Swn's Warldwide lave Daveloper Conferenis




Internationali-
zation

Asmus Freytag

JavaOne

didrr s Wariwids iSds Deeslapsr Coafans nis




Overview

Background

Requirements

Approaches

— Character Encoding (internal/external)
— Locale Support

— AWT: Input, Fonts, Localizing Applets
— HotJava

Delivery Stages



Background

Users have easy access to documents
worldwide, in any character set

Serverscan be accessed by users from
anywhere, speaking any language
Software can no longer be targeted to
asingle national market

il The Internet pushes the envelope on
Internationalization




User Requirements

 Display text datafrom any source

« Run localized apps/applets

— Access localized web pages and applets
by language



Programmer Requirements

 Create internationalized Apps/Applets
 Localize Apps/Applets easily



Char Data Type and
Identifiers

Java' s character datatype is Unicode™

|dentifiers: any Unicode letter or digit
— Currently spec'd as Unicode 1.1

— Will be Unicode 2.0 asof JDK 1.1
Remove limitations:

— Current limit: 0000-00FF in PrintStream
Depreceate:

— Small # of APIsassume ‘byte[]’ astext



Character Encoding

External data are not all in Unicode

Class CharacterEncoding

— Conversion functions for most common
character sets

Extensible
Add: Character code conversion in

— Datal nputStream.readChar
— DataOutputStream.writeChars



Locale

Flexible locale model
NOT global, but object-oriented

Hierarchy of servicesrooted in Class
L ocaleDependent

Allows definition of generic locale
dependent services

AWT Components carry locale
designation



 Currently only Latin 1 fonts.

« Abstract font names for native fonts:

— For font name " Serif", Java runtime will try

to use Serif type platform fonts for all
Unicode glyphs.

— If the glyph is not available, Javawill
display a substitute character.

« Future: provide combining fonts APIs



Input Method

« Javawill support native Input Methods
via native widgets used by awt.

» Future: access via Java specific rich text
widgets, possibly API

» Future: support for platform indepen-
dent input method desirable



User Interface Localization

« Original java Ul approach wraps code
and localizable data

— Very flexible, but broken for localization.
« Short term: use property sheets
« Long term: JavaSoft is working with
licensees to define a common, sharable

serialization of classes, so GUI builders
can support localization tools



HotJava

 HotJava strings and messages are kept
in property files

 Currently displaysHTML or
documents encoded in 1SO 8859-1

« HotJava 1.0 will be based on JDK 1.1
and leverage new i18n features to
support display of multilingual text

« HotJava will support localized applets



Staged Release

 Javai8n features will bereleased in
stages

« '1.1":
— CharacterSet support and Locale Model
— Initial input and font support

 Future: Ul localization, rich text, etc..



Summary

Minimal subset immediatly
Rich support later in stages

Working with licensees to define and
Implement support

Thank you. Any Questions?



