_current {} {
return [info object class \
[self object]]
}
Actions when we exit state
method state exit {} {}
Actions when we enter state
method state_enter {} {}

Returns 1 if state changed
Returns © otherwise
method state_change {newstate} {

if { $newstate eq {} } { return 0 }
set oldstate [my state_current]

if { $newstate eq $oldstate } {

In the desired state, do nothing

return ©

¥

Run cleanup from old state

my state_exit

00::0bjdefine [self] class $newstate
Run setup from new state

my state_enter

return 1

}

state_current | Return the current class
(thus state) of an object

state_enter Script to run when an
object enters the
configured state

state_exit Script to run when and
object exits the current
state

19'th Anuual Tcl Association Tcl/Tk conference

59

Example: Lifecycle of a Frog

Let is show off our newly developed
state_machine with a demonstration: The

lifecycle of a frog.

00::class create frog {

superclass state_machine

method state_exit info {
puts "Leaving [my state_current]”

¥

method state_enter info {
puts "Entering [my state_current]
next $info

}

}

frog properties {
has_tail ©
respiration lung
state_next {}
color green

The baseclass frog is a series of general

assumptions one could make about any frog,
stored as properties. One of those properties
state_next tells us what developmental state

Chicago, IL November 14-16, 2012

follows the current state. For an adult frog, Discrete Time Phases

we have no state_next, so we configure an Discrete time simulations are similar to
empty set. tabletop games. Actors (or players) take turns.
To model our frog’s lifecycle, a program And the rules of the game govern which
can simply walk from one state to another, interactions are valid during which part of a
reading the properties as it goes. game turn.
00::class create frog.egg { In 'Risk™ , each turn has three phases:
superclass frog placing reinforcements, attack, and fortifying.
} . Players are only allowed to add troops to the
frog.egg properties { .. .
has tail o battlefield at a certain time. There is only one
respiration none phase in which we would expect troops to be
state_next frog.tadpole removed from the battlefield (as casualties.)
} And there is only one point in the turn where
00::class create frog.tadpole {
superclass frog.egg troops can move. Phases make the outcome of
} a series of events more consistent.
frog.tadpole properties { .
has tailld Tab}e games are engineered Fo haYe a
respiration gill definite “winner”. The actor with priority is
state_next frog allowed to have a significant impact on the
} outcome of the scenario.
frog.egg create hypno turn 1
set changed 1 Player 1 - Reinforce Phase
while {$changed} { Player 1 - Attack Phase
foreach fld { Player 1 - Fortify Phase
has_tail respiration state_next
T A Player 2 - Reinforce Phase
puts “ * $fld [hypno property $fld]” Player 2 - Attack Phase
b Player 2 - Fortify Phase
set newstate [hypno property state next]

set changed [hypno state_change $newstate] With scientific simulations, we don’t want a

Entering . :frog.egg “winner.” We want to devise a series of rules

* has_tail such that we get the same outcome whether

: respiration none the actors are run in sorted order, reverse
state_next frog.tadpole sorted order, random order, or whatever that

Leaving ::frog.egg .

Entering ::frog.tadpole subtle, non-random, but sufficiently

* has_tail 1 inscrutable order we get from [array names].

* respiration gill

* state_next frog.tadpole We also want to create the illusion that all

Leaving ::frog.tadpole of the actions in a given time phase occur

Entering ::frog simultaneously. So rather than let one actor
has_tail ©

* pespiration lung run through all of the phases, followed by

* state_next frog another, we give each actor an opportunity to

act during every phase.

1 Risk™, Trademark Parker Brothers

19'th Anuual Tcl Association Tcl/Tk conference 60 Chicago, IL November 14-16, 2012

turn 1
Player 1 - Reinforce Phase
Player 2 - Reinforce Phase
Player 1 - Attack Phase
Player 2 - Attack Phase
Player 1 - Fortify Phase
Player 2 - Fortify Phase

turn 2

In simulators which allow objects to change
class, I found it best to restrict any such
changes to a specific phase in the time step.
Preferably one in which nothing else is going
on.

Agent Timestep
phase_physics
phase_observe
phase_plan
phase_action
phase_reaction
phase_morph

When an object wants to change state, the
new state is recorded as a local state variable.
The actual change does not take place until
the morph phase comes around.

00::define state_machine_discrete {
method state_change newstate {

if {[my state_current] eq $newstate } {

return @

}

my variable next_state

set next_state $newstate

return 1

}

HHH

Called by the driver of the simulation
##

method phase _morph {} {

my variable next_state

if { $next_state eq {} } {

return

}

my state_exit

00::0bjdefine [self] class $next_state

my state_enter

set next_state {}

19'th Anuual Tcl Association Tcl/Tk conference

61

Example: Agent Based Modeling

The Integrated Recovery Model simulates a
ship and her crew during a shipboard
catastrophe. Part of the simulation entails
crew members changing roles. In the model,
each role is represented by a distinct class.

Any number of events can lead to a crew
member changing role. The most common
role changes are in response to an order.
Some orders are direct. For instance, a leader
telling a crew member under his/her
command “You do this.” Other orders are
indirect. When a crew member hears the call
to go to General Quarters, he/she switches
from whatever they were doing to their
assigned role at GQ.

But the hardest ballet to choreograph by far
was the transitions that occur when a crew
member is assigned to a fire team. Most crew
don’t wear a fire suit as part of their regular
duties. Thus a crew member newly assigned
to a fire team must find a set of gear, put it on,
and connect with a team that may already be
on scene. Those behaviors were complex
enough to merit a separate role.

Crew starts as role human
Crew receives order to join Team

> Crew becomes role team.prospect
Crew member gathers equipment
Crew walks to location of Team leader
Crew joins Team

> Crew becomes role team.member
Team battles fire

Team dissolves

> Crew becomes team.dismissed
Crew returns equipment
Crew walks back to assigned station
> Crew becomes human

In IRM, each agent is configured with a
property that lists what tasks they want to
perform, and in what priority. Each task, in
turn, has criteria that govern when it should
activate, when it should abort, and a coroutine
to carry out once activated.

Our team. prospect class has the following
task list:

Chicago, IL November 14-16, 2012

. . agent::class fireteam {
action-station Ga‘Fher toqls, report to superclasses human
action station properties {
equipment { nfti scba ppe radio }
safety-check | Reflexes for fleeing from member_equipment {scba ppe}
danger } }
. . agent::class rescueteam {
join-team Join the team we are superclasses human
assigned to rescueteam properties {
equipment { radio stretcher scba }
go-home Return to action station A
(only called if join-team }}
fails) # One team.prospect class suffices
to join either team
Every agent has an action-station task. It agent::class team.prospect {
. superclasses human
has a method thfat produces a list of flen) CoeRrlie G
equipment required for the role assigned. It my variable team
checks to see that the agent has a working return [$team property member_equipment]
version of each. And if a device is missing, }}
exhausted, or damaged, the agent gets a new
one. Because the team.prospect role is it’s own
Normally agents produce their own list of class, we can override the standard ensembLe
needed equipment’ based on information method with one that queries the team this
configured by the model maker. For this agent will join.
paper, the pseudocode uses a simple property. # One team.prospect class suffices

agent::class human { i HD el GHENEP el
iedied eeiiie) | uperciasaes hamn
return [my property equipment] mezhod aneabile 0 4
;ethod ensemble missing {} { set team [my knowledge get team] .
set result {} return [$team property member_equipment]
foreach device [my ensemble] { ¥
if {[my device_working $device]!=1} { }
lappend result $device
} Thus:
} fireteam create crewl
return $result rescueteam create crew2
} team.prospect create crew3
task action-station { team.prospect create crewd
begin { crew3 knowledge put team crewl
return [llength [my ensemble missing]] crew4 knowledge put team crew2
} crew3 ensemble_missing
. # Define the rest of the task ... scba ppe
} crew4 ensemble_missing
} scba medkit

00::0bjdefine crew3 human
crew3 ensemble _missing

~ Empty we are back to the human class

19'th Anuual Tcl Association Tcl/Tk conference 62 Chicago, IL November 14-16, 2012

Application State

When designing a GUI, we also wrestle
with state. Whether it be a megawidget, or a
toplevel object that is managing the
application, LOG can help.

In IRM our principle display interface is
managed through a Tk canvas. Onto that
canvas, we draw objects, color them, and
respond to mouse gestures.

We divide our model’s world into drawing
layers. There are specific rules for rending a
wall that are different than, say, a piece of
equipment. Likewise, a user double clicking
on a wall expects a different dialog box if
clicking a crew member versus a portal.

Window objects call out which layers are
active and in which state as a method of the
window:

irm::class modelwindow {

superclasses [redacted]

method active_ layers {
return {
wall Ilayer.wall.basic
compt layer.compt.basic
portal layer.portal.basic
egpt layer.eqgpt.basic
crew layer.crew.basic

When devising a set of visuals, I put
together two sets of classes. One is the
application window, the other is a drawing
layer that is modified to produce the visual.

irm::class modelwindow.damage {
superclasses modelwindow
method active_layers {
return {
wall layer.wall.damage
compt layer.compt.damage
egpt layer.eqpt.damage
crew layer.crew.damage
portal layer.portal.damage
holes 1layer.holes

19'th Anuual Tcl Association Tcl/Tk conference

63

In this case we are putting together a special
mode that highlights damaged objects with a
special color.

When applying a new state, the window
object will call forth into being an object to
represent each layer, and configured with the
appropriate class. If the layer already exists it
simply changes class.

In our example, the modified drawing layer
colors all damaged components red.

irm::class layer.eqpt.damage {
superclasses layer.eqgpt.basic
method node_is_damaged nodeid {
test for damage that returns 1 or ©
¥
method node_style {nodeid} {
if {[my node_is damaged $nodeid]} {
return {-fill red -outline -red}
} else {
return {-fill grey -outline grey}
}
¥

}

Application window states can also specify
bindings for the canvas. In the next example,
upon entering the new state the canvas gets
new bindings. Once the user clicks on an
object the window translates motion to drag
actions. When the user releases the dragged
object, the window reverts back to its normal
state.

Chicago, IL November 14-16, 2012

irm::class modelwindow.drag {
superclasses modelwindow
method active layers {
return {
wall layer.wall.basic
egpt layer.egpt.editor
crew layer.crew.editor

}

}
method state enter {} {

set canvas [my get canvas]
bind $canvas <B1> \
[list [self] drag_start %x %y]
bind $canvas <Bl-Motion> {}
bind $canvas <Bl-Release> {}
my redraw
}
method drag_start {x y} {
set obj [my object_at $x $y]
if { $obj eq {} } { bell ; return }
set canvas [my get canvas]
bind $canvas <B1-Motion> \
[list [self] drag_do $obj %x %y]
bind $canvas <Bl-Release> \
[list [self] drag_done $obj %x %y]
}
method drag_done {obj x y} {
set layer [my object_layer $obj]
$layer move_to $obj $x $y
my morph modelwindow
¥
}

19'th Anuual Tcl Association Tcl/Tk conference

64

Conclusion

Lifecycle Object Generators are not the
solution to every problem in Object Oriented
programming. But they are quite useful for
complex state-based logic. I am developing
these concepts into a fully featured toolkit,
which is available for download at:

http://www.etovoc.com/tcl

Image Credits:

Cover Image:

“Entwicklung des Krotenfrosches”, By
Meyers Konversations-Lexikon [Public
domain], via Wikimedia Commons, accessed
17 October 2012, <http://
commons.wikimedia.org/wiki/File

%3 AMetamorphosis frog Meyers.png>

Chicago, IL November 14-16, 2012

Exploring Tcl Iteration Interfaces
By Phil Brooks

Presented at the 19" annual Tcl/Tk conference, Chicago Illinois November 2012

Mentor Graphics Corporation
8005 Boeckman Road
Wilsonville, Oregon

97070
phil_brooks@mentor.com

Abstract--- In Mentor Graphics' Calibre verification tool, Tcl is frequently used as a
customer extension language - allowing customers to customize and drive the tool through
various exposed interfaces. These interfaces are frequently used to access large collections
of application data and provide a wide variety of mechanisms for iteration over that data.
This paper will examine several interfaces that have been used for iteration over large C++
data structures along with the benefits and drawbacks of each method. Methods explored
include Tcl lists, indexed array-like access, iterator object accessor (similar to C++ STL
iterators), and specialized foreach style commands. Example stand alone implementations
are provided and discussed from within the context of their original use in Calibre
customer scripting interfaces. Ease of use and performance are considered.

1 Introduction

The simple task of iteration over each object in a container is one of the most common in
programming. The task is so common that every programming language tends to develop
common idioms for the form. Simple expression of the concept of iteration in a vernacular form
aids readability and maintainability of code. In Tcl where the list is the most commonly used
aggregate data structure, the foreach command is the standard for an iterative vernacular:

set test list { a b ¢ d }
foreach var Stest list {
puts S$var

}

19'th Anuual Tcl Association Tcl/Tk conference 65 Chicago, IL November 14-16, 2012

When C based Tcl_Obj object interfaces that represent collections of underlying objects are
being used, the foreach command itself is of little use since it works only with Tcl lists. So for
iteration, either the Tcl object must convert its contents into Tcl list form, or another interface
must be constructed for iteration over the object data sets. The remainder of this paper considers
potential interfaces for this purpose.

2 Demo Environment

All of the demo interfaces used in the example program are providing access to the contents of a
C++ array of doubles - or in C++ “std::vector<double>". A Tcl program is used to iterate over
the contents and to accumulate a result which is returned to the C++ program. The context of the
environment is that of a customized analysis routine that is called from the C++ application. The
Tcl interface allows an end user to perform custom calculations without having access to the
application C++ source code or having to manage a C compilation environment. The Tcl
program has read only access to the C++ vector.

Since the Tcl routine is called directly from the C++ program, a record based user interface is
provided so that the user can direct the application with the name of the Tcl script and the proc to
call. In the Mentor Graphics Calibre environment, these Tcl calls are specified from the Standard
Rulefile Verification Format (SVRF) language that makes up the bulk of the application’s
programming interface.

In this example program, a configuration file specifies the name of the Tcl script, a proc to call,
and the iteration interface that is to be selected (from the 4 we are describing).

These fields are specified as simple text fields on a single line of the file:
<script file> <called proc> <interface>
For example:

list user script.tcl do calculation list

describes list_user_script.tcl as the script file, calc_abmi as the Tcl proc, and the list generation
interface as the interface to provide.

19'th Anuual Tcl Association Tcl/Tk conference 66 Chicago, IL November 14-16, 2012

3 Loading the script file

After the config file is read, the script file itself is read and evaluated in the Tcl interpreter so that
it can be called repeatedly as the application progresses through its data set. This is accomplished
by first creating a Tcl_Obj that will contain the script:

Tcl Obj* tcl script = Tcl NewObj();
Tcl IncrRefCount(tcl script);

(Note that code examples in the paper are sometimes slightly altered for brevity from the
example program.) Then, the following code adds the script, line by line, to that object using
Tcl_AppendStringsToObj:

std::ifstream file loader(load file.c str());
std::string load line;
while(file loader) {
std::getline(file loader, load line);
Tcl AppendStringsToObj (tcl script,
load line.c str(), "\n", NULL);
}
The script file itself is now loaded into the interpreter using Tcl_EvalObjEx:

rc = Tcl EvalObjEx (interp,tcl script, TCL EVAL GLOBAL) ;

Now the interpreter is ready to run the indicated proc for each vector in the analysis set.

4 Exploring the Iteration Interfaces

The main body of the paper explores several interfaces that an application can present to user
through the Tcl C Tcl_Obj and Tcl_ObjType interfaces. The goal for these interfaces is to provide
users simple and intuitive access to large native application datasets in an efficient manner that
looks at least vaguely familiar and intuitive to Tcl users.

19'th Anuual Tcl Association Tcl/Tk conference 67 Chicago, IL November 14-16, 2012

4.1Ac

cessing a Tcl List directly

The most natural and straight forward mechanism for iteration in Tcl is simple iteration through a

Tcl list:

The Tcl
The Tcl

proc do calculation input list {
now iterate
foreach var Sinput list {
puts S$var

list is, then, a very straight forward mechanism to providing access to application data.
List interface is used in the Calibre product’s LVS Device recognition application in

order to provide access to a (usually) short set of numbers describing proximity of features near a
transistor. Lists in the example program are constructed using the Tcl_ListObjAppendElement
interface. The command is invoked by name (from the proc_name argument), with the list passed
in the second field of the command:

//
// Tcl List construction from a C++ std::vector<double>
//
Tcl Obj *command[2];
command[0] = Tcl NewStringObj (proc name.c str(), -1);
Tcl IncrRefCount (command([O0]) ;
command[1l] = Tcl NewObj (); Tcl IncrRefCount (command[1l]);
for(std::vector<double>::iterator i = data.begin();

i != data.end(); ++1i)

Tcl ListObjAppendElement (interp, command[1l],
Tcl NewDoubleObj(*i));

After construction of the list, the command text and the list are passed in to the calling script
using Tcl_EvalObjv with the script text as the first argument and the list as the second argument.

int rc = Tcl EvalObjv (interp, 2, command, TCL EVAL GLOBAL) ;

Since the interface here is through a real Tcl list, this method presents the most natural interface
to the Tcl programmer. Its main drawback is that the data structure must be fully copied from its

19'th Anuual Tcl Association Tcl/Tk conference 68 Chicago, IL November 14-16, 2012

native C++ into the Tcl list. For applications that have very large datasets, or high performance
goals, the overhead required to form the Tcl list may be unacceptable. For those applications, the
other access mechanisms may be more appropriate.

4.2 Access through an Index

The second interface demonstrated uses an index for random access into the contents of the
container:

proc do calculation my arr f{
returns an object count
set entry count [$my arr entry count]
iterate using an index
for { set 1 0 } { $i < Sentry count } { incr i } {
puts "my arr $i => [Smy arr value $i]

The interface to the array is provided through the Tcl_CreateObjCommand interface.. In order to
construct that interface, the example program uses Tcl's Tcl_CreateObjCommand interface.

Tcl CreateObjCommand (interp, "argl",
vector interface,data,NULL);

This call creates a command object named “arg1”, bound with data pointer data, and
implemented through the some_stats_vector_interface function. The name “arg1” is arbitrary and
it is only used when inside the application as seen below. Inside the called proc, this command is
bound to a parameter of the called proc. This technique allows the end user to select meaningful
names for what are potentially a large number of parameters that all have real names that aren't
very meaningful to the end user.

19'th Anuual Tcl Association Tcl/Tk conference 69 Chicago, IL November 14-16, 2012

Next, the index_interface function provides implementation for the required commands:

int index interface(
ClientData cd,
struct Tcl Interp *interp,
int objc,
Tcl Obj *CONST objvI[])

std: :vector<double>* data =
static cast<std::vector<double>*>(cd);
const char* command =

Tcl GetStringFromObj (objv[1l], NULL);
if (strcmp(command, "size") == 0) {
f size t sz = data->size();

Tcl Obj *result=Tcl NewLongObj (sz);
Tcl IncrRefCount (result);
Tcl SetObjResult(interp, result);
} else if (strcmp(command, "value") == 0) {

The object command is passed along with the name of the proc as an argument to
Tcl_EvalObjEx. This is where the name “arg1” is used. It is not visible to the user (unless the
user knows to look for it).

std::string invoke line = procname;
invoke line.append(" argl");
int rc = Tcl Eval(interp,invoke line.c_str());

The array index interface is used in the Calibre product's LVS Device recognition application in
order to provide access to a randomly accessible array of measurement numbers related to a
transistor. The advantage of this method over the constructed List method is mainly efficiency.
The contents of the C++ vector are accessed directly by methods implemented through the
Tcl_CreateObjCommand interface. The interface is not nearly as elegant as the list interface for
simple iteration over the contents of a container. It also isn't suitable for data that doesn't fit an
index->value retrieval model. The next interface extends the index to a more fully fledged
iterator accessor.

19'th Anuual Tcl Association Tcl/Tk conference 70 Chicago, IL November 14-16, 2012

4.3 Using an iterator interface similar to C++ iterators

The C++ standard library provides a convenient common mechanism for iteration through
containers. That mechanism is called the ‘iterator’. The code looks like this if you want to iterate
through all members of an array of doubles called 'data’ printing each item on a separate line:

std::vector<double>::iterator i = data.begin();
while (i1 !'= data.end()) {

std::cout << *i << std::endl

++i;

We might construct a similar interface in Tcl where code could look like this:
set my iter [$data get iterator]
while { ! [S$data at end $my iter] } {
puts "my arr $i => [$Sdata value S$my iter]
$data incr S$my iter
}

In the example program, the iterator interface is constructed from two parts. The record is
accessed via a Tcl command object that is similar to the one used in the indexed interface. In the
place of the index, the iterator is a full fledged Tcl_ObjType object. It can retain state and
independent settings from the container itself. It is also more vulnerable to going out of synch
with the container, so may require mechanisms to void its validity if the container changes state
while the iterator is still in existence. The initialization of the command object is pretty much the
same, using Tcl_CreateCommandObj, as it is for the indexed access. The commands supported
by the implementation command are:

e get_iterator - returns an iterator to the beginning of the data container
e at_end - indicates the iterator is past the last data item in the data container
e incr - moves the iterator to the next item in the container

e value - retrieves the value represented by the iterator

19'th Anuual Tcl Association Tcl/Tk conference 71 Chicago, IL November 14-16, 2012

The iterator itself represents the std::vector<double>::iterator and that is its only data member in
this implementation. That is actually quite inadevalue quate since the vector iterator is
represented by a raw pointer into the memory of the data vector. As long as the data vector
remains in its original state, the iterator is fine. If the data container is altered or goes away, the
iterator should, in fact, be invalidated immediately. This would normally be done with some sort
of Observer pattern where the interface retains a list of active iterators and can void them when
ever any operation occurs that would invalidate an iterator.

The Tcl_ObjType interface that contains the iterator pointer is implemented using the standard
name and set of type handling functions for free, duplicate, update_string and set_from_any.
These functions manage the access to the C++ iterator.

The iterator style interface is used in the Calibre product’s Yield Server application to access a
wide variety of ED A design data like electrical nets, devices, design cells, and geometries etc.

5 Exploring more consistent interfaces

The implementations explored thus far have resulted in vastly different Tcl code because of the
mechanics of the underlying iteration mechanism and the fact that the Tcl foreach command is
strictly a list-based iteration mechanism. In the next section, two methods of providing a more
generic interface are explored. While the foreach command is strictly list based, a specialized
foreach-like command can be used to soften the differences between the custom interfaces and
the Tcl list interface. Coroutines, new to tcl, are also referred to as generators. They provide a
potentially much more powerful and consistent interface to the problem of iteration.

5.1 Using a specialized foreach command

It is possible to adapt the interfaces presented earlier to get closer to the syntactic simplicity of
the original foreach loop around the list. A specialized foreach-like command can be
implemented that allows use of syntax that is very similar to the original foreach implementation
on the list. The specialized foreach command can hide the differences between the various access
interfaces allowing the user routine to The example program implements such a foreach_instance
command on top of the indexed access method presented earlier. It does this with a specialized
command “foreach_instance” which allows the following interface:

proc do calculation record ({
foreach instance value Srecord ({
puts $value

}

19'th Anuual Tcl Association Tcl/Tk conference 72 Chicago, IL November 14-16, 2012

which is very close to a Tcl List interface:

proc do calculation record {
foreach value Sinput list {
puts Svalue

This foreach_instance command is implemented entirely in Tcl - and it hides the complexity of
the index access interface. The foreach_instance proc is implemented as:

proc foreach instance { varl record body } {
set vlen [Srecord size]
upvar 1 S$varl value# now iterate
for { set 1 0 } { $i < Svlen } { incr 1 } {
set value [Srecord value $i]
uplevel 1 S$body

The foreach style top level command is used by the Calibre LVS Comparison application’s
device reduction application to give iterative access to a potentially large singly linked list of
devices. While the two scripts are quite similar, they vary on the name of the critical foreach

command itself. In the next section, use of a coroutine allows the difference to be obscured using
another mechanism.

19'th Anuual Tcl Association Tcl/Tk conference 73 Chicago, IL November 14-16, 2012

5.2 Using a Tcl coroutine with the index interface

Implementing a coroutine interface further explores the iterative style command in the context of
coroutines. Using the coroutine, like the specialized foreach command, requires a specialized
adapter routine that traverses the data structure for another command that is doing the
calculation. One simple way to traverse a coroutine until it is empty follows. This example uses a
coroutine to traverse a Tcl list:

proc do calculation { record } {
coroutine data fetcher get from record Srecord
while 1 {
puts [data fetcher]

In this proc, the coroutine data_fetcher is created from the proc get_from_record (not shown) and
its argument Srecord, the list of data. It then goes into a while loop that prints the value of each
item in the list. The loop is broken when data_fetcher returns with a -code break return code that
indicates the end of the list. Next is the implementation of a list iteration form of
get_from_record:

proc get from record record ({
yield [info coroutine]
foreach value Srecord {
yield Svalue
}

return -code break

This calculation proc can remain unchanged while the get_from_record proc changes to cover a
different interface - in this instance, the index interface shown above:

proc get from record record ({
set vlen [record size]
yield [info coroutine]
for { set idx 0 } { $idx < S$vlen } { incr idx } {
yield [S$the record value $idx]
}

return -code break

19'th Anuual Tcl Association Tcl/Tk conference 74 Chicago, IL November 14-16, 2012

Tcl Coroutines are not currently used in the Calibre application family which is still using Tcl
8.4.

6 Conclusion

While Tcl provides a number of high performance adaptable interfaces to a C application
programmer, iteration over a data collection is still quite cumbersome due to the differences in
handling C object type collections and Tcl lists. These differences in interface are overcome in
certain situations through the use of a customized foreach-like command, but that approach has a
drawback in that the foreach-like command itself is specific to its data container. Coroutines
provide promise for providing a common iteration mechanism within Tcl, though the language
feature is new and idioms are not yet well developed.

7 Acknowledgments

Special thanks go to Donal K. Fellows for his assistance in writing the specialized foreach
command and coroutine adapter interfaces.

19'th Anuual Tcl Association Tcl/Tk conference 75 Chicago, IL November 14-16, 2012

19'th Anuual Tcl Association Tcl/Tk conference 76 Chicago, IL November 14-16, 2012

Tcl 2012
Chicago, IL
November 14-16, 2012

HOSP\TON =OPERAT LT RORX,

Session 5
November 15 13:30-15:00

19'th Anuual Tcl Association Tcl/Tk conference 77 Chicago, IL November 14-16, 2012

19'th Anuual Tcl Association Tcl/Tk conference 78 Chicago, IL November 14-16, 2012

Pulling Out All the Stops - Part 11

By Phil Brooks

Presented at the 19" annual Tcl/Tk conference, Chicago Illinois November 2012

Mentor Graphics Corporation
8005 Boeckman Road
Wilsonville, Oregon

97070
phil_brooks@mentor.com

Abstract--- At the 12th annual Tcl/Tk conference in Portland, Oregon, | presented a paper
entitled 'Pulling Out All the Stops' - which concerned using Tcl as a user interface custom
calculation engine at the heart of a high performance electronic design analysis package.
This talk discussed the efficiency concerns and implementation details that were considered
during implementation of this package. One simplifying constraint applied to the design
was that, though this is a multi threaded application, a single Tcl interpreter was used and
individual threads would access that Tcl interpreter through a mutex lock. seven years
later, customers are running more complex calculation codes on systems with more
processors. Locking on the single Tcl interpreter now restricts scaling. This paper briefly
reviews the original design and then discusses the conversion to a fully threaded design in
which one Tcl interpreter per thread allows completely parallel execution of the Tcl
calculator.

1 Introduction - A review of the 2005 paper

The 2005 paper discusses implementation of Calibre LVS's Device TVF feature, in which a
highly efficient, though quite limited, calculation engine is given the ability to make calls to a Tcl
program allowing for more sophisticated programming capabilities. Some examples of the
calculation language to Tcl calling mechanism is described. Finally, a set of implementation
details that wring maximum performance out of the Tcl interpreter in this situation are described.
Specifically, the major performance related recommendations were:

19'th Anuual Tcl Association Tcl/Tk conference 79 Chicago, IL November 14-16, 2012

eMake useof TCL_EVAL_GLOBAL.

 The user's Tcl programs are pre-compiled before calculations are started using
Tcl_EvalObjv.

« Runtime data access Tcl_Obj objects for arguments passed into function and return
values are set up once up front and are reused during each individual call to the device
calculator.

« Use Tcl object commands to hand off performance critical processing from Tcl to C++.

« End users are strongly encouraged to write compact efficient Tcl code.

The end of the 2005 paper includes a brief mention comparing Tcl 8.4 MT vs. Tcl 8.3 non MT
builds and shows a favorable scaling improvement especially when 4 or more processors are
used. The performance scaling that was visible in toy test cases, where the multi-threaded C++
processing was made as simple as possible and the Tcl processing was made artificially complex,
bore no relationship to the real world testing on real customer data where the MT C++ part took
vastly more time and the Tcl - even locked and single threaded - took hardly any time at all. So,
the originally shipped implementation didn't use MT Tcl interpreters due to time constraints, tcl
version constraints (we originally released on 8.3), some lurking bugs in the Tcl MT package,
and one critical Tcl threading implementation detail that we had yet to uncover!

2 What has happened in the mean time

Over the next several years, customers started using the interface, at first in exactly the way it
was designed... The original interface was conceived as a simple functional interface in which
customers would pass in a couple of vector style parameters, run through a loop, perform the
calculations of their choosing, and return a single value to the calculation engine to be used in
later processing. We found that after they got used to the interface, customers did far more clever
things than that with it:

e They would pass in dozens of parameters and make complex multi-step
calculations.

19'th Anuual Tcl Association Tcl/Tk conference 80 Chicago, IL November 14-16, 2012

o They would calculate several different parameters using the same set of input
parameters, often doing preliminary calculations repeatedly due to the fact that
our interface would only return a single number at a time.

e To get around the single return number constraint, customers would put together
string results that were actually a concatenation of numbers separated by *_'
characters and then pass them back and reparse those strings in subsequent calls.

We also found, during performance analysis on 16, 32, and 64 way systems, that, especially
when customers did these sorts of complex calculations, the single shared Tcl interpreter was
having a throttling effect on overall MT scaling of the application.

3 Searching for Clues

Most of the documentation that | could find for using multi-threaded Tcl talked about using Tcl
itself to start and manage the threads. There is one passage in the book "Practical Programming
in Tcl and Tk" by Welch, Jones and Hobbs [Welch] that says:

"At the C programming level, Tcl's threading model requires that a Tcl interpreter be
managed by only one thread.” p. 322

And that's about it. The rest of the chapter talks about all of the facilities that Tcl has at the
scripting level for creating and maintaining multiple interpreters using the Thread package, how
to make them communicate with one another; how to pass channels back and forth, how best to
write to a common file, how to share data efficiently between them, synchronization between Tcl
threads, but nothing else that talks about how to run multiple interpreters that don't have to
interact with one another from C. | didn't know it at the time, but that simple statement contains
the most important thing (and possibly the only important thing) that you need to know to create
independent parallel Tcl interpreters running on separate threads in C.

19'th Anuual Tcl Association Tcl/Tk conference 81 Chicago, IL November 14-16, 2012

4 More about Calibre threading

Calibre has been a multi-threaded application for a very long time. There are embarrassingly
parallel problems of computational geometry to be solved, and so they have been solved and
improved upon since at least April of 1998. Here is an interesting CVS checkin log:

revision 1.1

date: 1998/04/10 17:41:31;

author: ****; state: Exp;

routines related to flat drc thread are going be in this
file. Currently there is not much in it.

Needless to say, there is considerably more in that file today than there was and the threading
capabilities in Calibre are very well entrenched, so changing the threading model and control of
the entire application for one new feature in the LVS is not in the cards. So years after the initial
paper on 'Pulling out all the stops’, it appeared, in fact, that more stops needed pulling, | rolled up
my sleeves and resurrected the notion of running the Tcl interpreters in threads.

5 Task queue and thread pool Pattern

Let’s look briefly at this commonly used pattern for threading architecture. The task queue and
thread pool pattern [Wikipedia] is also known as the Worker-Crew Model [Sharapov]. In this
pattern essentially separates the management of processing threads in a system from the tasks
that need to be performed. This means that the threads can be managed for one set of constraints
(like hardware availability, licenses, performance management, etc.) while task creation is under
the purview of the application algorithms (like what things do | need to do and in what order do
they need to occur).

Task Queue

- ([@@@© — O —l

el [¢]|[¢)|[0)| [} [[e)| (¢}
Completed Tasks \
-~[([[[@© «— O

Figure 1. - Task Queue and Thread pool pattern - Wikipedia

19'th Anuual Tcl Association Tcl/Tk conference 82 Chicago, IL November 14-16, 2012

Calibre uses just such a model for threading. This allows many disparate algorithms that may
execute to solve a customer's particular problem to parcel their work out to a number of worker
threads that complete the tasks according to hardware and licensing constraints that are managed
by a completely different part of the system.

5.1 An Example Work Queue and Thread Pool AP

So awork queue AP generally has the following sorts of requirements and capabilities:
e it allows you to package up a unit of work including data and some direction for
what needs doing.

e it allows you to ship that unit of work off to the work queue.

The thread pools then grab the pieces of work and execute them. At that point, the essential get-
something-done part of the AP comes in:

o it allows you to write some code that will do the work in a worker thread.
finally, once the work is done, the final piece:

o wake me up when its over.
5.2 Implementing work queue and thread pool in Calibre LVS
So, the Calibre device recognition algorithm follows the above prescription:
e In the main thread: Package up the work. Ship the tasks off to the thread pool.
e In aworker thread: Wake up and perform a task on a particular set of data.
e In the main thread: OK - wake up, everything is done now.
In my initial implementation, the following steps are taken in the main thread:

o Start setting up the algorithmic tasks. Ship the tasks off to the thread pool.

In a worker thread:

19'th Anuual Tcl Association Tcl/Tk conference 83 Chicago, IL November 14-16, 2012

o Use thread specific storage to look for an existing interpreter

o if thereis no interpreter create one. Also create the entire infrastructure for the
interpreter, feed it the Tcl program text etc. Set up the argument objects, return
objects, calling infrastructure etc. Store thread specific data inluding the pointer to
the interpreter.

o Execute the local work task - it calls the thread's Tcl interpreter when needed.

At this point, everything is doing just fine. Now, once we finish all of the work, we need to clean
up after ourselves.

e Wake up everything is done.
e Clean up the Tcl interpreters.

No big problem, just loop remember where all of the tcl interpreters are and delete them one at a
time from the main thread!

5.3 Oops...

For the most part, the initial implementation worked fine. However, as this excerpt from my post
to comp.lang.tcl points out, the cleanup at the end wasn't going so well:

At the start of the processing that was requiring multiple Tcl interpreters, | set up some
thread specific storage in a vector of pointers, then as each thread got its first task, it
would check for an interpreter there if there was no interpreter, it would create one
under its thread index.

Threads would individually calculate, using Tcl and they ran nicely in parallel.
At the end of the processing, once all of the tasks were done and the threads all
quietly parked in their Calibre threading model parking slots, | would loop
through on the main thread and destroy each interpreter. This is where

things would go terribly wrong. Crashes, memory leaks, unclosed files, etc..

| finally reproduced the entire problem outside of my application in a small snippet of C++ and
Tcl C api. While doing that, | found out that if | deleted the interpreter from inside the same
thread that it was created in, all was fine, but if | did the same thing from the main thread in the
same way that | was in the application, | got the same crashes that | had in the full application. |
posted my findings to Comp.lang.tcl and received the following reply:

Gerald W. Lester: ...

19'th Anuual Tcl Association Tcl/Tk conference 84 Chicago, IL November 14-16, 2012

> | also found that by deleting the interpreter inside the same

> execution thread that it was created in,

Where else would you be deleting it from -- an interpreter is not supposed to be accessed
by more than one thread. You may have many interpreters per thread (i.e. a thread can
access/use many interpreters), but only one thread per interpreter (i.e. only a single
thread should be accessing a given interpreter).

Let's reread the bit from the book:

"At the C programming level, Tcl's threading model requires that a Tcl interpreter be
managed by only one thread." p. 322

Ahh - so that's what it means! | suggest rewriting that sentence:

"At the C programming level, Tcl's threading model requires that a Tcl interpreter be
created, used and destroyed by only one thread. Interpreters cannot be used across
multiple threads. "

6 Conclusion - Tcl threading from C Threads

Using Tcl interpreters in separate threads requires, absolutely, that the threaded interpreters be
started (Tcl_Createlnterp) and stopped (Tcl_Deletelnterp) from within the thread that they
execute in. This all makes perfect sense if Tcl is managing all of the threads in the application
and lower level bits of code go off and do various low level things in a thread safe manner. It is a
disaster if you are trying to plug Tcl into an existing threading system that uses the thread pool
pattern in which you don't have control of or access to the individual threads, but instead submit
tasks to a work queue that eventually dispatches them to threads.

Construction of the interpreters following this rule is fairly easy. Simple lazy creation of the
interpreter from inside the execution thread and access through a thread specific variable or array
slot works just fine.

Cleanup is much more problematic. Luckily, the guy that writes the work queue and thread pool
code for Calibre LVS is just four doors down from me. Also, the architecture of our application is
such that there are natural sequence points after each high level operation during which all of the
threads are quiet. In Calibre, a new AP| that implements a “perform this task on each thread"
routine which | now use to clean up interpreters. If we had a more heterogeneous work queue,
though, this approach might not be possible. It would be much cleaner for this type of usage if

19'th Anuual Tcl Association Tcl/Tk conference 85 Chicago, IL November 14-16, 2012

Tcl_Deletelnterp were able to clean up a quiet interpreter regardless of which thread it was
created on.

Having found a solution to the Tcl threading issues, we can examine the performance of multiple
Tcl interpreters doing user defined calculations in parallel on large numbers of parallel
processors where we look for the next performance bottlenecks.

7 Acknowledgements

Special thanks to Fedor Pikus for helping me understand the pthread library more fully. Thanks
also to Gerald W. Lester for his response to my initial query on comp.lang.tcl

8 References

“Practical Programming in Tcl and Tk” - Brent B. Welch, Ken Jones, with Jeffrey Hobbs,
Prentice Hall, 2003

“Techniques for Optimizing Applications - High Performance” - Garg & Sharapoy, Prentice Hall
2002 p. 394

“Thread Pool Pattern” - Wikipedia article

19'th Anuual Tcl Association Tcl/Tk conference 86 Chicago, IL November 14-16, 2012

Tcl 2012
Chicago, IL
November 14-16, 2012

HOSP\TON =OPERAT LT RORX,

Session 6
November 15 15:15-16:15

19'th Anuual Tcl Association Tcl/Tk conference 87 Chicago, IL November 14-16, 2012

19'th Anuual Tcl Association Tcl/Tk conference 88 Chicago, IL November 14-16, 2012

editTableA Generic Display and Edit
Widget for Database Applications

Clif Flynt
Noumena Corporation,
8888 Black Pine Ln,
Whitmore Lake, MI 48189,
http://www.noucorp.com
clif at noucorp dot com

October 24, 2012

Abstract

An application that includes a database always requires a set of pages
to edit the contents of the database.

The bulk of the edit pages are simple and easy to write. Even with
Tk’s ease in constructing simple data-entry pagespages, writing a dozen
procedures takes time that could be spent on the more interesting parts of
a project.

The goal of the Edit Tables package is to provide a set of good enough
pages with no effort on the part of the programmer, better pages with a bit
of effort, and a framework for building the fully featured pages an end user
will demand.

The implementation uses TclOO for a base class with mixins to provide
customized behavior for particular database engines. The test engines are
sqlite3 and TDBC.

1 Introduction

One application of the 80/20 rule is that 80 percent of an application is the code
that’s boring to write, and 20 percent will be fun. In a database application with
many data entry screens this ratio could push 95-5.

It would be nice if the 95 percent part of a database application could be
generated without requiring 95 percent of the programmer’s time.

It turns out that this can be done.

There is enough information in an SQL schema to create a simple entry
screen. The following schema can be used to generate an adequate GUI:

19'th Anuual Tcl Association Tcl/Tk conference 89 Chicago, IL November 14-16, 2012

table create phonelList {
id integer unique,

name text, —— person
phone text, —-- phone number
type text —-- home, work, mobile
}
The GUI would resemble:
’rname phone type

[l e | Delete | Replace | Search | Close |

Figure 1: Simple, uninstrumented GUI

By adding some extra information about the fields, the GUI can be im-
proved to resemble the following image:

-Mame: Last, First

Help
~Phone Mu Message Type

Mew | Delete | Replace | Search | Close

Figure 2: Simple, instrumented GUI

To paraphrase many lolcats, Simple tables are Simple. In order to be useful,
the EditTables package needed handle one-to-one mapping schemas, such
those containing references to other tables.

table create phonelList {
id integer unique,
name text,
num text,
typeid integer references types

19'th Anuual Tcl Association Tcl/Tk conference 90 Chicago, IL November 14-16, 2012

-Mame: Last, First

-Phone Mumber Type
Cell
Cell

Home
Woark

[

Mew | Delete | Fep

Figure 3: Reference, instrumented GUI

The package also needs to handle many-to-one mapping, perhaps a fixed
number of fields as shown below:

table create person {
id integer unique,
name text,
address text,

table create phone {
id integer unique,
num text,
personid integer references person,
typeid integer references types

-Mame: Last, First

—-Street Address

~Home Phnne—lrWurk Phnne—"—r:ell Fhone——-
Il I

Mew | Delete Feplace | Search | Close

Figure 4: Reference to table, instrumented GUI

19'th Anuual Tcl Association Tcl/Tk conference 91 Chicago, IL November 14-16, 2012

The trick to generating these sorts of GUI’s instead of just a simple GUI
from the pure schema requires adding some layout instructions.

The next requirement is to validate inputs. This may need to be done on
a per-field basis, or when the user submits a page. Both of these options are
supported in this package.

Finally, a useful package needs to work with multiple database back ends.
It would be nice to only support TDBC, but in the real world, TDBC doesn’t
have enough penetration (yet).

There are features in Tcl 8.6 that allow all of the requirements to be met.

The package is written using TclOO. The base package understands Tk and
how an SQL schema is laid out. It provides some primitives that the other
classes can use to find a primary field, find references, etc.

If the project starts using the EditTable package, the layout instructions
can be embedded into the SQL schema and extracted as needed. If EditTable
is being shoe-horned onto an existing database, or if you find the idea of mixing
layout commands and data definitions distasteful, the instrumentation can be
provided by modifying the method that acquires the layout commands in the
Tcl object.

Validation is accomplished by adding flags to fields with some common
validation routines available in the main class, and the capability of adding
custom validation if an application requires it.

Finally, support for multiple database backends is accomplished using TclOO’s
mixin feature.

The current version of editTable is the fourth or fifth iteration of ideas.
It's being used in a commercial product. It’s also likely to see a number of
modifications before it gets used in another product.

2 Using EditTable package

2.1 Creation

The EditTable package is constructed using the TclOO megawidget design
pattern described by Donal Fellows (Tcl/ Tk Proceedings 2009) and in my book
(Tcl/Tk: A Developer’s Guide, Chapter 11). This pattern emulates a
standard Tcl widget, allowing the new editTable object to be created like
any other Tk widget.

Syntax: editTable widgetName mixin dbEngine args

widgetName Name of the widget, normal Tk style

mixin Name of the db engine mixin
dbEngine Name of the db engine to use
args Optional arguments for opening the db engine

Creating an edit Table connected to an SQLite database named test . db
would resemble:

19'th Anuual Tcl Association Tcl/Tk conference 92 Chicago, IL November 14-16, 2012

set obj [editTable .tl SQLITE3_support sglite3 —-dbArgs test.db]

Doing the same with a TDBC engine that’s connected to the SQLite database
would resemble:

set obj [editTable .tl TDBC_support sqglite3 test.db]

Once an editTable object has been created, it can be used to query vari-
ous parameters using the config or configure commands (both map to the
same underlying code.)

Like Tk, the configure command will accept no arguments to return all
configuration options and values, a single argument to report the value of an
option, or a pair of arguments to set a value.

One of the options that can be extracted is the underlying database pointer.
Extracting this allows an application to interact directely with the database ob-
ject opened by editTable. This end-run functionality allows applications to
easily extend the behavior of the editTable class.

The next snippet shows creating an edit Table object, extracting the TDBC
database object and using that to create a table in the underlying sqlite3 database.

set obj [editTable .tl TDBC_support sglite3 test.db]
set db [$obj config db]
$db allrows {
CREATE TABLE person (
id integer unique primary key,

loginid text, -- loginID
fname text, —-—- First name
lname text, -—- Last name

addrRef integer references addr
)i

There are several methods defined for the editTable object. The most
commonly used are:

e editObjconfig

editObj getSchema

editObjmakeGUI

e oditObjpopulateBySearch

The config command will let the application query or set configuration op-
tions. If it is called with no key, it will return a list of all currently defined keys
and values.

19'th Anuual Tcl Association Tcl/Tk conference 93 Chicago, IL November 14-16, 2012

Syntax: editObj config ?key? ?value?

editObj A widget created with editTable command
config Query or set a config option

key Name of the config option or blank

?value? Optional value to define an option

The get Schema method will retrieve a schema for a table from the database,
or optional schema retrieval process. The default behavior is to query the
database. This is used internally to build GUIs for tables containing relations.

Syntax: editObj getSchema tableName

editObj A widget created with editTable command
getSchema Return the schema for a table
tableName Name of the table to return Schema for

The makeGUI method is the workhorse that builds a GUI within the edit Table
frame. It can build a GUI for any table defined within the database. The
editTable object can rebuild itself to display a different table as necessary.
The default GUI includes buttons to perform simple searches, and add, delete
or modify a record.

Syntax: editObj makeGUI schema

editObj A widget created with editTable command
makeGUI Construct a GUI within the editTable object frame.
schema aSchema - may be return from get Schema

The populateBySearch method will load values into the fields of a GUI.
The query can be any valid query suitable for an SQL SELECT on the currently
active table.

Syntax: editObj populateBySearch query

editObj A widget created with editTable command
populateBySearch Populates the values in a GUI
query An SQL query

The next example shows initializing a sample database and creating a sim-
ple GUI for a table.

toplevel .tt
set obj [editTable .tt.tl TDBC_support sglite3 -dbArgs test2.db]
set db [$obj config db]

Sdb allrows {
CREATE TABLE person (
id integer unique primary key,

19'th Anuual Tcl Association Tcl/Tk conference 94 Chicago, IL November 14-16, 2012

19'th Anuual Tcl Association Tcl/Tk conference

loginid text, -- loginID

fname text, —-- First name

lname text, —-—- Last name
addrRef integer references addr
)

CREATE TABLE addr (

id integer unique primary key,

street text, —-- Address
city text, —-—- Address
state text —-- Address
)
}
$db allrows {INSERT INTO addr VALUES (1, ’123 St’, ’'Acity’, "AA")}
Sdb allrows {INSERT INTO addr VALUES (2, ’"234 St’, ’'Bcity’, ’"BB’)}
Sdb allrows {INSERT INTO person VALUES (1, ’'aaa’, ’"Alpha’, ’"Adam’, 1)}
$db allrows {INSERT INTO person VALUES (2, ’'bbb’, ’'Beta’, ’'Blocker’, 2)}
$db allrows {INSERT INTO person VALUES (3, ’aa2’, ’'Abel’, ’'Adam’, 2)}
$db allrows {INSERT INTO person VALUES (4, ’"aa3’, ’'Aard’, ’'Adam’, 2)}
Sobj makeGUI [$obj getSchema person]
Sobj config -table person
Sobj populateBySearch "loginid = "aaa’"
pack .tt.tl
The generated GUI resembles this:
loginid fname Iname addrRef 1
{aaa Alpha Adam | -

[ew | Delete | Replace | Search | Close |

Figure 5: default GUI

2.2 Layout Information

Because we are polite and civilized, we will not call the previous example butt-

ugly.
But it is.

An SQL schema is designed to convey the logical date relationships be-
tween fields and tables. It is not designed to convey any information about

aesthetics.

The aesthetic information is conveyed as a six element list attached to each
field that is to be displayed. The elements are shown in the following list. The
first 2 are required, the others have default values that may be adequate.

95

Chicago, IL November 14-16, 2012

help A message to display in a popup help balloon
label The label to display with this field
reference If this field references another table, this ele-
ment will contain the table.field name of
the referenced table. If this field contains non-
referential data, this element is blank.
widget arguments arguments for the entry or combobox wid-
get that will be created. These might include
-width or ~background arguments.

row column A list of the row and column where this field
is to be displayed.
grid options Arguments to be attached to a grid com-

mand for this field. These might include
—columnspan for example.
This technique for conveying layout info is sub-optimal. The requirements
grew as the complexity of the application grew.
But it works.
The layout information is included in a Schema by adopting a modification
of the standard SQL comment.
An instrumented schema has the layout string appended to a field defini-
tion with a triple-dash comment.
A simple GUI can be created like this:

set obj [editTable .tl "" "" —-table phonelList]

Sobj makeGUI {
table create phonelList (
id integer unique,

name text, —-—— {First Last} {Name} {} {-width 40} {1 1} {-columnspan 2}
num text, —-—— {Number with area code} {Phone Number} {} {} {2 1}

type text ——-- {Type of phone} {Type} {} {} {2 2}

)

}
grid .tl

19'th Anuual Tcl Association Tcl/Tk conference 96 Chicago, IL November 14-16, 2012

~Mame

~Fhone Mumber

Type

Mew | Delete | Replace | Search | Close

Figure 6: simple GUI with layout info

The editTable widget requires that the SQL schema follow strict rules
and a field which references another table must include a references clause.

The presence or absense of the references clause determines how the
third field - the reference element is to be treated.

If a references clause is present, then the reference element contains
the database field name, or list of field names, to display in each element of a
combobox. The fields to display must be named as tableName. fieldName.

One pattern used with references is for a table to reference one of several
options. The next example is a database in which the book table has a string
for title and a reference for author. The author table has separate fields for first
and last name. The combination of first and last is displayed in the combobox

for selecting an author.

set obj [editTable .book SQLITE3_support sglite3 -dbArgs test4.db]

set db [Sobj config db]

Sdb eval {
CREATE TABLE book (

id integer unique primary key,
title text, —-——— {} {Title} {}
authorid integer references author

——— {} {Author} {author.first author.last} {} {2 1}

)i

CREATE TABLE author (

id integer unique primary key,

first text, —-—— {First Name}

{-width 40} {1 1} {-columnspan 2}

{First} {}

last text —-—-—- {Last Name} {Last} {}

)i
}

$db eval "INSERT INTO author VALUES (1, ’Clif’, ’'Flynt’)"
Sdb eval "INSERT INTO author VALUES (2, 'Mark’, 'Twain’)"

Sdb eval "INSERT INTO book VALUES

19'th Anuual Tcl Association Tcl/Tk conference

97

(1,"Tcl/Tk: A Developer’’s Guide’,

Chicago, IL November 14-16, 2012

l)"

$db eval "INSERT INTO book VALUES (2,’Tom Sawyer’, 2)"
$db eval "INSERT INTO book VALUES (3,’Huckleberry Finn’, 2)"

Sobj makeGUI [S$obj getSchema book]

Sobj config -table book

Sobj populateBySearch "title like ’'$%Tcl%’"
grid .book

The GUI generated from this code looks like this:

Title
’il_l:lﬂ_l{i A Developer's Guide

Authar
IVCIifFIynt -

Mew | Delete | Feplace | Search | Close

Figure 7: Schema with reference and layout info

Another common pattern is the many-to-one mapping implemented by
having a field in one table point back to another table. In a book database,
there are an undefined number of keywords that might be attached to a book.

The schema for this pattern would resemble:

CREATE TABLE book (
id integer unique primary key,
title text,

)i

CREATE TABLE keyword (
id integer unique primary key,
key text,
bookid integer references book

)i

To generate a GUI for this database pattern, the reference element in the
layout field in the keyword table is used to hold the name of a table. When a
GUI is generated for a table listed in the reference element, an Associated
values section is created in the GUIL

Expanding the previous example to include a reference table, the new table
resembles this

CREATE TABLE keyword (
id integer unique primary key,

19'th Anuual Tcl Association Tcl/Tk conference 98 Chicago, IL November 14-16, 2012

key text, —-—-—- {Keyword} {Category} {book} {} {}
bookid integer references book —-—- {book} {Title} {book.title} {} {}
)i

Which creates the following GUI:
~Title
TcliTk: A Developer's Guide

~Authaor
ClifFlynt -

-Associated values for Keyword
H . j"Categnw |
Frogramming

Mew | Delete | Replace | Search | Close

Figure 8: Schema with reference and layout info

The E button in the previous image opens a new toplevel to edit a keyword
which will be associated with this table row.

2.3 Customization

The editTable widget follows the Tk dictum of being adequate with no
tweaking, and open for customization if the application isn’t suited to the base
GUL

Various degrees of customization are supported. These techniques include:

using the layout elements

e configuring options for screen or field validation

building a separate mix-in or inherited class

tweaking the GUI before using it

Using layout elements to modify the appearance of the GUI works as de-
scribed.

By default, a editTable GUI has no validation. Per-Field validation can
be enabled by configuring the validate, fieldName attributes for a GUIL
The validation attributes accept a script to evaluate when focus leaves that

19'th Anuual Tcl Association Tcl/Tk conference 99 Chicago, IL November 14-16, 2012

field. The widget name (entry or combobox) and field name are appended
to the script when it’s invoked.

The editTable class includes some trivial validation methods including
validatePhone and validateNumeric.

2.4 Extending the class

The current implementation of editTable has mixins for Sqlite3 and TDBC.
A programmer can add a new mixin to support another database engine by
coding the engine-specific methods:

init Initialize a connection to the database.

getSchema Retrieve the schema for a given table. Setting
save sets this to be the active table.)

doSQL Execute an SQL command and return whatever

the command returns. This provides a generic ac-
cess to the underlying database.

getTables Return a list of the tables defined by this database.

getPrimary Retrieve the name of the primary key.

doReplace Update the DB row based on the contents of the
GUL

doNew Create a new row in the DB based on the contents
of the GUL

populateBySearch Populate the GUI based on an SQL query.

getValues Return a set of values based on a list of
tableName. fieldName values

getValueByRef Returns a value from table $tbl for field $£1d

where the primary is Svalue
populateWithFwdRef Populate a GUI that includes forward references
based on an SQL query
closeDB Close the connection to the DB

2.4.1 GUI Modification

Since the GUI follows a fixed pattern, it can be modified post-makeGUI and
before display.

For example, if users are only allowed to view and edit fields, the the delete
button can be removed with a command like:

Sobj makeGUI $specialSchema noClose
Sobj configure -table book

Getting more aggressive, rather than showing the Associated values
for a row, as they are displayed by default, an application can define a fixed
quantity of associated values and a custom display procedure while taking
advantage of the bulk of the editTables widget.

19'th Anuual Tcl Association Tcl/Tk conference 100 Chicago, IL November 14-16, 2012

The next example demonstrates a book database that emulates a card cat-
alog via a slider on the side to select books, and a simplified display of key-
words.

It does this by with a special procedure to construct the GUI and a new
procedure to extend the normal editTable population methods. The new
procedure for creating the GUI (b1dBookGUI) defines a modified schema with
a couple extra fields to hold the keywords. The showItem procedure uses
the populateBySearch method to populate the fields that are defined in the
book schema, and has extra code to populate the extra fields.

~Title

TclfTk: A Developer's Guide T
-Author

ClifFlynit = 1 :I
~Keyword 1 Keyword 2

Frogramming Tcl

MNew | Replace | Search |

Figure 9: Schema with reference and layout info

toplevel .t3
set obj [editTable .t3.t2 SQLITE3_support sglite3 —-dbArgs test3.db]

proc bldBookGUI {obj} {
set specialSchema {
CREATE TABLE book (
id integer unique primary key,

title text, --- {Title} {Title} {} {-width 40} {1 1} {-columnspan 2}

authorid integer references author, --- {Author} {Author} {author.first autho
keywordl text --- {Keyword} {Keyword 1} {keyword.key} {} {3 1}

keyword2 text --- {Keyword} {Keyword 2} {keyword.key} {} {3 2}

)i
}

Sobj makeGUI S$specialSchema noClose
Sobj configure -table book
destroy S$obj.buttons.b_Delete

19'th Anuual Tcl Association Tcl/Tk conference 101 Chicago, IL November 14-16, 2012

set prim [$obj getPrimary book]
set count [$obj doSQL "SELECT count ($prim) FROM book"]

set scale [scale .t3.sc —-from 0 —-to Scount \
—command [list showItem S$obj S$specialSchema .t3.sc 1]
grid S$obj S$scale

proc showItem {obj schema scale num} {
Sobj populateBySearch "id=$num"

set pos 0

foreach 1 [split $schema \n] {
lassign [$ob]j splitSchemalLine $1] def layout
lassign $layout help label ref args rowcol gridO

if {(Sref ne "") && ([string first "references" $1] < 0)} {
set dfld [lindex $1 0]
lassign [split S$ref .] tbl fld

set 1lst [$obj doSQL "SELECT $fld FROM S$tbl WHERE bookid=$num"]
set item [lindex $1st S$pos]

incr pos

Sobj configure -value, $dfld S$item

}
bldBookGUI $obj

3 Implementation

The editTable widget is implemented as a TclOO Megawidget with mixins
to provide database engine customization.

Another standard pattern would have been to make each database engine a
class that inherited the base functions from editTable. I considered and dis-
carded this pattern in order to have a single widget class (editTable) rather
than multiple classes (editSQLite, edit TDBC, etc.).

The editTable class uses the technique for creating a megawidget de-
scribed by Donal Fellows in his 2009 paper, and also described in my book
(Tcl/Tk: A Developer’s Guide, Chapter 11) (Shameless plug).

This technique uses a classmethod call to create an unknown method that
checks to see if the first argument is a window name, and if so proceeds to
create the new widget.

19'th Anuual Tcl Association Tcl/Tk conference 102 Chicago, IL November 14-16, 2012

Create a class method
Avoid redefining classmethod if it already exists.
if {[info proc ::00::define::classmethod] eq ""} {
proc ::00::define::classmethod {name {args ""} {body ""}} {
Create the method on the class if the caller gave
arguments and body
if {[llength [info level 0]] == 4} {
uplevel 1 [list self method $name S$Sargs S$body]
}
Get the name of the class being defined
set cls [lindex [info level -1] 1]
Make connection to private class
forwarding
uplevel forward S$name [info object namespace $cls]::my Sname

" n

my" command by

oo::class create editTable {
classmethod unknown {w args} {
puts "UNKL: S$w -—- $args"
if {[string match .* Sw]} {
[self] new $Sw {*}Sargs
return S$Sw
}

next $w {*}S$Sargs

When a new instance is created, one of the arguments describes the mixin
to be added. Since mixins don’t have constructors, the edit Table constructor
callsa init method defined within the mixin to perform special initializations.

The editTable class can create objects that have lives of their own. These
includes GUI widgets, open database connections and may include slaved
editTable GUIs. Because of these additional elements to the editTable
class, the edit Table class requires a destructor.

Each editTable object contains a list of cloned and referenced objects. The
desstructor descends upon these like a wolf upon the fold destroying them
in gay abandon.

While the edit Table class is happy to have multiple channels to databases,
many database engines are less happy with this. The init method in the mix-
ins avoids opening multiple channels. The editTable class must also avoid
closing a database channel until all users have been destroyed.

A class variable is used to keep track of the number of open database con-
nections. Again, this code was stolen from Donal Fellows” 2009 talk and my
book.

19'th Anuual Tcl Association Tcl/Tk conference 103 Chicago, IL November 14-16, 2012

if {[info proc ::00::Helpers::classvar] eq ""} {
proc ::00::Helpers::classvar {args} {
Get reference to classs namespace
set ns [info object namespace [uplevel 1 {self class}]]
Double up the list of varnames
foreach v $args {
uplevel 1 namespace upvar S$ns Sv Sv

4 Future

The method of conveying the layout information, and what information is re-
quired has been evolutionary. It is subject to a rework before the this package
gets used in another application.

The schema parsing is a quick and dirty approach that assumes each field
definition is contained on a single line. The schema parsing will be enhanced
as a method of the base editTable class.

It may be possible to reduce the number of methods in the mixin classes
by better use of the basic methods in the editTables class.

5 Summary

The current status of the editTable class is functional. It's in use in a
commercial product and is scheduled for a several other in-house and out-
house projects.

What started as a simple way to generate a good enough GUI that reflected
the underlying database schema has expanded into a package that can generate
a commercial-grade GUI with capability of hiding the schema and providing a
simple interface to a user.

The underlying simple display has been retained with potential tweaks to
extend the behavior beyond simple.

As the class is force-fed to other applications I expect to discover more
things it should do, and streamline the current feature set.

The current escape is available at http: //www.noucorp. com.

19'th Anuual Tcl Association Tcl/Tk conference 104 Chicago, IL November 14-16, 2012

Customizable Keyboard Shortcuts

Ron Wold
Mentor Graphics Corporation
8005 SW Boeckman Road
Wilsonville, OR 97070
503-685-0878

Abstract

Anyone that spends a lot of time using the same software tool becomes very familiar with it. They know
how the tool works, what the tool’s commands are and when to execute these commands. Coined a

“power user”, these type of users operates fast. Power users want quick access to commands, they do not
want to navigate through a menu to access commonly used operations. User interfaces often address this

issue by adding toolbar buttons, but, the fastest method of access is through a keyboard shortcut.

A keyboard shortcut refers to the association of a key sequence with an operation. User interfaces
typically have a predefined set of keyboard shortcuts. However, a tool that runs on multiple platforms
and that has dozens of windows and hundreds of operations will be unable to define a single set of

shortcuts that is sufficient for all users.

Modelsim is a software program written in Tcl/Tk that has been recently enhanced to support
customizable keyboard shortcuts. Users can associate a key sequence with a menu pick, a toolbar button,
a CLI command or a custom tcl script. In addition, users can specify that the key sequence is applicable
for the entire tool or for just a specific window. Implementing this functionality presented several
technical challenges. Tcl/Tk has a unique methodology for processing keyboard events and a successful
solution requires an architecture that functions within the bounds of this methodology. This paper will
discuss the basic architecture as well as the technical challenges that were faced and how they were

addressed.

Keywords

Tcl/Tk, keyboard shortcuts, bind, bindtags, customizable
1. Introduction

Modelsim is an integrated development environment (IDE) used by electronic designers to develop, debug, simulate

and test electronic designs. It supports several different hardware description languages (HDLs) - such as VHDL [1]

19'th Anuual Tcl Association Tcl/Tk conference 105 Chicago, IL November 14-16, 2012

and Verilog [2]. Modelsim’s user interface is comprised of many unique windows, toolbars, menus, popups and a

command line interface. The user interface is written entirely in Tcl/Tk.

Developing a functional, well tested electronic design can take several weeks to several months. Users that spend
this much time working with the same tool become ‘power users’ [3]. A key behavior of a power user is their desire
to perform operations quickly. Within a graphical user interface, there are many ways to perform an operation such
as selecting a menu item from a popup, clicking a tool bar or by typing the command into a command line interface.
While each of these methods has their advantages, none of methods can be executed as quickly as a keyboard

shortcut.

A keyboard shortcut[4] is a key combination that performs a certain command. The efficiency of a shortcut key
comes from that fact that it can be invoked entirely from the keyboard. A user isn’t required to position the mouse

cursor or click mouse buttons.

Keyboard shortcuts are not a new concept. On some platforms, such as Microsoft Windows ™, there is a standard
set of keyboard shortcuts. Given an operating system, a tool developer can identify the common shortcuts and
implement them within their tool. However, a conflict can arise if the tool supports multiple platforms, and the
standard shortcuts are different between the two platforms. For many years Modelsim detected the platform that
was in use and defined the shortcuts based on the platform. Although this is more flexible than a single shortcut
definition, the solution is still incomplete. Users want a shortcut definition that matches their own expectations, and
they want shortcuts for the commands that they most often use. Since there is not a single set of keyboard shortcuts

that will appease all ‘power users’, the best solution is to allow users to define and customize their own shortcuts.

2. Shortcut Fundamentals

Implementing a shortcut in Tcl/Tk requires the bind[5] command. In its simplest form, the bind command
associates an event, like a key stroke or mouse event, with an action, like a procedure call. For example, consider

this bind command:

bind .a.b.c <control-key-x> “Control X pressed”

This bind will result in the procedure “control x pressed” being called when the widget .a.b.c receives the
control-x key. In this example, the binding is placed on the widget .a.b.c, but bindings can also be placed on the
name of a widget class. When a binding is placed on the name of a widget class, all instances of that widget inherit
the binding. A binding can also be placed on “all” which causes all widgets to inherit the binding. Widgets also
have the notion of bindtags. A widget’s bind tags is a list of tag names, which may include the widget’s name, that

class name and all.

19'th Anuual Tcl Association Tcl/Tk conference 106 Chicago, IL November 14-16, 2012

bindtags .a.b.c {.a.b.c My Class . all }

When an event occurs on a widget, it is applied to each of the window’s bind tags, in the order in which they are

defined. If the bind tag has a binding definition for the event, then the bindtag’s script is executed.

3. Capturing keyboard events

Modelsim’s user interface is comprised of many windows. These windows are actually just widgets that contain

other widgets, but from a user’s standpoint, a window is a self contained tool providing specific functionality.

€ @ 136640 na A

&) wxoe secren o oo
S) v Searzon on 178 zacen
I P st oy s

[SE— [|
E G-] i
$actcts Hax , count)
= > 3 1]
P | est_counter dutjcount [7:0]
. >

Jvsm 23>

Jrsm 23>

[Now: 136,640 s Delta: 2. [sm:est_counter [

Figure 1 - Modelsim Windows

When a user activates a particular window and issues a keyboard event, such as key-delete, there is an expectation
that whatever is selected in the window will be deleted. However, a window may be comprised of multiple
subwidgets and each subwidget can take focus and thus be the target of the keyboard event. The user may have
activated the window by clicking in any of the subwidgets. From the users standpoint, the shortcut key is defined by
the window, not the individual subwidgets that make up the window. This creates a technical challenge in that every
subwidget must have an identical binding. There are other possible solutions, such as forcing focus to a particular
widget which contains the correct bindings, but these solutions require a detailed understanding of a window’s
construction. Modelsim has over 50 distinct windows, so defining a customizable binding architecture that requires

significant window specific changes is not feasible given this project’s time constraints.

19'th Anuual Tcl Association Tcl/Tk conference 107 Chicago, IL November 14-16, 2012

Rather than managing the customizable bindings on a widget, an alternative approach was taken. Applying a
binding to the ‘all’ tag provides a means of catching an event that is independent of the target widget. Given the

following bind command:

o
=
o
>

bind all <key-delete> "Binding::ServiceBinding %W S$key %k %$x %y %X

a user can click anywhere in a window that is comprised of subwidgets, hit the delete key, and the procedure
Binding::ServiceBinding will be executed. There are, however, two exceptions. The first is that all widgets must
have the ‘all’ tag in their list of bindtags. This is not an issue with the Modelsim environment. Widgets receive the
‘all’ bind tag by default, and this bind tag is not removed from any widget. The second issue that can prevent the
‘all’ tag from receiving an event occurs if there is a binding for an event on one of the bind tags found earlier in the

bind tag list and the binding script issues a break. For example, given these definitions:

bind .a.b.c <key-delete> "Delete Something;break”
bind all <key-delete> "Binding::ServiceBinding %W <key-delete>"

bindtags .a.b.c { .a.b.c all}

the call to Binding: : ServiceBinding will never occur. The binding tag .a.b.c is found earlier in the bind
tag list than the bind tag all, so it is executed first. Since the binding script contains a break, all bindtag processes
are halted. This behavior is fundamental to Tcl/Tk’s bind processing algorthim, and the only way to assure that

Binding::ServiceBinding is executed is by eliminating the break. The example below replaces the bind

command on the widget with a procedure call, Binding: : DefineBinding:

Binding::DefineBinding .a.b.c <key-delete> "Delete Something”
bind all <key-delete> "Binding::ServiceBinding %W <key-delete>"
bindtags .a.b.c { .a.b.c all}

Replacing the bind call with a call to Binding: : DefineBinding serves two purposes. First it eliminates the
binding conflict between the .a.b. c tag and the a1l tag. More importantly, it captures and stores the infent of the
original bind command. In this example, the intent can be described as “if widget .a.b.c is the target widget and the
delete key is hit, the procedure Delete_Something should be called”. When Binding: :ServiceBinding
recieves an event, it compares the target widget and the key event with the binding defintions that have been

defined via Binding: :DefineBinding command. If a match is found, the script associated with the binding

definition is executed.

19'th Anuual Tcl Association Tcl/Tk conference 108 Chicago, IL November 14-16, 2012

4. The Binding database

Replacing a bind command with a command that saves the bind’s intentions results in a database of binding
definitions. Not all bind commands use the bind database. Many bind commands are not candidates for shortcut
keys, such as binds that are based on mouse buttons or motion events. For example, the right mouse button raises a
window’s popup. If a user changed this binding they could lose access to the popup menu. Only bindings that are

intended as a shortcut key are stored in the binding database.

Structure window Structure window bindings — old method

P e e e A et e ey e e
(a-d@ik ineon 0-AE|aBaN

bind .mwain_pane.structure.tree <Bl-Motion> {StructureMoveDrag W %X 3Y)
bind .main_pane.structure.tree <Button-1> {StructureMoveDrag %W %X %Y}
- bind .mwain_pane.structure.tree <control-key-f> {structure_find}
— - bind .main pane.structure.tree <control-key-p> {structure print}

e D v ¥ bt oy ottt s
="

Structure window bindings — new method

bind .main pane.structure.tree <Bl-Motion> {StructureMoveDrag %W %X %Y}
bind .main pane.structure.tree <Button-1> {StructureloveDrag %W %X %Y}
Binding::DEflneBindlng structure <control-key-f> “structute_find”
Binding: :DefineBinding structure <control-key-p> “structure_print”

Binding Database

Figure 2

Storing binding definitions in a database has several advantages. First, changing a binding involves
nothing more than changing the database. Since the bindings are no longer placed directly on widgets,
knowledge of a window’s widget hierarchy is not required when modify or adding a binding definition.
The database also allows for persistent storage and binding definitions can easily be imported and
exported. Lastly, determining what shortcuts are available in any given window becomes a trivial task.

5. Processing a keyboard event

The following tcl code creates a binding on the bindtag a11. The binding will be in place for all widgets that

currently exist as well as any widget created in the future.

foreach key [Supported Shorcut Keys] {
bind all Skey "Binding::ServiceBinding %W Skey %k %$x %y %X %Y SA"

19'th Anuual Tcl Association Tcl/Tk conference 109 Chicago, IL November 14-16, 2012

When a shortcut key event occurs, regardless of the target widget, Binding: : ServiceBinding will catch
the event. Binding::ServiceBinding then examines the binding database and determines if there is a

binding script associated with the event. If there is an associated script, the script is invoked.

6. Binding Priority

Modelsim is comprised of many windows. Each window has commands that are specific to only that window as
well as keyboard shortcuts that reference these commands. Executing a window specific command requires that the
window be activated. Likewise, a window’s keyboard shortcut is only valid if the window that it is associated with

it is active. Binding definitions that are associated with a particular window are called window bindings.

There are, however, commands that are not window specific. These commands are available without regard to the
active window. For example, Modelsim’s ‘open’ command will open a source file for editing and this command is

always available. Binding definitions that are not associated with a specific window are called global bindings.

In addition to window and global bindings, there is also a distinction between intrinsic bindings and custom
bindings. An intrinsic binding is one that is defined by a tool developer. An intrinsic binding is built into the tool

and it is available to a user the first time they run Modelsim. A binding that a user adds is called a cusfom binding.

The distinction between window and global bindings and whether they are intrinsic or custom is important when an

event matches more than one binding definition.

Consider the following scenario; a global intrinsic binding is added by a developer, say control-s, which raises a
generic search dialog. In addition, a window intrinsic binding is added by a developer to the source window, it also
uses control-s, but the bind script is different, it issues a command to save outstanding edits. Next, a user redefines
the control-s binding definition for the source window to yet another command. When the user opens a source file
and issues control-s, Binding: :ServiceBinding will be called and it will examine the binding definitions
database, looking for a match. This search will result in three matches, each with a different binding script. Only
one of the binding scripts should execute, determining which binding definition to execute requires rules of priority.
There are four categories of binding definitions, intrinsic global, custom global, intrinsic window and custom
window. Given these four categories, we concluded that a window binding definition has precedence over a global
binding definition and that a custom binding definition has precedence over an intrinsic binding definition.

Implementing these rules of priority results in the following order of precedence. (Figure 3).

19'th Anuual Tcl Association Tcl/Tk conference 110 Chicago, IL November 14-16, 2012

4 N

1 Custom window shortcuts

. >

g 1

2 Intrinsic window shortcuts

- >

Order of precedence

-~

3 Custom global shortcuts

\ o

i N

4 Intrinsic global shortcuts

L »

Figure 3

7. Editing the binding definition database

With an architecture that supports customized keyboard shortcuts, the final requirement is defining a user interface
for adding, modifying and deleting keyboard shortcuts. The user interface must present the information found in the

binding database in an understandable form, as well as provide operations for adding and modifying the database.

ﬁ Keyboard Shortcuts ll
User Defined Keyboard Shortcuts
"IShorhcut Type |Shortcut Key |Operation |Type |Origir1 Add...
(=HMA Global Shorteuts
i: user defined Cirl+8 Undo Menu Edit->Undo M
user defined Ctrl+Q quit -f Script Delete
= gm| Wave Window
‘E user defined Cirl+I Zoom In Toolbar Zoom m
user defined Ctrl40 Zoom Qut Toolbar Zoom Export...
Print
Reset,
< | i
¥ Show Custom Shortouts only EE';]_-I
oK Cancel
Figure 4

The keyboard shortcut dialog (Figure 4) lists the shortcuts found in the binding database. By default, only shortcuts
added by the user are listed. Unchecking the check box ‘Show Custom Shortcuts only’ will cause intrinsic shortcuts
to be displayed as well. Shortcuts are grouped by the window that they are associated with or as a global shortcut.
A keyboard shortcut list item displays its shortcut type, the associated shortcut key, as well as information on the

menu item or toolbar that the key is associated with.

19'th Anuual Tcl Association Tcl/Tk conference 111 Chicago, IL November 14-16, 2012

Adding a keyboard shortcut is nothing more than adding a new entry in the binding database. From a user’s
standpoint, they simply want to associate a key sequence with a menu item, toolbar button or a tcl script. This
simplistic requirement contains a technical challenge; specifically how does one present a user with a complete list

of menu items and toolbar buttons?

A fewl years ago Modelsim’s user interface underwent a re-architecture to address issues due to an ever increasing
number of windows[7]. This re-architecture included a well defined API for creating menus, menu items and
toolbars. The API is essentially a group of wrapper functions that embed the actual Tk menu functions. Since these
wrapper functions are used for all menu and toolbar creation, they provide a single point for capturing and saving

menu creation and hierarchy.

x4
- s— I V [redas] “ = I ‘Shortout Type
g Bygobal
|1 X1 ! :
_IT& & [Iwndow speofc: Wave .|
| DU ho Mote: Window Shoriuts are only avalable when 8 window of e
ouill ho spected type & actve. They are ntended for mndom soeafc commands.
atil Bhos f Shortaut Key - PRESS the key combraton
ftest_counter Al | 2has 3 3 iy Mode|
Object Dedaration
‘Shortout Key Operaton
Select e command fom: Moy s
A Popup or Pulldown Meru) Cbyect Declaraton =]
A Toober butsn ¥ ::f
" Gereral Td scrpt i -
Bada
___'I | € i riternal wndow command = Format
Group. oy ent
||'II|ED‘ . |‘ Ar\.ug' (mstormate
Analog (oatom
Pl Analog (custom)... § . i
Group.
NoForce Ungrowp wf
Clock... « | 2
Properties. Bl
_o¢ | ol |

The menu items and their commands are captured at the time of creation. This data is used later

by the “Add Keyboard Shortcut” dialog, providing a list of menu items that can be selected.

It is important to display menu items using the same name and hierarchy that is found in the menu itself. This is
also true for toolbars, their name and listing order must also match the actual toolbar. Matching hierarchy makes

finding the menu item or toolbar much easier.

8. Teaching the shortcuts
If a user is not aware of a keyboard shortcut, the shortcut will not be used. Although a listing of intrinsic shortcuts
can be found in Modelsim’s documentation, quite often users do not read the documentation. Modelsim has two

features that are intended to help users learn the available shortcuts.

19'th Anuual Tcl Association Tcl/Tk conference 112 Chicago, IL November 14-16, 2012

Keyboard Shortcut Quick Help
Modelsim has an intrinsic keyboard shortcut that will raise a temporary dialog. This dialog lists the keyboard

shortcuts that are currently available for the active window.

Scroll Down
Scroll to End
Scroll to Start
Scroll Left
Scroll Right

Scroll Up

Scroll to Active Time
Zoom Cursor
Zoom

Zoom In

Zoom Last
Zoom Out
Zoom Dialog. ..
Extract/Pad Bus
Group Signals
Split Bus

Add Cursor
Goto Time...

=

c Other Waves
elp I

o) |

Hdl x|

Figure 5 Keyboard Shortcut Quick Help

Dynamic Menu Item shortcut key association

If a menu item has an associated shortcut key, it has become common practice to display the key sequence to the
right of the menu item text. We modified our default menu post command to query the default binding database
before rendering each menu item. If a menu item has an associated shortcut key, the shortcut key is displayed to the
right the menu text. The shortcut key display is dynamic in that it is not statically defined with the menu item. Ifa

user changes or deletes a shortcut key, the associated menu item will reflect the change immediately.

19'th Anuual Tcl Association Tcl/Tk conference 113 Chicago, IL November 14-16, 2012

[test_counter/dutfr... | St0

Menu items display the shortcut key
that 1s associated with the item

9. Issues

Custom Window Bindings

When a user creates a custom window binding, they must specify the window type. If they are adding a custom
binding to a menu or toolbar, the dialog provides a list of menu items or toolbars to select from. The list of menu
items or toolbars is created when the menu item or toolbars is created. If a menu hasn’t been created it will not be in
the list that the user can select from. If a window has not been opened at least once, there will be no information to
display in the add shortcut key dialog. We address this issue when the user selects the window type that they want
to apply the binding to. The user selects from a list of window types and only windows that have been instanced at
least once in the current session can be chosen. This solution is not ideal, but Modelsim’s user interface must

support 3™ party windows seamlessly and this approach achieves this.

Dialogs and in place edit boxes

Adding a binding to the “al1l” bindtag generates a lot of event traffic sent to Binding: : ServiceBinding.
The traffic does not generate a performance issue, but there are situations where the active window and the shortcut
key match a binding definition, but the binding script should not be executed. A text entry box in a dialog is one
example. Modelsim follows a model dialog model. When a dialog is raised, all key events are intended for the
dialog, not the underlying window. The service binding routine must first detect whether a dialog is raised before
processing a key event. When a dialog is raised and a key is detected, all key events received by the service routine

are ignored..

An even more difficult issue occurs when in-place text entry boxes are used. Several of Modelsim’s windows use
in-place text boxes. For example, when the user double clicks on some text, a text box is placed directly on the
window. Unlike a dialog, detecting a text entry box requires examining the widget class name. The service routine

must exclude processing for certain class names.

19'th Anuual Tcl Association Tcl/Tk conference 114 Chicago, IL November 14-16, 2012

Context specific menus

Context menus are created on the fly, the menu items are typically based upon a current state within the window,
such as selection. Context specific menu items are cleared and recreated each time the menu is raised. For example,
consider a debugger’s breakpoint menu, when the user places the mouse over a visual break point and issues the
popup, the menu items are created based upon the specific breakpoint. The menu items could have the name of the
breakpoint in the menu text, as well as in the menu command. This type of menu item is not a candidate for a

keyboard shortcut and special work is needed to prevent a user from binding to the menu item.

19'th Anuual Tcl Association Tcl/Tk conference 115 Chicago, IL November 14-16, 2012

10.0 References
[1] Doulos, A Brief History of VHDL, http://www.doulos.com/fi/desguidevhdl/vb2_history.htm.
[2] Doulos, A Brief History of Verilog, http://www.doulos.com/fi/desguidevlg/vb2_history.htm
[3] http://en.wikipedia.org/wiki/Power_user

[4] http://www.techterms.com/definition/keyboardshortcut
[

[

[

5] http://www.tcl.tk/man/tcl8.5/TkCmd/bind.htm

6] http://www.tcl.tk/man/tcl8.5/TkCmd/bindtags.htm
7] Too Many Windows, Ron Wold, 2010 Tcl/Tk Conference.

19'th Anuual Tcl Association Tcl/Tk conference 116 Chicago, IL November 14-16, 2012

Tcl 2012
Chicago, IL
November 14-16, 2012

HOSP\TON =OPERAT LT RORX,

Session 7
November 16 10:45-12:15

19'th Anuual Tcl Association Tcl/Tk conference 117 Chicago, IL November 14-16, 2012

19'th Anuual Tcl Association Tcl/Tk conference 118 Chicago, IL November 14-16, 2012

A Guided debugging of EDA software with various
components of Tcl/Tk GUI

Roshni Lalwani Amarpal Singh
roshni_lalwani@mentor.com amarpal_singh@mentor.com
Abstract

EDA software has various hardware design rule checks that can be debugged easily using
schematic widget. The main objective of design rule checking (DRC) is to achieve a high overall
yield and reliability for a hardware design. If design rules are violated the design may not be
functional at all. This paper presents a flow of using some enhanced Tcl/Tk widgets in an
innovate manner that can facilitate hardware designers in debugging various design issues of
EDA tools.

1. Introduction

Our Tcl/Tk based GUI software provides a debugging environment to various EDA tools. It is
built upon various widgets like schematic widget, dialog boxes, MTIwidgets etc. A schematic
generator widget (Nlview) is a visualization software component that helps electronic design
engineers to easily understand, debug, optimize and document electronic designs. A schematic
window in a Tcl/Tk GUI is a simplified graphical representation of an electrical circuit .The
schematic diagram consists of instances, pins and nets that are graphical representation of
hardware design netlist. The schematic widget supports a number of features to navigate the user
to interesting parts of the logic and to present engineering information in relation to the
schematic. The Schematic Generator is not intended to extract any engineering data from the
netlist - but is designed to generate a schematic as a “skeleton” for presenting these data. This
implies the need of an engineering system that "feeds" Nlview with data. The data is provided by
various EDA tools via our GUI interface. The interface between Schematic Generator and Our
Tcl/Tk based GUI is defined by string based API (Application Programming Interface). These
APIs provides a simple set of commands, callbacks and configuration properties and makes it
easy to visualize and debug the EDA software backend data.

There are certain attributes associated with each HDL components/objects like instances, pins
and nets. The idea here is to display this information in the callout box on various objects of the
schematic window, in such a way that it will help the user in debugging the problematic design
issues. A callout box in schematic window is sticky tag visually associated with each object in
the schematic window. A callout box is a nothing but a pixmap formed by few rendering shape
and text rendering APIs, so it is very fast and efficient. The call out box is a light weight object

19'th Anuual Tcl Association Tcl/Tk conference 119 Chicago, IL November 14-16, 2012

that can be displayed on any object in the schematic. It displays the text that gives a user a way
to solve the DRCs and other design issues. The callout box is integrated in our Tcl/Tk GUI using
Tcl/Tk interface provided by NLview widget.

Section 2 below covers callout box, highlighting how callout box helps in debugging design
rules checks and Section 3 outlines the enhanced dialogue box and its integration with the
callout box functionality.

2. Guided debugging using Callout Box

A design rule error is often associated with one or two instances. There is an error instance
where rule error occurs and there is source instance that is starting pointing for the error. For
example, there is design rule error which reports a wrong simulation value at the input pin of
error instance. The incorrect simulation value is because the source instance and error
instance are clocked by same clock. The tool also displays callout box on source and error
instance. The message displayed in callout box is an intuitive step to debug and resolve the
design rule error. There are also attributes associated with source and error instances. This
information is also displayed on the source and error instances in the same callout box.

For example the schematic view with callout box is as follows.

(C3-1) Clacked by same clock (PH1 a5 (560) ®

I_ag_ 1 (C3-1) Cantures data from sequential element (583 clocked by same clack /PHI ®

sirmulation_val_at_EN = 1

madule = latlx

2.1. Callout box Integration in with GUI tool

The schematic generator component integrated with our GUI tool provides an API based
mechanism to attach various kinds of attributes with Schematic objects like instances,
pins nets. These attributes can be visual or only non-visual in nature. The various kind of
visual attributes are like object’s display name, object’s border color, object’s fill color

19'th Anuual Tcl Association Tcl/Tk conference 120 Chicago, IL November 14-16, 2012

and object’s line style (solid/dashed/thick/thin etc). Outbox is also one special kind of
visual attribute attached to Nlview objects where application can along with specifying
the text to be shown in an outbox, configure the outbox for its background color,
foreground color and color of its various regions. Mostly, this whole configuration
information about how an outbox should be rendered is provided via some options during
setting outbox on an object.

Here is a simple API interface to demonstrate how an outbox is attached to a Schematic
object and its configuration mechanism.

The add_outbox command allows user to add one or more outbox on objects.

add outbox object id -name n? ?-value value? ?-bgcolor n? ?-textcolor n? ?- -colorlist
<string>? ?-separatorcolor n? ?-crosscolor n? ?-deltaX x? \
?-deltaY y?

The object id addresses the data base object, one ofiinst, net, netBundle,port,
portBus,pin, pinBus, hierPin or hierPinBus.

Please note:

Option -bgcolor <number> option specifies the color of outbox region. (default value is

1)
For ex : -bgcolor 2 specifies that the color of outbox region will be taken from the
property outboxcolor2.

Option -textcolor <number> option specifies the color of text for that particular outbox.

(default value is 0)
For ex : -textcolor 1 specifies that the color of text for outbox will be taken from the
property outboxcolorl.

Option -crosscolor <number> option specifies the color of cross for that particular

outbox. (default value is 4)
For ex : -crosscolor 1 specifies that the color of cross for outbox will be taken from the
property outboxcolorl.

Option -colorlist <string> option specifies the in order list of colors of regions for that
particular outbox. (by default colorlist is empty string)
For ex : -colorlist "3 5 4" specifies that the color of the first region of the outbox will be
taken from the property outboxcolor3, color of second region from property outboxcolor5
and color of third region from property outboxcolor4.

Option -deltaX <number> specifies the horizontal shift.

Option -deltaY <number> specifies the vertical shift.

19'th Anuual Tcl Association Tcl/Tk conference 121 Chicago, IL November 14-16, 2012

The text displayed in the callout box guides the user to resolve the problematic area of
EDA design.

2.2.Algorithm for schematic view with callout box

o

(Start)

4

Displaying the path from
source to error instance as
nlview ohjects in schematic

window

Saving the callout message
and its background color
as an attribute on the nlview
object of source and error
instance.

-

| 4

Processing the callout
attribute on source and
error nlview object

T

L

Displaying callout message
with their respective
background color onsource
and error niview object
using add_outbox API
described above

T

—

[Stop ;

The following pseudo code depicts the example usage of Nlview TCL API for displaying
the instances in schematic window with callout box.

proc analyzeDrc {} {
e Add objects to schematic window
e Add callout specific attributes to same objects

e Display the objects and its associated attributes in the schematic window.

19'th Anuual Tcl Association Tcl/Tk conference 122 Chicago, IL November 14-16, 2012

3. Section2 : Enhance TCL/TK dialogue box

There is an enhanced TCL/TK dialogue box that is used to modify the background color
of the text displayed in the callout box. The user can add/delete the text from the callout box
using this dialogue box. The dialog box and mainly consist of a combo box, two list boxes,
an option menu and Add/Remove button.

Combe box
fbbributes Specification Add Remove buttons
Ok ject Typ=: IInstai'u:e *M !I Dizsplayed Attributes

in_graybox odul e_nane £
is_walid

leaf _nane

leaf _nane_hash
naster_module_nane
nane
parent_instance
pover_donain_nane

Option Menus

Color Index: r

(2)
\Z/

1

i

3
* -

el

-l b =

| \

The left Fist box displays attributes that are registered with the —gui_display_string

but have rdisplay_in_gui set to off. In order to display thesd sttributes, add them to

the Dizplayed Attributes list box, select a color, and click OE,Please note that only
Left list Box Righ List Box

7

]

attributes that hawve walue other than default walue will ke dizplayed in YWisualizer s
K | Cancel | |

Figure2: An innovative dialogue box

3.1. Creation of Enhanced Dialogue box

The dialog box is also enhanced and mainly consists of a Combo-box, two list boxes, an
option menu and Add/Remove buttons.

3.1.1. Combo box

19'th Anuual Tcl Association Tcl/Tk conference 123 Chicago, IL November 14-16, 2012

The combo-box box is constructed using IWidgets combo-box .The user can select
the category from Instances/Pins/Nets by using combo box and the respective
attributes gets displayed in left /right list box.

3.1.2. Two list boxes

The two list boxes are scrolled list boxes and are constructed using list box and
scroll bar of Tk widget.

3.1.3. Option menu

The Option menu is constructed using tk Option Menu.
3.1.4. Text Message
The text message area is constructed using text widget of TK.

3.1.5. Add/Remove button

3.1.6. OK/Cancel button

The Add/Remove OK and Cancel buttons are constructed using button widgets of
TK.

All the items are arranged in the grid using grid of TK.

3.2. Integration of Enhanced Dialogue box with Callout box functionality.

The user can select the category from Instances/Pins/Nets by using combo box and the
respective attributes gets displayed in left /right list box. The attributes which are
displayed in right list box gets displayed in callout box. The remaining attributes,
displayed in the left list box are associated with the object type but are not displayed in
the callout box .The user can add/remove attributes from left/right list using Add/Remove
buttons. The respective changes will get applied to the callout box. The user can also
modify the background color of the text displayed in the callout box by selecting a color
in the option menu. These changes will also get applied to the callout box displayed in
the schematic window.

19'th Anuual Tcl Association Tcl/Tk conference 124 Chicago, IL November 14-16, 2012

3.3. Pseudo code for Integration of Dialogue Box with Callout Box

proc modifyCalloutBoxMessage { } {

1. Creating individual widgets like combo box, scrolled listboxes and buttons
and arranging them in grid.

2. The user can select an item from Pin/Instances/Nets from Combo-box ,
and the attributes of the same willbe displayed in leftand right list box

3. The user can also modify the background color of the attribute by
selecting the appropriate color from the tk_option menu

OR

The user can add/delete the attributes from left to right list box to
display/remove the attributes from callout box.

OR
The user can execute both the steps.

4. When the user press Ok button , these changes will be reflected in the
callout box

/

4. Glossary
GUI: Graphical User Interface.

HDL: Hardware description language.

DRC: Design Rule Checks.

5. Summary

Thus we display the DRC error information to user in an intuitive way. We can also modify
the background color of the callout box using enhanced TCL/Tk dialogue. Thus we provide

19'th Anuual Tcl Association Tcl/Tk conference 125 Chicago, IL November 14-16, 2012

a guided debugging environment to the user by implementing and using the enhanced TCL/
Tk widgets.

6. Bibliography
TCL wiki, http://wiki.tcl.tk

19'th Anuual Tcl Association Tcl/Tk conference 126 Chicago, IL November 14-16, 2012

An Efficient Method for Rendering Design Schematics Using Tcl/Tk, and Distributed
Relational Databases.

Manu Goel(manu goel@mentor.com), Antara Ghosh(Antara ghosh@mentor.com)
Mentor Graphics Corporation

Abstract:

Debugging a design in EDA is always a challenging and time consuming process.
Designers need to have access to an efficient tool which can provide them the design
connectivity in a logical and efficient manner. This paper discusses various challenges
faced while writing such a tool for debugging a design and how were they handled to
provide a fast and efficient solution. Schematic browser is a Tcl/Tk based GUI
application, which user can use interactively to debug and understand the design.

Glossary:
Description of terms used in the paper:

Schematic Browser — Widget to view/trace the RTL level connectivity of a signal in a
design

Incremental Mode — Browse the connectivity incrementally based on need

Full View Mode — View the connectivity of a particular segment of design in one go
Waveform Viewer — Widget to view the signal waveforms

Introduction:

The widget being discussed here is the schematic widget, which is a part of GUI
provided with a typical simulator. The GUI is used to run simulation, view waveforms
and then debug user design in case of any issues, using Schematic window/Wave
window. Typically, user needs to compile the design with flags to turn on debugging and
then use the GUI to verify/debug the design.

Schematic browser shows a graphical representation of a user’s design. The tool
converts the RTL constructs of user design, to their equivalent graphical symbols and
presents them. The tool should be easy to use interactively to debug or understand the
design. Viewing the design graphically, results into much faster debugging and clear
insight in the design, making it easy for the user to correlate quickly about how his chip
is going to behave.

Schematic window has two modes —

19'th Anuual Tcl Association Tcl/Tk conference 127 Chicago, IL November 14-16, 2012

1. Interactive Design Mode: The purpose of this mode is to debug the design
incrementally. For example, if the user finds any mismatch in his design
output, they will start tracing the design in schematic window starting with the
first signal which shows mismatch. User can then select any net and can
choose to see the drivers or readers of the selected net to see the
connectivity between various constructs around the net of interest. This
mechanism can help him in identifying any misconnection or any
unconnected logic.

2. Full Design mode: This mode is used to create full understanding of the
design and it shows one full module at a time. This mode provides a compact
view initially. User can expand to see more details on their area of interest
and can compact that again whenever needed.

3. Batch Mode: There is a mode in this tool, where user can use the tool even
without bringing up the GUI. This is called batch mode. In this mode, user
gets an interactive prompt at the terminal itself, where user can perform
certain operations. User can still use some of the above mentioned features
in this mode. For example, they can request certain details through command
and the details will be provided in text format.

Even when the GUI is up, user still has access to the prompt, and from there
as well user can perform certain operations without actually opening up the
Schematic browser GUI.

The GUI and the Schematic widget in discussion here are based on Tcl/Tk and the
debug information is stored in a database software tool. User has the flexibility to open
multiple instances of the Schematic browser and can perform independent operations in
all of them in parallel.

Problem Statement:

As discussed, schematic viewer should be a intuitive tool for debugging any design. The
Schematic viewer must give absolute clarity and maximum insight in the design to user,
in real time. However, when the design is big, so is the netlist debug database. To
manage such huge amount of data, fetch relevant information and drawing it in real time
is a daunting task. To achieve that one must make sure there is as little as possible
database interaction. That is, same query should not go to the database again and
again.

So in one hand, the data access should be managed in a way, so that user can open
debug netlist in multiple windows separately. These windows should be completely
modular in behavior. Any change in one window, should not affect other windows in any
manner. Consider a typical schematic rendering flow. Whenever logic is drawn in

19'th Anuual Tcl Association Tcl/Tk conference 128 Chicago, IL November 14-16, 2012

schematic window, there are safeguards to avoid painting same logic again. The
scenario of repeated rendering can occur in two cases. One case is, the design has
some looped logic, and while path browsing and incrementally drawing, the tool might
go through same logic repeatedly. Second case is, the user has issued command to
draw same logic more than once. To avoid these, there should be information present
against every window, about what logic is already present in Schematic window. These
caches of information is checked before drawing any logic, so that for an already drawn
logic, the whole process of data fetching, processing and drawing is not repeated. Every
netlist object must be processed (processing being the cycle from data fetching to netlist
rendering) only once. However the tool must make sure, if the same net is drawn in
different schematic window, which should be allowed. This is needed to maintain the
window functional modularity as mentioned above.

On the other hand the tool needs to keep database interaction minimum. For example,
as mentioned above, same logic should not be drawn in single Schematic window more
than once, but same logic can be drawn in different schematic window. However, the
effort of information fetching and processing should not be repeated for same logic. This
is cardinal as, multiple accesses to debug database is costly and should be strictly
guarded against.

The solution for this is to keep the data pool common among different Schematic
window. Database access and initial data processing, which is same for all logic,
regardless of which schematic window needs the information, should be done in a way
so that the effort is not repeated. This is a must for good performance.

So the system has two apparently clashing goals. One is to keep the data model as
mutually exclusive as possible to have correct functionality of multiple schematic
viewers. The other is to have a common data pool and data processing algorithm.

Added to this is, another use of the system is working of Batch mode. As discussed in
the introduction, this mode does not need any GUI window, so the system of information
caching needed for schematic windows are not needed here. However this mode can
also use the common data pool.

Lastly one must understand, as design gets bigger, DB size also gets bigger impacting
the performance in multiple ways —
- Loading the whole DB may take a lot of time
- If full DB is loaded in memory, then memory footprint will increase causing the
system to slow down.
- Fetching the required information will be slower

So handling of database also have to be clever. Creating a monolithic database for

whole design, and loading the whole database in memory, irrespective of user debug
interest locality is wasteful and will harm netlist drawer’s performance.

19'th Anuual Tcl Association Tcl/Tk conference 129 Chicago, IL November 14-16, 2012

So to sum up, for schematic to be truly useful, it must have correct functionality, it must
be reentrant and fast. The performance (time and memory) is almost as important as
functionality is, for schematic debugging.

Solution

In order to create such a tool, the basic requirements are
- Tool should support multiple windows, which can provide similar functionality, but
should be completely independent
- It should provide a clear interface to database from where all the necessary
information can be fetched
- Whatever information is once processed should not be processed again.
- Non-GUI mode should also work

In order to provide the above functionality, advantage of object oriented Tcl/Tk is
taken to create the main Schematic window widget. All common functionality that has to
be provided and needed to be localized to a single window can be encapsulated inside
a class. This class should have functionality of both, incremental and full view mode.
Information, once loaded in a window needs to be cached, so that it can be brought
back very quickly if user performs the same operation in that particular window. Such
information is dependent on context of the window. So a localized caching is a must for
such operations. This caching data structure, resides in the class created for the
window. The class will also store all the user specified preferences for that particular
window.

Second part of the problem is, to fetch the necessary information from the database to
show the required functionality in GUI windows, as well as in non-GUIl mode. Since a lot
of information may be shared among various windows, keeping the code to fetch and
store the information separate is a good idea. Since this information may be needed for
non-GUI mode as well, it has to be outside the scope of main class creating the widget.
Apart from this, since the design connectivity information will be same irrespective of the
window from where the information is being requested, all information fetched for this is
cached and can cater to future requests without having to go to debug database. So
Namespace feature of Tcl/Tk came very handy here.

All interface APIls were protected inside the name space. The caching arrays were also
protected inside the name space avoiding any misuse of these caches. Further, keeping
these interfaces and caching outside the main class also helps batch mode, because
that is not associated to any window, so the tool does not need to create any window
object for non-GUI mode. It can simply work through fetching the information directly
from these name space APIs.

Since the tool uses a lot of caching and the advantage of cache can be fully achieved
only if the cached information can be fetched real quickly. The associative arrays of

19'th Anuual Tcl Association Tcl/Tk conference 130 Chicago, IL November 14-16, 2012

Tcl were of great help for such a purpose. The logic of interest automatically became
the key for such an array to store the information in the cache, and to fetch. One simply
needs to check if such an entry exists in the concerned cache or not, and if it exists then
the information is available very quickly. It does not require any hashing function
implementation to store or retrieve the information form cache.

The information to be cached in these arrays is of the form of
Readers of net (/top/mid/inl) {/top/mid/ol /top/mid/o2..}

1 1 1
Local cache Local cache Local cache
I IR I
Widget Widget Widget
functionality functionality functionality
1 1
Window object 1 Window object 2 Window object 3

7

Common debug
data pool

Query to
database

Info from
database

Debug Database

Figure 1: Window widget and debug data pool database

This is how the GUI side problem was solved, now comes the problem of managing the
big database. Once that problem is solved, one can achieve a real efficient functionality
that is needed. For this, again, Tcl came in very handy. The handling of a big database
is divided into two parts. One, database should be modeled in such a way that data can
be accessed efficiently. Two the data already fetched into memory should be cached
and shared in judicious way among the different processes can access it independently.

19'th Anuual Tcl Association Tcl/Tk conference 131 Chicago, IL November 14-16, 2012

The usual size of designs that simulator handle is hundreds of million gates. The debug
database size can easily run into several hundred gigabytes. To keep a single
monolithic database of that size and fetching information from it is time consuming. So
instead of keeping single large design database, GUI should have several small
databases for different parts of design.

Dividing databases into several parts also gives GUI the flexibility of generating different
amount of debug information for different parts of the design, depending on the user’s
requirement. The simulator tool's debug database is arranged in a way that the tool
maintains several databases for different parts of the design. These databases may
have different amount of granularity of information on the parts of design it represents.
This depth of the information for each part is dictated by the user. There is always one
top node database that does the book keeping for the whole design. It would keep
record of what part of design resides in which database. Also it keeps all the global
information of the database.

—
v -
DesPart3 DB
DesPart] DB

~

GUI rendering tool
Global
info
~

Figure 2: Debug database structure

The above picture shows flow of handling debug database by GUI rendering tool. The
design is partitioned into Despart1, Despart2 and Despart3. The segregated parts of
design produces separate debug databases. Different colors on the databases indicate
that the debug data dumped for that part of the design are different. User has flexibility
to modulate amount of database that will be dumped for different parts of design. This is
the structure of database that the tool needs to handle.

19'th Anuual Tcl Association Tcl/Tk conference 132 Chicago, IL November 14-16, 2012

Any standard database tool allows the user to access multiple databases through the
handles they supply to user. The user must request the database tool to open a
particular database (say db1) for information access; the tool does that and returns a
handle (db1_handle). The user then must interact (execute queries to fetch relevant
information) with the database (db1) through this handle (db1_handle).

The database structure for debugging as described above will have several databases
and thus database handles for each. The top (or global) database will supply the
databases with the path to each of these databases; however GUI must handle
opening, accessing right database and closing them on its own. For this purpose the
associative array of Tcl language comes in very handy once again. One can easily
create an associative array for database handles. For example, for the above case
discussed, the Tcl storage would be —

array set db handle array {}
set db handle array(dbl) dbl handle

Now, one can simply find out which queries should be carried out on which database
(say db1) through the global database, and execute the queries on the database handle
($db_handle_array(db1) stored in the associative array. Because the array is
associative, the worst time complexity to pick the correct handle is constant.

The second requirement of having a multiple database in a flexible GUI tool is, one
opens a database only when that part of the design is accessed. So the database
handles are created on the fly while drawing the part of the design that database holds.
This again needs to be a fast (preferably in constant time) action for GUI. The GUI must
in constant time determine if a database is already opened and handle is available if not
then create that handle. Tcl gives a solution through where one can check if there is any
value stored in an associative array against a particular key. So the algorithm of
handling this flow would be -

If { [info exists db handle array(dbl)] } {
Use existing db handle

} else {
Open db handle for dbl
Set db handle array(dbl) dbl handle

}

The last requirement of handling multiple databases is, one must close all these
handles before exiting GUI. Any database on which handle is kept open, might not
behave correctly if a subsequent process tries to access it. However the flexibility that
Tcl offers while accessing associative array fixes this problem. One can easily traverse
an associative array like a list. The “array names” functionality brings all the keys of an
associative array for the database handle arrays. The flow of closing all databases is —

19'th Anuual Tcl Association Tcl/Tk conference 133 Chicago, IL November 14-16, 2012

foreach key [array names db handle array] {
Close database whose handle is stored in

$db_handle array ($key)

}

Conclusion:

Using the above described approaches made as develop an efficient schematic widget
tool. IncrTcl helped us in creating the main window providing the needed functionality
and storing window specific information locally. Name spaced helped us in providing
well defined interface to fetch the required data and to manage a common cache of
data. This also helped in keeping the GUI side clean and clear from code to interact with
database and keeping the GUI code thin. Associative arrays helped significantly in
managing multiple databases parallel and at also helped in caching and retrieving the
data quickly and easily.

When all of these constructs of Tcl gets combined, then comes the real power of Tcl
through which, however complex the widget is, looks easy and trivial to create and
maintain.

Bibliography:

[1] An Object Oriented Mega-Widget Set, Mark L. Ulferts,
http://incrtcl.sourceforge.net/iwidgets/paper/paper.html

[2] TCL wiki, http://wiki.tcl.tk

[3] Can Distributed DB Provide An Effective Means Of Speeding Web Access Times,
Christopher G. Brown, http://jitm.ubalt.edu/XVIII-1/article1.pdf

[4] Using [incr Tcl] to improve stability of a GUI — A Case Study
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-
2009/proceedings/quis/incrtcl-emulation-debug-qui.pdf

19'th Anuual Tcl Association Tcl/Tk conference 134 Chicago, IL November 14-16, 2012

