Python Library Reference
Release 1.5.1

Guido van Rossum

April 14, 1998

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright(© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum
or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation for National
Research Initiatives (CNRI) at the Internet addrigssftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, IN-
DIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manudkscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file 1/O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBExtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 BuUilt-in TYPES. . . o o o e 3
Truth Value Testing. 3
Boolean Operations e e e e e e e 4
CompariSONS o e e e e e e e e e 4
NUMENC TYPES . . o o o e e e e e e e e e 5
SequenCe TYPES o o e e e e 6
Mapping TYPES o e 8
Other Built-in TYpeS o e e e e e e e e 9
Special Attributes. e e 12
2.2 BUIlt-in EXCEPLIONS. o o e e e e e e e 12
2.3 Built-in FUNCtions. e e 15

3 Python Services 23
3.1 Built-in Modulesys e 24
3.2 Standard Modulypes e 26
3.3 Standard ModulBlserDict e 27
3.4 Standard ModulBJserList L. 28
3.5 Built-in Moduleoperator e e e e 28
3.6 Standard Modulgaceback 30
3.7 Standard Modulpickle 30
3.8 Built-in ModulecPickle 33
3.9 Standard Moduleopy _reg e e e e 33
3.10 Standard Modulshelve 34
3.11 Standard Moduleopy L e e 34
3.12 Built-in Modulemarshal 35
3.13 Built-in Moduleimp e 36
Examples e 38
3.14 Built-in Moduleparser e e e 39
Creating AST Objects e e e 40
Converting AST Objects. o o o e 40
Querieson AST Objects. o o e 41
Exceptionsand ErrorHandling 41
AST Objects. e e e 42
Examples e e e 42
3.15 Standard Modulsymbol 48
3.16 Standard Moduloken L e e 48

3.17 Standard Modulkeyword L e e e e e 49

3.18 Standard Moduleode e e 49
3.19 Standard Modulpprint L L 49
PrettyPrinter Objects. e 51
3.20 Standard Moduldis L 52
Python Byte Code InStructions e e e e 53
3.21 Standard Modulsite e e e 57
3.22 Standard Moduleser e 58
3.23 Built-in Module__builtin - __ 59
3.24 Built-in Module__main __ 59
String Services 61
4.1 Standard Modulstring L e 61
4.2 Built-inModulere L e 64
Regular EXpression SyNtaX v v v i i i e e e e e e e e e e e e 64
Module Contents. o e e e e 67
Regular Expression Objects. o e 69
Match Objects o 69
4.3 Built-in Moduleregex L e 70
Regular EXPressions. o o e e e e e e e e e e e e 71
Module CoNtents. e 72
4.4 Standard Moduleegsub L L 74
4.5 Built-in Modulestruct L e e 75
4.6 Standard Modul8tringlO L 77
4.7 Built-in ModulecStringlO L e e 77
Miscellaneous Services 79
5.1 Built-in Modulemath e 79
5.2 Built-in Modulecmath 80
5.3 Standard Modulehrandom 82
5.4 Standard Moduleandom L e e e 82
5.5 Built-in Modulearray L e 83
5.6 Standard ModulBleinput L 85
Generic Operating System Services 87
6.1 Standard Modules e e e 87
6.2 Built-in Moduletime L e e 88
6.3 Standard Modulgetopt L e e e 91
6.4 Standard Moduleempfile e 92
6.5 Standard Modulerrno L e e e 92
6.6 Standard Modulglob L 98
6.7 Standard Modulthmatch e 98
6.8 Standard Modullcale L 99
Background, details, hints, tipsand caveats. e 101
For extension writers and programs that embed Python. 102
Optional Operating System Services 103
7.1 Built-in Modulesignal e 103
7.2 Built-in Modulesocket e e 105
Socket Objects. 107
Example. . . . 108
7.3 Built-in Moduleselect 109
7.4 Built-in Modulethread e 110
7.5 Standard Modul®ueue e e e 111
Queue ObJeCts 111

10

11

7.6 Standard Modulanydbm L e e e 111

7.7 Standard Moduldumbdbm 112
7.8 Standard Modulevhichdb e 112
7.9 Built-in Modulezlib e e e e 112
7.10 Standard Modulgzip e e e 113
Unix Specific Services 115
8.1 Built-in Moduleposix e 115
8.2 Standard Modulposixpath 120
8.3 Built-in Modulepwd L e e 122
8.4 Built-in Modulegrp e e e 122
8.5 Built-in Modulecrypt L e 122
8.6 Built-in Moduledbm e e e 123
8.7 Built-in Modulegdbm L e 123
8.8 Built-in Moduletermios e e e e 124
Example. . . . 125
8.9 Standard ModulEERMIOS e 125
8.10 Built-in Modulefentl L e e e 125
8.11 Standard Modulposixfile 126
8.12 Built-in Moduleresource e e e e e e e e 128
Resource LIMItS e e e e e 128
Resource Usage 129
8.13 Built-in Modulesyslog 130
8.14 Standard Modulstat e e e 131
8.15 Standard Moduleommands e e e 132
The Python Debugger 135
9.1 DebuggerCommands. 136
9.2 HOWItWOIKS o e e e e e e e 137
The Python Profiler 139
10.1 Introduction tothe profiler. 139
10.2 How Is This Profiler Different From The Old Profiler? 139
10.3 InstantUsers Manual e e e e 140
10.4 What Is Deterministic Profiling? 141
10.5 Reference Manual. e e e e e 142
TheStats Class. o e e e e 143
10.6 Limitations e e e e e e e e e 144
10.7 Calibration e e 145
10.8 Extensions — Deriving Better Profilers 146
OldProfile Class e e e e 146
HotProfile Class e e e e 147
Internet and WWW Services 149
11.1 Standard Modulegi L e 150
Introduction e e e e e e e e e 150
Usingthecgimodule. e 150
Old Classes o i e e 152
FUuNnctions e e 152
Caring aboutsecurity. 153
Installing your CGl scriptonaunixsystem e 153
Testing your CGISCript. o e e e e e e e 154
Debugging CGISCrPtS. o o e e e e e e 154
Common problems and solutions. e 155
11.2 Standard Modulerllib e 155

12

13

11.3 Standard Modulbttplib e 157

HTTP Objects. o e e e e e e 157
Example. . . . 158
11.4 Standard Moduligplib L 158
FTP ODJECES. . . . o o o e e e e 159
11.5 Standard Modulgopherlib L 161
11.6 Standard Modulenaplib 161
IMAP4A ODJeCtS e 162
IMAP4 Example e e 163
11.7 Standard Modulentplib L 164
NNTP ObJeCtS o e e e 165
11.8 Standard Modulerlparse e e e e e 166
11.9 Standard Modulsgmllib 167
11.10Standard Modulletmllib 169
11.11Standard Modubemllib L 170
11.12Standard Modullermatter L L e 173
The Formatter Interface 173
Formatter Implementations L 175
The Writer Interface e 175
Writer Implementations L e e 176
11.13Standard Moduldc822 L e e 176
Message ObJECtS. e e e e 177
11.14Standard Modul@imetools e e e 178
Additional Methods of Message objects. 179
11.15Standard Modulleinhex L 179
NOtES . . . e e 179
11.16Standard Moduleu e 180
11.17Built-in Modulebinascii = 180
11.18Standard Modubedrlib L 181
Packer Objects. 181
Unpacker Objects o . e 182
EXCEpPLiONS e e e 183
11.19Standard Modulmailcap e e e 183
11.20Standard Modullease64 e e e e 184
11.21Standard Modulguopri = 185
11.22Standard ModulBocketServer L L 185
11.23Standard Modulmailbox 187
Mailbox Objects. e e e e 187
11.24Standard Modulimify L 187
11.25Standard ModulBaseHTTPServer e 188
Restricted Execution 193
12.1 Standard ModulEXec e e e 194
Anexample. . . . L 195
12.2 Standard ModulBastion e 196
Multimedia Services 197
13.1 Built-in Moduleaudioop 197
13.2 Built-in Moduleimageop e e 200
13.3 Standard Modulaifc L 201
13.4 Built-in Modulgpeg e e e e e 203
13.5 Built-in Modulergbimg 203
13.6 Standard Modulenghdr 204

14 Cryptographic Services
14.1 Built-in Modulemd5 e e e
14.2 Built-in Modulempz L
14.3 Built-in Modulerotor L e e e e

15 SGI IRIX Specific Services
15.1 Built-in Moduleal e
Configuration Objects e
Port Objects. e
15.2 Standard ModulBL
15.3 Built-in Modulecd L e e e e
Player Objects
Parser Objects e e
15.4 Built-in Modulefl
Functions Defined in Modul®
Form Objects. o
FORMS Objects o e e e e
15.5 Standard ModulEL L e
15.6 Standard ModulBp L. L
15.7 Built-in Modulefm
15.8 Built-in Modulegl L e e e
15.9 Standard ModuleSLandDEVICE e
15.10Built-in Moduleimgfile

16 SunOS Specific Services
16.1 Built-in Modulesunaudiodev e
Audio Device Objects e

17 Undocumented Modules

17.1 Frameworks; somewhat harder to document, but well worth the effart.
17.2 Stuff useful to a lot of people, includingthe CGlcrowd
17.3 Miscellaneous useful utilities. e e

17.4 Parsing Python. e e e
17.5 Platform specificmodules. L e
17.6 Code objects and files, debuggeretc..

17.7 Multimedia e e e e e e e
17.8 Oddities. o e e e e e e e
17.9 Obsolete o e e e e e
17.10Extension modules e e

Module Index

Index

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, like socket 1/O; others provide interfaces that are
specific to a particular application domain, like the World-Wide Web. Some modules are avaiable in all versions
and ports of Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out”: it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see nmaddl¢ and read a section or two.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See Chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

Truth Value Testing

Any object can be tested for truth value, for use irifanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, e.d, OL, 0.0 .

e any empty sequence, e.y.,, () ,[] -

e any empty mapping, e.d} .

e instances of user-defined classes, if the class definesazero _() or_len _() method, when that method

returns zero.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retionfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and y | if xis false, therx, elsey 1)
not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operators, so a@. a == is interpreted asot(a == b) ,
anda == not b is asyntax error.

Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than
that of the Boolean operations). Comparisons can be chained arbitrarily,xe.g.y <= z is equivalent to

x <y and y <= z , exceptthay is evaluated only once (but in both cages not evaluated at all when < y

is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
<> not equal (1)
I= not equal (1)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’t choose beteeeand C! :-)

Obijects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (e.g., win-
dows) support only a degenerate notion of comparison where any two objects of that type are unequal. Again, such
objects are ordered arbitrarily but consistently.

(Implementation note: objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.)

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

Numeric Types

There are four numeric typeglain integers long integers floating point humbersand complex numbersPlain
integers (also just calleititegers are implemented usinigng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendirjg ‘or ‘J’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the fame rule.
The functionsnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y quotient ofx andy Q)
X %y remainder ok / vy
- X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(X) x converted to long integer (2)
float(X) x converted to floating point
complex(re, im) | a complex number with real pas, imaginary parim. im defaults to zero.
divmod(X, V) thepair(x / 'y, X %vy) 3)
pow(x, Y) x to the powely
X ¥y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is O.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftdian(s
andceil() in modulemath for well-defined conversions.

(3) See the section on built-in functions for an exact definition.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

2As a consequence, the Ijdt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-

isons; the unary operatiofi * has the same priority as the other unary numeric operatiensf(id ‘- °).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
x|y bitwise or of x andy
X"y bitwise exclusive orf x andy
X &Yy bitwiseand of x andy
X << n | xshifted left byn bits 1), (2
x >> n | xshifted right byn bits D), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError
(2) A left shift by n bits is equivalent to multiplication bgow(2,

(3) A right shift by n bits is equivalent to division bgow(2,

Sequence Types

to be raised.

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quotegzzy’

, "frobozz"

n) without overflow check.

n) without overflow check.

. See Chapter 2 of tHeython Reference

Manual for more about string literals. Lists are constructed with square brackets, separating items with commas:
[a, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parentheses, Ip,gc or() . A single item tuple must

have a trailing comma, e.dd,)

Sequence types support the following operations. Thé and ‘not in ' operations have the same priorities as the
comparison operations. The'and **’ operations have the same priority as the corresponding numeric operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).

In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
S * n, n* s| ncopies ofsconcatenated 3)
9 i] i'th item of s, origin O (1)
g i] slice ofsfromitoj D), 2
len() length ofs
min(s) smallest item of
max(s) largest item of

Notes:

(1) If i orj is negative, the index is relative to the end of the string,le@(s) +

But note thatO is still O.

3They must have since the parser can't tell the type of the operands.

iorlen(s) + |issubstituted.

Chapter 2. Built-in Types, Exceptions and Functions

(2) The slice ofsfromi toj is defined as the sequence of items with inkexich that <= k < |. If i orj is greater
thanlen(s), uselen(s). If i is omitted, usd. If j is omitted, usden(s). If i is greater than or equal {p
the slice is empty.

(3) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.as

More String Operations

String objects have one unique built-in operation: $%heperator (modulo) with a string left argument interprets this
string as a Gprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple*ditjediollowing format characters

are understood% c, s, i,d, u, 0, x, X, e, E, f, g, G Width and precision may be*ato specify that an integer
argument specifies the actual width or precision. The flag charactersblank,# and0 are understood. The size
specifiersh, | or L may be present but are ignored. T¥s conversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI featurégpand%nare not supported. Since Python strings have

an explicit length%sconversions don’'t assume tH#Y' is the end of the string.

For safety reasons, floating point precisions are clipped t&/&Gonversions for numbers whose absolute value is
over 1e25 are replaced Bygconversions. All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after tB&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> |anguage = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard modtrlag and in built-in modulee .

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

4A tuple object in this case should be a singleton.
5These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 7

Operation Result Notes
gi] = x itemi of sis replaced by
qgi:j] =t slice ofsfromitoj is replaced by
del di:j] same ag i: j] =[]
s.append(X) same agllen(s)ylen(9] = [X
s.count(X) return number of's for whichg[i] == x
sindex(X) return smallest such thag[i] == x (1)
sinsert(i, X) | sameag[i:i] = [X ifi >= 0
sremove(X) same aslel g sindex(X)] Q)
s.reverse() reverses the items afin place 3)
s.sort() sort the items o§in place 2), (3)

Notes:

(1) Raises an exception wheris not found ins.

(2) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should returnl , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a listin
reverse order it is much faster to use callsoot() andreverse() thanto usesort() with a comparison
function that reverses the ordering of the elements.

(3) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don't return the sorted or reversed list to remind you of this side effect.

Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thietionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (.@nd1.0) then they can be used interchangeably to index the same
dictionary entry.

value pairs within braces, for example:
'sjoerd’}

Dictionaries are created by placing a comma-separated lidtepf
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘’jack’, 4127:

The following operations are defined on mappings (wladesea mappingk is a key andk is an arbitrary object):

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k (1)
a k] = x setal k] tox
del al kK] removeal k] froma (1)
a.clear() remove all items frona
a.copy() a (shallow) copy ot
a.has key(k) | 1if ahas akey, else0
a.items() a copy ofa’s list of (key, item) pairs (2)
a.keys() a copy ofa’s list of keys (2)
a.update(b) for k, v in b.items(): ak] = v 3)
a.values() a copy ofa’s list of values (2)
aget(k[, f]) | theitem ofawith keyk (4)

Notes:

8 Chapter 2. Built-in Types, Exceptions and Functions

(1) Raises an exceptionlkfis not in the map.
(2) Keys and values are listed in random order.
(3) b must be of the same type as

(4) Never raises an exceptionkfis not in the map, instead it returfisf is optional, when not provided ards not
in the mapNone is returned.

Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anthameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatghert statement is not, strictly
spoking, an operation on a module objeotport foo does not require a module object nanfiedto exist, rather it
requires an (externafjefinitionfor a module nametbo somewhere.)

A special member of every moduleigdict __. This is the dictionary containing the module’s symbol table. Mod-
ifying this dictionary will actually change the module’s symbol table, but direct assignment todioe __ at-
tribute is not possible (i.e., you can write __dict _[a] = 1 , which definesn.a to bel, but you can't write

m. _dict __ = {} .

Modules are written like thisskmodule ’sys’>

Classes and Class Instances

See Chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions
Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributdsnc _code is a function’scode objec{see below) and
f.func _globals isthe dictionary used as the function’s global name space (this is the same a&t __where
mis the module in which the functiohwas defined).

Methods
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance mettiodsself is the object whose
method this is, andh.im _func is the function implementing the method. Callim§arg-1, arg-2, ..., arg-n)
is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

See thePython Reference Manufdr more information.

2.1. Built-in Types 9

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the buitempile() function and can be extracted from function objects
through theirfunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtedhstatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects
Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdylhis defines names for all standard built-in types.

Types are written like thisctype ’'int’>

The Null Object
This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédione (a built-in name).

It is written asNone.

File Objects

File objects are implemented using G&lio package and can be created with the built-in functpen() de-
scribed under Built-in Functions below. They are also returned by some other built-in functions and methods, e.g.
posix.popen() andposix.fdopen() and themakefile() method of socket objects.

When a file operation fails for an 1/0O-related reason, the excep@&mnror is raised. This includes situations where
the operation is not defined for some reason, $igek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()

Close the file. A closed file cannot be read or written anymore.
flush ()

Flush the internal buffer, likstdio s fflush()
isatty ()

Returnl if the file is connected to a tty(-like) device, eBe

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl oros.read() and friends.

read ([size])
Read at mossizebytes from the file (less if the read higF or no more data is immediately available on a
pipe, tty or similar device). If thgizeargument is negative or omitted, read all data untiF is reached. The
bytes are returned as a string object. An empty string is returned sbeis encountered immediately. (For
certain files, like ttys, it makes sense to continue reading afteicanis hit.)

10 Chapter 2. Built-in Types, Exceptions and Functions

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tmg may be absent when a
file ends with an incomplete line). If thezeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned¢aien
is hitimmediately. Note: unlikstdio ’'sfgets() ,the returned string contains null characté® () if they
occurred in the input.

readlines ([sizehint])
Read untileoF using readline() and return a list containing the lines thus read. If the opticmhint
argument is present, instead of reading ugd, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read.

seek (offset, whende
Set the file’s current position, likstdio ’s fseek() . Thewhenceargument is optional and defaults @o
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to the
file's end). There is no return value.

tell ()
Return the file’s current position, likedio s ftell()

truncate ([size])
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most) that size. The size
defaults to the current position. Availability of this function depends on the operating system version (e.g., not
all UNIx versions support this operation).

write (str)
Write a string to the file. There is no return value. Note: due to buffering, the string may not actually show up
in the file until theflush() orclose() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to meztdhnes() ;
writelines() does not add line separators.)

File objects also offer the following attributes:

closed
Boolean indicating the current state of the file object. This is a read-only attributesldbe() method
changes the value.

mode
The 1/0 mode for the file. If the file was created using tipen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the fornx!..> . This is a read-only attribute.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vetifdfpace attribute,
which should be initialized to zero. This will be automatic for classes implemented in Python; types imple-
mented in C will have to provide a writabs®ftspace attribute.

6The advantage of leaving the newline on is that an empty string can be returned t@ aragithout being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 11

Internal Objects

See thePython Reference Manu#br this information. It describes code objects, stack frame objects, traceback
objects, and slice objects.

Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

e X. __dict __is adictionary of some sort used to store an object’s (writable) attributes;

e X. _methods __ lists the methods of many built-in object types, e.d], __methods __ vyields
[append’, 'count’, 'index’, 'insert’, 'remove’, 'reverse’, 'sort’] ;

X. __members__ lists data attributes;

X. __class __is the class to which a class instance belongs;

X. __bases __is the tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string objects, in
Python 1.5, all standard exceptions have been converted to class objects, and users are encouraged to the the same.
The source code for those exceptions is present in the standard library regdefgions ; this module never needs

to be imported explicitly.

For backward compatibility, when Python is invoked with tieoption, the standard exceptions are strings. This may
be needed to run some code that breaks because of the different semantics of class based excepiiormptiohe
will become obsolete in future Python versions, so the recommended solution is to fix the code.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit vehibrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argumentto theaise statement. For string exceptions, the associated value itself will be stored in the variable named
as the second argument of teecept clause (if any). For class exceptions derived from the root &aseption

that variable receives the exception instance, and the associated value is present as the exception anggance’s
attribute; this is a tuple even if the second argumeméise was not (then it is a singleton tuple).

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions. When string-based standard exceptions
are used, they are tuples containing the directly derived classes.

12 Chapter 2. Built-in Types, Exceptions and Functions

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsiffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code).

StandardError
The base class for built-in exceptions. All built-in exceptions are derived from this class, which is itself derived
from the root clas&xception

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @varflowError
ZeroDivisionError , FloatingPointError

LookupError

The base class for thise exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError

The following exceptions are the exceptions that are actually raised. They are class objects, excepthepttbe
is used to revert back to string-based standard exceptions.

AssertionError
Raised when anssert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

EOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiongoF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hittoF.) No associated value.

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined
in the ‘config.h’ file.

IOError
Raised when an I/O operation (such gt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

When class exceptions are used, and this exception is instantiat®Easr(errno, strerror) , the
instance has two additional attributeano and strerror set to the error code and the error message,
respectively. These attributes defaultNone.

ImportError
Raised when aimport statement fails to find the module definition or whefniam ... import fails to
find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integ@iypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

Keyboardinterrupt
Raised when the user hits the interrupt key (norm@lontrol-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in funatipait() orraw _input()) is waiting

2.2. Built-in Exceptions 13

for input also raise this exception. No associated value.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@afloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’'t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occurimparn statement, in aexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttfilutase , lineno , offset and

text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptionstr() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string

of the Python interpretersys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemExit

This exception is raised by thsys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

When class exceptions are used, the instance has an attrdmgewhich is set to the proposed exit status or
error message (defaulting ione).

A call to sys.exit() is translated into an exception so that clean-up handfervally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after dork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

14 Chapter 2. Built-in Types, Exceptions and Functions

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegkrror

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—import _(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghet statement. For examples
of why and how you would do this, see the standard library modbtasks andrexec . See also the built-
in moduleimp, which defines some useful operations out of which you can build your_owmport _()
function.

For example, the statementimport spam ' results in the following call: __import __('spam’,
globals(), locals(), []) ; the statementfrom spam.ham import eggs results in
_import __('spam.ham’, globals(), locals(), [eggs’]) . Note that even thouglocals()

and['eggs’] are passed in as arguments, theport __() function does not set the local variable named
eggs ; this is done by subsequent code that is generated for the import statement. (In fact, the standard
implementation does not use iscals argument at all, and uses itgobals only to determine the package
context of themport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up

till the first dot) is returnednot the module named bygame However, when a non-empfyomlist argument
is given, the module named mameis returned. This is done for compatibility with the bytecode generated

for the different kinds of import statement; when usimgport spam.ham.eggs ’, the top-level package
spam must be placed in the importing namespace, but when ufioig‘ spam.ham import eggs ', the
spam.ham subpackage must be used to find gggs variable.

abs (x)

Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg{, keyworda)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)

and theargsargument must be a tuple. Thenctionis called withargsas argument list; the number of arguments
is the the length of the tuple. (This is different from just callfmgq args) , since in that case there is always
exactly one argument.) If the optionkdywordsargument is present, it must be a dictionary whose keys are
strings. It specifies keyword arguments to be added to the end of the the argument list.

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they haveadl _ () method.

chr (i)
Return a string of one character whasgci code is the integer e.g.,chr(97) returns the stringp’ . This
is the inverse obrd() . The argument must be in the range [0..255], inclusive.

cmp(X,)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

2.3. Built-in Functions 15

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, king
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pas&stgng>’
if it wasn't read from a file. Th&ind argument specifies what kind of code must be compiled,; it céaxss’
if string consists of a sequence of statemet@sal’ if it consists of a single expression, @ingle’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else tharNone will printed).

complex (real[, imag])
Create a complex number with the valgal + imagtj. Each argument may be any numeric type (including
complex). Ifimagis omitted, it defaults to zero and the function serves as a numeric conversion function like
int) ,long() andfloat()

delattr (object, namg
This is a relative ofetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(%, ' foobar) is equivalenttalel x. foobar.

dir ()
Without arguments, return the list of names in the current local symbol table. With an argument, attempts to re-
turn a list of valid attribute for that object. This information is gleaned from the objectist __, _methods __
and__members__ attributes, if defined. The list is not necessarily complete; e.g., for classes, attributes defined
in base classes are not included, and for class instances, methods are not included. The resulting list is sorted
alphabetically. For example:

>>> jmport sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, 'exit’, 'modules’, 'path’, ’'stderr’, 'stdin’, 'stdout’]
>>>

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the samg@s/ b, a % b). For floating point numbers the result is the same as
(math.floor(al b, a%b).

eval (expressio[l, globals[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usinglthigalsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéeak is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1

>>> print eval('x+1’)
2

>>>

This function can also be used to execute arbitrary code objects (e.g. createchpiye()). In this case
pass a code object instead of a string. The code object must have been compiled’paabing to thekind
argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from

16 Chapter 2. Built-in Types, Exceptions and Functions

a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (file[, globals[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new module.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ¢iebals andlocals dictionaries as global and local name

space. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted,

the expression is executed in the environment weeezfile() is called. The return value done.

filter (function, lis)
Construct a list from those elementslist for which functionreturns true. Hist is a string or a tuple, the result
also has that type; otherwise it is always a listfufictionis None, the identity function is assumed, i.e. all
elements ofist that are false (zero or empty) are removed.

float (X)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly singed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensitraigoatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

getattr (object, namg
The arguments are an object and a string. The string must be the name of one of the object’s attributes. The
result is the value of that attribute. For exammetattr(%, ' foobar) is equivalent tox. foobar.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The resultis 1 if the string is the name of one of the object’s attributes,
0if not. (This is implemented by callingetattr(object namg and seeing whether it raises an exception
or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machie&(-1) yields 'Oxffffffff’ . When

evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

id (objec)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. (Two objects whose lifetimes are disjunct may have the &fne value.) (Implementation
note: this is the address of the object.)

input ([prompt])
Almost equivalent teeval(raw _input(promp)) . Like raw _input() , thepromptargument is optional,
and thereadline module is used when loaded. The difference is that a long input expression may be broken

It is used relatively rarely so does not warrant being made into a statement.

2.3. Built-in Functions 17

over multiple lines using the backslash convention.

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

int (X
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly singed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical
to string.atoi(X) . Otherwise, the argument may be a plain or long integer or a floating point number.
Conversion of floating point numbers to integers is defined by the C semantics; normally the conversion truncates
towards zerd.

isinstance (object, clasy
Return true if theobjectargument is an instance of tletassargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassis a type object andbjectis an object of that type. Ibbjectis not a class
instance or a object of the given type, the function always returns falstad$is neither a class object nor a
type object, al'ypeError exception is raised.

issubclass (classl, classp
Return true ifclasslis a subclass (direct or indirect) ofass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence
Return a list whose items are the same and in the same ordsrgagncs items. If sequenceds already
a list, a copy is made and returned, similarsequende] . For instancelist('abc’) returns returns
[a’, b, 'c] andlist((1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol table. Inside a function, modifying this dictionary
does not always have the desired effect.

long (X)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly singed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves idersicaigatol(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint()

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additionigdt arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wWittne items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Tis& arguments may be any kind of sequence; the result is
always a list.

max(s)
Return the largest item of a non-empty sequence (string, tuple or list).

8This is ugly — the language definition should require truncation towards zero.

18 Chapter 2. Built-in Types, Exceptions and Functions

min (s)
Return the smallest item of a non-empty sequence (string, tuple or list).

oct (X)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit mactoo&;1) vyields'037777777777° . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

open (filename{, mode{, bufsize]])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 'sfopen() : filenameis the file name to be openeahodeindicates how the file is to be openéd:
for reading,w’ for writing (truncating an existing file), arid’ opens it for appending (which omeUNIx
systems means thatl writes append to the end of the file, regardless of the current seek position). Modes
r+' ,'w+ and’at+’ open the file for updating, provided the underlystdio library understands this. On
systems that differentiate between binary and text fités, appended to the mode opens the file in binary mode.
If the file cannot be openedOError s raised. Ifmodeis omitted, it defaults t&r" . The optionabufsize
argument specifies the file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive
value means use a buffer of (approximately) that size. A neghatifgzemeans to use the system default, which
is usually line buffered for for tty devices and fully buffered for other ffles.

ord (¢
Return theascii value of a string of one character. E.grd(’a’) returns the integed7. This is the inverse
of chr()

pow(X, y[z])
Returnx to the powery; if zis present, returix to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2z). The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; epgw(2, -1) orpow(2, 35000) is not allowed.

range ([start,] sto;{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used in
for loops. The arguments must be plain integers. If gtep argument is omitted, it defaults to
1. |If the start argument is omitted, it defaults t6. The full form returns a list of plain integers
[start, start + step start + 2 * step ..] . If stepis positive, the last element is the largest
start + i * stepless tharstop if stepis negative, the last element is the largstsirt + i * stepgreater
thanstop stepmust not be zero (or elséalueError is raised). Example:

>>> range(10)

[0, 1, 2, 3, 4, 5,6, 7, 8 9]
>>> range(1, 11)

[1, 2, 3, 4, 5,6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

i

>>> range(1, 0)

i

>>>

9Specifying a buffer size currently has no effect on systems that don’'tseveuf() . The interface to specify the buffer size is not done
using a method that calletvbuf() , because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.3. Built-in Functions 19

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &dirés read,
EOFError is raised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus”
>>>

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, Iis{, initializer])
Apply the binary function to the items oflist so as to reduce the list to a single value. E.g.,
reduce(lambda x, y: x*y, list, 1) returns the product of the elements lift. The optional
initializer can be thought of as being prependedisb so as to allow reduction of an empligt. The list
arguments may be any kind of sequence.

reload (modulg
Re-parse and re-initialize an already impornteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as theoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsiport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wWwith atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepysfor
__main __ and__builtin ~ __. In certain cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usiram ... import ..., callingreload() for the
other module does not redefine the objects imported from it — one way around this is to re-exefutmthe
statement, another is to useport and qualified namesi{odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val()

round (X, n)
Return the floating point valuerounded tan digits after the decimal point. Hi is omitted, it defaults to zero.
The resultis a floating point number. Values are rounded to the closest multiple of 10 to the powar;rifiitus

20 Chapter 2. Built-in Types, Exceptions and Functions

multiples are equally close, rounding is done away from O (sorewgnd(0.5) is 1.0 andround(-0.5)
is-1.0).

setattr (object, name, valye
This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The string
must be the name of one of the object’s attributes. The function assigns the value to the attribute, provided the
object allows it. For examplesetattr(x, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] stop{, step])
Return a slice object representing the set of indices specifiedrime(start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attrittaies , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. fa[start:stop:step] " or ‘a[start:stop, i] '

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string.

tuple (sequence
Return a tuple whose items are the same and in the same ordegasncs items. If sequencas already
a tuple, it is returned unchanged. For instartagle(’abc’) returns returng’a’, 'b’, 'c’) and
tuple([1, 2, 3]) returns(1, 2, 3)

type (objec)
Return the type of anbject The return value is a type object. The standard motigdes defines names for
all built-in types. For instance:

>>> import types
>>> jf isinstance(x, types.StringType): print "It's a string"

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hdica __ attribute), returns a dictionary cor-
responding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefifiéd.

xrange ([start,] stop{, step])
This function is very similar te#ange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantagexfange() overrange() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

10n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 21

22

CHAPTER
THREE

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys — Access system specific parameters and functions.

types — Names for all built-in types.

UserDict — Class wrapper for dictionary objects.

UserList — Class wrapper for list objects.

operator — All Python’s standard operators as built-in functions.

traceback — Print or retrieve a stack traceback.

pickle — Convert Python objects to streams of bytes and back.

cPickle — Faster version gbickle , but not subclassable.

copy.reg — Registemickle support functions.

shelve — Python object persistency.

copy — Shallow and deep copy operations.

marshal — Convert Python objects to streams of bytes and back (with different constraints).
imp — Access the implementation of tiraport statement.

parser — Retrieve and submit parse trees from and to the runtime support environment.
symbol — Constants representing internal nodes of the parse tree.

token — Constants representing terminal nodes of the parse tree.

keyword — Test whether a string is a keyword in the Python language.

code — Code object services.

pprint — Data pretty printer.

dis — Disassembler.

site — A standard way to reference site-specific modules.

user — A standard way to reference user-specific modules.

__builtin __ — The set of built-in functions.

__main__ — The environment where the top-level script is run.

23

3.1 Built-in Module sys

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python sauigiv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usingdtimmand
line option to the interpreteargv[0] is set to the string-c" . If no script name was passed to the Python
interpreterargv has zero length.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way wodules.keys() only lists the imported modules.)

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned driype value tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class objed)ue gets the exception parameter (éssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning thd@racebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something likgpe, value = sys.exc _info()[:2] to extract only the exception

type and value. If you do need the traceback, make sure to delete it after use (best donigywith finally

statement) or to caéixc _info() in a function that does not itself handle an exception.

exc _type
exc _value

exc _traceback
Deprecated since release 1.&lseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handed, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local" . This can be set at build time with theexec-prefix argument to
the configure script. Specifically, all configuration files (e.g. thephfig.h’ header file) are installed in the
directoryexec _prefix + "/lib/python versioriconfig" , and shared library modules are installed in
exec _prefix + "/lib/python versiorlib-dynload" , whereversionis equal toversion[:3]

exit (n)

Exit from Python with numeric exit status This is implemented by raising tHf&ystemExit exception, so
cleanup actions specified by finally clausedrgf statements are honored, and it is possible to catch the exit
attempt at an outer level.

exitfunc

24 Chapter 3. Python Services

This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when the
interpreter exits in any way (except when a fatal error occurs: in that case the interpreter’s internal state cannot
be trusted).

getrefcount (objec)

last
last
last

Return the reference count of tleject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgeitréscount()

_type

_value

_traceback

These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a

debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isrport pdb; pdb.pm() ' to enter the post-mortem debugger; see the chapter

“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return valuegtoomfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke ftype etc.)

modules

path

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

A list of strings that specifies the search path for modules. Initialized from the environment variable
$PYTHONPAT}br an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python
interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script
is read from standard inputpath[0] is the empty string, which directs Python to search modules in the
current directory first. Notice that the script directory is inserbedore the entries inserted as a result of
$PYTHONPATH

platform

This string contains a platform identifier, e.gunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix

psl
ps2

A string giving the site-specific directory prefix where the platform independent Python files are installed,;
by default, this is the string/usr/local” . This can be set at build time with theprefix argu-

ment to theconfigure script. The main collection of Python library modules is installed in the directory
prefix + "“/lib/python version while the platform independent header files (all excephfig.h’) are
stored inprefix + "/include/python versionr' , whereversionis equal toversion[:3]

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case ae> ' and’... ' . If a non-string object is
assigned to either variable, #&() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)

Setthe interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQltiseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuez= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

3.1. Built-in Module sys 25

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace()), butitisn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just fgture.

stdin
stdout
stderr
File objects corresponding to the interpreter’'s standard input, output and error stretalims. is used for
all interpreter input except for scripts but including callariput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the promptemit() andraw _input()
The interpreter’s own prompts and (almost all of) its error messages giléor . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it hadtey) method that takes a
string argument. (Changing these objects doesn’t affect the standard 1/O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal008. When set to O or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter.

3.2 Standard Module types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freet types import * " — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will allygred in *

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

IntType

The type of integers (e.d.).
LongType

The type of long integers (e.gL).

26 Chapter 3. Python Services

FloatType
The type of floating point numbers (e.3.0).

StringType
The type of character strings (e!§pam’).

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).

ListType
The type of lists (e.g[0, 1, 2, 3]).

DictType
The type of dictionaries (e.g'Bacon’: 1, 'Ham’. 0}).

DictionaryType
An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout

XRangeType
The type of range objects returnedxnange()

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

3.3 Standard Module UserDict

3.3. Standard Module UserDict

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviours to dictionaries.

TheUserDict module defines th&serDict class:

UserDict ()
Return a class instance that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which
is accessible via théata attribute ofUserDict instances.

data
A real dictionary used to store the contents oftheerDict class.

3.4 Standard Module UserList

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviours to lists.

TheUserList module defines thelserList class:

UserList ([Iist])
Return a class instance that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via thedata attribute ofUserList instances. The instance’s contents are initially set to a codistf
defaulting to the empty lisf] . list can be either a regular Python list, or an instanc&sérList (or a
subclass).

data
A real Python list object used to store the contents oltberList class.

3.5 Built-in Module operator

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailidgfe also provided for convenience.

Theoperator module defines the following functions:

add(a, b
add(a, b
Returna + b, for aandb numbers.

sub(a, b)
sub(a,b
Returna- b.

mul (a, b)
_mul__(a, b
Returna* b, for aandb numbers.

div (a, b
_div _(a, b
Returna/ b.

mod(a, b)

__mod__(a, b)
Returna %b.

28 Chapter 3. Python Services

neg(o)
__heg_(0)
Returno negated.

pos (0)
__pos _(0)
Returno positive.

abs (0)
abs(0)
Return the absolute value of

inv (0)
_inv _(0)
Return the inverse ad.

Ishift (a, b)
_Ishift _(a,b)
Returna shifted left byb.

rshift (a, b)
_rshift _(a, b
Returna shifted right byb.

and (a, b
_and__(a, b
Return the bitwise and & andb.

or (a,b
or(a,b
Return the bitwise or o andb.

concat (a,b)
_concat _(a,b
Returna + b for a andb sequences.

repeat (a, b
_repeat _(a,b
Returna* b whereais a sequence arlis an integer.

getitem (a, b
_getitem _(a,b
Return the value o at indexb.

setitem (a,b, 9
_setitem _(a,b, 9
Set the value o& at indexb to c.

delitem (a, b
_delitem _(a,b
Remove the value daf at indexb.

getslice (a, b, 9
_getslice _(a,b,9
Return the slice of from indexb to indexc-1 .

setslice (a,b,c,y

_setslice _(a,b,c,y
Set the slice o& from indexb to indexc-1 to the sequence

delslice (a, b, 9
_delslice _(a,b,9

3.5. Built-in Module operator

Delete the slice of from indexb to indexc-1 .

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>> d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.6 Standard Module traceback

This module provides a standard interface to format and print stack traces of Python programs. It exactly mimics the
behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack traces under
program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayades _traceback
andsys.last _traceback

The module defines the following functions:

print _tb (tracebacl[, Iimit])
Print up tolimit stack trace entries fromtnaceback If limit is omitted orNone, all entries are printed.

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted fo@oeback It is useful for alternate
formatting of stack traces. limit is omitted orNone, all entries are extracted. A “pre-processed” stack trace
entry is a quadrupldilenameline numberfunction nameline tex) representing the information that is usually
printed for a stack trace. THme textis a string with leading and trailing whitespace stripped; if the source is
not available it ifNone.

print _exception (type, value, tracebatfklimit])
Print exception information and up timit stack trace entries fronaceback This differs fromprint _tb()
in the following ways: (1) itracebackis notNone, it prints a headefTraceback (innermost last): "
(2) it prints the exceptiotypeandvalueafter the stack trace; (3) tfpeis SyntaxError andvaluehas the
appropriate format, it prints the line where the syntax error occurred with a caret indicating the approximate

position of the error.

print _exc ([!imit])

This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit) .

print _last ([Iimit])
This is a shorthand for ptint _exception(sys.last type, sys.last _value,
sys.last _traceback, limit) .

3.7 Standard Module pickle

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”™). This is a more primitive notion than persistency — althopigtkle reads and writes file objects, it

does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thackle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to

30 Chapter 3. Python Services

write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on “dbm”-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as thePickle module. This has the same interface except®ieitler andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Unlike the built-in modulemarshal , pickle handles the following correctly:

e recursive objects (objects containing references to themselves)
e object sharing (references to the same object in different places)

e user-defined classes and their instances

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can't represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printabtel (and of some other characteristicsptkle ’s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value fointhe
argument to th&ickler constructor or thelump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, whichiimershal module does. | suppogeckle could, and
maybe it should, but there’s probably no great need for it right now (as lomgaashal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistency modules written usrickle , it supports the notion of a reference to an object
outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary string ofssintable
characters. The resolution of such names is not defined byitkle module — the persistent object module will
have to implement a methqmkrsistent _load() . To write references to persistent objects, the persistent module
must define a methaggersistent _id() which returns eitheNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

When a pickled class instance is unpickled, iteit __() method is normallyotinvoked.Note: This is a deviation

from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the change is that
in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to have to provide
a__getinitargs _() method.

If it is desirable that the__init _() method be called on unpickling, a class can define a method
__getinitargs —-() , which should return guple containing the arguments to be passed to the class constructor
(_init _()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the instance.

Classes can further influence how their instances are pickled — if the class defines the mgtheidte __() ,

it is called and the return state is pickled as the contents for the instance, and if the class defines the method
_setstate _() , it is called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is ngetstate __() method, the instance’sdict __is pickled. If there is no
_setstate __() method, the pickled object must be a dictionary and its items are assigned to the new instance’s
dictionary. (If a class defines bothgetstate __ () and__setstate _() , the state object needn’t be a dictionary

— these methods can do what they want.) This protocol is also used by the shallow and deep copying operations
defined in thecopy module.

3.7. Standard Module pickle 31

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class’'s_setstate _() method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.

To pickle an objeck onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:

pickle.dump(x, f)

To unpickle an object from a filef , open for reading:

u pickle.Unpickler(f)

u.load()

A shorthand is:

x = pickle.load(f)

The Pickler class only calls the methddwrite() with a string argument. Thenpickler calls the meth-
odsf.read() (with an integer argument) arfdeadline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for thPickler class has an optional second argumbint, If this is present and nonzero, the binary
pickle format is used; if it is zero or absent, the (less efficient, but backwards compatible) text pickle format is used.
The Unpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts
either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

e strings

e tuples, lists and dictionaries containing only picklable objects
e classes that are defined at the top level in a module

e instances of such classes whaogtict __or __setstate _ () is picklable

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

32 Chapter 3. Python Services

It is possible to make multiple calls to tltump() method of the sam®ickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondingnpickler instance. If the same

object is pickled by multiplelump() calls, theload() will all yield references to the same objettarning this

is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify

an object and then pickle it again using the sd®itkler instance, the object is not pickled again — a reference to

it is pickled and theJnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. | have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler —andUnpickler classes, the module defines the following functions, and an exception:

dump(object, fild, bin])
Write a pickled representation obbect to the open file objectfile. This is equivalent to
‘Pickler(file, bin).dump(objec) . If the optionalbin argument is present and nonzero, the binary pickle
format is used; if it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file objélet This is equivalent toUnpickler(file).load() .

dumps(objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the offtional
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object is passBitkber.dump()

See Also:

3.9: Modulecopy reg (pickle interface constructor registration)
3.10: Moduleshelve (indexed databases of objects; upgkle)
3.11: Modulecopy (shallow and deep object copying)

3.12: Modulemarshal (high-performance serialization of built-in types)

3.8 Built-in Module cPickle

ThecPickle module provides a similar interface and identical functionality agptbkle module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to noteR&ctiat() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced usingitide module, so it is possible to ugpéckle
andcPickle interchangably with existing pickles.

3.9 Standard Module copy _reg

Thecopy -reg module provides support for thegckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor.

3.8. Built-in Module cPickle 33

pickle (type, functimﬁ, constructoﬂ)
Declares thatunctionshould be used as a “reduction” function for objects of type or digses functionshould
return either a string or a tuple. The optiogahstructorparameter, if provided, is a callable object which can
be used to reconstruct the object when called with the tuple of arguments returheattignat pickling time.

3.10 Standard Module shelve

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatitkke module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interfac&dy is a string,data is an arbitrary object):
import shelve
d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it
Restrictions:

e The choice of which database package will be used (dmor gdbm) depends on which interface is available.
Therefore it isn't safe to open the database directly udinmg. The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

e Theshelve module does not supparbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. Wix file locking can be used to solve this, but this differs acrossXJversions and
requires knowledge about the database implementation used.

3.11 Standard Module copy

This module provides generic (shallow and deep) copying operations.

Interface summary:

34 Chapter 3. Python Services

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ieferéncesnto it to
the objects found in the original.

¢ A deep copyonstructs a new compound object and then, recursively, insgptesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

e Because deep copy copiegerythingit may copy too much, e.g. administrative data structures that should be
shared even between copies.

Python'sdeepcopy() operation avoids these problems by:

e keeping a table of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, nor stack trace, stack frame, nor file, socket,
window, nor array, hor any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods
called__getinitargs () ,_getstate _() and_setstate _() . See the description of modubéckle for
information on these methods.

3.12 Built-in Module marshal

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistency” module. For general persistency and transfer of Python objects through RPC calls,
see the modulepickle andshelve . Themarshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules gi/c’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supptotes]:integers, long
integers, floating point numbers, strings, tuples, lists, dictionaries, and code objects, where it should be understood

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

3.12. Built-in Module marshal 35

that tuples, lists and dictionaries are only supported as long as the values contained therein are themselves supported;
and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the comaesttal module uses 32 bits to transfer

plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from thepyc’ instead?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout orreturned byopen() or posix.popen()

If the value has (or contains an object that has) an unsupported tyfady@Error exception is raised — but
garbage data will also be written to the file. The object will not be properly read balciatg)

load (file)
Read one value from the open file and return it. If no valid value is read, E&)é¢Error , ValueError or
TypeError . The file must be an open file object.

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

dumps(value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, rdig@FError , ValueError or TypeError
Extra characters in the string are ignored.

3.13 Built-in Module imp

This module provides an interface to the mechanisms used to implememigtbe statement. It defines the follow-
ing constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code figs (“files”). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has the form
(suffix mode type , wheresuffixis a string to be appended to the module name to form the filename to
search formodeis the mode string to pass to the built@pen function to open the file (this can bg
for text files or'rb’ for binary files), andypeis the file type, which has one of the value§_ SOURCE
PY_COMPILED or CEXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedgey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_.BUILTIN), then a frozen moduleP(Y_.FROZEN and on some systems some other places are

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would benatshiie
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

36 Chapter 3. Python Services

looked in as well (on the Mac, it looks for a resouré&/(RESOURCEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triplde, pathname descriptior) wherefile is an open file

object positioned at the beginningathnameis the pathname of the file found, adéscriptionis a triple as
contained in the list returned lget _suffixes() describing the kind of module found. If the module does

not live in a file, the returnetile is None, filenameis the empty string, and thaescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses dabove. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In ordePdAfine.,
submoduleM of packageP, usefind _module() andload _module() to find and load packade and then
usefind _module() with thepathargument sett®. __path __. WhenP itself has a dotted name, apply this
recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfiyd _module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported, it
is equivalentto aeload() ! Thenameargument indicates the full module name (including the package name,
if this is a submodule of a package). Tfile argument is an open file, aritenameis the corresponding file
name; these can done and” , respectively, when the module is not being loaded from a file.dEseription
argument is a tuple as returnedfiyd _module() describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (ispatrror)
is raised.

Important: the caller is responsible for closing tfiee argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module (namg
Return a new empty module object callegime This object isnotinserted insys.modules

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code obiject file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKGDIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.

PY_FROZEN
The module was found as a frozen module (séte _frozen()).

The following constant and functions are obsolete; their functionality is available thrdugyh_module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin (namg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it

3.13. Built-in Module imp 37

will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise arimportError ~ exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callesthme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python’freezeutility. See Tools/freeze/’ for now.)

is _builtin (namg
Returnl if there is a built-in module calledamewhich can be initialized again. Retusth if there is a built-in
module callechamewhich cannot be initialized again (sgdét _builtin()). ReturnO if there is no built-in
module callechame

is _frozen (namg
Returnl if there is a frozen module (sémit _frozen()) calledname or 0 if there is no such module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeagain The nameargument is used to create or access a
module object. The@athnameargument points to the byte-compiled code file. Tifeargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (nhame, pathnan[efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializeajain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. Tieeneargument is used to construct
the name of the initialization function: an external C function calie@t * namd) ' in the shared library is
called. The optiondfile argment is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file. Note
that if a properly matching byte-compiled file (with suffiyyc’) exists, it will be used instead of parsing the
given source file.

Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical mod-
ule names). (Thismplementationwouldn’t work in that version, sincénd _module() has been extended and
load _module() has been addedin1.4.)

38 Chapter 3. Python Services

import imp import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can’'t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incleelead() function can be
found in the standard modulmee (which is intended as an example only — don't rely on any part of it being a
standard interface).

3.14 Built-in Module parser

Theparser module provides an interface to Python’s internal parser and byte-code compiler. The primary purpose
for this interface is to allow Python code to edit the parse tree of a Python expression and create executable code from
this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because parsing is
performed in a manner identical to the code forming the application. It is also faster.

Theparser module was written and documented by Fred L. Drake fdiaKe @acm.org).

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of ugiagsre module are
presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For
full information on the language syntax, refer to fAgthon Language Referenc&he parser itself is created from

a grammar specification defined in the fi@ammar/Grammar’ in the standard Python distribution. The parse trees
stored in the AST objects created by this module are the actual output from the internal parser when created by
theexpr() orsuite() functions, described below. The AST objects createddyuence2ast() faithfully

simulate those structures. Be aware that the values of the sequences which are considered “correct” will vary from one
version of Python to another as the formal grammar for the language is revised. However, transporting code from one
Python version to another as source text will always allow correct parse trees to be created in the target version, with
the only restriction being that migrating to an older version of the interpreter will not support more recent language
constructs. The parse trees are not typically compatible from one version to another, whereas source code has always
been forward-compatible.

Each element of the sequences returnech&tlist() or ast2tuple() has a simple form. Sequences rep-
resenting non-terminal elements in the grammar always have a length greater than one. The first element is an in-
teger which identifies a production in the grammar. These integers are given symbolic names in the C header file
‘Include/graminit.n’ and the Python modulsymbol . Each additional element of the sequence represents a compo-
nent of the production as recognized in the input string: these are always sequences which have the same form as the

3.14. Built-in Module parser 39

parent. An important aspect of this structure which should be noted is that keywords used to identify the parent node
type, such as the keywoifl in anif _stmt , are included in the node tree without any special treatment. For exam-
ple, theif keyword is represented by the tugle 'if’) , wherel is the numeric value associated with JAME

tokens, including variable and function names defined by the user. In an alternate form returned when line number
information is requested, the same token might be representéd &€, 12) , Where thel2 represents the line
number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of ithe keyword above is representative. The various types of
terminal symbols are defined in the C header filelide/token.h’ and the Python moduleken .

The AST objects are not required to support the functionality of this module, but are provided for three purposes:
to allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation of
additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to hide the
use of AST objects.

Theparser module defines functions for a few distinct purposes. The most important purposes are to create AST
objects and to convert AST objects to other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an AST object.

Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from source,
different functions are used to create teeal’ and’exec’ forms.

expr (string)
Theexpr() function parses the parametgring as if it were an input tocompile(string, 'eval’)
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

suite (' string)
Thesuite() function parses the paramesdring as if it were an input tocompile(string, 'exec’)
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

sequence2ast (sequence
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an AST object is created from the internal representation and returned to the called. If there is
a problem creating the internal representation, or if the tree cannot be valid&®edseaError exception is
thrown. An AST object created this way should not be assumed to compile correctly; normal exceptions thrown
by compilation may still be initiated when the AST object is passecotopileast() . This may indicate
problems not related to syntax (such dd@amoryError exception), but may also be due to constructs such as
the result of parsindgel f(0) , which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form
(1, 'name’) or as three-element lists of the forfh, 'name’, 56) . If the third element is present,

itis assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols
in the input tree.

tuple2ast (sequence
This is the same function agquence?ast() . This entry point is maintained for backward compatibility.

Converting AST Objects

40 Chapter 3. Python Services

AST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or tuple-
trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line numbering
information.

ast2list (asl[, Iine_info])
This function accepts an AST object from the calleastand returns a Python list representing the equivelent
parse tree. The resulting list representation can be used for inspection or the creation of a new parse tree in list
form. This function does not fail so long as memory is available to build the list representation. If the parse
tree will only be used for inspectioast2tuple() should be used instead to reduce memory consumption
and fragmentation. When the list representation is required, this function is significantly faster than retrieving a
tuple representation and converting that to nested lists.

If line_info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which thendkerhis
information is omitted if the flag is false or omitted.

ast2tuple (ast[, Iine_info])
This function accepts an AST object from the calleagtand returns a Python tuple representing the equivelent
parse tree. Other than returning a tuple instead of a list, this function is identast2iost()

If line_infois true, line number information will be included for all terminal tokens as a third element of the list
representing the token. This information is omitted if the flag is false or omitted.

compileast (ast[, flename = '<ast>’])
The Python byte compiler can be invoked on an AST object to produce code objects which can be used as
part of anexec statement or a call to the built-eval() function. This function provides the interface to
the compiler, passing the internal parse tree fastto the parser, using the source file name specified by the
filenameparameter. The default value supplied fitsnameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example woulsylodexEr-

ror caused by the parse tree el f(0) : this statement is considered legal within the formal grammar for
Python but is not a legal language construct. BigataxError raised for this condition is actually generated
by the Python byte-compiler normally, which is why it can be raised at this point hyatteer module. Most
causes of compilation failure can be diagnosed programmatically by inspection of the parse tree.

Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expression or a suite.
Neither of these functions can be used to determine if an AST was created from source @ghe(Yia or suite()
or from a parse tree visequence2ast()

isexpr (ash
Whenastrepresents aleval’ form, this function returns true, otherwise it returns false. This is useful, since
code objects normally cannot be queried for this information using existing built-in functions. Note that the
code objects created lmpmpileast() cannot be queried like this either, and are identical to those created
by the built-incompile() function.

issuite (asf
This function mirrorssexpr() in that it reports whether an AST object representseaec’ form, com-

monly known as a “suite.” It is not safe to assume that this function is equivelenotoisexpr(asf) ’, as
additional syntactic fragments may be supported in the future.

Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of the
Python runtime environment. See each function for information about the exceptions it can raise.

3.14. Built-in Module parser 41

ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failures rather than the built @yntaxError thrown during normal parsing. The exception argument is either
a string describing the reason of the failure or a tuple containing a sequence causing the failure from a parse
tree passed teequence2ast() and an explanatory string. Calls $equence2ast() need to be able to
handle either type of exception, while calls to other functions in the module will only need to be aware of the
simple string values.

Note that the functionsompileast() ,expr() ,andsuite() may throw exceptions which are normally thrown

by the parsing and compilation process. These include the built in exceMiem®ryError , OverflowError
SyntaxError , andSystemError . In these cases, these exceptions carry all the meaning normally associated
with them. Refer to the descriptions of each function for detailed information.

AST Objects

AST objects returned bgxpr() ,suite() andsequence2ast() have no methods of their own.

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (usicigehe
module) is also supported.

ASTType
The type of the objects returned bypr() ,suite() andsequence2ast()

AST objects have the following methods:

compile ([filename])
Same agompileast(ast filenamg.

isexpr ()

Same assexpr(asf .
issuite ()

Same asssuite(asf) .

tolist ([line_info])
Same asist2list(ast line.info) .

totuple ([Iine_info])
Same asst2tuple(ast, line.info) .

Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstrates emulation obthpile() built-in function and the complex example

shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is to
do nothing. For this purpose, using tharser module to produce an intermediate data structure is equivelent to the
code

42 Chapter 3. Python Services

>>> code = compile(a + 5, 'eval)
>>> g = 5

>>> eval(code)

10

The equivelent operation using tharser module is somewhat longer, and allows the intermediate internal parse
tree to be retained as an AST object:

>>> import parser
>>> ast = parser.expr(a + 5
>>> code = parser.compileast(ast)

>>> g = 5
>>> eval(code)
10

An application which needs both AST and code objects can package this code into readily available functions:
import parser

def load_suite(source_string):
ast = parser.suite(source_string)
code = parser.compileast(ast)
return ast, code

def load_expression(source_string):
ast = parser.expr(source_string)
code = parser.compileast(ast)
return ast, code

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to module documentation defined in docstrings without requiring that the code being exam-
ined be loaded into a running interpreter ingport . This can be very useful for performing analyses of untrusted
code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and the
other function defines a high-level interface to the classes by handling file operations on behalf of the caller. All source
files mentioned here which are not part of the Python installation are located ibé¢hw/parser/’ directory of the
distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only a limited
measure of this when defining classes, functions, and methods. In this example, the only definitions that will be
considered are those which are defined in the top level of their context, e.g., a function defingef bgtatement at
column zero of a module, but not a function defined within a branch of an. else construct, though there are

some good reasons for doing so in some situations. Nesting of definitions will be handled by the code developed in
the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large

3.14. Built-in Module parser 43

number of intermediate nodes. It is important to read and understand the formal grammar used by Python. This is
specified in the fileGrammar/Grammar’ in the distribution. Consider the simplest case of interest when searching for
docstrings: a module consisting of a docstring and nothing else. (Sedofikring.py’.)

""Some documentation.

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and parentheses, with the
documentation buried deep in nested tuples.

>>> import parser
>>> import pprint
>>> ast = parser.suite(open('docstring.py’).read())
>>> tup = parser.ast2tuple(ast)
>>> pprint.pprint(tup)
(257,
(264,
(265,
(266,
(267,
(307,
(287,
(288,
(289,
(290,
(292,
(293,
(294,
(295,
(296,
(297,
(298,
(299,
(300, (3, ™"Some documentation.\O12"")MNNNNNNN)),
C)E
“ "),
©, ")

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbols in the grammar. Unfortunately, they are represented as integers in the internal representation, and
the Python structures generated do not change that. Howevesyithigol andtoken modules provide symbolic

names for the node types and dictionaries which map from the integers to the symbolic hames for the node types.

In the output presented above, the outermost tuple contains four elements: the2dbeged three additional tuples.

Node type257 has the symbolic nanfde _input . Each of these inner tuples contains an integer as the first ele-
ment; these integer264, 4, and0, represent the node typssnt , NEWLINE andENDMARKERespectively. Note

that these values may change depending on the version of Python you are using; spmsultgy’ and ‘token.py’ for

details of the mapping. It should be fairly clear that the outermost node is related primarily to the input source rather
than the contents of the file, and may be disregarded for the momensstifihe node is much more interesting. In
particular, all docstrings are found in subtrees which are formed exactly as this node is formed, with the only difference
being the string itself. The association between the docstring in a similar tree and the defined entity (class, function,
or module) which it describes is given by the position of the docstring subtree within the tree defining the described
structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a simple pattern
matching approach to check any given subtree for equivelence to the general pattern for docstrings. Since the example

44 Chapter 3. Python Services

demonstrates information extraction, we can safely require that the tree be in tuple form rather than list form, allowing
a simple variable representation to[bariable _name’] . A simple recursive function can implement the pattern
matching, returning a boolean and a dictionary of variable name to value mappings. (Seafilgé.py’.)

from types import ListType, TupleType

def match(pattern, data, vars=None):

if vars is None:
vars = {}

if type(pattern) is ListType:
vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return O, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomes fairly readable. (Seesfiteriple.py’.)

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,
(symbol.small_stmt,
(symbol.expr_stmt,
(symbol.testlist,
(symbol.test,
(symbol.and_test,
(symbol.not_test,
(symbol.comparison,
(symbol.expr,
(symbol.xor_expr,
(symbol.and_expr,
(symbol.shift_expr,
(symbol.arith_expr,
(symbol.term,
(symbol.factor,
(symbol.power,
(symbol.atom,
(token.STRING, ['docstring’])

MMM
(token.NEWLINE, ")

)

Using thematch() function with this pattern, extracting the module docstring from the parse tree created previously

is easy:

3.14. Built-in Module parser 45

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found

1

>>> vars

{'docstring”: ""Some documentation.\012"""}

Once specific data can be extracted from a location where it is expected, the question of where information can be
expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring is the first
stmt node in a code blockfile _input or suite node types). A module consists of a sinflle _input

node, and class and function definitions each contain exactlysoi® node. Classes and functions are readily
identified as subtrees of code block nodes which start (gitlnt, (compound _stmt, (classdef, ... or

(stmt, (compound _stmt, (funcdef, Note that these subtrees cannot be matchedditgh() since

it does not support multiple sibling nodes to match without regard to number. A more elaborate matching function
could be used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string from the statement,
some work needs to be performed to walk the parse tree for an entire module and extract information about the names
defined in each context of the module and associate any docstrings with the names. The code to perform this work is
not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each “major”
block of the module is described by an object providing several methods for inquiry and a constructor which accepts
at least the subtree of the complete parse tree which it representdlcthiéelnfo constructor accepts an optional
nameparameter since it cannot otherwise determine the name of the module.

The public classes includ€lassinfo , Functioninfo , and Modulelnfo . All objects provide the meth-
ods get _name() , get _docstring() , get class _names() , and get class _.info() . The Class-
Inffo objects supportget _method _names() and get _method _info() while the other classes provide
get _function _names() andget _function _info()

Within each of the forms of code block that the public classes represent, most of the required information is in the
same form and is accessed in the same way, with classes having the distinction that functions defined at the top level
are referred to as “methods.” Since the difference in nomenclature reflects a real semantic distinction from functions
defined outside of a class, the implementation needs to maintain the distinction. Hence, most of the functionality of
the public classes can be implemented in a common base SlaissinfoBase , with the accessors for function

and method information provided elsewhere. Note that there is only one class which represents function and method
information; this parallels the use of tdef statement to define both types of elements.

Most of the accessor functions are declaredintelnfoBase and do not need to be overriden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuitelnfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is the
relevant part of th&uitelnfoBase definition from ‘example.py’:

46 Chapter 3. Python Services

class SuitelnfoBase:
_docstring = "
_name ="

def __init_ (self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:
self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) ==
found, vars = match(DOCSTRING_STMT_PATTERNI1], tree[1])
else:
found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:
self._docstring = eval(vars['docstring’])
discover inner definitions
for node in tree[l:]:
found, vars = match(COMPOUND_STMT_PATTERN, node)

if found:
cstmt = vars['compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]

self._function_info[name] = FunctionIinfo(cstmt)
elif cstmt[0] == symbol.classdef:

name = cstmt[2][1]

self._class_info[name] = Classinfo(cstmt)

After initializing some internal state, the constructor calls teetract _info() method. This method performs

the bulk of the information extraction which takes place in the entire example. The extraction has two distinct phases:
the location of the docstring for the parse tree passed in, and the discovery of additional definitions within the code
block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The short form is
used when the code block is on the same line as the definition of the code block, as in

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent ‘exp’."
def raiser(x, y=exp):
return x ** vy
return raiser

When the short form is used, the code block may contain a docstring as the first, and possibdynatily, stmt

element. The extraction of such a docstring is slightly different and requires only a portion of the complete pattern used
in the more common case. As implemented, the docstring will only be found if there is on§naie _stmt node

in thesimple _stmt node. Since most functions and methods which use the short form do not provide a docstring,
this may be considered sufficient. The extraction of the docstring proceeds usmgtittg) function as described
above, and the value of the docstring is stored as an attribute SuiteinfoBase object.

3.14. Built-in Module parser 47

After docstring extraction, a simple definition discovery algorithm operates ostithie nodes of thesuite node.
The special case of the short form is not tested; since there agmo nodes in the short form, the algorithm will
silently skip the singlsimple _stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something else.
For the definition statements, the name of the element defined is extracted and a representation object appropriate to
the definition is created with the defining subtree passed as an argument to the constructor. The repesentation objects
are stored in instance variables and may be retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those providesuitgline
foBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-level function
can be used to extract the complete set of information from a source file. (Sesdilele.py’.)

def get_docs(fileName):
source = open(fileName).read()
import os
basename = os.path.basename(os.path.splitext(fileName)[0])
import parser
ast = parser.suite(source)
tup = parser.ast2tuple(ast)
return Modulelnfo(tup, basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined points to provide additional capa-
bilities.

See Also:

3.15: Modulesymbol (useful constants representing internal nodes of the parse tree)

3.16: Module token (useful constants representing leaf nodes of the parse tree and functions for testing node
values)

3.15 Standard Module symbol

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to ti@&diemar/Grammar’ in the Python distribution for the
defintions of the names in the context of the language grammar. The specific numeric values which the names map to
may change between Python versions.

This module also provides one additional data object:

sym_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

See Also:

3.14: Moduleparser (second example uses this module)

3.16 Standard Module token

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer to the file Grammar/Grammar’ in the Python distribution for the defintions of the names in the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

48 Chapter 3. Python Services

This module also provides one data object and some functions. The functions mirror definitions in the Python C header
files.

tok _name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

ISTERMINAL(X)
Return true for terminal token values.

ISNONTERMINAL x)
Return true for non-terminal token values.

ISEOF(X)
Return true ifx is the marker indicating the end of input.

See Also:

3.14: Moduleparser (second example uses this module)

3.17 Standard Module keyword

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword (9
Return true ifsis a Python keyword.

3.18 Standard Module code

Thecode module defines operations pertaining to Python code objects.
Thecode module defines the following functions:

compile _command source,[filename{, symboﬂ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This almcisin
always makes the same decision as the real interpreter main loop.

Arguments:sourceis the source strindilenameis the optional filename from which source was read, defaulting
to "<input>" ; andsymbolis the optional grammar start symbol, which should be eitk&rgle" (the
default) or"eval”

Return a code object (the sameaasnpile(source filename symba)) if the command is complete and
valid; returnNone if the command is incomplete; raiSyntaxError if the command is a syntax error.

3.19 Standard Module pprint

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. ConstrudrettyPrinter objects explicitly if you need to adjust the width constraint.

3.17. Standard Module keyword 49

Thepprint module defines one class:
PrettyPrinter (..)

Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using tereamkeyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters

may be used to control the formatted representation. The keywordiscena depth andwidth. The amount

of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘... '. By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuffl:])

>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)

[
'lusr/local/lib/pythonl.5’,
'fusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl1.5/sunos5’,
'lusr/local/lib/pythonl1.5/sharedmodules’,
"fusr/local/lib/pythonl.5/tkinter’],

'fusr/local/lib/pythonl1.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

parser.suite(open(’pprint.py’).read()))[1][1][1]

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (...))N))

ThePrettyPrinter class supports several derivative functions:

pformat (objec)

Return the formatted representatiorobfectas a string. The default parameters for formatting are used.

pprint (objec{, strean’])

Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteacpdhts statement for in-
specting values. The default parameters for formatting are used.

50

Chapter 3. Python Services

>>> stuff = sys.path[:]

>>> gstuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

”

'lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

isreadable (objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation afbject protected against recursive data structures. If the rep-
resentation of object exposes a recursive entry, the recursive reference will be represented as
‘<Recursion on typenamewith id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", 'lusr/localllib/pythonl.5’, '/usr/loca
Illib/pythonl.5/test’, ’/usr/local/lib/pythonl.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/pythonl.5/tkinter’]"

PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation afject This takes into Account the options passed to Eret-
tyPrinter constructor.

pprint (objec)
Print the formatted representationadjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don't need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th@rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

3.19. Standard Module pprint 51

3.20 Standard Module dis

Thedis module supports the analysis of Python byte code by disassembling it. Since there is no Python assembler,
this module defines the Python assembly language. The Python byte code which this module takes as an input is
defined in the file Include/opcode.h’ and used by the compiler and the interpreter.

Example: Given the functiomyfunc :
def myfunc(alist):
return len(alist)
the following command can be used to get the disassembtyyfiinc()

>>> dis.dis(myfunc)

0 SET_LINENO 1
3 SET_LINENO 2

6 LOAD_GLOBAL 0 (len)
9 LOAD_FAST 0 (alist)
12 CALL_FUNCTION 1

15 RETURN_VALUE

16 LOAD_CONST 0 (None)

19 RETURN_VALUE

Thedis module defines the following functions:

dis ([bytesourcé)
Disassemble thbytesourcebject.bytesourcean denote either a class, a method, a function, or a code object.
For a class, it disassembles all methods. For a single code sequence, it prints one line per byte code instruction.
If no object is provided, it disassembles the last traceback.

distb ([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed. The instruc-
tion causing the exception is indicated.

disassemble (code[, Iasti])
Disassembles a code object, indicating the last instructitastf was provided. The output is divided in the
following columns:

1.the current instruction, indicated as> ’,
2.a labelled instruction, indicated with>’,

3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

disco (code[, Iasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

opname
Sequence of a operation names, indexable using the byte code.

52 Chapter 3. Python Services

cmp_op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access a attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a a local variable.

hascompare
Sequence of byte codes of boolean operations.

Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STORCODE
Indicates end-of-code to the compiler, not used by the interpreter.

POPTOP
Removes the top-of-stack (TOS) item.

ROTTWO
Swaps the two top-most stack items.

ROTTHREE
Lifts second and third stack item one position up, moves top down to position three.

DURTOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.
UNARYPOSITIVE

ImplementsTOS = +TOS
UNARYNEG

ImplementsTOS = -TOS
UNARYNOT

ImplementsTOS = not TOS.
UNARYCONVERT

ImplementsTOS = ‘TOS'.
UNARYINVERT

ImplementsTOS = "TOS

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack. They
perform the operation, and put the result back on the stack.

BINARY_POWER
ImplementsTOS = TOS1 ** TOS

BINARY_MULTIPLY

3.20. Standard Module dis 53

ImplementsTOS = TOS1 * TOS

BINARY_DIVIDE
ImplementsTOS = TOS1 / TOS

BINARY_.MODULO
ImplementsTOS = TOS1 %TQS

BINARY_ADD
ImplementsTOS = TOS1 + TOS

BINARY_SUBTRACT
ImplementsTOS = TOS1 - TOS

BINARY_SUBSCR
ImplementsTOS = TOS1[TOS].

BINARY_LSHIFT
ImplementsTOS = TOS1 << TOS

BINARY_RSHIFT
ImplementsTOS = TOS1 >> TOS

BINARY_AND

ImplementsTOS = TOS1 and TOS
BINARY_XOR

ImplementsTOS = TOS1 = TOS
BINARY_.OR

ImplementsTOS = TOS1 or TOS
The slice opcodes take up to three parameters.

SLICE+0
ImplementsTOS

SLICE+1
ImplementsTOS

SLICE+2
ImplementsTOS = TOS1[:TOS1] .

SLICE+3
ImplementsTOS = TOS2[TOS1:TOS].

TOS[] .

TOS1[TOS] .

Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.
STORESLICE+O

ImplementsTOS[:]] = TOS1 .
STORESLICE+1

ImplementsTOS1[TOS:] = TOS2.
STORESLICE+2

ImplementsTOS1[:TOS] = TOS2.

STORESLICE+3
ImplementsTOS2[TOS1:TOS] = TOS3.

DELETESLICE+O
Implementsddel TOS[]

DELETESLICE+1
Implementsdel TOS1[TOS:]

54 Chapter 3. Python Services

DELETESLICE+2
Implementsdel TOS1[:TOS]

DELETESLICE+3
Implementsdel TOS2[TOS1:.TOS] .

STORESUBSCR
ImplementsTOS1[TOS] = TOS2.
DELETESUBSCR
Implementsdel TOS1[TOS] .
PRINT_EXPR

Implements the expression statement for the interactive mode. TOS is removed from the stack and printed. In
non-interactive mode, an expression statement is terminatedP@BSTACK

PRINT_ITEM
Prints TOS. There is one such instruction for each item in the print statement.

PRINT_NEWLINE

Prints a new line orsys.stdout . This is generated as the last operation of a print statement, unless the
statement ends with a comma.

BREAKLOOP
Terminates a loop due to a break statement.

LOADLOCALS

Pushes a reference to the locals of the current scope on the stack. This is used in the code for a class definition:
After the class body is evaluated, the locals are passed to the class definition.

RETURNVALUE
Returns with TOS to the caller of the function.

EXECSTMT
Implementsexec TOS2,TOS1,TOS . The compiler fills missing optional parameters with None.

POPBLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

ENDFINALLY
Terminates a finally-block. The interpreter recalls whether the exception has to be re-raised, or whether the
function returns, and continues with the outer-next block.

BUILD_CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the base classes, and
TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORENAME namei
Implementsname = TOS nameiis the index ofnamein the attributeco _names of the code object. The
compiler tries to usSSTORELOCALor STOREGLOBALIf possible.

DELETENAME namei
Implementsgdel name , wherenameiis the index intaco _names attribute of the code object.

UNPACKTUPLE count
Unpacks TOS int@ountindividual values, which are put onto the stack right-to-left.

UNPACKLIST count
Unpacks TOS int@ountindividual values.

STOREATTR namei

3.20. Standard Module dis 55

ImplementsTOS.name = TOSI, wherenameiis the index of name igo _names.

DELETEATTR namei
Implementdel TOS.name , usingnameias index intaco _names.

STOREGLOBAL namei
Works asSTORENAME but stores the name as a global.

DELETEGLOBAL namei
Works asDELETENAMEDbut deletes a global name.

LOADCONST consti
Pushesc¢o _consts[const] ' onto the stack.

LOADNAME namei
Pushes the value associated with :names[name] ' onto the stack.

BUILD_TUPLE count
Creates a tuple consumirguntitems from the stack, and pushes the resulting tuple onto the stack.

BUILD_LIST count
Works asBUILD _TUPLE but creates a list.

BUILD _MAP zero
Pushes an empty dictionary object onto the stack. The argument is ignored and set to zero by the compiler.

LOADATTR namei
Replaces TOS witlgetattr(TOS,co _names[name] .

COMPARBP opname
Performs a boolean operation. The operation name can be fownepirop[opnamé.

IMPORTNAME namei
Imports the moduleo _names[name] . The module object is pushed onto the stack. The current name space
is not affected: for a proper import statement, a subseddi€OREFAST instruction modifies the name space.

IMPORT.FROM namei
Imports the attributeo _-n