Python Library Reference

Release 1.6

Guido van Rossum

Fred L. Drake, Jr., editor

September 18, 2000

BeOpen PythonLabs
E-mail: python-docs@python.org

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://ww.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI OPEN SOURCE LICENSE AGREEMENT

Python 1.6 is made available subject to the terms and conditions in CNRI's License Agreement. This Agreement
together with Python 1.6 may be located on the Internet using the following unique, persistent identifier (known as a
handle): 1895.22/1012. This Agreement may also be obtained from a proxy server on the Internet using the following
URL.: http://hdl.handle.net/1895.22/1012.

CWI PERMISSIONS STATEMENT AND DISCLAIMER

Copyright(© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manudkscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in TYPES 3
2.2 BUIlt-INEXCEPLiONS o o e e e e 12
2.3 BUilt-in FUNCLONS L e e e 16

3 Python Services 25
3.1 sys — System-specific parameters and functions. o oL 25
3.2 types — Namesforallbuilt-intypes. 29
3.3 UserDict — Class wrapper for dictionaryobjects 31
3.4 UserList — Classwrapperforlistobjects 31
3.5 UserString — Class wrapper for stringobjects, 31
3.6 operator — Standard operatorsasfunctions. L 32
3.7 traceback — Printorretrieve astacktraceback. o oL 34
3.8 linecache —Randomaccesstotextlines., 36
3.9 pickle — Pythonobjectserialization 36
3.10 cPickle — Alternate implementation giickle o Lo, 41
3.11 copy _reg — Registempickle supportfunctions.o 41
3.12 shelve — Python objectpersistency. 41
3.13 copy — Shallow and deep copy operations e 42
3.14 marshal — Alternate Python object serialization. 43
3.15 imp — Accessthémport internals. L 44
3.16 parser — Access Pythonparsetrees. e 47
3.17 symbol — Constants used with Python parsetrees 56
3.18 token — Constants used with Pythonparsetrees 57
3.19 keyword — Testing for Pythonkeywords 57
3.20 tokenize — Tokenizer for Pythonsource. 57
3.21 tabnanny — Detection of ambiguous indentation oo oL 58
3.22 pyclbr — Python class browser support 58
3.23 code —Interpreterbaseclasses e 59
3.24 codeop — Compile Pythoncode e 61
3.25 pprint —Datapretty printer.. e e e e e e 61
3.26 repr — Alternaterepr() implementation.. L 63
3.27 py_compile — Compile Pythonsourcefiles. 65
3.28 compileall =~ — Byte-compile Pythonlibraries 0oL 65
3.29 dis —Disassembler.. 66
3.30 new — Runtime implementation object creation. 71
3.31 site — Site-specific configurationhook 72

CONTENTS

3.32 user — User-specific configurationhook, 73
3.33 __builtin __—Built-infunctions. 74
3.34 __main __ —Top-level scriptenvironment. o 74
String Services 75
4.1 string —Commonstringoperations e 75
4.2 re — Perl-style regular expression operations. oo 78
4.3 regex — Regular expression search and match operations. 85
4.4 regsub — String operations using regular expressions 89
4.5 struct — Interpretstrings as packed binarydata 90
4.6 fpformat — Floating pointconversions. e 92
4.7 StringlO — Read and write stringsasfiles. o Lo oo 93
4.8 cStringlO — Faster version obtringlO L 93
4.9 codecs — Codecregistryand baseclasses. 0o 93
Miscellaneous Services 95
5.1 math — Mathematical functions. 95
5.2 cmath — Mathematical functions for complexnumbers 97
5.3 random — Generate pseudo-randomnumbers. oo 98
5.4 whrandom — Pseudo-random number generator. e 99
5.5 bisect — Array bisectionalgorithm 100
5.6 array — Efficientarraysofnumericvalues 100
5.7 ConfigParser = — Configurationfileparser., 103
5.8 fileinput — lterate over lines from multiple inputstreams 104
5.9 calendar — General calendar-related functions. 105
5.10 cmd— Build line-oriented command interpreters.. oo 106
5.11 shlex — Simplelexicalanalysis 108
Generic Operating System Services 111
6.1 o0s —Miscellaneous OSinterfaces e 111
6.2 os.path — Common pathname manipulations. 121
6.3 dircache — Cacheddirectorylistings. e 123
6.4 stat — Interpretingstat() results. 123
6.5 statcache — Anoptimizationofos.stat() 125
6.6 statvfs — Constants used withs.statvfs() oo 126
6.7 filecmp —FileComparisons. e 126
6.8 time —Timeaccessand ConVverSionS i v it i e e 127
6.9 sched —Eventscheduler. e 130
6.10 getpass — Portable passwordinput. 131
6.11 curses — Terminal independant console handling. 132
6.12 getopt — Parser forcommand lineoptions. L oo 136
6.13 tempfile — Generate temporaryfilenames. oL 137
6.14 errno — Standard errno systemsymbols.. Lo 138
6.15 glob — UNIX style pathname patternexpansion 144
6.16 fnmatch — UNIx filename patternmatching 144
6.17 shutii — High-levelfile operations 145
6.18 locale — Internationalizationservices 146
6.19 mutex — Mutual exclusion support. e e 149
Optional Operating System Services 151
7.1 signal — Sethandlersforasynchronousevents. 151
7.2 socket — Low-level networkinginterface. 153
7.3 select — Waiting for I/O completion. 158
7.4 thread — Multiplethreadsofcontrol. 159
7.5 threading — Higher-level threadinginterface. 160

10

11

7.6 Queue —Asynchronizedqueueclass.. 166
7.7 anydbm — Generic access to DBM-styledatabases, 167
7.8 dumbdbm— Portable DBM implementation o 168
7.9 dbhash — DBM-style interface to the BSD database libraty. 168
7.10 whichdb — Guess which DBM module created adatabase. 169
7.11 bsddb — Interface to Berkeley DBlibrary 169
7.12 zlib — Compression compatiblewithzip 171
7.13 gzip — Supportforgzipfiles 173
7.14 zipfile — Workwith ZIP archives. 173
7.15 rlcompleter — Completion function forreadline 175
Unix Specific Services 177
8.1 posix — The mostcommon POSIX systemcalls. 177
8.2 pwd—Thepassworddatabase 178
8.3 grp —Thegroupdatabase e 179
8.4 crypt — Functionto check MiX passwords. 179
8.5 dl —CallCfunctionsinsharedobjects 180
8.6 dbm— Simple “database”interface. 181
8.7 gdbm— GNU'sreinterpretationofdbm. o o 182
8.8 termios — POSIXstylettycontrol. 183
8.9 TERMIOS— Constants used with thermios module 184
8.10 tty — Terminal controlfunctions 184
8.11 pty — Pseudo-terminal utilities 185
8.12 fentl — Thefentl() andioctl() systemcalls. 185
8.13 pipes — Interfacetoshellpipelines 186
8.14 posixfile — File-like objects with lockingsupport 187
8.15 resource — Resource usage information. o 189
8.16 nis — Interface to Sun’s NIS (Yellow Pages) L. 191
8.17 syslog — UNiIx sysloglibraryroutines. 192
8.18 popen2 — Subprocesses with accessiblel/Ostreams. 192
8.19 commands— Utilities forrunningcommands oo 193
The Python Debugger 195
9.1 DebuggerCommands e 196
9.2 HOowWItWOrks. o e 198
The Python Profiler 201
10.1 Introductiontothe profiler e 201
10.2 How Is This Profiler Different From The Old Profiler?. 201
10.3 InstantUsers Manual. e e 202
10.4 What Is Deterministic Profiling?. 204
10.5 Reference Manual L 204
10.6 Limitations. o o e 207
10.7 Calibration. e 207
10.8 Extensions — Deriving Better Profilers. 208
Internet Protocols and Support 213
11.1 cgi — Common Gateway Interface support.. 213
11.2 urlib —Openanarbitraryresourceby URL oo 219
11.3 httplib — HTTP protocol client. 223
11.4 ftplib —FTP protocolclient. e 224
11.5 gopherlib — Gopher protocolclient 227
11.6 poplib —POP3protocolclient. e 228
11.7 imaplib — IMAP4 protocolclient e 229
11.8 nntplib — NNTP protocol client. 232

12

13

14

15

11.9 smtplib — SMTP protocolclient. e 235

11.10telnetlib —Telnetclient 238
11.11urlparse — Parse URLsinto components.. o oo i i i i i e e 241
11.12SocketServer — A framework for network servers.. Lo, 241
11.13BaseHTTPServer —BasicHTTP server.. i e 243
11.14SimpleHTTPServer — A Do-Something RequestHandler. 246
11.15CGIHTTPServer — A Do-Something RequestHandler 247
11.16asyncore — Asynchronous sockethandler. oo . 247
Internet Data Handling 251
12.1 sgmllib — Simple SGML parser. o e e e e e 251
12.2 htmllib — Aparserfor HTMLdocuments i i i i 253
12.3 htmlentitydefs — Definitions of HTML general entities 255
12.4 xmllib — A parserfor XML documents. e 255
12.5 formatter — Genericoutputformatting 258
12.6 rfc822 —Parse RFC822mailheaders. 261
12.7 mimetools — Tools for parsing MIME messages v 264
12.8 MimeWriter — Generic MIME filewriter 265
12.9 muiltifile — Support for files containing distinctparts. 0oL 266
12.10binhex — Encode and decode binhex4files oo oL 268
12.11uu — Encode and decode uuencodefiles L 269
12.12binascii — Convert between binary amdsCIl oL 269
12.13xdrlib — Encode and decode XDRdata.. 270
12.14mailcap — Mailcap file handling.. 273
12.15mimetypes — Map filenamesto MIME types. 274
12.16base64 — Encode and decode MIME base64 data. 275
12.17quopri — Encode and decode MIME quoted-printabledata 276
12.18mailbox — Read various mailboxformats L Lo oL 276
12.19mhlib — Accessto MH mailboxes e 277
12.20mimify — MIME processingof mailmessages. o 278
12.21netrc —netrcfile processing. L e e 279
12.22robotparser — Parserforrobots.txt 280
Restricted Execution 283
13.1 rexec — Restricted executionframework o o 284
13.2 Bastion — Restrictingaccesstoobjects e 286
Multimedia Services 287
14.1 audioop — Manipulaterawaudiodata 287
14.2 imageop — Manipulaterawimagedatao 290
14.3 aifc — Read and write AIFFand AIFCfiles. oo 291
14.4 sunau — Read and write Sun AUfiles L 293
14.5 wave — Read and write WAV files. 295
14.6 chunk —Read IFFchunkeddata. 297
14.7 colorsys — Conversions betweencolorsystems. 298
14.8 rghimg — Read and write “SGIRGB"files 299
14.9 imghdr — Determine thetype ofanimage.. o e 299
14.10sndhdr — Determine type of soundfile.. oo 300
Cryptographic Services 301
15.1 md5— MD5 message digest algorithm. Lo oo 301
15.2 sha — SHA message digestalgorithm 302
15.3 mpz— GNU arbitrary magnitude integers 302
15.4 rotor — Enigma-like encryption and decryption.. 303

16 SGI IRIX Specific Services 305

16.1 al —Audio functionsonthe SGl e 305
16.2 AL — Constantsused withtted module 307
16.3 cd — CD-ROM accesson SGISYStems o vttt e 307
16.4 fl — FORMS library interface for GUl applications. 310
16.5 FL — Constants used withtife module 315
16.6 flp — Functions for loading stored FORMS designs. 316
16.7 fm — Font Managelinterface. 316
16.8 gl — Graphics Libraryinterface 317
16.9 DEVICE— Constantsused withthlgd module 319
16.10GL— Constants used withttgd module 319
16.11imgfile — Support for SGlimglibfiles 319
16.12jpeg — Read and write JPEGfiles. e 320
17 SunOS Specific Services 323
17.1 sunaudiodev — AccesstoSunaudiohardware. 323
17.2 SUNAUDIODEW- Constants used wittunaudiodev 324
18 MS Windows Specific Services 325
18.1 msvcert — Useful routines from the MS VC++runtime. 325
18.2 winsound — Sound-playing interface for Windows. 326
19 Undocumented Modules 329
19.1 FrameworksS o e e e 329
19.2 Miscellaneous useful utilities. L 329
19.3 Platform specificmodules 329
19.4 Multimedia. 330
195 Obsolete. e 330
19.6 Extension modules e 331
Module Index 333
Index 337

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World-Wide Web. Some modules are avaiable
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See Chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use irfanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, for exampl,OL, 0.0 , 0] .

e any empty sequence, for examgle,, () ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns zerd.

All other values are considered true — so objects of many types are always true.
Operations and built-in functions that have a Boolean result always retimnfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.
2Additional information on these special methods may be found ifPtheon Reference Manual

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and vy | if xis false, therx, elsey (1)
not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsnsd a == bis interpreted agot (a == b), and
a == not bisasyntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampley <= zis equivalenttx < y and

y <= z, except thay is evaluated only once (but in both casdEs not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning Notes

< strictly less than

<= less than or equal

> strictly greater than

>= greater than or equal

== equal

<> not equal (1)

I= not equal ()

is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’t choose betwmeand C! :-) = is the

preferred spellings> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example,
file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class definesrttpe _() method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

2.1.4 Numeric Types

There are four numeric typeglain integers long integers floating point humbersand complex numbers Plain
integers (also just calleititegers are implemented usinigng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendinjg ‘or ‘J’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the Same rule.
The functionsnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y guotient ofx andy Q)
X %y remainder ok / vy
- X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(X) x converted to long integer (2)
float(X) x converted to floating point
complex(re, im) | a complex number with real pas, imaginary parim. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(X, V) thepair(x / 'y, X %Y) 3)
pow(X,) x to the powery
X ¥y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftdian(s
andceil() in modulemath for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

3As a consequence, the Ifdt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofi * has the same priority as the other unary numeric operatietigfid ‘-).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
X|y bitwise or of x andy
X"y bitwise exclusive oof x andy
X &y bitwiseandof x andy
X << n | xshifted left byn bits 1), (2)
X >> n | xshifted right byn bits (1), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.

(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) Aright shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.1.5 Sequence Types

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quotegzzy’ |, "frobozz" . See chapter 2 of theython Reference
Manual for more about string literals. Lists are constructed with square brackets, separating items with commas:
[a, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parenthesas, lp,gc, or() . A single item tuple must

have a trailing comma, e.dd,)

Sequence types support the following operations. Tie a&nd ‘not in ' operations have the same priorities as the
comparison operations. The'‘and *’ operations have the same priority as the corresponding numeric operétions.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
S * n, n* s| ncopies ofsconcatenated (1)
9] i'th item of s, origin O 2
g i] slice ofsfromi toj (2), (3)
len() length ofs
min(s) smallest item of
max(s) largest item of

Notes:

4They must have since the parser can't tell the type of the operands.

Chapter 2.

Built-in Types, Exceptions and Functions

(1) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.as

(2) If i orj is negative, the index is relative to the end of the string,le@(s) + iorlen(s) + |is substituted.
But note thatO is still O.

(3) The slice ofsfromi toj is defined as the sequence of items with inkexich that <= k < j. If i orj is greater
thanlen(s), uselen(9). If i is omitted, us®. If j is omitted, usden(). If i is greater than or equal {p
the slice is empty.

More String Operations

String objects have one unique built-in operation: %heperator (modulo) with a string left argument interprets this
string as a Gprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple’sijedollowing format characters

are understood% c, s, i, d, u, 0, X, X, e, E, f, g, G Width and precision may be*ato specify that an integer
argument specifies the actual width or precision. The flag charactersblank,# and0 are understood. The size
specifiersh, | or L may be present but are ignored. T¥s conversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI featurédépand%nare not supported. Since Python strings have

an explicit length%sconversions don't assume tHel' is the end of the string.

For safety reasons, floating point precisions are clipped t&/&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bggconversions. All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after tB&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> |anguage = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard modtrlag and in built-in modulee .

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexes an arbitrary object):

5A tuple object in this case should be a singleton.
8These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 7

Operation Result Notes
gi] = x itemi of sis replaced by
gi:j] = t slice ofsfromi to is replaced by
del di:j] sameas i:j] = []
s.append(x) same ag{len(s)len(9] = [X)
s.extend(X) same agllen(s)len(9] = X (2)
scount(X) return number of's for whichg[i] == x
sindex(X) return smallest such thaq i] == x 3)
sinsert(i, X) sameasi:i] = [x] ifi >= 0
s.pop([i]) sameax = di]; del g i]; return X (4)
s.remove(X) same aslel ¢ sindex(X)] 3
s.reverse() reverses the items afin place (5)
s.sort([cmpfund) sort the items o§in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this will no longer work in Python 1.6. Use of this misfeature has been deprecated since Python 1.4.

(2) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable sequence types other than lists.

(3) RaisesvalueError whenxis not found ins.

(4) Thepop() method is experimental and not supported by other mutable sequence types than lists. The optional
argument defaults to-1 , so that by default the last item is removed and returned.

(5) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don't return the sorted or reversed list to remind you of this side effect.

(6) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should returnl , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list
in reverse order it is much faster to use calls to the metBod$) andreverse() than to use the built-in
functionsort() with a comparison function that reverses the ordering of the elements.

2.1.6 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thetionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (A.@nd1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ’jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wleeaadb are mappingsk is a key, andr andx are arbitrary
objects):

8 Chapter 2. Built-in Types, Exceptions and Functions

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k (1)
akl = x seta k] tox
del a[kK removea k] froma 0}
a.clear() remove all items frona
a.copy() a (shallow) copy of
a.has _key(k) | 1if ahas akey, else0
a.items() a copy ofa’s list of (key, value pairs (2)
a.keys() a copy ofa’s list of keys (2)
a.update(b) for k, v in b.items(): ak] = v (©)
a.values() a copy ofa’s list of values (2)
aget(k[, x]) | a[K if ahas _key(K), elsex @)

Notes:

(1) Raises KeyError exception ifk is not in the map.

(2) Keys and values are listed in random orderkdf/s() andvalues() are called with no intervening modifi-
cations to the dictionary, the two lists will directly correspond. This allows the creatiomaifie key) pairs
usingmap() : ‘pairs = map(None, a.values(), akeys())

(3) b must be of the same type as

(4) Never raises an exceptionkfis not in the map, instead it returrsx is optional; wherx is not provided and is
not in the mapNone is returned.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anthameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatpert statement is not, strictly
speaking, an operation on a module objaotport foo does not require a module object nanfiedto exist, rather
it requires an (externafefinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment ta thiet __
attribute is not possible (i.e., you can write __dict __['a] = 1 , which definean.a to bel, but you can’t
writem. __dict __ = {} .

Modules built into the interpreter are written like thismodule 'sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ’/usr/local/lib/pythonl.5/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fung argument-lis} .

2.1. Built-in Types 9

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributésnc _code is a function’scode objec{see below) and
f.func _globals is the dictionary used as the function’s global name space (this is the same_aslict
wheremis the module in which the functidhwas defined).

Methods
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methimals:self is the object on
which the method operates, andm _func is the function implementing the method. Callim§arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the buitempile() function and can be extracted from function objects
through theirfunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtedhstatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhis defines names for all standard built-in types.

Types are written like thisctype ’'int’>

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (sedPytbon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nant&itipsis (a built-in name).

It is written asEllipsis

10 Chapter 2. Built-in Types, Exceptions and Functions

File Objects

File objects are implemented using G&lio package and can be created with the built-in functipen() de-
scribed in section 2.3, “Built-in Functions.” They are also returned by some other built-in functions and methods, e.g.,
posix.popen() andposix.fdopen() and themakefile() method of socket objects.

When a file operation fails for an 1/0O-related reason, the excep@&mror is raised. This includes situations where
the operation is not defined for some reason, $igek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()

Close the file. A closed file cannot be read or written anymore.
flush ()

Flush the internal buffer, liketdio s fflush()
isatty ()

Returnl if the file is connected to a tty(-like) device, elBe

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl oros.read() and friends.

read ([size])
Read at mossizebytes from the file (less if the read h&®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned wheBoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after aOFis hit.) Note that this method may call the underlying C funci@ad() = more than once
in an effort to acquire as close sizebytes as possible.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tting may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned¢wihen
is hit immediately. Note: Unlikestdio 's fgets() , the returned string contains null characteY@ () if
they occurred in the input.

readlines ([sizehinﬂ)
Read untileEoF using readline() and return a list containing the lines thus read. If the opti@mehint
argument is present, instead of reading ugaa, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read.

seek (offse{, Whencd)
Set the file’s current position, likstdio 's fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values drdseek relative to the current position) addseek relative to the
file’'s end). There is no return value.

tell ()
Return the file’s current position, likedio s ftell()

truncate ([size])
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most) that size. The
size defaults to the current position. Availability of this function depends on the operating system version (for
example, not all Wix versions support this operation).

write (str)

"The advantage of leaving the newline on is that an empty string can be returned t@ araaithout being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 11

Write a string to the file. There is no return value. Note: Due to buffering, the string may not actually show up
in the file until theflush() orclose() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to meztdhnes() ;
writelines() does not add line separators.)

File objects also offer the following attributes:

closed
Boolean indicating the current state of the file object. This is a read-only attributeldbe() method
changes the value.

mode
The 1/0 mode for the file. If the file was created using tipen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the forrs!..> . This is a read-only attribute.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vautfifpace attribute,
which should be initialized to zero. This will be automatic for classes implemented in Python; types imple-
mented in C will have to provide a writabéeftspace attribute.

Internal Objects

See thePython Reference Manu#br this information. It describes code objects, stack frame objects, traceback
objects, and slice objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

__dict
A dictionary of some sort used to store an object’s (writable) attributes.

__methods __
List of the methods of many built-in object types, e[y§., —__methods __ yields['append’, 'count’,
'index’, ’insert’, 'pop’, 'remove’, 'reverse’, 'sort’]

__members__
Similar to__methods __, but lists data attributes.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string objects, in
Python 1.5, all standard exceptions have been converted to class objects, and users are encouraged to do the same. The

12 Chapter 2. Built-in Types, Exceptions and Functions

source code for those exceptions is present in the standard library nesagletions ; this module never needs to
be imported explicitly.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofékeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootEkasption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions.

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsiffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

StandardError
The base class for all built-in exceptions excB8pstemExit . StandardError itself is derived from the
root classException

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verftowError
ZeroDivisionError , FloatingPointError

LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError

EnvironmentError
The base class for exceptions that can occur outside the Python s{®tenmor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instarcets attribute (it is assumed
to be an error number), and the second item is available osttbror attribute (it is usually the associated
error message). The tuple itself is also available oratigs attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tlilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefihe and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised. They are class objects, except wheptibhe

2.2. Built-in Exceptions 13

is used to revert back to string-based standard exceptions.

AssertionError
Raised when aassert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

EOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiongOF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hitEOF.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined in the
‘config.h’ file.

IOError
Raised when an 1/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived froenvironmentError . See the discussion above for more information on exception
instance attributes.

ImportError
Raised when aimport statement fails to find the module definition or whefniam ... import fails to

find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError s raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

Keyboardinterrupt
Raised when the user hits the interrupt key (norm@lntrol-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipnt() orraw _input()) is waiting
for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture g@dloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

NotimplementedError

This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.
OSError

This class is derived frof&BnvironmentError and is used primarily as thes module’'sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
15.2.

14 Chapter 2. Built-in Types, Exceptions and Functions

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occurimpan statement, in aexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttfilutese , lineno , offset and

text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptionstr() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string

of the Python interpretersys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemExit

This exception is raised by theys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthgyis).
Also, this exception derives directly froBixception and notStandardError |, since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handfevally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after dork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass BameError . New in version 1.6.

UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subcladgedrror . New in
version 1.6.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegkrror

2.2. Built-in Exceptions 15

WindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporefrtman

value. Theerrno andstrerror values are created from the return values of @etLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclas©O&Error . New in
version 1.6.

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

__import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofibe statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_owmport __()

function.

For example, the statemenimport spam ' results in the following call: __import __('spam’,
globals(), locals(), [I) ; the statementfrom spam.ham import eggs results in
__import __('spam.ham’, globals(), locals(), ['eggs’) . Note that even thouglo-

cals() and[eggs’] are passed in as arguments, themport __() function does not set the local
variable nameaggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitals argument at all, and uses bfobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named hyame However, when a non-empigomlistargument is given, the
module named bypameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagspam must be
placed in the importing namespace, but when usfngm spam.ham import eggs ’, the spam.ham
subpackage must be used to find #ggs variable. As a workaround for this behavior, ugstattr() to
extract the desired components. For example, you could define the following helper:

import string

def my_import(name):
mod = __import__(name)
components = string.split(name, .")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg%, keywordi)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence (if it is not a tuple, the sequence is first converted to a tuple). The
functionis called withargsas the argument list; the number of arguments is the the length of the tuple. (This is
different from just callingung args) , since in that case there is always exactly one argument.) If the optional

16 Chapter 2. Built-in Types, Exceptions and Functions

keywordsargument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to
be added to the end of the the argument list.

buffer (objec{, offse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdhgectargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by theizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whasgci code is the integer, e.g.,chr(97) returns the stringp’ . This

is the inverse obrd() . The argument must be in the range [0..255], inclusikedpeError will be raised if
i is outside that range.

cmp(x, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X < vy, zeroifx == yand strictly positive ifx > .

coerce (X,Y)

Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, king
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; passstgng>’
if it wasn't read from a file. Th&ind argument specifies what kind of code must be compiled; it caexss’
if string consists of a sequence of statemet@sal’ if it consists of a single expression, @ingle’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else tharNone will printed).

complex (real[, imag])
Create a complex number with the vaheal + imagtj or convert a string or number to a complex number. Each
argument may be any numeric type (including compleximiigis omitted, it defaults to zero and the function
serves as a numeric conversion function lik) , long() andfloat() ; in this case it also accepts a
string argument which should be a valid complex number.

delattr (object, namg
This is a relative oetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ' foobar) is equivalenttalel x. foobar.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attribute for that object. This information is gleaned from the objectict __,
__methods __ and__members__ attributes, if defined. The listis not necessarily complete; e.g., for classes,
attributes defined in base classes are not included, and for class instances, methods are not included. The
resulting list is sorted alphabetically. For example:

2.3. Built-in Functions 17

>>> import sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, 'exit’, 'modules’, 'path’, 'stderr’, ’stdin’, 'stdout’]
>>>

divmod (a, b)

Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same(as/ b, a % b) . For floating point numbers the result(is, a %

b) , whereq is usuallymath.floor(a / b) but may be 1 less thanthat. Inanycas¢ b + a % bis

very close ta, if a % bis non-zero it has the same signtagand0 <= abs(a % b) < abs(b).

eval (expressio[n globals[, Iocals]])

The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usinglthigzalsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment winegie is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. createchpie()). In this case
pass a code object instead of a string. The code object must have been compiled’paaging to thekind
argument.

Hints: dynamic execution of statements is supported byetter statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalQy or
execfile()

execfile (file[, globals[, Iocals]])

filter

float

This function is similar to theexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ¢i@bals andlocals dictionaries as global and local name

space. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted,

the expression is executed in the environment weeesfile() is called. The return value Mone.

(function, lis)
Construct a list from those elementslist for which functionreturns true. Hist is a string or a tuple, the result
also has that type; otherwise it is always a listfufictionis None, the identity function is assumed, i.e. all
elements ofist that are false (zero or empty) are removed.

(%)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensittaigaatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python'’s floating point precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C

8|t is used relatively rarely so does not warrant being made into a statement.

18

Chapter 2. Built-in Types, Exceptions and Functions

library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, nam[a, default])
Return the value of the named attributedafifject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examgglattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The resultis 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callingetattr(object namg and seeing whether it raises an exception
or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machie&(-1) yields Oxffffffff’ . When

evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

id (objec)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. (Two objects whose lifetimes are disjunct may have the &i{jne value.) (Implementation
note: this is the address of the object.)

input ([prompt])
Equivalent teeval(raw _input(promp)) .

int (X[, radix])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi(x[, radix]) . Theradix parameter gives the base for the conversion and may be any integer
in the rangg2, 36]. If radix is specified and is not a string,TypeError is raised. Otherwise, the argument
may be a plain or long integer or a floating point number. Conversion of floating point numbers to integers is
defined by the C semantics; normally the conversion truncates toward® zero.

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

isinstance (object, clasy
Return true if theobjectargument is an instance of tlodassargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassis a type object andbjectis an object of that type. Ibbjectis not a class
instance or a object of the given type, the function always returns faletad$is neither a class object nor a

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 19

type object, al'ypeError exception is raised.

issubclass (classl, classp
Return true iftlasslis a subclass (direct or indirect) dfass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence
Return a list whose items are the same and in the same ordegasncs items. If sequencés already a list,
a copy is made and returned, similardequende] . For instancelist('abc’) returns return§'a’,
b, ¢ andlist((1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAldening: the contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long (X)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves idersicagatol(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint()

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioniédt arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wWitne items. Iffunctionis None, the identity function is assumed,; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Tis¢ arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumenrd, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumers, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit mactoo&;1) vyields’'037777777777° . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

open (filename{, mode{, bufsizd])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 's fopen() : filenameis the file name to be openethodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arid’ opens it for appending (which @omeUnNIx
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

If modeis omitted, it defaults t&r' . When opening a binary file, you should appélnd to themodevalue
for improved portability. (It's useful even on systems which don't treat binary and text files differently, where
it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means

20 Chapter 2. Built-in Types, Exceptions and Functions

unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is u¥ed.

ord (¢)
Return theascii value of a string of one character or a Unicode character. &df’a") returns the integer
97, ord(u’
u2020’) returns8224 . This is the inverse ofhr() for strings and ofinichr() ~ for Unicode characters.
pow(x, Y[, z])

Returnx to the powery; if z is present, returx to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2). The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; epgw(2, -1) orpow(2, 35000) is not allowed.

range ([start,] sto;{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmedlaops.
The arguments must be plain integers. If Htepargument is omitted, it defaults th. If the start argument
is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2
* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the largstrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4,5, 6,7, 8 9]
>>> range(1, 11)

1, 2, 3, 4, 5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

I

>>> range(1, 0)

I

>>>

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &dirés read,
EOFError is raised. Example:

>>> s = raw_input(-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"
>>>

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequen({einitializer])

10gpecifying a buffer size currently has no effect on systems that don’'tseveuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.3. Built-in Functions 21

Apply function of two arguments cumulatively to the items sfquencefrom left to right, so as to reduce
the sequence to a single value. For exampdeluce(lambda x, y: x+y, [1, 2, 3, 4, 5]
calculateg((((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload (modulg
Re-parse and re-initialize an already impornteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as theoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsfport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepsfor

__main __and__builtin ~ __. In certain cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module usirgm ... import ..., callingreload() for the

other module does not redefine the objects imported from it — one way around this is to re-exefumthe
statement, another is to useport and qualified namesr{odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed teval()

round (x[, n])
Return the floating point valuerounded tan digits after the decimal point. Hi is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powen;nifinus
two multiples are equally close, rounding is done away from 0 (soregnd(0.5) is 1.0 andround(-
0.5) is-1.0).

setattr (object, name, valye
This is the counterpart @fetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] stop{, step])
Return a slice object representing the set of indices specifiedrimye(start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attrittais , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. fa[start:stop:step] " or ‘a[start:stop, i] .

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string

22 Chapter 2. Built-in Types, Exceptions and Functions

itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string.

tuple (sequence
Return a tuple whose items are the same and in the same ordegasncs items. If sequencas already
a tuple, it is returned unchanged. For instartagle('abc’) returns returng’a’, 'b’, 'c’) and
tuple([1, 2, 3]) returns(1, 2, 3)

type (objec)
Return the type of anbject The return value is a type object. The standard motjgdes defines names for
all built-in types. For instance:

>>> import types
>>> jf type(x) == types.StringType: print "It's a string"

unichr (1)
Return the Unicode string of one character whose Unicode code is the integgerunichr(97) returns the
stringu’a’ . This is the inverse ofrd() for Unicode strings. The argument must be in the range [0..65535],
inclusive.ValueError is raised otherwise. New in version 1.6.

unicode (string[, encoding:’utf—S[, errors='strict’]])
Decodesstring using the codec foencoding Error handling is done according éorors. The default behavior
is to decode UTF-8 in strict mode, meaning that encoding errorsVailseeError . New in version 1.6.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefiriéd.

xrange ([start,] stop{, step])
This function is very similar t#ange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantagexifange() overrange() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

11n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 23

24

CHAPTER
THREE

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
types
UserDict
UserList
UserString
operator
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
imp
parser
symbol
token
keyword
tokenize
tabnanny
pyclbr
code
codeop
pprint
repr

py _compile
compileall
dis

new

site

user
__builtin
__main __

Access system-specific parameters and functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.

Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.

Faster version gpickle , but not subclassable.

Registempickle support functions.

Python object persistency.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Access the implementation of tiraport statement.

Access parse trees for Python source code.

Constants representing internal nodes of the parse tree.
Constants representing terminal nodes of the parse tree.

Test whether a string is a keyword in Python.

Lexical scanner for Python source code.

Tool for detecting white space related problems in Python source files in a directory tree.
Supports information extraction for a Python class browser.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr() implementation with size limits.

Compile Python source files to byte-code files.

Tools for byte-compiling all Python source files in a directory tree.
Disassembler.

Interface to the creation of runtime implementation objects.

A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

25

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python saigiv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usingth@and
line option to the interpreteargv[0] is set to the stringc’ . If no script name was passed to the Python
interpreterargv has zero length.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way wodules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dilhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drgpe valug tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class obja@)ue gets the exception parameter (gssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning thdracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something likgpe, value = sys.exc _info()[:2] to extract only the exception

type and value. If you do need the traceback, make sure to delete it after use (best dongywith finally

statement) or to caltxc _info() in a function that does not itself handle an exception.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Iseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being hand&d,_type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefixargument to the
configure script. Specifically, all configuration files (e.g. theonhfig.h’ header file) are installed in the di-
rectoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.
exit ([arg])

26 Chapter 3. Python Services

Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumeratrg can be an integer giving the exit status (defaulting to zero), or another type of object.

If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasdedne is equivalent to passing zero, and any other
object is printed teys.stderr and results in an exit code of 1. In particulgys.exit("some error

message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Note: the exit function is not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whesa. _exit() is called.

getrefcount (objec)
Return the reference count of tlbject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgsitrédcount()

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion _info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isgrport pdb; pdb.pm() ' to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke fdype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
modules

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

path

3.1. sys — System-specific parameters and functions 27

A list of strings that specifies the search path for modules. Initialized from the environment variable $PYTHON-
PATH, or an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python

interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard inpupath[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is insertezforethe entries inserted as a result of $SPYTHON-

PATH.

platform
This string contains a platform identifier, e.gunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed,;
by default, this is the stringusr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the diregboefix
+ ’llib/python version while the platform independent header files (all excephfig.h’) are stored in
prefix + ’'[linclude/python versiori , whereversionis equal toversion[:3]

psi

ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case a®&> ' and'... . If a non-string object is
assigned to either variable, #&() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Setthe interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQltiseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuez= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace()), butitisn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just fdame.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

stdin
stdout
stderr
File objects corresponding to the interpreter’s standard input, output and error stretims. is used for
all interpreter input except for scripts but including callgriput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the prompisamit() andraw _input()
The interpreter's own prompts and (almost all of) its error messages gioléor . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it haite) method that takes a
string argument. (Changing these objects doesn’t affect the standard 1/0O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __
__stdout __
__stderr __
These objects contain the original valuessafin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case

28 Chapter 3. Python Services

they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal®08. When set to 0 or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-
ber and compiler used. It has a value of the formersion (# build_number build_date build_time)
[compilef’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:
>>> import sys
>>> sys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

version _info
Atuple containing the five components of the version numisggor, minor, micro, releaselevelandserial. All

values excepteleaseleveare integers; the release levelatpha’ ,’beta’ ,’candidate’ , or'final’
Theversion _info value corresponding to the Python version 1.6lis 6, 0, ‘final’, 0) . New
in version 1.6.

winver

The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three charactered§ion . Itis provided in thesys module

for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

3.2 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freert types import * " — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will allygred in *

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

IntType

The type of integers (e.d.).
LongType

The type of long integers (e.dL).

3.2. types — Names for all built-in types 29

FloatType
The type of floating point numbers (e.3.0).

ComplexType

The type of complex numbers (e .0j).
StringType

The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (eudSpam’).
TupleType

The type of tuples (e.d1, 2, 3, 'Spam’)).
ListType

The type of lists (e.g[0, 1, 2, 3]).
DictType

The type of dictionaries (e.g'Bacon’. 1, 'Ham’: 0}).
DictionaryType

An alternate name fdDictType
FunctionType

The type of user-defined functions and lambdas.
LambdaType

An alternate name fdrunctionType
CodeType

The type for code objects such as returneaompile()
ClassType

The type of user-defined classes.
InstanceType

The type of instances of user-defined classes.
MethodType

The type of methods of user-defined class instances.
UnboundMethodType

An alternate name fdviethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects such sgs.stdout

XRangeType
The type of range objects returnednange()

SliceType

The type of objects returned Isjice()
EllipsisType

The type ofEllipsis

30 Chapter 3. Python Services

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

3.3 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviours to dictionaries.

TheUserDict module defines thElserDict class:

UserDict ([intialdata])
Return a class instance that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which
is accessible via theata attribute ofUserDict instances. Ifnitialdata is provided data is initialized with
its contents; note that a referencaritialdata will not be kept, allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see section2séf)jct instances provide
the following attribute:

data
A real dictionary used to store the contents oftheerDict class.

3.4 UserList — Class wrapper for list objects

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviours to lists.

TheUserList module defines thEserList class:

UserList ([Iist])
Return a class instance that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via thedata attribute ofUserList instances. The instance’s contents are initially set to a cofistf
defaulting to the empty lisf] . list can be either a regular Python list, or an instancé&JsérList (or a
subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiodsellL&st instances
provide the following attribute:

data
A real Python list object used to store the contents oldkerList class.

3.5 UserString — Class wrapper for string objects

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviours to strings.

TheUserString module defines thelserString class:

3.3. UserDict — Class wrapper for dictionary objects 31

UserString ([sequenc})
Return a class instance that simulates a string or a Unicode string object. The instance’s content is kept in a
regular string or Unicode string object, which is accessible vialtita attribute ofUserString instances.
The instance’s contents are initially set to a copg@fuencesequencean be either a regular Python string or
Unicode string, an instance bfserString (or a subclass) or an arbitrary sequence which can be converted
into a string.

In addition to supporting the methods and operations of string or Unicode objects (see sectiotJerSixing
instances provide the following attribute:

data
A real Python string or Unicode object used to store the content diseeString class.

MutableString ([sequenc}e)
This class is derived from tHgserString above and redefines strings torhatable Mutable strings can't be
used as dictionary keys, because dictionaries reqmimeutableobjects as keys. The main intention of this class
is to serve as an educational example for inheritance and necessity to remove (overriddjasie method
in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very errorprone
and hard to track down.

3.6 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

Theoperator module defines the following functions:

add(a, b
__add__(a,b
Returna + b, for a andb numbers.

sub (a, b)
__sub__(a,b
Returna- b.

mul (a, b)
__mul__(a,b
Returna* b, for a andb numbers.

div (a, b
_div __(a,b
Returna/ b.

mod(a, b)
__mod__(a,b
Returna %b.

neg(o)
__neg__(0)
Returno negated.

pos (0)
__pos__(0)
Returno positive.

abs (0)

__abs__(0)
Return the absolute value of

32 Chapter 3. Python Services

inv (0)
__inv __(0)
Return the inverse dd.

Ishift (a, b)
__Ishift __(a,b
Returna shifted left byb.

rshit (a, b
__rshift __(a, b
Returna shifted right byb.

and_(a, b
__and__(a,b
Return the bitwise and & andb.

or _(a, b
__or__(ab
Return the bitwise or o andb.

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

not _(0)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() discipline for object instances; only the
interpreter core defines this operation.)

truth (o)
Returnl if ois true, and 0 otherwise.

concat (a,b)
__concat __(a,b)
Returna + b for a andb sequences.

repeat (a, b
__repeat __(a,b
Returna* bwhereais a sequence arlis an integer.

contains (a, b
sequencelncludes (a, b
Return the outcome of the tastn a. Note the reversed operands.

countOf (a,b)
Return the number of occurrenceshah a.

indexOf (a, b)
Return the index of the first of occurrenceloih a.

getitem (a, b
__getitem __(a,b)
Return the value o at indexb.

setitem (a, b, 9
__setitem __(a,b,qg
Set the value o at indexb to c.

delitem (a, b
__delitem __(a,b)
Remove the value daf at indexb.

3.6. operator — Standard operators as functions. 33

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o from indexb to indexc-1 to the sequence

delslice (a, b, 9
__delslice __(a,b,9
Delete the slice oa from indexb to indexc-1 .

Example: Build a dictionary that maps the ordinals frOrto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.7 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vasyasldes _traceback
andsys.last _traceback and returned as the third item frosgs.exc _info()

The module defines the following functions:

print _tb (tracebacl{, Iimit[, file]])
Print up tolimit stack trace entries froitmaceback If limit is omitted orNone, all entries are printed. file
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up tamit stack trace entries frortracebackto file. This differs from
print _tb() in the following ways: (1) itracebackis notNone, it prints a headerTraceback (inner-
most last): ’; (2) it prints the exceptionypeandvalueafter the stack trace; (3) tfpeis SyntaxError
andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret indicating
the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file)’. (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, timit[, file]]])
This function prints a stack trace from its invocation point. The optidnatgument can be used to spec-
ify an alternate stack frame to start. The optiohalit and file arguments have the same meaning as for
print _exception()

34 Chapter 3. Python Services

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback trajeeback
It is useful for alternate formatting of stack traces.liffiit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilenfame line number function nametexy representing the
information that is usually printed for a stack trace. Thxtis a string with leading and trailing whitespace
stripped; if the source is not available ithine.

extract _stack ([f[Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same formatxas for
tract _tb() . The optionaF andlimit arguments have the same meaning apfoit _stack()

format _list (list)
Given a list of tuples as returned lextract _tb() orextract _stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.last _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8mtaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments te@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are contatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb (tb[, limit])

A shorthand foformat _list(extract _tb(tb, limit)) .
format _stack ([f[, limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This is normally the same as the
th.tb _lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;
this function calculates the correct value.

3.7.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectalthenodule.

3.7. traceback — Print or retrieve a stack traceback 35

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>>

try:
exec source in envdir
except:
print "Exception in user code:"
print '-*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.8 linecache — Random access to text lines

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢hack module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelineno from file namedilename This function will never throw an exception — it will returh on
errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search pays.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyesiing()

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> jmport linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\012’

3.9 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). This is a more primitive notion than persistency — althopgtkle reads and writes file objects, it

does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thackle module can transform a complex object into a byte stream and it can transform the

36 Chapter 3. Python Services

byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to
write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as th@Pickle module. This has the same interface exceptfeitler —andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Although thepickle module can use the built-in modutearshal internally, it differs frommarshal in the way
it handles certain kinds of data:

e Recursive objects (objects containing references to themselpaRle keeps track of the objects it has
already serialized, so later references to the same object won't be serialized agaimaiBhel module
breaks for this.)

e Object sharing (references to the same object in different places): This is similar to self-referencing objects;
pickle stores the object once, and ensures that all other references point to the master copy. Shared objects
remain shared, which can be very important for mutable objects.

e User-defined classes and their instancesrshal does not support these at all, pitkle can save and
restore class instances transparently. The class definition must be importable and live in the same module as
when the object was stored.

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can't represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printabtell (and of some other characteristicsptkle s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value fainthe
argument to théickler constructor or thelump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, whichitmershal module does. | suppogeckle could, and
maybe it should, but there’s probably no great need for it right now (as lomgaashal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistency modules written usickle , it supports the notion of a reference to an object
outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of gsintiable
characters. The resolution of such names is not defined byitkle module — the persistent object module will
have to implement a methqursistent _load() . To write references to persistent objects, the persistent module
must define a methaggersistent _id() which returns eitheNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

When a pickled class instance is unpickled, itsinit __() method is normallynot invoked. Note: This is a
deviation from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the
change is that in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to
have to provide a _getinitargs _ () method.

If it is desirable that the__init __() method be called on unpickling, a class can define a method
__Qgetinitargs —_() , which should return &uple containing the arguments to be passed to the class construc-

3.9. pickle — Python object serialization 37

tor (__init __()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

Classes can further influence how their instances are pickled — if the class defines the mejbiztate __()

it is called and the return state is pickled as the contents for the instance, and if the class defines the method
__setstate __() , itis called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is nogetstate __() method, the instance’s_dict __ is pickled. If there
isno__setstate __() method, the pickled object must be a dictionary and its items are assigned to the new in-
stance’s dictionary. (If a class defines bathgetstate __() and__setstate __() , the state object needn'’t be

a dictionary — these methods can do what they want.) This protocol is also used by the shallow and deep copying
operations defined in theopy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class's__setstate __() method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.
To pickle an objeck onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:
pickle.dump(x, f)

To unpickle an object from a filef , open for reading:

u = pickle.Unpickler(f)
x = u.load()

A shorthand is:
x = pickle.load(f)

ThePickler class only calls the methddwrite() with a string argument. Thenpickler calls the meth-
odsf.read() (with an integer argument) arfdeadline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for th@ickler class has an optional second argumeéint, If this is present and true, the binary
pickle format is used; if it is absent or false, the (less efficient, but backwards compatible) text pickle format is used.
The Unpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts
either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

38 Chapter 3. Python Services

normal and Unicode strings

tuples, lists and dictionaries containing only picklable objects

functions defined at the top level of a module (by name reference, not storage of the implementation)

built-in functions

classes that are defined at the top level in a module

instances of such classes whasedict __ or __setstate __() is picklable

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

It is possible to make multiple calls to tllump() method of the samPickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondindnpickler instance. If the same

object is pickled by multiplelump() calls, theload() will all yield references to the same objetarning this

is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify

an object and then pickle it again using the sdfiekler instance, the object is not pickled again — a reference to

it is pickled and theJnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. | have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the following functions, and an exception:

dump(object, fild, bin])
Write a pickled representation abectto the open file objectile. This is equivalent toPickler(file,
bin).dump(objec) '. If the optionalbin argument is present and nonzero, the binary pickle format is used; if
it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file objélet This is equivalent toUnpickler(file).load() .

dumps(objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the offtional
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object is passBatkber.dump()

See Also:

Modulecopy _reg (section 3.11):
pickle interface constructor registration

Moduleshelve (section 3.12):
indexed databases of objects; upekle

Modulecopy (section 3.13):
shallow and deep object copying

Modulemarshal (section 3.14):
high-performance serialization of built-in types

3.9. pickle — Python object serialization 39

3.9.1 Example

Here’s a simple example of how to modify pickling behavior for a class. The¢Reader class opens a text file, and
returns the line number and line contents each timee#slline() method is called. If &extReader instance

is pickled, all attributegxcepthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Theetstate __() and__getstate __() methods are used to
implement this behavior.

illustrate __ setstate_ and __ getstate_ methods
used in pickling.

class TextReader:
"Print and number lines in a text file."
def __init__ (self/file):
self.file = file
self.th = open(file,’r’)
self.lineno = 0

def readline(self):
self.lineno = selflineno + 1
line = self.fh.readline()
if not line:
return None
return "%d: %s" % (self.lineno,line[:-1])

return data representation for pickled object

def __ getstate__ (self):
odict = self.__dict__ # get attribute dictionary
del odict['fh] # remove filehandle entry
return odict

restore object state from data representation generated
by __ getstate_
def _ setstate_ (self,dict):
fh = open(dict[file’]) # reopen file
count = dict[lineno’l] # read from file...
while count: # until line count is restored
fh.readline()
count = count - 1
dict['fh’] = fh # create filehandle entry
self.__dict__ = dict # make dict our attribute dictionary

A sample usage might be something like this:

40 Chapter 3. Python Services

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

.. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,’'w’))

(start another Python session)

>>> jmport pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file.

3.10 cPickle — Alternate implementation of pickle

ThecPickle module provides a similar interface and identical functionality agpthele module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to noteRsctdat() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced usingttide module, so it is possible to ugéckle
andcPickle interchangably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some freedoms in
the encodings of certain objects, it's possible that the two modules produce different pickled data for the same input
objects; however they will always be able to read each others pickles back in.)

3.11 copy _reg — Register pickle support functions

Thecopy _reg module provides support for thigckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor.

pickle (type, functionﬁ, constructon])
Declares thatunctionshould be used as a “reduction” function for objects of type or ¢igss functionshould
return either a string or a tuple. The optiolahstructorparameter, if provided, is a callable object which can
be used to reconstruct the object when called with the tuple of arguments returfeettignat pickling time.

3.12 shelve — Python object persistency

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatithee module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

3.10. cPickle — Alternate implementation of pickle 41

To summarize the interfac&dy is a string,data is an arbitrary object):

import shelve
d = shelve.open(flename) # open, with (g)dbm filename -- no suffix

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

e The choice of which database package will be used (&g or gdbm) depends on which interface is available.
Therefore it is not safe to open the database directly usiimy The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to ref