User’'s Guide
Version 1.4

STARTECH COMPUTER SERVICES

INTERNET
COMPONENTS

FOR BORLAND DELPHI

SENDMAIL PACKAGE
GETMAIL PACKAGE
FTP PACKAGE
HTTP PACKAGE
IRC PACKAGE

STARTECH INTERNET COMPONENTS

TABLE OF CONTENTS

INTRODUCTION 7
THE SENDMAIL PACKAGE 8
THE SENDMAIL COMPONENT 8
STEP1: SETTINGINITIAL PROPERTIES 8
The SMTP_Server property 9

The SMTP_Port property 9

The From_Name property 9

The From_Address property 9

The Subject property 9
Specifying TimeOut Values 10
Addressing Mail 10
Specifying the Message Text 10

M essage Attachments 10
Adding Attachments to a message 11
Adding Custom Headers 14
STEP2: SENDING THEMESSAGE 15
STEP 3: MONITORING THE PROGRESS OF THE TRANSACTION 15
Resolving the server name 15
Establishing the Connection 15
Processing recipients 15
Sending the message 16
Processing attachments 16
Transaction completion 16
Summary of OnMaillnfo eventinfo values 17
Other OnMaillnfo eventinfo values 17
Handling Errors 17
Checking for Transaction Success 19
Canceling the sending of mail 20
Advanced Topics 20
Sending several messages 20
THE SENDMAILDIALOG COMPONENT 21
THE TADDRESSBOOK COMPONENT 22
THE TADDRESSBOOKVIEWER COMPONENT 23
THE GETMAIL PACKAGE 25
THE GETMAIL COMPONENT 25
STEP1: SET INITIAL PROPERTIES 25
The Mail_Server property 25

STARTECH INTERNET COMPONENTS

The Mail_Port property

The User_ID Property

The User_Password Property
Other Properties

STEP 2: INITIATING THETRANSFER OFMAIL
STEP 3: HANDLINGEVENTS

The OnMaillnfo Event

Resolving the server name
Establishing the Connection

The Authorization phase

The Listing phase

The Retrieval phase

The OnMessage L oaded Event
The Msg_From property

The Msg_To property

The Msg_Size property

The Msg_Date property

The Msg_Subject property

The Msg_UIDL property

The Msg_ID property

The Mail_Text property

The Disconnection phase

Other OnMaillnfo eventinfo values
Handling Errors

Checking for Transaction Success
Handling OnMaillnfo events

MESSAGEATTACHMENTS

How the GetMail Component Handles Attachments
The TMIMEAttachment record type

How Attachmentsfit in the flow of events

The OnAttachmentGetL ocation event

The OnAttachmentStored event

MESSAGE MANAGEMENT

Deleting M essages from the Server

L eaving Messages on the Server

The UIDLList property

M essage Preview

Keeping track of already retrieved messages without UIDL support
The TUIDL ManagerObject

Creating the TUIDLManager object

Querying the TUIDL Manager object

Destroying the TUIDLManager object

Managing Retrieved Mail

THE TNMAILBOX COMPONENT
INITIALIZING THETNMAILBOX COMPONENT

The Mailboxes property
The MailboxDirectory property

ADDING AND RETRIEVING MESSAGES

Selecting a mailbox
Selecting a Message

26
26
26
26
26
27
27
27
27
28
28
28
28
28
29
29
29
29
29
30
30
32
32
32
34
35
36
36
36
38
38
39
39
39
40
41
42
43
43
43

45
46
46
46
46
47
48
48

STARTECH INTERNET COMPONENTS

Adding a Message
Retrieving a Message
DELETING AMESSAGE
TRANSFERRING A MESSAGE TOANOTHER MAILBOX
CREATING ANEW MAILBOX
COMPRESSING A MAILBOX
EMPTYING A MAILBOX
UPDATING A MESSAGE SFLAG
STORINGATTACHMENTS

THE TATTACHMENTMANAGER COMPONENT

INITIALIZING THE COMPONENT
ADDING ANATTACHMENT
Creating a New Entry
Updating an Attachment Entry
KEEPING TRACK OF ATTACHMENTS
RETRIEVINGINFORMATION ABOUT ANATTACHMENT
COPYING ANATTACHMENT
DELETING ANATTACHMENT
VIEWING OREXECUTINGATTACHMENTS

THE NMAILBOXVIEWER COMPONENT

INITIALIZING THENMAILBOXVIEWER COMPONENT
Selecting a Mailbox
CHANGING THE APPEARANCE OF THECONTROL
The SectionNames Property
The SetHeaderSize Method
Setting Status Bitmaps
The Font property
The Align Property
WORKING WITH THENMAILBOXVIEWER COMPONENT
AUTOMATICOPERATIONS OF THENMAILBOXVIEWER COMPONENT
Moving M essages
Message Count
Sorting messages
Finding selected messages
METHODSAVAILABLE INMESSAGE VIEWER MANAGER ORMANUAL MODE
MANUAL MODE
Double Clicking on a Message
MESSAGE VIEWER MANAGER MODE
Designing the message viewer form
Handling Windows M essages
The MBV_PARENT message
The MBV_SETMESSAGE message
The MBV_UPDATEINFO message
The MBV_CLOSE message
Adding Functionality to the Message Viewer Form
The NextM essage and PreviousM essage methods
The ViewSelectedM essages M ethod

THE TSTRINGSVIEWER COMPONENT

TSTRINGSVIEWER PROPERTIES
M odifying the Control’ s Appearance

49
49
49
50
50
50
51
51
51
53
53
53
54
54
55
56
56
56
56
57
57
58
58
58
58
59
60
60
60
61
61
61
61
61
62
63
63
64
65
66
67
67
68
68
69
70
70
70
71
71

STARTECH INTERNET COMPONENTS

M odifying the Control’s Operation 71

M odifying the Control’ s Contents 71
TStringsViewer Events 72
Clipboard Operations 72
THE FTP PACKAGE 73
THETFTP COMPONENT 73
THE TFTP COMPONENT IN INTERACTIVE MODE 73
INITIALIZING THEFTP COMPONENT 74
The FTPServer property 74

The FTPPort property 74
Logging in: the UserName, UserPassword and UserAccount properties 74
LOGGING IN TO THEFTP SERVER 75
AFTER LOGGINGIN: DOING SOMETHING USEFUL 75
Listing Files and Directories 76
Deleting aFile 77
Creating a Directory 77
Deleting a Directory 77
Renaming a File or Directory 77
Uploading aFile 77
Downloading aFile 78
Changing Directory 78
Ending a Session 78
Handling Errors 78
PUTTING IT TOGETHER A SIMPLE FILE TRANSFER 81
MONITORING TRANSACTION PROGRESS 82
Adding Status Notifications to the Example 84
ADVANCED USAGE 85
Techniques for Transferring Multiple Files. 87
Techniques for Transferring Multiple Directories 88
THE TFTP COMPONENT INURL MODE 88
INITIALIZING THEFTP COMPONENT FORURL MODE. 89
STARTING THEFILE TRANSFER 89
MONITORING TRANSACTION PROGRESS AND COMPLETION 89
HANDLING ERRORS 90
OTHER METHODSPROPERTIES AND EVENTS OF THEFTP COMPONENT 90
The IssueCommand method 90
The StopTransfer method 90

The TransferM ode property 91

The WinsockStarted property 91

The Connected property 91

The OnFTPNeedInfo event 92
THE FTPURLDIALOG COMPONENT 92
INITIALIZING THEFTPURLDIALOG COMPONENT 92
The LocalFile and URL properties 92
Specifying the direction and type of the transfer 93
Specifying Login information 93

STARTING THEFILE TRANSFER

93

STARTECH INTERNET COMPONENTS

TRANSACTION COMPLETION 94

A SAMPLEFTPURLDIALOG PROGRAM 94
CUSTOMIZING THE APPEARANCE OF THEFTPURL DIALOG COMPONENT 94
Using the component editor to customize the FTPURL Dialog component 95
Modifying the FTPURL Dialog Programmatically 96
ADDITIONAL PROPERTIES OF THEFTPURL DIALOG COMPONENT 97
THE HTTP PACKAGE 98
THETHTTP COMPONENT 98
THE TSTARIMAGE COMPONENT 98
THE IRC PACKAGE 100
TTCPCLIENT AND TTCPSERVER 102
APPENDIX A - INTERNET RFC 104
THESMTP PrOTOCOL 104
THE POP3 PROTOCOL 104
THE MIME PrROTOCOL 104
THE FTP PrROTOCOL 104
MUST READ IF YOU AREDESIGNING AMAIL CLIENT 105
APPENDIX B - ADDITIONAL MATERIAL 106

REGISTEREDMIME TYPES

106

STARTECH INTERNET COMPONENTS 7

INTRODUCTION

This chapter discusses what the Internet is and how it works, and introduces the
StarTech line of Internet components for Borland Delphi.

STARTECH INTERNET COMPONENTS 8

THE SENDMAIL PACKAGE

The sendMail package contains various components that greatly facilitate the

sending of Internet mail using the Simple Mail Transfer Protocol (SMTP), as well
as components to manage MIME attachments.

Component Description

SendMail SMTP client component. sends Internet malil
SendMailDialog Facilitates status display while sending mail
TMimeManager Handles classification of attachments
TAddressBook Facilitates handling of e-mail addresses

TAddresBookViewer Viewer for a TAddressBook component

The SendMail Component

The SendMail component is the basic component used to send Internet
mail using the Simple Mail Transfer Protocol (SMTP). The general
operation of the component is as follows:

Set properties prior to initiating transfer of mail, which give the component
necessary information, such as who to send a message to and the text of the
message.

Issue a command to initiate the transfer of mail.

Respond to events which indicate the progress and completion of the malil
transfer.

Step 1: Setting Initial Properties

Before sending a message using the SendMail component, we must specify
some information, such as the recipient of the message and the server to be
used to transfer mail. The following properties let you specify this information:

STARTECH INTERNET COMPONENTS 9

The SMTP_Server property

The SMTP_Server property is used to specify which server the component will
connect to transfer mail. To do this, you will assign a string containing either the
server's name or the server’s address to this property.

Example:
SendMai | 1. SMIP_Server: = nai | . acne. cont ; {uses server nane}
or
SendMai | 1. SMIP_Ser ver : = 123. 54. 6. 78’ ; {uses server address}

Should you use the server name or server address in this property? If you have
physical control of the mail server (i.e. you will know if its address changes),
using the server address in the SMTP_Server property will save you the
overhead of name resolution every time you connect. Most of the time, however,
you will want to use the server name, as there is no guarantee that the server's
address will remain the same over time.

The SMTP_Port property

The SMTP_Port property is used to specify which port to use on the server
specified in the SMTP_Server property. The standard port for SMTP servers is
25.

Example:
SendMai | 1. SMIP_Port : =25;

The From_Name property

The From_Name property is used to specify the name of the sender of the
message. This property is mandatory in version 1.3 and optional in version 1.4
and above.

Example:
SendMai | 1. From Nare: = John Snith’;

The From_Address property

The From_Address property is used to specify the sender’s e-mail address. This
will be used by the recipient of the message to reply to the message. This
property is mandatory in version 1.3 and optional in version 1.4 and above.

Example:
SendMai | 1. From Addr ess: =’ j sni t h@cne. coni ;

The Subject property

The Subject property is used to specify the subject of the message. This will help
the recipient distinguish the message from other messages in a list of messages.
This property is optional.
Example:

SendMai | 1. Subj ect: =" Product Announcernent’ ;

STARTECH INTERNET COMPONENTS 10

Specifying TimeOut Values

The TimeOutArp and TimeOutConnect properties can be used to specify how
long the component should wait for address resolution and connection before
timing out. If the property is assigned the value 0, no timeouts occur. Any other
value indicates the timeout in seconds. Note that on 16 bit implementations, it is
possible that a timer cannot not be allocated, as timers are limited resources. In
this case, timeout monitoring will silently fail and no timeout will occur.

Addressing Mail
When addressing mail, there are three class of recipients:
‘To:" recipients are the primary recipients of the message.

‘cc’’ recipients also receive the message and are listed as carbon copy
recipients in the message header.

‘Bee:’ recipients receive the message, but are not listed as carbon copy
recipients in the message headers. It can be said they receive the message
anonymously. For example, you would specify Bcc: recipients when sending
a message to a long mailing list, to avoid hundreds of lines of headers listing
the recipients and to maintain the privacy of the mailing list members.

There are three properties that are used to address a message, ListTo, Listcc
and ListBcc, which are of type TStrings. To add a recipient to one of these lists,
you will add a string containing the recipients e-mail address and optionally a bar
character followed by the recipients name:

Example:
ToLi st. Add(* j anedoe@cne. com) ;

or
TolLi st. Add(* j anedoe@cne. conj Jane Doe’);

The To_Name and To_Address properties are included for compatibility with
previous version and should not be used, as they may be removed in future
versions.

Specifying the Message Text

To specify the message text, you will use the MailText property, which is of type
TStrings. The size of the message is limited to about 16000 lines of any length
(previous versions had a line length limit of 253 characters). The following shows
how to transfer text from a Tmemo component to the MailText property of a
SendMail component:

Example:
SendMai | 1. Mai | Text . Assi gn(Menol. Li nes);
Message Attachments

Most messages will consist of plain text. However it is possible for one or several
files to be attached to the message. The standard manner of sending binary files

STARTECH INTERNET COMPONENTS 11

with a message (these files are referred to as attachments) is by using MIME

(Multimedia Internet Mail Extensions). MIME provides the following facilities:

- the ability to encode binary files in a 7-bit format suitable for passage through
various gateways on the Internet which might only support 7-bit text.
the ability to package several attachments into one contiguous message, and
to demarcate the boundary between attachments.
the ability to provide additional information about the attachment, such as the
type of information it contains (known as the MIME type) or the description of
the content, for example.

Adding Attachments to a message

To add attachments to a message, you will use the AddAttachment method,
passing a record of type TSendMailAttachment, which provides information
about the file to be attached to the message. The AddAttachment method should
be called once for every attachment. The AddAttachment method is prototyped
as follows:

procedure AddAttachment(att: TSendMailAttachment);

The TSendMailAttachment record is prototyped as follows:

type TSendMai | Att achnent =record
Nane: string[255];
Encodi ng: TMai | Encodi ng;
M neType: string[80];
M neD sposi tion: string[30];
M neDescri ption: string[255];
Locati on: string[255];

end;

The TSendMailAttachment record contains the following fields:
The Name field is used to hold the name of the attachment. Note that the name
of an attachment is not necessarily the original filename of the attachment.
Additionally, note that the name of an attachment does not have to conform to
DOS 8.3 filename length convention. For example, ‘May1995SalesChart.gif’
could very well be the name of an attachment originating from a machine running
an OS with less stringent naming restrictions, such as UNIX, Windows 95 or
Windows NT.
The Encoding field is used to specify which type of encoding will be used on the
attachment. Possible values of this field are:
meDefault: the attachment will be scanned and the best encoding method will
be chosen.
meMimeBase64: the attachment is encoded using Base 64 encoding, which
is most suitable for binary files.
meMimeQuoted: the attachment is encoded using Quoted Printable
encoding, which is suitable for mostly text content with a few characters
above ASCII 127 (such as ©,E,U, etc....).
meMimePlain: the attachment is not encoded, but sent as plain text. This
type of encoding is suitable only on text files not containing any characters
above ASCII 127.

STARTECH INTERNET COMPONENTS 12

The MimeType field is used to hold the type of the attachment. A MIME type
consists of two parts, the major type and the subtype, separated by a slash. For
example, ‘image/gif has a major type of ‘image’ and a subtype of ‘gif and
describe files containing images in CompuServe’s Graphic Interchange Format.
There are six major types which are defined in the MIME standard:
- audio: files containing digitized audio.

image: files containing images

message: files containing a message or a collection of messages

text: files containing text

video: files containing digital video

application: used for applications, also a catch all type for any type that

does not fit in other types.
Appendix C lists all registered MIME types. Additionally custom subtypes can be
created by prepending an ‘X’ followed by a dash to the subtype. For example,
there is no standard MIME type for Microsoft bitmaps. However, it is common to
see them described with a MIME type of ‘image/X-bmp’ or ‘image/X-bitmap’.

Common Mime Types

text/plain plain text

image/qgif CompusServe GIF image
image/jpeg JPEG image

audio/basic AU audio file

video/mpeg MPEG video
video/quicktime Apple QuickTime video
message/rfc822 Standard Internet message
application/msword Microsoft Word document
application/rtf Rich Text Format document

Note: application/octet-stream is used for any attachment of any undetermined
type. This is not recommended as no default viewers can be configured for this
catch-all type. A complete list of registered MIME types can be found in appendix
C.

The MimeDisposition field is an experimental field which is sometimes included
in MIME attachments. The two possible values of this field are:
‘attachment’: the attachment should be displayed as an attachment to
the message.
‘inline’: the attachment should be displayed at the same time as the
message. Since so few mail clients have the ability to display
attachments concurrently with the message text, this value is seldom
used.
The MimeDescription field contains the plain text description of the attachment.
For example, the MimeDescription field could contain ‘Sales chart by region for
May 1995'.
The Location field specifies where the attachment file is stored.

Before adding attachments to a message, you should call the ClearAttachments
method. Attachments are not cleared between messages and it is necessary to
call the ClearAttachments method prior to calling the AddAttachment method.

STARTECH INTERNET COMPONENTS 13

The following example shows the sending of the ‘config.sys’ and ‘autoexec.bat’
file along with the message text.

procedur e Forml. newMessage;

var

begi n

end;

att:

TSendMai | At t achnent ;

with SendMail 1 do

begi n

end;

SMIP_Server: = nai | . acme. coni;

SMIP_Port : =25;

From Nane: =" John Smith’;

From Address: =" j sm t h@cne. com ;

ToLi st. Add(‘ support @ crosoft. comj Product Support’);
Mai | Text. Add(‘ Here are the files you requested.’);
{Add attachment s}

d ear At t achment s;

att. Name: =" aut oexec. bat’;

att. Encodi ng: =neDef aul t ;

att. M meType: =" text/plain’;

att. M nmeDescri ption: = ny autoexec.bat file’;

att. M neDi sposi tion: =" attachment’;

att.Location: = c:\aut oexec. bat’;

AddAt t achment (att);

att. Name: =" co nfig.sys’;

att. M nmeDescription: = ny config.sys file’;

att. Location: =" c:\config.sys’;

{code to send nessage}

The Attachments property is included for compatibility with previous versions and
should not be used as it may removed in future versions.

STARTECH INTERNET COMPONENTS 14

Adding Custom Headers

Custom headers can be added to the message. Headers precede the message
body and provide such information as who sent the message or the message of
the subject.

Beceived: from uuneo. neosoft. com (mailbotFuuneo.neosoft com
[206.109_.1_3]1) by sam neozoft _com (8_7.1F8.7.1) with ESMTP id
TAR14392 for <startechiFzam neosoft_com>; Thu, T Dec 1995
21:06:492 -0600 (CST) Return Path

Beceived: (from mailbotElocalhost) by uwuneo . neosoft . com
(8_7.278_7.1) id VYARD1866 for <startechEneozoft_com>; Thu, 7 Dec
1995 21:06:4% -0600 (CS5T)

Received: from nic.scruz_net(165.227.1.2) by uuneo.neosoft. com
via smap (¥1.3) id sma001844; Thu Dec 7 21:06:20 1995
Mezszage-Td: <199512080306 TARAZ22233Rscruz._net’ Message ID

Date: Thu, 07 Dec 95 20:08:47 0000 [Date

From: Joe Smith <jsmithEscruznet . com: Sender
X-Mailer: Mozilla 1.1N (Macintosh; I; PPC) Custom Header
MIME-Version: 1.0 MIME Header

To: startechEneozoft . com Recipient
Subject: test message Syhject _
Content-Transfer-Encoding: 7bhit MIME Header
Content-Type: textfplain; charset=us-ascii W|ME Header
X-UIDL: $183%2114.006 Custom Header

Blank line zeparating the headers from the body of the messzage
This is a test meszage.

Meszage Body

Johmn .

A sample Internet Message

The format of a custom header is as follows:

X-HeaderName: Custom Header goes here

For example, a common header is a header which indicates the priority of the
message. It consists of the caption ‘X-priority:’ followed by a number between 1
and 5, with 1 having the highest priority and 5 having the lowest priority. (Note
that the X-priority header has no effect on the way the message is sent, it is only
for the benefit of the receiving program, which might chose to do something with
the information). Another common custom header is the ‘X-Mailer’ header, which
is used to indicate which mailing program was used to send the message.

To add custom headers to a message, you will use the Headers property, which
is of type TStrings. The following example shows how to add the headers
discussed above to a message.

Example:

SendMai | 1. Headers. Add(‘ X-priority: 3');
SendMai | 1. Headers. Add(* X-Mailer: My Program Version 1.0');

STARTECH INTERNET COMPONENTS 15

Step 2: Sending the Message

We have now set all the necessary properties and are ready to send the
message. To send a message, you will set the Action property to the value
Send_Mail.

Example:
SendMai | 1. Acti on: =Send_Mai | ;

Once you set the Action property, the component will connect to the server and
will send the message. You will need to handle events if you want to receive
notification of the progress of the transaction.

Step 3: Monitoring the progress of the transaction

To monitor the progress of the transaction after setting the Action property, you
will need to handle the OnMailinfo event. The OnMaillnfo event is prototyped as
follows:

nMai | | nf o=pr ocedur e(Sender: Tobject; info: SendMil I nfo; addinfo:
string);

where Sender is the SendMail component which generated the notification, info
is the type of natification being sent and addinfo is a string which may contain
additional information, depending on the type of notification sent.

We will look at all the notifications sent, in the order in which they are likely to
appear.

Resolving the server name

If you specified a host name (rather than an address) in the SMTP_Server
property, you will receive an OnMailinfo event with an info value of
smResolvingAddress. Once the server name is resolved into an address, you will
receive an OnMailinfo event with an info value of smAddressResolved. The
addinfo parameter will contain the address of the mail server.

Establishing the Connection

When the connection is established, you will receive an OnMaillnfo event with an
info value of smServerConnected. The addinfo parameter will contain the
address of the server (for example, 198.64.6.34).

Processing recipients

When the SendMail component sends the recipients addresses to the server,
you will receive an OnMaillnfo event with an info value of smRecipient. The
addinfo parameter will contain the e-mail address currently being processed.

If the server rejects an address, you will get an OnMailinfo event with an info
value of smBadAddress. The addinfo parameter will contain the offending
address. This will only happen in the following instances:

If user jsmith on server acct.acme.com wishes to address a message to
user janedoe on the same server, he could address the mail as

STARTECH INTERNET COMPONENTS 16

‘janedoe@acct.acme.com’ or simply as ‘janedoe’. As long as user
janedoe has an account on server acct.acme.com , there will not be a
problem with the second form of the address (without the @server). If
user janedoe does not have an account on server acct.acme.com, you
will get a BadAddress error.

To avoid this error, you should always specify the address in the format
user@server and avoid using the shorter form consisting only of user.

Sending the message

The first notification you will receive when a message is sent is an OnMaillnfo
event with an info value of smMessageSize. The addinfo value contains the size
of the message in bytes. The smMessageSize notification is new in version 1.4
and later.

Once the component starts sending the message, you will receive an OnMailinfo
event with an info value of value of smSendingMessage. The addinfo value
contains the size of the message sent so far in bytes. This will repeat until the
entire message text has been sent. Note that in versions prior to 1.4, the addinfo
parameter for this notification contained the number of lines sent.

Processing attachments

If the message contains attachments, you will receive various notifications as the
attachments are being sent. For each attachment, you will first receive an
OnMaillnfo event with an info value of smAttachmentName. The addinfo
parameter will contain the filename of the attachment.

You will next get an OnMaillnfo event with an info value of smAttachmentSize.
The addinfo parameter will contain the size of the attachment in bytes. Then,
while the attachment is being sent, you will receive a series of OnMaillnfo events
with an info value of smAtttachmentBytes. The addinfo parameter will contain the
number of bytes sent so far.

If the attachment file could not be opened, you will get an OnMailinfo event with
an info value of smBadAttachment. The addinfo parameter will contain the name
of the offending attachment file. Note than unlike other errors, this error is not
fatal. The message will continue to be sent, except for the bad attachment.

The steps outlined above will be repeated for each of the message’s attachment.

Transaction completion

Once a message and any attachments included with the message have been
sent, you will get an OnMaillnfo event with an info value of smMessageAccepted,
which means that the message has been accepted by the SMTP server and will
be sent to the recipient(s). This will be followed by an OnMaillnfo event with an
info value of smServerDisconnected, which indicates that the component has
disconnected from the SMTP server.

Finally, you will receive an OnDone event, which indicates that the component is
ready for another transaction.

STARTECH INTERNET COMPONENTS 17

Summary of OnMaillnfo eveninfo values

smResolvingAddress

Connection Phase smAddressResolved
smServerConnected

Recipients Phase smRecipient (repeat for each recipient)
(smBadAddress)

Message Phase smMessageSize
smSendingMessage (repeated)
smAttachmentN‘WT

Attachment Phase smAttachmentSize (repeated for each
smAttachmentBytes ” attachment)
(smBadAttachment)
smMessageAccepted

Completion Phase smServerDisconnected

Other OnMaillnfo eventinfo values

Every time the component receives a line from the server or sends a line to the
server, you will receive an OnMailinfo event with an info value of smTraceln or
smTraceOut. When one of these notifications is received, the addinfo parameter
will contain the line received or sent. These notifications can be used for
debugging purposes, but should not be used normally as they will slow the
sending of mail.

If a transaction is already in progress when you set the Action property to
Send_Mail, you will receive an OnMailinfo event with an info value of
smAlreadyBusy.

Handling Errors

The OnMailError event is used to monitor various fatal errors that might occur
during a transaction. Note that non fatal errors that might occur during a
transaction are reported by the OnMailinfo event. (such as smAlreadyBusy,
smBadAddress or smBadAttachment).

After you receive an OnMailError event, the connection will be closed and you
will receive an OnDone event, indicating that the component is ready for another
transaction. The Error property will indicate what type of error occured.

The OnMailError event is prototyped as follows:

TSendMai | Er r or Event =pr ocedur e(Sender: TCbhj ect; error:
SendMai | Error; addinfo: string) of object;

where error is the error that was triggered. The following values of the error
parameter are possible:

smWwinsockNotlInitialized: The winsock interface could not be loaded. This
can be caused by the lack of a winsock.dll (wsock32.dll on a 32 bit system)
file, insufficient memory to load the winsock DLL, or lack of winsock
resources (all available sockets are being used by other programs).

STARTECH INTERNET COMPONENTS 18

smNetworkDown: The winsock interface has detected that the network is
down,

sminvalidAddress: The server name specified in SMTP_Server could not be
resolved into an address.

sminternalError: You should never get this error, which means that invalid
parameters were passed to the Winsock interface.

smGeneralWinsockError: This error indicates a general failure of the
Winsock interface.

smConnAborted: The connection was aborted due to a timeout or other
failure.

smConnReset: The remote server close the connection.

smConnectTimeOut: The timeout value specified in the TimeOutArp or
TimeOutConnect property has expired. (These properties are discussed in
the Advanced Topics section).

smOutofSockets: A socket could not be created, as the winsock
implementation has the maximum number of sockets open.

smNetworkUnreachable: The winsock interface has detected that the
network can’t be reached from this host at this time.

smAddressNotAvailable: The winsock interface has detected that the
address specified by the SMTP_Server property is not available from this
computer.

smConnectionRefused: The server specified by the SMTP_Server property
forcefully rejected the connection.

smProtocolError: An unexpected response was received from the server.
smCanceled: The user canceled the transaction.

smUnknown: An unknown error occurred. You should never receive this
error.

smAddressResolutionError: An error occurred while trying to resolve the
address specified in the SMTP_Server property.

smPrematureDisconnect: The component was disconnected from the server
before the transaction had completed.

smMailDestinationError: A destination was not specified for the message.

smHostUnreachable: The winsock interface has detected that the host is not
reachable at this time.

Checking for Transaction Success

Once you receive an OnDone event, you can check for the success of the
transaction using the Success property. If the value of the Success property is
True, the message was successfully sent. If the value of the Success property is
False, the message was not sent successfully and you can check the value of

STARTECH INTERNET COMPONENTS 19

the Error property to determine why the transaction failed. The Error property
can take on one of the following values:

smNone: no error occured.

smWinsockNotlnitialized: The winsock interface could not be loaded. This
can be caused by the lack of a winsock.dll (wsock32.dll on a 32 bit system)
file, insufficient memory to load the winsock DLL, or lack of winsock
resources (all available sockets are being used by other programs).

smNetworkDown: The winsock interface has detected that the network is
down,

sminvalidAddress: The server name specified in SMTP_Server could not be
resolved into an address.

sminternalError: You should never get this error, which means that invalid
parameters were passed to the Winsock interface.

smGeneralWinsockError: This error indicates a general failure of the
Winsock interface.

smConnAborted: The connection was aborted due to a timeout or other
failure.

smConnReset: The remote server close the connection.

smConnectTimeOut: The timeout value specified in the TimeOutArp or
TimeOutConnect property has expired. (These properties are discussed in
the Advanced Topics section).

smOutofSockets: A socket could not be created, as the winsock
implementation has the maximum number of sockets open.

smNetworkUnreachable: The winsock interface has detected that the
network can’t be reached from this host at this time.

smAddressNotAvailable: The winsock interface has detected that the
address specified by the SMTP_Server property is not available from this
computer.

smConnectionRefused: The server specified by the SMTP_Server property
forcefully rejected the connection.

smProtocolError: An unexpected response was received from the server.
smCanceled: The user canceled the transaction.

smUnknown: An unknown error occurred. You should never receive this
error.

smAddressResolutionError: An error occurred while trying to resolve the
address specified in the SMTP_Server property.

smPrematureDisconnect: The component was disconnected from the server
before the transaction had completed.

smMailDestinationError: A destination was not specified for the message.

STARTECH INTERNET COMPONENTS 20

smHostUnreachable: The winsock interface has detected that the host is not
reachable at this time.

Therefore, if you are not interested in the progress of the transaction, you can
simply wait for an OnDone event and then check the Success and Error
property to determine if the message was sent successfully.

Canceling the sending of mail

To cancel the sending of message in progress, set the Action property to
Cancel_SendMail. This will cause the connection with the server to be
immediately closed. You will receive an OnDone event and the Error property
will be set to the value smCanceled.

Advanced Topics

You now have all the information you need to make full use of the SendMail
component. The following sections explore the following advanced topics:

sending several messages in one transaction.
sending data in a stream.
checking for the availability of Winsock

specifying connect timeouts

Sending several messages

When sending several messages at one time, you will want to keep the
connection open until the last message is sent. This avoids the overhead of
having to connect and disconnect with every message. The
KeepConnectionOpen property, when set to True, keeps the component from
disconnecting from the server when a message is sent successfully. The
KeepConnectionOpen property should be set to False before the last message is
sent.

The other issue to consider when sending several messages at one time is the
timing involved in sending messages. The previous transaction must be
completely finished before the next message is sent. To ensure this, we use the
OnDone event to trigger the sending of messages. Each time the OnDone
notification is received, you will prepare and send the next message. This
process is best demonstrated with an example. The following example sends 10
messages to 10 different users (read in from a database from example). Note
that if you wanted to send the same message to 10 users, it is much more
efficient to send one message with the 10 recipients included in the ToList, ccList
or BceclList property. The technique described here is more useful for a form letter
type of e-mail, with the message body being customized with the name of the
recipient, or the product purchased, or some similar information.

The first step is to initialize some variables to keep track of how many messages
to send and the current message number.

procedure TForml. I nitializeMil;
begi n

STARTECH INTERNET COMPONENTS 21

MessagesToSend: =10;

MessagesSent : =0;

{add code to open database here}

{setup SendMail conponent with server info}

end;

We will come back to this procedure later. We then need a procedure which
prepares the next message to send.

Procedur e TFor L. Pr epar eNext Message;

begi n

I nc(MessagesSent) ;

{check to see if we need to keep the connection open}

i f MessagesSent =MessagesToSend t hen

SendMai | 1. KeepConnnect i onpen: =Fal se

el se SendMi | 1. KeepConnnect i onQpen: =Tr ue;

{setup address of next recipient}

{read next record}

{set up body text, recipient, etc.. in SendMail conponent}
end;

We then need to handle the OnDone event, as discussed above and send the
next message when this naotification is received.

Procedure Tforml. SendMai | 1Done(Sender: Tobj ect);
begi n

Pr epar eNext Message,;

SendMai | 1. Acti on: =Send_Mai | ;
end;

Finally, we add the following line to the InitializeMail procedure discussed earlier:

procedure TForml. I nitializeMil;

begi n

MessagesToSend: =10;

MessagesSent : =0;

{add code to open database here}

{setup SendMail conponent with server info}

{Send first nmessage}

SendMai | 1Done(sel f); {<<<<<Li ne added<<<<<<}
end;

The SendMailDialog component
<<<Note: this section to be completely rewritten>>

The SendMailDialog
Sending Mail component allows the

user to send malil,
_ | without worrying about
34580 3 asynchronous event
handling or status
display.

STARTECH INTERNET COMPONENTS 22

Before sending mail, several properties must be set. First, the properties of the
SMTP (Small Mail Transfer Protocol) server that will be used to send mail must
be set, using the SMTP_Server and SMTP_Port properties.

Next, the recipient of the e-mail message should be specified using the
TO_Name and TO_Address properties. You should also specify the name of the
sender, using the FROM_Name property, as well as the reply address, using the
FROM_Address property.

If you want your message to include a Subject: header, set the Subject property.
Additional headers can be specified using the Headers Property. If you want
copies of your message to be sent to more than one address, specify those
addresses using the ccList property.

Enter your mail message using the MailText property or use the OnFeedData
event if you wish to send a message with a size greater than 64K or lines longer
than 253 characters. If you want to send any attachments with your message,
using the Attachments property to specify the file names of these attachments.
The TimeOut property can be used to specify a timeout interval, after which the
transaction will be canceled.

To start the process of sending mail, call the Execute function. A window will
pop up showing the progress of the transaction. The function will return True if
the transaction succeeded, or false if the transaction failed., in which case the
Status property will contain the reason for the error.

The appearance of the dialog box can be edited at design time by double
clicking the component, which will bring up a component editor or can be set
using the Caption, Border, Color, Font, StatusBarColor, StatusBarBackground,
StatusBarHeight and StatusBarWidth properties. The position of the window can
be set using the Position, WindowTop and WindowLeft properties. You can
select which objects appear in the window by setting the Options property.
Finally, the text of the status messages can be set using the LanguageStrings

property.

The TAddressBook component

This section has yet to be written, the following list of public methods, properties
and events is included as minimal help:

type TAddr essBookEnt ry=record
Last Nane: string[40];
Fi rst Nane: string[40];
HoneMai | : string[60];
Vor kMai | string[60];
N cknane: string[20];
Qrgani zation: string[60];
end;

type TAddr essBookEnt ryPt r="TAddr essBookEntry;

type TAddr essBook=cl ass(TConponent)
public
property Items[num integer]: TAddressBookEntry read
GetEntry;
procedure AddeEntry(entry: TAddressBookEntry);
procedur e Del et eEntry(nunber: integer);

STARTECH INTERNET COMPONENTS 23

procedure ModifyEntry(nunber: integer; a:
TAddr essBookEnt ry) ;

function FindeEntry(firstname, | astnane, address: string):
i nt eger;
publ i shed

property Drectory: string read FD rectory wite
SetDirectory;

property NunmkEntries: integer read FNunEntries wite
FDumyl nt ;

property OnChange: TNotifyEvent read FOnChange wite
FOnChange;
end;

end;

The TAddressBookViewer component

ddress: rop@harlequin.co.uk

ame: Badami, ﬁ.:._u
rganization:
ickname:

ddress: sharker@ipralink.co.nz

Mame: Earker, Stephen
Organization:
Mickname:

This section has yet
to be written, the
following list of public
methods, properties
and events is
included as minimal
help.

Orgamzation:
ddress: fabriziob@tacacs centrohl it
Mickname:

Mame: Beidel, Tim
Organization:

Fame: B artalini, Fabrizio

ddress: theideli®@delarme. com
Mickname:

Fame: B erBrahim, Tomy
0

rganization:
1_:Idless: startechi@127.0.0.1 -'-I

type TAddr essBookVi ew=(abvConpact , abvExpanded) ;
type TAddr essBookVi ewer Sort =(absLast Nane, absFi r st Nane, absEMi |) ;
type TAddr essBookLi st =cl ass(TLi st box) ;

type TAddr essBookVi ewer = cl ass(TCQust onControl)

public

property Item ndex: integer read Cetl ndex;

procedur e Updat e;
publ i shed

property Sel ectedTab: integer read TabSel ected wite
TabChanged;

property View TAddressBookView read FView wite SetView,

property AddressBook: TAddressBook read Get AddressBook
wite SetAddressBook;

property Sort QO der: TAddressBookVi ewer Sort read FSort O der
wite SetSortOder;

property Font: TFont read FFont wite SetFont;

property Aign;

STARTECH INTERNET COMPONENTS 24

THE GETMAIL PACKAGE

The GetMail package contains several components and objects which greatly facilitate

the retrieval of mail from mail servers that use the Post Office Protocol Version 3, as
well as components to store, manage and display messages and their attachments.

Component Description

GetMall POP3 client component. retrieves mail from server

TUIDL Manager Assists in message retrieval for servers that do not support
the UIDL command.
Nmailbox Mailbox component, stores messages
TatttachmentManager Manages message attachments
TMailboxViewer Multi column display of messages received.
TMIMEManager Manages mime types and their viewer applications
GetMailDialog Downloads and stores mail automatically

The GetMail Component

— The GetMail component is the basic component used for retrieving mail.
The general operation of the component is as follows:
Set properties prior to initiating transfer which give the component necessary
information, such as the server to retrieve mail from.
Issue a command to initiate the transfer of mail.
Respond to events to assist the GetMail component when it needs additional
information.

Step 1: Set Initial properties

Before initiating the transfer of mail, you must supply information to the GetMail
component to direct it on which server to transfer mail from and which account to
use. The following properties let you specify this information.

The Mail_Server property

The Mail_Server property is used to specify which server to connect to when
mail retrieval begins. To do this, you will assign a string containing either the
server's name or the server’s address to this property.

Example:

STARTECH INTERNET COMPONENTS 25

Get Mai | 1. Mai | _Server: = mail . acne. com ; {uses server nane}
or
Get Mai | 1. Mai | _Server: = 123.54.6. 78 ; {uses server address}

Should you use the server name or server address in this property? If you have
physical control of the mail server (i.e. you will know if its address changes),
using the server address in the Mail_Server property will save you the overhead
of name resolution every time you connect. Most of the time, however, you will
want to use the server name, as there is no guarantee that the server's address
will remain the same over time.

The Mail_Port property

The Mail_Port property is used to specify which port on the server to connect to.
This will almost always be port 25 for POP3 servers, unless the server
administrator has changed the default port assignment. The Mail_Port property
is of type word.

Example:
Get Mai | 1. Mai | _Port: =25;

The User_ID Property
The User_ID property is used to specify which user to check mail for. To do this,
assign a string containing the user ID to the User_ID property.

Example:
GetMail 1. User _ID="jsmth’;

The User_Password Property

The User_Password property is used to specify the password for the user
specified in the User_ID property. To do this, assign a string containing the
password to the User_Password property.

Example:
Get Mai | 1. User _Passwor d: = nysecret’;

Other Properties

The UIDLLIist and Opt_Preview properties are also set in step 1. This properties
are described later in this chapter.

Step 2: Initiating the Transfer of Mail

Once the properties described in step 1 have been set, you are ready to initiate
the transfer of mail. This is done by setting the Mail_Action property to Get_Mail.
The Mail_Action property accepts other values which are described later in this
chapter.

Example:
Get Mai | 1. Mai | _Action: =Get_Mai | ;

STARTECH INTERNET COMPONENTS 26

Once the Action property has been set, the GetMail component will attempt to
connect to the server and will log in to the server. The component will then
retrieve any messages waiting on the server, generating informational events
and requesting any needed additional information. Finally, when all tasks have
been completed, the component will disconnect from the server.

Step 3: Handling Events

As the component connects to the server, it generates several events. Events
are used to accomplish the following tasks:

provide information about the progress of the transaction.

notification of any error condition

request additional information from the user

inform the user that requested information is available

Notify the user that the transaction has completed and that the component is

ready for another transaction.

The OnMaillnfo Event

By the far the most frequently generated event is the OnMaillnfo event. This
event is used to provide notification of the progress of the transaction. The
prototype of the event is as follows:

procedure (Sender : TCbject; info: GetMillnfo; addinfo: string);

The Sender parameter indicates which GetMail component triggered the event.
The info parameter indicates what information is being conveyed and the addinfo
parameter provides any additional information that may be needed. Let's look at
the different values of info as they occur during the transaction.

Resolving the server name

If you specified a host name (rather than an address) in the Mail_Server
property, you will receive an OnMailinfo event with an info value of
gmResolvingAddress. Once the server name is resolved into an address, you will
receive an OnMaillnfo event with an info value of gmAddressResolved. The
addinfo parameter will contain the address of the mail server.

Establishing the Connection

When the connection is established, you will receive an OnMaillnfo event with an
info value of gmServerConnected. The addinfo parameter will contain the
address of the server (for example, 198.64.6.34).

The Authorization phase

Once connected to a server, the component enters the authorization phase. You
will get an OnMaillnfo event with an info value of gmLogin, which means the
authorization phase is beginning. Once an OnMailinfo event with an info value of

STARTECH INTERNET COMPONENTS 27

gmLogin is received, you will receive another OnMaillnfo event with an info value
of gmAccessGranted, which means access was granted to the mail server.

The Listing phase

Once connected and authorized, the component will get a listing of the user’s
messages from the server. You will receive the OnMailinfo event with the
following info values:

- gmUIDLList: the server is about to obtain a listing of messages on the server.
gmNumberMessage: you will receive this message when the component
determines the number of messages on the server. The addinfo parameter
will contain the number of messages on the server waiting to be downloaded.

The Retrieval phase

The component is now ready to download any messages on the server. You will

first receive some OnMaillnfo events with the following info values:
gmMessageSize: you will receive this event before every new message. The
size of the message in bytes will be in the addinfo parameter.
gmGettingMessage: as the message gets downloaded, you will receive this
event. The number of bytes downloaded so far can be found in the addinfo
parameter.

The OnMessage Loaded Event

Once the message has been completely downloaded, you will receive an
OnMessagelLoaded event. Once this message is received, you can use several
properties to retrieve various headers and the text of the message. The
prototype of the OnMessagelLoaded event is as follows:

procedure (Sender: TObject);
where Sender indicates which GetMail component triggered the event.
The following properties can then be used to retrieve headers and the text of the
message:

The Msg_From property

The Msg_From property will contain the sender of the message. There are three
common formats for specifying E-Mail addresses, which are outlined in the
Format of Internet E-Mail addresses inset.

The Msg_To property

The Msg_To property will contain the intended recipient of the message. There
are three common formats for specifying E-Mail addresses, which are outlined in
the Format of Internet E-Mail addresses inset.

STARTECH INTERNET COMPONENTS 28

Format of Internet E-Mail addresses
There are three widely used formats to express Internet E-Mail addresses:

E-Mail Address only: only the recipient or sender’'s e-mail address is given.
For example: jsmi t h@obox. com

E-Mail Address followed by name: the recipient or sender’s e-mail address is
given, followed by their name in parentheses.
For example: jsm t h@obox. com (John Snit h)

Name followed by e-mail address: the recipient or sender’'s name is given,
followed by the address, followed by the address in between angle brackets.
Sometimes the name is double quoted.

For example: John Smith <jsnith@obox. com>
“John Smth” <jsmth@obox.con>

The Msg_Size property

The Msg_Size property contains the size of the message in bytes.

The Msg_Date property

The Msg_Date property contains the date the message was sent, usually in
Internet date format. The general format of an Internet date is as follows:

3 letter day of week abbreviation, followed by a comma and a space (Mon, Tue,
Wed, Thu, Fri, Sat, Sun)

day of the month followed by a space

3 letter month abbreviation , followed by a space (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec)

the year (four digits i.e. 1996 not 96) followed by a space

the local time in hh:mm:ss format, followed by a space

the difference from GMT time zone followed by a space. For example EST is -5,
CST is -6.

For example, a message sent at 1:23 p.m. from the Pacific Standard Time zone

on January 15th, 1996 would be formatted as follows:
Mon, 15 Jan 1996 13:23: 10 (-0800)

The Msg_Subject property

The Msg_Subject property contains the subject of the message.

The Msg_UIDL property

The Msg_UIDL property contains the content of the X-UIDL header field. A
message UIDL's is a field that uniquely identifies a message on a POP3 servers.
UIDL'’s are guaranteed to stay constant across sessions and to be unique for the
lifetime of the user’'s account. For example, if you retrieve a message with a
UIDL of ‘46828291.002’, you will never receive a message with the same UIDL
for that user’'s account. Additionally, if you leave the message on the server
(explained later in the Message Management section), the message will have
the same UIDL as it had the first time. A message’s UIL is generated by the

STARTECH INTERNET COMPONENTS 29

POP3 server when it receives a message. Not all POP3 servers generate a
message UIDL.

The Msg_ID property

The Msg_ID property contains the content of the message ID header field. The
message ID is similar to the message UIDL, in respect to uniqueness, but it is
generated by the mailing agent rather than by the receiving agent. All messages
will have a message ID.

The Mail_Text property

The Mail_Text property (type Tstrings) contains the headers and the text of the
message. The inset below shows a sample Internet mail message. Note that the
headers and the body of the message are separated by a blank line. There is no
limit on the size of the Mail_Text property. For this reason, caution should be
used if displaying the message in a standard Tmemo or other standard
Windows component limited to less than 32K of text. The TStringsViewer
discussed later in this chapter, can be used to display Tstrings of any size.

Q : How do | remove the headers from the message?
The following routine can be used to remove headers from the message and
leave only the message text:

procedur e RenmoveHeader s(var Message: Tstrings);
begi n
whi | e (Message. Count >1) and (Message[0] <>'") do
Message. Del et e(0);
Message. Del et e(0);
end;

STARTECH INTERNET COMPONENTS 30

Received: from uuneo.neosoft. com (mailbotFuuneo neosoft com
[206_109_1_3]) by sam neosoft com (8.7 .1F8_7. 1) with ESMTP id
TAR14392? for <startechFzam neosoft_ com>; Thu, 7 Dec 1935
21:06:49 -0600 (CST) Return Path

Received: (from mailbotElocalhost) by uwuneo. neosoft . com
(8.7.3F78.7.1) id VAAD1866 for <startech@neosoft_com>;: Thu, 7 Dec
19295 21:06:48% -0600 (CS5T)

Received: from nic.zcruz.net(165.227.1.2) by uwuneo.neosoft . com
wvia smap (V1.3) id sma001844; Thu Dec 7 21:06:20 1995
Message-Td: <199512080306 TARZ2Z2233E=cruz . net’- Message ID

Date: Thu, 07 Dec 95 20:08:47 0000 [Date

From: Joe Smith <jsmithEscruznet . com: Sender
X-Mailer: Mozilla 1.1N (Macintosh; I; PPC) Custom Header
MIME-Version: 1.0 MIME Header

To: startechEFneosoft . com R ecipient
Subject: test messzage §yhject _
Content-Transfer-Encoding: Thit MIME Header
Content-Type: textfplain; charset=us-ascii B|ME Header
X-UVIDL: $1%3%2114.006 Custom Header

Blank line separating the headers from the body of the message
This is a tezst me=zsage.

Meszage Body

John .

A sample Internet Message

Q : How can | easily extract other custom headers from the Mail_Text property?
The GetMail component provides a method called ExtractHeader to facilitate the
extraction of a header field. The prototype of the ExtractHeader function is:
function GetMail.ExtractHeader(line: string; header: string; var stringvar:
string):Boolean;

where line is a line from the header section of the message, header is the
header to look for, including terminating colon and space, and stringvar returns
the value of the header field. The function returns true if the header was found
and false otherwise. The following routine can be used to search a message for
a specific header. It takes the message and the header to be searched for and
returns the header field if found or an empty string if not found.

function Fi ndHeader (Message: Tstrings; header: string): string;

var
i: integer;
s: string;
begi n
i:=0;
s:=",
whi | e (Message. Count>i) and (Message[i]<>'') and
not Extract Header (Message[i], header,s) do Inc(i);
Resul t : =s;
end;

For example calling Fi ndHeader (Get Mai | 1. Mai | _Text,’ X-Mailer: “);

STARTECH INTERNET COMPONENTS 31

with the message shown in the inset in the preceding page would return the
string ‘Mbzilla 1. 1N (Macintosh ; |; PPQ

The events described in the “The Retrieval Phase” section will be repeated until
all messages have been downloaded.

The Disconnection phase

Once all messages have been downloaded, the component will disconnect from
the server. You will get the OnMailinfo event an info parameter value of
gmServerDisconnected, which means the component is about to disconnect
from the server. Once the server has been disconnected from the server, you will
receive an OnDone event, which means that the component has disconnected
from the server and is now available for another transaction.

The following chart summarizes the events that one could receive during a
normal transaction.

Connection Phase gmResolvingAddress ,
gmAddressResolved
gmServerConnected
gmLogin

Authorization Phase gmAccessGranted

Listing Phase gmUIDLList
gmNumberMessage
gmMessageSize «

Retrieval Phase gmGettingMessage
OnMessagel oaded

Disconnection Phase gmServerDisconnected
OnDone «

Other OnMaillnfo eventinfo values

Every time the component receives a line from the server or sends a line to the
server, you will receive an OnMailinfo event with an info value of gmTraceln or
gmTraceOut. When one of these notifications is received, the addinfo parameter
will contain the line received or sent. These notifications can be used for
debugging purposes, but should not be used normally as they will slow the
sending of mail.

If a transaction is already in progress when you set the Mail_Action property to
Get_Mail, you will receive an OnMailinfo event with an info value of
gmAlreadyBusy.

Handling Errors

The OnMailError event is used to monitor various fatal errors that might occur
during a transaction. Note that non fatal errors that might occur during a
transaction are reported by the OnMaillnfo event. (such as gmAlreadyBusy)

STARTECH INTERNET COMPONENTS 32

After you receive an OnMailError event, the connection will be closed and you
will receive an OnDone event, indicating that the component is ready for another
transaction. The Error property will indicate what type of error occured.

The OnMailError event is prototyped as follows:

TSendMai | Er r or Event =pr ocedur e(Sender: TCbj ect; error:
Get Mai | Error; addinfo: string) of object;

where error is the error that was triggered. The following values of the error
parameter are possible:

gmWinsockNotlInitialized: The winsock interface could not be loaded. This
can be caused by the lack of a winsock.dll (wsock32.dll on a 32 bit system)
file, insufficient memory to load the winsock DLL, or lack of winsock
resources (all available sockets are being used by other programs).

gmNetworkDown: The winsock interface has detected that the network is
down,

gminvalidAddress: The server name specified in SMTP_Server could not be
resolved into an address.

gminternalError: You should never get this error, which means that invalid
parameters were passed to the Winsock interface.

gmGeneralWinsockError: This error indicates a general failure of the
Winsock interface.

gmConnAborted: The connection was aborted due to a timeout or other
failure.

gmConnReset: The remote server close the connection.

gmConnectTimeOut: The timeout value specified in the TimeOutArp or
TimeOutConnect property has expired. (These properties are discussed in
the Advanced Topics section).

gmOutofSockets: A socket could not be created, as the winsock
implementation has the maximum number of sockets open.

gmNetworkUnreachable: The winsock interface has detected that the
network can't be reached from this host at this time.

gmAddressNotAvailable: The winsock interface has detected that the
address specified by the SMTP_Server property is not available from this
computer.

gmConnectionRefused: The server specified by the SMTP_Server property
forcefully rejected the connection.

gmProtocolError: An unexpected response was received from the server.
gmCanceled: The user canceled the transaction.

gmUnknown: An unknown error occurred. You should never receive this
error.

gmAddressResolutionError: An error occurred while trying to resolve the
address specified in the SMTP_Server property.

STARTECH INTERNET COMPONENTS 33

gmPrematureDisconnect: The component was disconnected from the server
before the transaction had completed.

gmHostUnreachable: The winsock interface has detected that the host is not
reachable at this time.

gmAccessDenied: The password or user ID supplied in the User_Password
or User_ID property are not valid, or the mailbox was locked (this happens
when a process attempts to access an account while another process is
already accessing an account.

Checking for Transaction Success

Once you receive an OnDone event, you can check for the success of the
transaction using the Success property. If the value of the Success property is
True, the message was successfully sent. If the value of the Success property is
False, the message was not sent successfully and you can check the value of
the Error property to determine why the transaction failed. The Error property
can take on one of the following values:

gmNone: no error occured.

gmWinsockNotlInitialized: The winsock interface could not be loaded. This
can be caused by the lack of a winsock.dll (wsock32.dll on a 32 bit system)
file, insufficient memory to load the winsock DLL, or lack of winsock
resources (all available sockets are being used by other programs).

gmNetworkDown: The winsock interface has detected that the network is
down,

gminvalidAddress: The server name specified in SMTP_Server could not be
resolved into an address.

gminternalError: You should never get this error, which means that invalid
parameters were passed to the Winsock interface.

gmGeneralWinsockError: This error indicates a general failure of the
Winsock interface.

gmConnAborted: The connection was aborted due to a timeout or other
failure.

gmConnReset: The remote server close the connection.

gmConnectTimeOut: The timeout value specified in the TimeOutArp or
TimeOutConnect property has expired. (These properties are discussed in
the Advanced Topics section).

gmOutofSockets: A socket could not be created, as the winsock
implementation has the maximum number of sockets open.

gmNetworkUnreachable: The winsock interface has detected that the
network can’t be reached from this host at this time.

gmAddressNotAvailable: The winsock interface has detected that the
address specified by the SMTP_Server property is not available from this
computer.

STARTECH INTERNET COMPONENTS 34

gmConnectionRefused: The server specified by the SMTP_Server property
forcefully rejected the connection.

gmProtocolError: An unexpected response was received from the server.
gmCanceled: The user canceled the transaction.

gmUnknown: An unknown error occurred. You should never receive this
error.

gmAddressResolutionError: An error occurred while trying to resolve the
address specified in the SMTP_Server property.

gmPrematureDisconnect: The component was disconnected from the server
before the transaction had completed.

gmHostUnreachable: The winsock interface has detected that the host is not
reachable at this time.

gmAccessDenied: The password or user ID supplied in the User_Password
or User_ID property are not valid, or the mailbox was locked (this happens
when a process attempts to access an account while another process is
already accessing an account.

Therefore, if you are not interested in the progress of the transaction, you can
simply wait for an OnDone event and then check the Success and Error
property to determine if the message was sent successfully.

Handling OnMaillnfo events

While it is not necessary to handle any of the OnMaillnfo events, you will usually
want to handle most or all of them to give the user notification of the progress of
the transaction. A case statement is usually best suited to handle the OnMailinfo
, as this partial example code from the StarMail sample program demonstrates.

procedure TGet Mail Form Get Mai | 1Mai | I nfo(Sender: TChject; info:
Get Mai | I nfo; addinfo: String);
begi n

case info of

gnResol vi ngAddress: Status.Capti on: = Resol ving ‘ +addi nf o;

gnAddr essResol ved: Status. Caption: = Connecti ng to' +addi nf o;

gnBer ver Connect ed: Stat us. Caption: = Connected to ' +addi nf o;

gnBer ver D sconnect ed: Status. Caption: =" D sconnected';

gnmAccess@ anted: Status. Caption: = Logged in to server."';

gn DLLi st: Status.Caption: = Getting nessage list';

gm\unber Message: MessagesLeft. Caption: =" Messages left: '+
addi nf o;

gniogi n: Status. Caption: = Logging in';

rest of code del et ed

}

end;

end;

STARTECH INTERNET COMPONENTS 35

Message Attachments

Most messages will consist of plain text. However it is possible for one or several
files to be attached to the message. The standard manner of sending binary files
with a message (these files are referred to as attachments) is by using MIME
(Multimedia Internet Mail Extensions). MIME provides the following facilities:
- the ability to encode binary files in a 7-bit format suitable for passage through
various gateways on the Internet which might only support 7-bit text.
the ability to package several attachments into one contiguous message, and
to demarcate the boundary between attachments.
the ability to provide additional information about the attachment, such as the
type of information it contains (known as the MIME type) or the description of
the content, for example.

How the GetMail Component Handles Attachments

The GetMail component greatly simplifies the handling of attachments. When a
message attachment is encountered within a message, the GetMail components
triggers an event to request the location to store the attachment. The GetMail
component then converts the attachment from its MIME encoding back to its
original format. Once the attachment has been completely decoded and stored,
the GetMail component triggers an event to inform the user that the attachment
has been stored.

The TMIMEAttachment record type

The TMIMEAttachment record type is used to transfer information about an
attachment between the component and the wuser program. The
TMimeAttachment record type is prototyped as follows:

type TM MEAtt achnent=reco rd
Nane: string[255];
M neType: string[80];
D sposition: string[30];
Description: string[255];
Si ze: Longlnt;
ContentI D string[40];
Locati on: string[255];
St ored: Bool ean;

end;

The TMIMEAttachment record contains the following fields:

The Name field is used to hold the name of the attachment. Note that the name
of an attachment is not necessarily the original filename of the attachment.
Additionally, note that the name of an attachment does not have to conform to
DOS 8.3 filename length convention. For example, ‘May1995SalesChart.gif’
could very well be the name of an attachment originating from a machine running
an OS with less stringent naming restrictions.

The MimeType field is used to hold the type of the attachment. A MIME type
consists of two parts, the major type and the subtype, separated by a slash. For
example, ‘image/gif has a major type of ‘image’ and a subtype of ‘gif’ and
describe files containing images in CompuServe’s Graphic Interchange Format.
There are six major types which are defined in the MIME standard:

STARTECH INTERNET COMPONENTS 36

audio: files containing digitized audio.
image: files containing images
message: files containing a message or a collection of messages
text: files containing text
video: files containing digital video
application: used for applications, also a catch all type for any type that
does not fit in other types.
The Inset box below list common MIME types. Additionally custom subtypes can
be created by prepending an ‘X’ followed by a dash to the subtype. For example,
there is no standard MIME type for Microsoft bitmaps. However, it is common to
see them described with a MIME type of ‘image/X-bmp’ or ‘image/X-bitmap’.
The Disposition field is an experimental field which is sometimes included in
MIME attachments. The two possible values of this field are:
‘attachment’: the attachment should be displayed as an attachment to
the message.
‘inline’; the attachment should be displayed at the same time as the
message. Since so few mail clients have the ability to display
attachments concurrently with the message text, this value is seldom
used.
The Description field contains the plain text description of the attachment. For
example, the Description field could contain ‘Sales chart by region for May 1995'.
The Size field is filled in by the GetMail component with the size of the message
in bytes once the entire message has been downloaded
The ContentlD field contains a unique ID for the attachment, which is generated
by the mailing agent. It is similar to a Message ID, except that it applies to an
attachment.
The Location field is used to specify the location where the attachment should
be stored.
The Stored field is used by the TAttachmentManager component and is of no
interest as far as the GetMail component is concerned.

How Attachments fit in the flow of events

Attachments are processed during the Retrieval phase. Previously, we saw that
the following notifications were received during the Retrieval phase:

Common Mime Types

text/plain plain text

image/qgif CompusServe GIF image
image/jpeg JPEG image

audio/basic AU audio file

video/mpeg MPEG video
video/quicktime Apple QuickTime video
message/rfc822 Standard Internet message
application/msword Microsoft Word document
application/rtf Rich Text Format document

Note: application/octet-stream is used for any attachment of any undetermined
type. This is not recommended as no default viewers can be configured for this
catch-all type. A complete list of registered MIME types can be found in appendix
C.

STARTECH INTERNET COMPONENTS 37

gmMessageSize
Retrieval Phase gmGettingMessage repeated for each
OnMessagel oaded message

When attachments are part of a message, the following notifications will be

received:
gmMessageSize

Retrieval Phase gmGettingMessage
OnAttachmentGetLocation :I repeated for
OnAttachmentStored each attachment
OnMessagelLoaded

The OnAttachmentGetLocation event

The OnAttachmentGetLocation event is generated when the component has
detected that an attachment follows. The prototype for this event is:

procedure(Sender: TObject; Attachment: TMIMEAttachmentPtr);

where Sender is the GetMail component which triggered the event and
Attachment is a pointer to an aforementioned record of type TMimeAttachment.
When this event is received, the Name, Description, MimeType, Disposition
and ContentID fields are filled in. When processing this event, the user is
expected to fill in the Location field of the record with the desired location where
the file should be stored.

The following example shows an event handler for the
OnAttachmentGetLocation event where the user is prompted for a location to
store the attachment:

procedur e Forml. Get Mai | 1At t achnent Get Locat i on(Sender : T(hj ect ;
Attachnent: TM MEAtt achnent);

var
d: TSaveD al og;
begi n
try
d: =TSaveDi al og. Oreat e(sel f);
d. Title: =" Save attachnent ‘+Attachnent”. Nane;
if d.Execute then Attachnent”. Location: =d. Fi | enane
el se Attachnent”. Location: = c:\junk’;
finally
d. Free;
end;
end;

The TNMailbox and TAttachmentManager components, described later in this
chapter, provide a way to associate each attachment with a message and relieve
the user from the chore of specifying a location for each attachment.

STARTECH INTERNET COMPONENTS 38

The OnAttachmentStored event

The OnAttachmentStored event occurs after an attachment has been
completely decoded and stored. The prototype for the OnAttachmentStored
eventis:

procedure (Sender: Tobject; Attachment: TM MEAttachnent);

where Sender is the GetMail component which triggered the event and
Attachment is a pointer to an aforementioned record of type TMimeAttachment.
When this event is received, the attachment record will be filled in completely,
including the size of the attachment. This event is of most use when use with the
TAttachmentManager component, discussed later in this chapter.

Message Management

The mail retrieval procedure we have discussed so far do not mention what
happens to the messages once they are retrieved. If they are not deleted from
the server, the messages will remain on the server and will be downloaded again
the next time mail is retrieved. Most of the time, we will want to remove a
message from the server after if has been downloaded to the our computer.
However, they are some cases when we will want to leave messages on the
server until some later time. Consider the following example. You want to check
your mail at work to see if any important messages have come in. However, you
want to wait until you get home to download the messages to your machine,
rather than downloading them to your office computer. There are several
strategies that we will look at to handle all these possibilities.

Deleting Messages from the Server

The Opt_Delete property is used to specify whether a downloaded message
should be kept on the server or deleted. You should set this property when you
get an OnMessagelLoaded event. Note that this property is set to False every
time the OnMessagelLoaded event is triggered. Therefore you must set this
property to True inside the OnMessagelLoaded event handler if you want a
message to be deleted.

Example:
procedur e Forml. Get Mai | 1MessagelLoaded(Sender: Tobj ect);
begi n
{
sorre code to store the Message
b
Get Mai | 1. Qpt _Del et e: =Tr ue; {del ete nmessages from
server}

end;

STARTECH INTERNET COMPONENTS 39

Leaving Messages on the Server

The GetMail component supports leaving mail on the server. Additionally, the
GetMail component can automatically skip messages that have already been
downloaded, either by itself or with the help of the TUIDLManager component.

It is easy to leave mail on the server. You simply set the Opt_Delete property to
False inside the OnMessagelLoaded event handler. The difficulty comes in
determining which messages have been downloaded on the next transaction so
that the same messages are not downloaded over and over. To further
complicate matters, the UIDL command, which lists messages on the server and
helps the component determine what new messages to download, is not
supported on all POP3 servers.

The first step therefore, is to find out whether the UIDL command is supported
on the target server. When the component determines whether the UIDL
command is supported or not, it triggers an OnMaillnfo event with an info value
of gmUIDLSupport . This is done during the list phase, right after the
OnMaillnfo event with an info value of gmUIDLList.

Authorization Phase

gmUIDLList
Listing Phase gmUIDLSupport
gmNumberMessage

Retrieval Phase

When you receive an OnMailinfo event with an info value of gmUIDLSupport ,
the addinfo will contain the string ‘1’ or ‘0’, with ‘1’ meaning the UIDL command is
supported and ‘0’ meaning the command is not supported.
The UIDL command on a POP3 server retrieves a list of messages on the
server, along with their UIDL. As mentioned previously, an UIDL is a string that
uniquely identifies a message on a POP3 servers and that is guaranteed to stay
constant across sessions and to be unique for the lifetime of the user’s account.
A UIDL listing might look like the following:

1 238765409.001

2 238765409.002

3 238765409.014

4 238765409.028
If the UIDL command is supported by the server that the GetMail is connecting
to, the component will able to use the previous listing to determine if there are
any new messages to download and which messages to download. For example,
given the previous listing above, if the component gets this listing the next time it
gets mail:

1 238765409.001

2 238765409.002

3 238765409.014

4 238765409.028

5240876537.003
the component will automatically skip messages 1 through 4 and only download
message 5.

STARTECH INTERNET COMPONENTS 40

The UIDLList property

The UIDLLIist property is used to tell the component which messages have been
previously downloaded. At the end of the transaction, the UIDLList property will
contain an updated listing of messages on the server. The UIDLList property is
of type Tstrings, so we can use the LoadFromFile and SaveToFile methods to
load and save the UIDL listing between transactions.
The following example illustrates the use of the UIDLList property. Before
initiating the checking of mail, we will load the GetMail UIDLList property from a
file.
Example:

{deternine application directory}

AppDi rectory: =Ext ract Fi | ePat h(Appl i cati on. ExeNane) ;

{load UDL file into U DL property}

try

Get Mai | 1. LoadFronti | e(AppDirectory+ uidllist’);
except

end;
Get Mai | 1. Action: =Get_Mai | ;

When we get an OnDone event, we write the content of the UIDLList property
back to the file we read it from.

Example:

procedure Forml. Get Mai | 1Done(Sender: TChj ect);
var

AppDi rectory: string;
begi n

case info of

gnAvai | abl e:

begi n

{determ ne application directory}
AppDirectory := ExtractFil ePat h(
Appl i cation. ExeNane);

{load U DL file into U DL property}

try
Get Mui | 1. SaveToFi | e(AppDirectory +
"uidllist”);
except
end;
end;
{*x*****xx*x rast of code del eted *******xx 1}
end;
end;
end;

This simple method of keeping track of already retrieved messages should work
on most POP3 server. However, there are some older POP3 servers which do
not support the UIDL command. An alternate, albeit slower and less efficient,
method has been devised to handle servers which do not support the UIDL
command. Before we examine this method, we must first learn about previewing
messages on the server.

STARTECH INTERNET COMPONENTS 41

Message Preview

The GetMail component supports the ability to preview the headers of the
messages, allowing the user to examine the headers and to decide whether to
download or skip the message. The Opt_Preview and Opt_Skip properties and
OnHeadersLoaded event are used for message preview. If the Opt_Preview
property is set to True before starting the transfer of mail, the component will
only download a message’s header and trigger an OnHeadersLoaded event.
The component will then examine the Opt_Skip property to determine what it
should do with the message. If Opt_Skip is set to True, the component will not
download the message and will move on the next message. If Opt_Skip is set to
False , the component will download the message. Message preview alters the
Retrieval Phase as follows:

Listing Phase

gmMessageSize
OnHeadersLoaded Ty

Retrieval Phase gmMessageSize B
gmGettingMessage repeated for each
OnMessageloaded™ message

Disconnection Phase

The following code snippet shows how to download only messages containing
the word ‘order’ in the subject:

procedur e Forml. CheckMai |l Bt nA i ck(Sender: Tobj ect);
begi n
{initialization code}

{checki ng mail}

Get Mai | 1. Qpt _ Previ ew =Tr ue;

Get Mai | 1. Action: =Get_Mai | ;
end;

procedur e Forml. Get Mai | 1Header sLoaded(Sender: Tobj ect);
begi n
i f Pos(‘order’, Lowercase(Get Mail 1. Msg_Subject))>0 then
Get Mai | 1. Qpt _Ski p: =Fal se
el se Get Mai | 1. Qot _Ski p: =Tr ue;

note: this could have been coded:

Get Mai | 1. Opt _Ski p: =(Pos(‘ order’, Lower case(Get Mai | 1. Msg_Subj e
ct))=0);

}

end;

Keeping track of already retrieved messages without UIDL support

As mentioned previously, every Internet message has a Message-Id field which
uniquely identifies the message. We can use the Msg_ID property in conjunction
with the message preview feature to keep track of previously retrieved
messages. The TUIDLManager object will also be used to keep track of
previously retrieved messages and to help the GetMail component determine
which messages should be downloaded and which messages should be skipped.

STARTECH INTERNET COMPONENTS 42

The TUIDLManagerObject

The TUIDLManager object keeps track of previously loaded messages. To use
this object involves the following steps:

Create the object.

Query the object when the OnHeadersLoaded event is received.

Destroy the object when the transaction is finished.

Creating the TUIDLManager object

The prototype for the TUIDLManager object’s constructor is:

constructor Create(filename: string);
where filename is the name of a file used to store message IDs. The best time
to create the TUIDLManager object is when an OnMaillnfo event is received
with an info value of gmUIDLSupport and an addinfo value of ‘0’, which means
the UIDL command is not supported. The following code shippet shows how one
might create the TUIDLManager object:

type Forml=cl ass(TForm

private
U DLMyr: TU DLManager ;
U DLSupported: Bool ean;
end;

i npl enent ati on

pr ocedur e For ml. Get Mai | 1Mai | | nf o(Sender : Thj ect ; i nfo:
TCGet Mai | | nfo; addi nfo: string);
var
AppDir: string;
begi n
case info of
gl DLSupport :
begi n
U DLSupport ed: =(addi nfo="1");
if not U DLSupported then
begi n
AppDi r: =Extract Fi | ePat h(Appl i cati on. ExeNane) ;
U DLMyr: =TU DLManager . O eat e(AppDi r +" ui dl | ist’);
Get Mai | 1. Qpt _Previ ew =Tr ue;
end;
end;
end;
end;

Note that we also set the Opt_Preview property to True after we create the
TUIDLManager object.

Querying the TUIDLManager object

When we receive the OnHeadersLoaded event, we query the
TUIDLManagerObject using the ProcessMessagelD method. The prototype for
the ProcessMessagelD method is:

STARTECH INTERNET COMPONENTS 43

function ProcessMessagel D(id: string): Bool ean;

where id is the message ID. This function returns True if the message with
message ID “id” needs to be downloaded and False if the message has already
been retrieved. The following code shows how to handle the OnHeadersLoaded
event:

procedur e Forml. Get Mai | 1Header sLoaded(Sender: Tobj ect);
begi n

ot _Ski p: =not U DLMyr . ProcessMessagel D(Get Mai | 1. Msg_I D) ;
end;

Destroying the TUIDLManager object

Once the transaction has completed, you must destroy the TUIDLManager
object, so that the new list of message IDs can be saved back to disk. The
following code snippet shows how this done:

pr ocedur e For ml. Get Mai | 1Mai | | nf o(Sender : Thj ect; i nfo:
TCet Mai | I nfo; addi nfo: string);
begi n
case info of
gnmAVai | abl e:
begi n
if not U DLSupported then U DLMyr. Destroy;
end; o
end;

end;

However, if we encounter an error before the transaction completes, we will
usually not want to store a partial message list. The Error method of the
TUIDLManager object is used to flag any errors. When this method is called, it
signals the TUIDLManager object that an error has occurred so that when the
object it destroyed, the old message list will not be overwritten. The following
code snippet shows examples of when you would call the Error method:

pr ocedur e For ml. Get Mai | 1Mai | | nf o(Sender : Thj ect; i nfo:
TCGet Mai | I nfo; addi nfo: string);
begi n
case info of
gnReadError:
begi n
if not U DLSupported then U DLMyr. Error;
end;
gnWiteError:
begi n
if not U DLSupported then U DLMyr. Error;
end;
gnPr emat ur eD sconnect :
begi n

if not U DLSupported then U DLMyr. Error;

STARTECH INTERNET COMPONENTS 44

end;
end:;
end;

Managing Retrieved Mail

Now that we know how to retrieve mail from a POP3 server, let's look at how to

store and display messages and their attachments. We can use the TNMailbox
component to store messages and the TAttachmentManager to manage
attachments. We will first look at the TNMailBox component.

STARTECH INTERNET COMPONENTS 45

The TNMailbox Component

Fyt] The TNMailbox component is used to store messages as they are
- downloaded from the mail server. The user can configure several
mailboxes to hold messages and can transfer messages between messages.
Typically, a mail program will have three standard mailboxes:

IN mailbox: used to receive incoming messages.
OUT mailbox: used to store sent messages.

TRASH mailbox: used to store deleted messages. Usually, all messages in
this mailbox will be deleted when the program terminates.

Additionally, the user should be able to create mailboxes to sort incoming
messages. For example, a user might create a mailbox named ‘Letters from
Judy’ and another mailbox named ‘Project X Files'.

Initializing the TNMailbox component

Before we can work with the TNMailbox component, we must initialize some
properties to let the component know in which directory to create the mailbox
files and which mailbox files to use.

The Mailboxes property

The Mailboxes property is used to specify the name of mailboxes and files. This
property should only be set first, before setting the MailboxDirectory property.
The Mailboxes property is of type Tstrings and should contain strings containing
the filename for the mailbox (without an extension), followed by a an equal sign
character ('="), followed by the name of the mailbox.

The following shows what strings might be found in the Mailboxes property:

‘i n=Messages Recei ved’

‘ out =Messages Recei ved’
‘trash=Trash Basket’
“judy=Letters from Judy’
“xfiles=Project X

For each entry in the Mailboxes property, the component creates *.mbx and
*.idx files in the mailbox directory, if the files do not exist. For example, the files
in.mbx and in.idx will be created for the ‘in=Messages Received’ entry.

The MailboxDirectory property

The MailboxDirectory property is used to specify the location of the mailbox files.
For example, if you wanted to store the mailbox files in the ‘mailbox’ subdirectory
of the application directory. The following code would accomplish this:
ApplicationDi rectory: =Extract Fi | ePat h(Appl i cati on. ExeNane) ;
NVai | box1. Mai | boxDi rect ory: =Appl i cati onDi rect ory+' nai | box’ ;
This property must be set after the Mailboxes property.

STARTECH INTERNET COMPONENTS 46

Adding and Retrieving Messages

In addition to saving the message text, the TNMailbox component stores certain
key fields as the message, such as the sender, subject and date of the
messages. The following properties are used to access the message and these
key fields:

The Msg_Text property: The Msg_Text property is used to access the text of
the message, including headers. It is of type TStrings.

The Msg_From property: The Msg_From property is used to access the sender
of the message.

The Msg_To property: The Msg_To property is used to access the recipient of
the message

The Msg_Date property: The Msg_Date property is used to access the date
specifying when the message was sent.

The Msg_Subject property: The Msg_Subject property is used to access the
subject of the message.

The Msg _Lines property: The Msg_Lines property is used to access the
number of lines in the message text. This property is read only.

The Msg_Size property: The Msg_Size property is used to access the size of
the message text in bytes. This property is read only.

The Msg_Flag property: The Msg_Flag property is used to access a flag for the
message which indicates the status of the message. Although you can use any
character to specify the status of the message, you should use the following
values if you plan to use the TMailboxViewer component discussed later in this

chapter:
‘U message is unread
V' message was viewed
‘R’ a reply was made to this message.

The Msg_Part property: The Msg_Part property is used to specify the part of
the message. Large messages can sometimes be split into smaller parts for
transmission or storage.

The Msg_AttachStart property: The Msg_AttachStart property is used to
specify the starting attachment number for the message. This property will be
described fully when the TAttachmentManager property is described later in this
chapter.

The Msg_AttachEnd property: The Msg_AttachEnd property is used to specify
the ending attachment number for the message. This property will be described
fully when the TAttachmentManager property is described later in this chapter.

Selecting a mailbox

Before we can add or retrieve a message to a mailbox, we must tell the
component which mailbox to use and which message to retrieve. There are three
properties which can be used to select a target mailbox and message.

STARTECH INTERNET COMPONENTS 47

The CurrentMailBoxNumber property: The CurrentMailboxNumber property is
used to select a mailbox. This property should be set to a number between 1 and
the number of mailboxes, as listed in the Mailboxes property. ‘1’ refers to the first
mailbox listed in the Mailboxes properties, ‘2’ to the second message, and so on.

Example:
const | N BOX=1;

OJr rent Mai | boxNunber : =I N_BOX;

The CurrentMailboxName property: The CurrentMailboxName property is used
to specify the base filename of a mailbox. It also provides an alternate means of
selecting a mailbox, by specifying the base filename, rather than the mailbox
number.

Example:
Cur rent Mai | boxName: =' i nbox’ ;

When the CurrentMailboxNumber or CurrentMailboxNumber property is set, the
following properties are updated in addition to the CurrentMailboxNumber and
CurrentMailboxName properties:

The CurrentMailBoxMessages property: The CurrentMailboxMessages
property is used to indicate how many messages are stored in the selected
mailbox. This property is read only.

The CurrentNMailboxSize property: The CurrentNMailboxSize property is used
to specify the size, in bytes, of all the messages in the mailbox.

The CurrentNMailboxTrash property: The CurrentNMailboxTrash property is
used to specify the amount of wasted space in bytes, contained in the mailbox.
Wasted space increases as messages are deleted or transferred to another
mailbox, and can be recouped by calling the Compress method, described late in
this section.

Selecting a Message

The Msg_Number property is used to select a message. Msg_Number is a
number between 1 and the number of messages in the mailbox, found in the
CurrentMailboxMessages property. When a valid mailbox and message has
been selected, all the Msg_ properties are updated.

Adding a Message

There are three steps to adding a message to a mailbox:
select a mailbox, using the CurrentMailboxNumber and CurrentMailboxName
properties.
set the Msg_Text, Msg_From, Msg_To, Msg_Subject, Msg_Date, Msg_Flag,
Msg_AttachStart and Msg_AttachEnd properties.
call the AddMail method.
The AddMail method appends the message to the selected mailbox. The
CurrentMailboxMessages and CurrentNMailboxSize properties are also update.

STARTECH INTERNET COMPONENTS 48

The following example shows how one might store messages downloaded with
the GetMail component (this example does not deal with the Msg_AttachStart
and Msg_AttachStart properties, which are discussed later in this chapter).

i npl enent ati on
const
I N BOX = 1;
i nterface

procedur e Forml. Get Mai | 1MessageLoaded(Sender: Tobj ect);

begi n
NMai | box1. Qurrent Mai | boxNunber : =I N_BOX;
NVai | box1. Msg_From =Get Mai | 1. Msg_From
NMVai | box1. Msg_To: =CGet Mai | 1. Msg_To;
NVai | box1. Msg_Dat e: =Get Mai | 1. Msg_Dat e;
NVai | box1. Msg_Subj ect : =Get Mai | 1. Msg_Subj ect ;
NMVai | box1. Fl ag: = U ;
NVai | box1. Msg_Text . Assi gn(Get Mai | 1. Mai | _Text);
NVai | box1. AddMai | ;
end;

Retrieving a Message

To retrieve a message, set the CurrentMailboxNumber or CurrentMailboxName
property with the target mailbox and the Msg_Number property with the target
message. Once this is done, the Msg_From, Msg_To, Msg_Date, Msg_Size,
Msg_Subject, Msg_Lines, Msg_Flag, Msg_AttachStart and Msg_AttachEnd
properties will be updated. The Msg_Text property is not updated with the text of
the message until the LoadMail method is called.

Example:

NMailbox1.CurrentMailboxNumber:=IN_BO X;
NMailbox1.Msg_Num:=3;
NMailbox1.LoadMail;

Deleting a Message

To delete a message, set the CurrentMailboxNumber or CurrentMailboxName
property with the target mailbox and the Msg_Number property with the target
message. To delete that message, use the DeleteMail method.

Example:

NMai | box1. Qurrent Mai | boxNunber : =I N_BOX;
NMVai | box1. Msg_Num =3;
NMVai | box1. Del et eMai | ;

Transferring a Message to Another Mailbox

To transfer a message, set the CurrentMailboxNumber or CurrentMailboxName
property with the target mailbox and the Msg_Number property with the target
message. To transfer that message, use the TransferTo method. The prototype
for the TransferTo method is:

procedur e TransferTo(nane: string);

STARTECH INTERNET COMPONENTS 49

where name refers to the base filename for the mailbox. If you prefer to use a
mailbox number, you can use the MailboxFile function. The prototype for the
MailboxFile function is:

function Mail BoxFile(i: integer): string;
which returns the base filename for mailbox i .

The following example shows how to transfer a message to a trash mailbox:
const
I N BOX = 1;

QUT_BOX= 2;

TRASHCAN= 3;
i\i\/iai [box1. Qurrent Mai | boxNunber : =I N_BOX;
NMVai | box1. Msg_Num =3;
NMVai | box1. Tr ansf er To(Mai | BoxFi | e(TRASHCAN)) ;

Creating a New Mailbox

There are two steps involved in creating a new mailbox:
Add an entry in the Mailboxes property for the mailbox to be created. For

example:
NMVai | box1. Mai | boxes. Add(‘ j udy|’ Letters from Judy’);

Call the CreateMailbox method to create the various mailbox files. The

prototype for the CreateMailbox method is:
procedure O eateMil Box(nane: string);

where name is the base filename of the mailbox.

Example:
NMVai | box1. O eat eMai | box(‘judy’);

Compressing a Mailbox

When a message is deleted or transferred from a mailbox, wasted space
develops in the mailbox file where the message was once stored. To compress a
mailbox, set the CurrentMailboxNumber or CurrentMailboxName property with
the target mailbox and call the Compress method. The following example
demonstrates how to compress all mailboxes if the wasted space exceeds 10K.

wi th NMVai | box1l do

begi n
for i:=1 to Mil boxes. Count do
begi n
Cur rent Mai | boxNunber : =i ;
i f QurrentMail boxTrash>10240 t hen Conpr ess;
end;
end;

Emptying a Mailbox

To delete all messages from a mailbox, you will use the EmptyMailbox method.

The prototype for the EmptyMailbox method is:
procedure EnptyMail box(num integer);

where num is the mailbox number. The following example shows how to delete
all messages from a trash mailbox when the program exits:

const
TRASHCAN = 3;

b'r'ocedure Fornil. A ose(Sender: Tobject);

STARTECH INTERNET COMPONENTS 50

begi n
NVai | box1. Enpt yMai | box(TRASHCAN) ;
end;

Updating a Message’s Flag

The TNMailbox component does not allow a message to be modified once it has
been stored. However, it is sometimes to change a message’s flag when its
status changes, such as when it has been read. To change a message’s flag,
set the CurrentMailboxNumber or CurrentMailboxName property with the target
mailbox and the Msg_Number property with the target message, then call the
UpdateFlag method. The prototype for the UpdateFlag method is:

procedure Updat eFl ag(c: char);
where ¢ is the new message flag. The following example shows how to update a

message flag:
NMai | box1. Cur rent Mai | boxNunber : =I N_BOX;
NMVai | box1. Msg_Nunber : =12;
NMai | box1. Updat eFl ag(‘ V'); {nessage has been read}

Storing Attachments

The TNMailbox component stores the text of Internet messages, but it does not
store message Attachments. There are three ways of handling attachments:

Prompt the user for a location when an attachment is processed. Sample
code for this was given earlier in the description for the
OnAttachmentGetLocation event of the GetMail component. The
disadvantage of this method is that a user must be present when mail is
retrieved, in case a message with an attachment is retrieved. This method is
therefore inappropriate for automated mail retrieval.

Automatically generate a filename from the name field of the MIME
attachment. Unfortunately, an attachment name is optional in the MIME
specifications. An attachment name will also probably not conform to the 8.3
DOS filename specifications. Additionally, all association between the
message and the attachment is lost if either this method or the previous
method is used.

The TAttachmentManager component was designed to overcome the
limitations of the first two methods. It allows attachments to remain
associated with their original messages and relieves the user from having to
specify a location for the attachment.

STARTECH INTERNET COMPONENTS 51

The TAttachmentManager component

@ The TAttachmentManager component works in the parallel with the
TNMailbox component to facilitate the task of managing attachments.

Initializing the component

When the component is created, the component automatically detects the
application directory and creates an ‘attach’ subdirectory to store attachments.
For example, if the application directory is ‘c:\mail’, the component will store
attachments on the ‘c:\mail\attach’ directory. To override this default behavior,
set the AttachmentDirectory property with the name of the directory to use.

Adding an Attachment

There are two steps involved in bringing an attachment under the control of the
TAttachmentManager component:

Creating an entry for a new attachment and generating a filename for the
attachment.

Updating the entry for the attachment once it has been stored.

The record used for the entry is of type TMIMEAttachment, which was discussed
earlier in the Handling Attachments section of the GetMail component. To recap,
the TMimeAttachment record type is prototyped as follows:

type TM MEAtt achnent =r ecor d
Nane: string[255];
M neType: string[80];
D sposition: string[30];
Description: string[255];
Si ze: Longlnt;
ContentI D string[40];
Locati on: string[255];
St ored: Bool ean;

end;

The TMIMEAttachment record contains the following fields:
The Name field is used to hold the name of the attachment.
The MimeType field is used to hold the type of the attachment.
The Disposition field specifies how the attachment should be displayed.
The Description field contains the plain text description of the attachment.
The Size field contains the size of the attachment.
The ContentlD field contains a unique ID for the attachment.
The Location field contains the full path name where the attachment is
stored.
The Stored field specifies whether the file specified in Location is under the
control of the TAttachmentManager component.

STARTECH INTERNET COMPONENTS 52

Creating a New Entry

To create a new entry and generate a unigue filename to store an attachment,
you will use the NewAttachment method. The NewAttachment method is
prototyped as follows:

function NewAttachment(var AttachRec: TMIMEAttachment): Longlnt;

where AttachRec is a record of type TMimeAttachment. The function returns a
number which can be used later to work with that attachment. Additionally, when
this function is called, the Location field of the AttRec record will contain the
location where the attachment should be stored.

The following example shows how the OnAttachmentGetLocation event of the
GetMail component can be handled with a TAttachmentManager component.

var
At t Nunber: Longlnt;

procedur e Forml. Get Mai | 1At t achnent Get Locat i on(Sender ;: TChj ect ;
Attachnent: TM MEAtt achnent);
begi n

At t Nunber : =At t achnent Manager 1. NewAt t achnent (At t achnent) ;
end;

Updating an Attachment Entry

After the GetMail component has finished storing an attachment, it generates an
OnAttachmentStored event. At this point, we should update the entry in the
TattachmentManager component to reflect the size of the attachment and the
fact that the attachment is stored.

The Update method is used to change any information regarding an attachment.
The prototype for the Update method is

procedure Update(Number: Longint;AttachRec: TMimeAttachment);
where Number is the attachment number which was returned by the
NewAttachment method and AttachRec is a record of type TMimeAttachment.
The following example shows how to handle the OnAttachmentStored event of
the GetMail component.

var
At t Nunmber: Longl nt;

procedure Forml. Get Mai | 1At t achnent Get Locat i on(Sender : TQhj ect ;
Attachrent: TM MEAtt achnent);
begi n

At t Nurber : =At t achnent Manager 1. NewAt t achnent (At t achment) ;
end;

procedure Forml. Get Mai | 1At t achnent St or ed(Sender : T(hj ect ;
Attachrent: TM MEAtt achnent);
begi n

Attachment . St or ed: =Tr ue;

At t achrent Manager 1. Updat e(At t Nunber , At t achnent) ;
end;

STARTECH INTERNET COMPONENTS 53

Keeping Track of Attachments

Not only must we store of attachments, we must also associate attachments with
a message. The Mailbox component stores two properties for each message,
Msg_AttachStart and Msg_AttachEnd. The following code illustrates how to
store this information in the mailbox.

var
Att Nunber, Start Att, EndAtt: Longlnt;
pr ocedur e For ml. Get Mai | 1Mai | | nf o(Sender : Tobj ect; i nfo:
Get Mai | I nfo; addi nfo: string);
begi n
case info of
gmressageSi ze: {signals start of new nessage}
begi n
StartAtt: =0;
EndAtt: =0;
end;
end;
end;

procedure Forml. Get Mai | 1At t achnent Get Locat i on(Sender ;: T(hj ect ;
Attachnent: TM MEAtt achnent);

begi n
At t Nunber : =At t achnent Manager 1. NewAt t achnent (At t achnent) ;
if StartAtt=0 then StartAtt:=Att Nunber;
EndAt t: =At t Nunber ;

end;

procedure Forml. Get Mai | 1At t achnent St or ed(Sender : T(hj ect ;
Attachnent: TM MEAtt achnent);
begi n

Attachrent . St ored: =Tr ue;

At t achnment Manager 1. Updat e(At t Nunber , At t achnent) ;
end;

procedur e Forml. Get Mai | 1MessagelLoaded(Sender: Tobj ect);

begi n
NMVai | box1. Msg_AtttachStart:=StartAtt;
NMVai | box1. Msg_End: =EndAt t ;
NMai | box1. Cur rent Mai | boxNunber : =I N_BOX;
NVai | box1. Msg_From =Get Mai | 1. Msg_From
NMai | box1. Msg_To: =CGet Mai | 1. Msg_To;
NVai | box1. Msg_Dat e: =Get Mai | 1. Msg_Dat e;
NVai | box1. Msg_Subj ect : =Get Mai | 1. Msg_Subj ect ;
NMai | box1. Fl ag: = U ;
NVai | box1. Msg_Text . Assi gn(Get Mai | 1. Mai | _Text);
NVai | box1. AddMai | ;
end;

With this code, the mailbox now keeps track of attachments for each message. If
the Msg_AttachStart property is 0 the message does not have any attachments.
If it has any other value, then attachments number Msg_AttachStart to
Msg_AttachEnd are part of the message.

STARTECH INTERNET COMPONENTS 54

Retrieving Information about an Attachment

Now that we can store attachments, we need a way to retrieve information about
the attachments. The Retrieve method of the TAttachmentManager property can
be used to get information about an attachment. The Retrieve method is
prototyped as follows:

function Retrieve(Number: Longint): TMimeAttachment;
where Number is the attachment number returned by the NewAttachment
method. The function returns a record of type TMimeAttachment.

Copying an Attachment

The copy an attachment under the control of the TAttachmentManager
component to another location, you will use the Copy method. The Copy method
is prototyped as follows:

procedure Copy(AttNunber: Longlnt;Location: String);
where AttNumber is the attachment number returned by the NewAttachment
method and Location is the path where to store the attachment.

Example:
At t achrent Manager 1. Copy(23, ' c:\test.txt’);

Deleting an Attachment

It is sometimes desirable to delete an attachment, especially if the attachment
has been copied to another location or if it is no longer needed. The Delete
method can be used to delete an attachment. The Delete method is prototyped

as follows:
procedur e Del et e(Nunber: Longl nt; NewLocation: string);

where Number is the attachment number returned by the NewAttachment
method. If a copy of the attachment is stored at a different location, the
NewLocation parameter can be used to specify that location. Otherwise, the
NewLocation parameter should be set to an empty string.

Example:
At t achnent Manager 1. Copy(23, ' c:\test.txt’);
Attachme nt Manager 1. Del ete(23, ' c:\test.txt’);

Viewing or Executing Attachments

Before viewing or executing an attachment, it should be stored in a temporary
file. The TAttachmentManager component can create any needed temporary
files, and will also delete any temporary file when the component is destroyed.
The GetTempFile method is used to create temporary files. This method is
prototyped as follows:

function GetTenpFile(AttNunber: Longl nt ; Ext ensi on: string):
string;

where Number is the attachment number returned by the NewAttachment
method and Extension is the desired extension for the temporary file. We will see
later how to specify an attachment based on an attachment’s mime type, when
we discuss the TMimeManager object. The function returns the path of the

STARTECH INTERNET COMPONENTS

temporary file containing the attachment. The following example shows how one
might view a text attachment:

s: =At t achnent Manager 1. Get TenpFi | e(23, " txt’);

Menol. Li nes. LoadFronfi |l e(s);

The NMailboxViewer Component

The NMailboxViewer is a graphical component used to present a listing of a
mailbox to the user.

Statuz | From D ate 5ize | Subject

i | Tony BenBrahim <startectThu, 18 Jan 1996 10:31:3] 1 |Re: test :l
B2 | |Tony BenBrahim <startect{Thu, 18 Jan 1996 10:57:0) 2 (Re: test

B2 | |Tony BenBrahim <startect{Thu, 18 Jan 13996 11:05:0) 2 (Re: test

Chriztian AUBLE <frog@Ew|Thu, 18 Jan 1996 10:45:0| 27 |Revue de presse RFI

i | Rick Colman <rnickcol@un|Thu, 18 Jan 1996 08:39:3| 2 |Need Developer's P
maillizst-delphit@shockway |Thu, 18 Jan 1996 13:56:4| 1 |JoinList

Antonello Carlomagno <st.|Thu, 18 Jan 13996 20:44:0, 2 |INFORMATIOMS

ﬁf maillizst-delphit@shockway |Thu, 18 Jan 1996 15:31:3] 1 |JoinList

B2 | (Tony BenBrahim <startect{Thu, 18 Jan 19396 16:06:3) 2 (test

Don Schueler <dons@axi|Sat, 20 Jan 1996 08:28:3| 2 |Re: Open Socket Ern:_I
Ruszell Rice <russell@ph|Sat, 20 Jan 96 11:07:22 -| 2 |Re: Has the mail amiy
fatman <fatman@csccs.ci|Sun, 21 Jan 1996 07:50:0(3 |Thanks -

The NMailboxViewer component can perform two functions:

The NmailboxViewer displays the content of a mailbox, automatically staying
in sync with the mailbox are messages are added, deleted, transferred to
another mailbox or when a message’s status changes.

Optionally, the NMailboxViewer component can create and manage windows
used to display the messages, and can provide functionality to show the next
or previous message in a window, as well as delete or transfer selected
messages.

The NMailboxViewer component also has the following features:

customizable column headers text.
resizeable columns at run time
4 bitmaps for message status and 1 bitmap for attachments

sortable columns by clicking on header (left click ascending, right click
descending)

drag and drop of messages between NMailboxViewer components.

Initializing the NMailboxViewer component

Before displaying the NMailboxViewer component, a few properties must be set

to

let the component know which mailbox to use and to set the physical

appearance of the control.

STARTECH INTERNET COMPONENTS 56

Selecting a Mailbox

The Mailbox property is used to specify which TNMailbox component the control
will read its information from.Once you have set the Mailbox property, you will
need to specify the mailbox number to display in the control, using the
MailboxNumber property

Example:

const
I N BOX=1;

NV&i | boxVi ewer 1. Mai | box: =Mai nFor m Mai | box1:
NMVai | boxVi ewer 1. Mai | boxNunber : =I N_BOX;

Once you set the MailboxNumber property, there might be a slight delay
depending on the mailbox size while the component reads in the message
headers.

Changing the appearance of the Control

You can change the text of the headers column, the font used for the control, the
width of the various columns and the bitmaps displayed for a message’s status
by setting various property

The SectionNames Property

To set the text of various header columns, you can use the SectionNames
property. If you do not set the SectionNames property, the column headers will
be named ‘Status’, ‘From’, ‘Date’, ‘Size’ and ‘Subject’. The SectionNames is of
type Tstrings and can be set as the following example demonstrates, which
replaces the English headers with Spanish headers:

NMVai | boxVi ewer . Sect i onNanes. d ear;

NMVai | boxVi ewer . Sect i onNanes. Add(* Estado’) ;

NMVai | boxVi ewer . Sect i onNanes. Add(‘ Desde’) ;

NMVai | boxVi ewer . Sect i onNanes. Add(‘ Fecha’) ;

NMVai | boxVi ewer . Sect i onNanes. Add(* Tamano’) ;

NMVai | boxVi ewer . Sect i onNanes. Add(* Suj eto’);

The SectionNames property can also be edited at design time from the Object
Inspector.

The SetHeaderSize Method

The SetHeaderSize method can be used to set the starting width of one or more
columns. The prototype of the SetHeaderSize method is:

procedur e SetHeader Si ze(x,s: integer);
where x is the column number and s is the new size in pixels. Columns are

numbered starting with 1. For example, to change the width of the first column to
200 pixels, you would use the following code:

NMVai | boxVi ewer . Set Header Si ze(1, 200);

STARTECH INTERNET COMPONENTS 57

Setting Status Bitmaps

You must set the AttachmentBitmap, UnreadBitmap, QueuedBitmap,
RepliedBitmap and ReadBitmap properties if you want bitmaps to be displayed in
the first column.

The best way to specify the desired bitmaps is to store them in a resource file
and load them at run time. This involves the following steps.

Create a resource file using the image ImageEdit program that ships with
Borland Delphi. Note: You must name this file a different name that your
project. For example, if your program project file is ‘mymail.dpr’, do not name
the resource file ‘mymail.res’. In this example, we will save our resource file
as ‘extra.res’.

In the resource file, create five bitmaps, 16 pixels wide by 16 pixels high, 16
colors. We now 5 bitmaps, named ‘BITMAP_1' to ‘BITMAP_5’. You can
rename these bitmaps to give them a more descriptive name. In this
example, we renamed the bitmaps MAIL_READ,MAIL_UNREAD, etc..

In the code for the project’s main form, add the following line in the
implementation section:

{$R xtra.res}

The following code can be used to load the bitmaps into a Thitmap object:

interface

var
ReadBM QueuedBM Repl i edBM Unr eadBM At t achnent BM

i npl enent ati on
($R extra.res}

procedure InitializeProgram
begi n
ReadBM =TBi t map. O eat €;
ReadBM Handl e: =LoadBi t nap(H nst ance, ' MAI L_READ) ;
Unr eadBM =TBi t map. O eat €;
Unr eadBM Handl e: =LoadBi t map(H nst ance, ' MAI L_UNREAD) ;
Repl i edBM =TBi t map. O eat €;

Repl i edBM Handl e: =LoadBi t map(H nst ance, ' MAI L_REPLI ED);
At t achnent BM =TBi t nap. O eat €;

Attachnent BM Handl e :=LoadBi t map(H nstance, ' MAl L_ATTACHVENT")

QueuedBM =TBi t nap. O eat €;
QueuedBM Handl e: =LoadBi t map(H nst ance, ' MAl L_ QJEUED) ;

end;

STARTECH INTERNET COMPONENTS 58

You can now assign these bitmaps to the bitmap properties of the
NMailboxViewer control whenever needed.

NMVai | boxVi ewer 1. At t achnent Bi t map. Assi gn(Att achnent BV ;
NVAI | boxVi ewer 1. Unr eadBi t map. Assi gn(Unr eadBM) ;

NVai | boxVi ewer 1. QueuedBi t map. Assi gn(QueuedBM) ;

NMVai | boxVi ewer 1. Repl i edBi t map. Assi gn(Repl i edBV) ;

NMVai | boxVi ewer 1. ReadBi t nap. Assi gn(ReadBM) ;

Which bitmap is displayed in the first column will depend on the value of the
Msg_ Status property of the TNMailbox component:

Msg_Status Bitmap Displayed

‘v’ UnreadBitmap
Vv’ ReadBitmap

‘Q’ QueuedBitmap
‘R’ RepliedBitmap

The Font property

The Font property (type Tfont) controls the font used by the control's text. Refer
to the Delphi Language Reference for more information about working with the
Font property.

The Align Property

The Align property controls the alignment of the control within the parent control.
Refer to the Delphi Language Reference for more information about working with
the Align property.

Working with the NMailboxViewer component

The NMailboxViewer automatically keeps track of any changes in its associated
mailbox and displays any changes as they happen. For example, to change the
status of a message in the component, you would use the UpdateFlag method of
the associated mailbox and the change will be automatically reflected in the
NMailboxViewer component. To remove a message from the component, you
must delete or transfer the message to another mailbox.

We will first look at the automatic actions of the NMailboxViewer. We will then
look at the two modes of operations for the NMailboxViewer component, mail
viewer manager mode with the NMailboxViewer component managing the
windows used to view messages, and manual mode.

Automatic Operations of the NMailboxViewer Component

Moving Messages

The NMailboxViewer component supports drag and drop of messages from one
NMailboxViewer to another. There are two properties which control the operation

STARTECH INTERNET COMPONENTS 59

of the drag and drop feature, the DragEnabled and the DropEnabled property. If
the DragEnabled property is set to True, the user will be able to drag items from
the component. If the DropEnabled property is set to True, the component will
accept items from other components.

When an item is dragged from a NMailboxViewer component and dropped to
another NMailboxViewer component, the components automatically takes care
of the details of moving the associated from the origin mailbox to the destination
mailbox, as long as both NMailboxViewer components use the same TNMailbox
component.

Message Count

To find out how many messages are being displayed by the NMailboxViewer
component, you should use the NumMessages property. Additionally, you can
use the OnChange event to be notified when the number of messages changes.
The following example shows how one might set the caption of a form containing
a NMailboxViewer component to reflect the number of messages .
procedur e Forml. NVai | boxVi ewer 1Change(Sender: Tobj ect);
begi n

Capti on: =I nt ToSt r (NMai | boxVi ewer 1. Numvessages) + nessages’ ;
end;

Sorting messages

The component automatically sorts messages displayed in the NmailboxViewer
component when the user clicks on one the component’'s headers. Left clicking

on a header causes the messages to be sorted in ascending order according to

the values in the header’'s column. For example, left clicking on the Date column
header will cause all messages to be sorted in ascending order based on the

order they were received. When a column header is right clicked, the messages

are sorted in descending order.

The NewMessageTop property can be used to select the initial sort order of the
messages displayed by the component. Setting the NewMessageTop property to
True causes the newest messages to be displayed on top when the component
is first displayed. If NewMessageTop is set to False, the messages are displayed
is the order they were received, with the oldest message on top.

Finding selected messages

To find out which messages are selected, you can use the Selected property in
conjunction with the IndexToMessageNumber method. The Selected property is
prototyped as follows:

property Sel ected[X Integer]: Bool ean;
where the X parameter is the position of the item in the component, with the first
item having an X value of 0. The value of the Selected property is True if the
item is selected and False if the item is not selected.

The IndexToMessageNumber property translates the index of a message (its
position in the component) to a message number. This is necessary because the
first message displayed in the component is not always the first message in the

STARTECH INTERNET COMPONENTS 60

mailbox, depending on the value of the NewMessageTop property and
depending on the sort order selected by the user by clicking on a column header.

The following example shows how to iterate through all the entries in a
NMailboxViewer component in response to a button click and doing something
with the selected entries:

procedure Forml. Buttonld ick(Sender: Tobject);

var
i,nsg: integer;
begi n
for i:=0 to NVail boxVi ener1. Num\vessages-1 do
begi n
if Selected[i] then
begi n
nsg: =l ndexToMessageNunber (i) ;
{do something with sel ected message}
end;
end;
end;

Note, however that if you plan to delete or transfer messages to another mailbox,
a slightly different procedure should be used, as the number of messages
(NumMessages) will decrease with each message deletion or transfer.

procedure Forml. Buttonld ick(Sender: Tobject);

var
i, nsg: integer;
begi n
i :=0;
whi | e i <NMVai | boxVi ewer 1. Numvessages do
begi n
if Selected[i] then
begi n
nsg: =l ndexToMessageNunber (i) ;
{del ete or transfer nessage}
end
else Inc(i);
end;
end;

Methods Available in Message Viewer Manager or Manual mode

There are two methods available whether the component is in the Message
Viewer Manager mode or in manual mode.

The DeleteSelectedMessages method is used to delete all selected messages
from the mailbox associated with the NMailboxViewer component. (The
associated entries in the component will also automatically be removed by the
automatic synchronization with the mailbox). The DeleteSelectedMessages
method has no parameters.

The TransferSelectedMessages method is used to transfer all selected
messages to another mailbox. The TransferSelectedMessages method is
prototyped as follows:

procedure TransferSelectedMessages(TargetMailboxNumber: integer);

STARTECH INTERNET COMPONENTS 61

where TargetMailboxNumber is the mailbox number to which messages should
be transferred.

The following example shows how one might implement a trash button for the
NMailboxViewer component:

interface

const
I N_MAI LBOX
OUT_MAl LBOX
TRASH_MAI LBOX

T

i npl enent ati on

procedure Forml. TrashButtond i ck(Sender: Tobject);
begi n

NMVai | boxVi ewer 1. Tr ansf er Sel ect edMessages(TRASH VAl LBOX) ;
end;

Manual mode

Double Clicking on a Message

When a user double clicks on a message, the component triggers an
OnMessageDoubleClick event. The OnMessageDoubleClick event is prototyped
as follows:

procedure(Sender: TObject;MessageNum ber: integer);
where Sender is the control which triggered the event and MessageNumber is
the message that was clicked on. The following example loads a message into a
memo box when the control is double clicked:

procedur e Forml. NVai | boxVi ewer MessageDoubl ed i ck(Sender; Tobj ect;
MessageNunber: integer);
begi n
NVai | box1. Cur rent Mai | boxNunber : =(Sender as
NMVai | boxVi ewer) . Mai | box;
NMVai | box1. Msg_Nunber : =MessageNunber ;
NVai | box1. LoadMai | ;
Menol. Li nes. Assi gn(NMVai | box1. Msg_Text);
end;

Note that the OnMessageDoubleClick event is not available when the
NMailboxViewer component is in the Message Viewer Manager mode.

Message Viewer Manager mode

When the NMailboxViewer component is placed in Message Viewer Manager
mode, the component manages all aspects of displaying messages in any form
provided by the user. This mode provides methods to display the next or
previous message in a window, automatically creates a new form when a
message is double clicked and closes forms whose messages have been

STARTECH INTERNET COMPONENTS 62

deleted or transferred to a another mailbox. Message Viewer Manager mode is
intended to be used with MDI applications.

To convince you of the usefulness of Message Viewer Manager mode, let’'s look
at want would be involved with some common operations if you handled these
operations in manual mode:

Displaying a message when a user double clicks on an entry: Handling the
OnMessageDoubleClicked event gives you access to the message number.
But before creating a new window to display the message, you would need to
check if a window containing the same message is already displayed. If that
is the case, you would need to bring that window to the front, rather than
creating a new window. For each window you create, you also need to keep
track of the associated mailbox number and message number.

Handling message deletion: When you delete a message, you would need to
update the message number information for all windows displaying
succeeding messages. For example, if a window displaying message 5 was
open and you deleted message 3, you would need to update the information
for the open window, which is now displaying message 4. Failure to do that
would cause a function which deleted a windows message to delete the
wrong message or a function to display the next message in a window to
display the wrong message. Additionally, when you delete a message, you
should check to see if a window displaying that message is open, and if that
is the case, close that window.

Showing the next or previous message: If you have correctly kept track of
message deletion, you should have the correct message number for the
message to be operated on. However, showing the next or previous
message is not simply a matter of incrementing or decrementing the
message nhumber. You also have to consider that messages might be sorted
in the NMailboxViewer component. To correctly display the next or previous
message, you would have to find the index of the message in the
component, increment or decrement the index and convert the index back to
a message number. You would then have to display the message, avoiding
duplicate windows for the same message.

The NMailboxViewer component relieves you of all these details in Message
Viewer Manager mode. To place the component in this mode, you will use the
EnableMessageViewerManager method, which is prototyped as follows:

procedure EnableMessageViewerManager(MessageViewerFormClass: TFormClass);

where the MessageViewerFormClass is the class of the form you want the
NMailboxViewer component to create to display a message. Any class derived
from TForm can be used to display messages. This means that any form that
you create with Delphi can be used to display messages. Note that Delphi
assigns a class to a form based on the name you give the form, by prepending a
‘T" to the form name. For example, if a form is named Forml, its class is
TForm1.

There are only two restrictions that are placed on the form used to display
messages:

It must be have a form style fsMDIChild, as the Message Viewer Manager
mode is only intended to manage forms in an MDI application.

STARTECH INTERNET COMPONENTS 63

It must support four custom windows messages, MBV_PARENT,
MBV_SETMESSAGE, MBV_UPDATEINFO and MBV_CLOSE. We will see
later how to handle how to write message handlers for these messages.

Designing the message viewer form

The first step is to design a form to display the messages, just as you would
design any other form.

In the following example, we design a simple form with a memo to display a
message and a panel which will use later to add buttons to the form.

A (=[S

At this point, the source code for the form might look as follows:
unit Unit2;

interface

uses

SysWils, WnTypes, WnProcs, Messages, dasses, Gaphics,
Control s,

Forns, D al ogs;

type
TVi ewMai | = class(TForm
Panel 1: TPanel ;

Menol: TMeno;,
private

{ Private declarations }
public

{ Public declarations }
end;

var
Viewvai |l : TVi ewMhi | ;

STARTECH INTERNET COMPONENTS 64

i npl enent ati on
{$R *. DFM

end.

To enable a NMailboxViewer component to use this form to display messages,
you would need to add the following line when the component’s parent form is

displayed:
procedur e Forml. Show Sender: T(hj ect) ;
begi n
NMVai | boxVi ewer 1. Enabl eMessageVi ewer Manager (TVi ewMai |) ;
end;

We will then have to modify our TViewMail form to handle the MBV_PARENT,
MBV_SETMESSAGE, MBV_UPDATEINFO and MBV_CLOSE windows
messages.

Handling Windows Messages

To modify a form to handle a specific message, you need to write a procedure
which is prototyped as follows:

procedure SomeProcedure(var Message: TMessage);message
WM_SOMEMESSAGE;

where WM_SOMEMESSAGE is the message to be handled and the Message

parameter is a record of type TMessage prototyped as follows:
type TMessage=record
wPar am wor d;
| Param Longl nt;
Resul t: Longlnt;
end;

In using the NMailboxViewer component, we are only interested in the wParam
and |Param parameters, which will be used to pass information between the
NMailboxViewer and the message viewer form it manages.

The MBV_PARENT message

The MBV_PARENT message is sent by a NMailboxViewer component to a
message viewer form right after it creates it. The |IParam parameter contains the
address of the NMailboxViewer which created the form receiving the message.
The following example shows the code, highlighted by a bold typeface, that you
would add to handle the MBV_PARENT message.

i nterface
uses ..., nmbxvw ;
type TVi ewMai | =cl ass(TForm
privat e
Par ent Vi ewer: NWVai | boxVi ewer ;

pr ocedur e MBVPar ent (var Message: TMessage) ; message
MBV_PARENT;

STARTECH INTERNET COMPONENTS 65

end;
i npl enent ati on

procedure TVi ewMai | . MBVPar ent (var Message: TMessage);
begi n

Par ent Vi ewer : =NMVai | boxVi ewer (Message. | Par anj ;
end;

The MBV_SETMESSAGE message

The MBV_SETMESSAGE message is sent whenever the NMailboxViewer
component wants the message viewer form to display a different message. The
wParam parameter contains the mailbox number and the IParam parameter
contains the message number to be displayed. The following example shows the
code, highlighted by a bold typeface, that you would add to handle the
MBV_SETMESSAGE message.

unit Unit?2;
i nterface
uses. .. , Nmbxvwr;
type TViewMai | = class(TForm
private
Parent Vi ener: NWVai | boxVi ewer ;
Mai | boxNurber , MessageNunber : i nt eger;
procedure MBVParent (var Message: TMessage); nessage
MBV_PARENT;
procedure MBVSet Message(var Message: Tmessage); nessage
MBV_SETMESSAGE;
end;
i npl enent ati on

procedure TVi ewMai | . MBVSet Message(var Message: TMessage);

begi n
with Parent Vi ener. Mai | box do
begi n
Mai | boxNunber : = Message. wPar am
MessageNunber : = Message. | Par am
Qurr ent Mai | boxNunber : =Message. wPar am
Msg_Nunber: =Message. | Par am
LoadMi | ;
Menol. Assi gn(Msg_Text) ;
end;
end;

The MBV_UPDATEINFO message

The MBV_UPDATEINFO message is used to notify the message viewer form
that the message it is displaying now has a different message number. For
example, if a form is displaying message 5 in mailbox 1, when message 3 is
deleted in the same mailbox, the NMailboxViewer component will send an

STARTECH INTERNET COMPONENTS 66

MBV_UPDATEINFO message to inform the form that it is now displaying
message 4 in mailbox 1. The following example shows the code, highlighted by a
bold typeface, that you would add to handle the MBV_UPDATEINFO message.

unit Unit2;

i nterface

uses. .. , Nmbxvw ;

type TViewMai | = class(TForm

private

Par ent Vi ewer: NWVai | boxVi ewer ;

Mai | boxNurber , MessageNunber : i nt eger;

procedure MBVParent (var Message: TMessage); nmessage
MBV_PARENT;

procedure MBVSet Message(var Message: TMessage); nessage
MBV_SETMESSAGE;

procedure MBVUpdat el nfo(var Message: TMessage); nessage
MBV_UPDATEI NFO,

end;
i npl enent ati on

procedure TVi ewMai | . MBVUpdat el nf o(var Msg: TMessage) ;
begi n

Mai | boxNurber : =Msg. wPar am

MessageNunber : =Msg. | Par am
end;

The MBV_CLOSE message

The MBV_CLOSE message is sent whenever the NMailboxViewer component
wants the message viewer form to close, for example when the message a form
displays has been deleted or transferred to another mailbox. The following
example shows the code, highlighted by a bold typeface, that you would add to
handle the MBV_CLOSE message.

unit Unit2;
interface
uses. .. , Nmbxvw;
type TViewMai | = class(TForm
private
Par ent Vi ener: NMai | boxVi ever ;
Mai | boxNurber , MessageNunber : i nt eger;

STARTECH INTERNET COMPONENTS 67

procedure MBVParent (var Message: TMessage); nmessage
MBV_PARENT;

procedure MBVSet Message(var Message: TMessage); nessage
MBV_SETMESSAGE;

procedure MBVUpdat el nfo(var Message: TMessage); nessage
MBV_UPDATEI NFO,

procedure MBVA ose(var Message: TMessage); nessage
MBV_CLCSE;

end;
i npl enent ati on

procedure TVi ewMai | . MBVA ose(var Message: TMessage);
begi n

d ose;
end;

Adding Functionality to the Message Viewer Form

Once the message viewer form you have designed can handle the four
messages described above, you can add additional functionality by manipulating
the message directly. For example, to transfer the message displayed in a
message viewer form to the Trash mailbox, you would use the message and
mailbox number supplied by the MBV_SETMESSAGE and MBV_UPDATEINFO
messages to move the message, as the following example shows:

procedure TVi ewMai | . Del et eButt ond i ck(Sender: Tobj ect);

begi n
wi th Parent Vi ewer. Mai | box do
begi n
Qurrent Mai | boxNurnber : =Mai | boxNunber ;
Msg_Nunber : =MessageNunber ;
Tr ansf er To(Mai | boxFi | e(TRASH MAI LBOX)) ;
end;
end;

Note that the NmailboxViewer component will automatically take care of
removing the message from the component and of closing the form displaying
the message.

The NextMessage and PreviousMessage methods

The NMailboxViewer component supplies two methods for displaying the next or
previous message relative to the message currently displayed in a message
viewer form, keeping within the sequence in which they are displayed in the
component. The NextMessage and PreviousMessage methods are prototyped

as follows:
procedur e Next Message(f: TForm);
procedur e Previ ousMessage(f: TForm;

where f is the mail viewer form (created by the NMailboxViewer component) for
which to display the next or previous message. Note that the message will be
displayed in the same form, unless the next or previous message is already
displayed in another form, in which case focus will shift to that form.

STARTECH INTERNET COMPONENTS 68

The following example shows how trivial it is to add a next or previous button to a
mail viewer form:

procedure TVi ewMai | . Next Butt ond i ck(Sender: Tobj ect);
begi n

Par ent Vi ewer . Next Message(sel f);
end;

procedure TVi ewMai | . Previ ousButtond i ck(Sender: Tobject);
begi n

Par ent Vi ewer . Previ ousMessage(sel f);
end;

The ViewSelectedMessages Method

The ViewSelectedMessages method displays all selected messages in the
NMailboxViewer component. Although the NMailboxViewer component checks
for available resources before creating each window, it is possible that a user
might select a large number of messages to be displayed, leaving the system in
a state with very few resources left. This could cause problems in poorly
designed programs.

The TStringsViewer Component

The TMemo component included with Borland Delphi has limitations on the size
of the text it can display, which can vary anywhere from 20K to 32K.
Unfortunately, many Internet messages will exceed this size, making the TMemo
component inappropriate to display messages. The TStringsViewer component
was designed to overcome this limitation, and can be used to display text which
can exceed 1.5 Megabytes in size. Additionally, the TStringsViewer provides a
feature which is becoming more popular, highlighting of http URL'’s, so that a
specific action can be taken when the link is clicked, such as launching a
browser to display the URL.

-]
Thank wvou
Tony
Tony BenBrahim StarTech Computer Services _J

Internet Components for Borland Delphi
http:/fwww,. neogoft . comf ~3tarcech

TStringsViewer properties

The TstringsViewer component was designed to be as functionally similar to the
Tmemo component as possible. You will find that most of the properties and
methods of the TStringsViewer component are similar to those of the Tmemo
component.

STARTECH INTERNET COMPONENTS 69

Modifying the Control’s Appearance
The following properties can be used to modify the control’'s appearance:

Align

Color

Font
All of these properties operate in the same fasion as they do on the TMemo
component. The only exception is the Font property, which should specify a
monospaced font, such as ‘ Courier New’ , in order for marking to work properly.

Modifying the Control’s Operation
The following properties can be used to modify the control’'s operation:

HelpContext

Hint

PopupMenu

ShowHint

TabOrder
- TabStop
These properties are identical to the similarily named properties of the TMemo
component.

Modifying the Control’s Contents

The Lines property can be used to change the text of the TStringsViewer
component. It is of type TSVStrings,which is descended from Tstrings, so all
properties and methods of the Tstrings objects, such as Add, Delete and Insert,
can be used with the Lines property. The Modified property is set to True and
the OnChange event is triggered whenever the strings referenced by the Lines
property are modified. The Clear method can be used to clear the contents of the
TStringsViewer component.

TStringsViewer Events

The TStringsViewer component provides the following events, which are
analogous to the similarily named events of the TMemo component:

OnClick
OnDbIClick
OnKeyDown
OnKeyDown
OnKeyPress
OnMouseDown
OnMouseUp
OnMouseMove
OnEnter
OnExit
OnDragDrop
OnEndDrag
OnDragOver

STARTECH INTERNET COMPONENTS 70

Additionally, the TStringsViewer component provides an OnLinkClicked event,
whcih is triggered when an http link is clicked. The OnLinkClicked event is
prototyped as follows:

procedur e(Sender: Tbject; Link: string);

where Sender is the control which triggered the event and Link is the link which
was clicked.

Clipboard Operations

The TStringsViewer component supports marking of text with the mouse, and
copying of text to the clipboard (up to 30K) using the Ctrl+C or Ctrl+X key
combinations, or using the CopytoClipboard or CuttoClipboard methods. Text
can also be selected using the SelectAll method. Note that since the
component’s text is read only, pasting of text to the component is not supported.

STARTECH INTERNET COMPONENTS 71

THE FTP PACKAGE

The FTP package contains three components that greatly facilitate file transfers
using the File Transfer Protocol (FTP). The TFtp component is a basic
implementation of the FTP protocol. The FtpUrlDialog component simplifies file
transfer operations by combining file transfer and status display functionality into
one component. The TFtpPlus component is an enhanced FTP component,
which allows for transferring several files or directories recursively with just one
command.

The TFTP Component

FTR[F
D"E The TFtp component operates in two different modes:

In interactive mode, you issue commands through the component and wait
for an event to signal that the transaction has completed.

In URL mode, you issue one command which initiates a file transfer
transaction, including logging in, file transfer and logging off.

We will first look at the operation of the TFtp component in interactive mode.

The TFtp Component in interactive mode
There are three steps to using the TFtp component in interactive mode:

Provide the information required for the component to log on to a server,
such as the server alias or IP address, the user name and the user
password.

Issue commands such as Login, GetFile, and ChangeDirectory to navigate
the directory structure of the FTP site, transfer files, delete or rename files,
etc...

Respond to events which indicate when a particular command has
completed. Each command has a corresponding event associated with it. For

STARTECH INTERNET COMPONENTS 72

example, when the Login command completes, you will receive an
OnLoggedin event.

Initializing the FTP component

Before the TFtp component is able to connect into an FTP server, you must
provide some information so that the component is able to connect and log in.
The following properties are used to initialize the component:

The FTPServer property

You will use the FTPServer property to specify which server to connect to. In the
FTPServer property, you will specify the name (or alias) of the FTP server
connect to, or its IP address (humerical address)

Example:

FTP1. FTPServer: = ftp. mcrosoft. coni; {using alias}
or

FTP1. FTPServer: =" 266.45.34. 1’ ; {using I P address}

Should you use the server alias or its IP address? If you have physical control of
the mail server (i.e. you will know if its address changes), using the server
address in the FTPServer property will save you the overhead of name
resolution every time you connect. Most of the time, however, you will want to
use the server name, as there is no guarantee that the server's address will
remain the same over time.

The FTPPort property

You will use the FTPPort property to specify which server to connect to. The port
for an FTP server is almost always 21.

Example:
FTPL1. FTPPort : =21;

Logging in: the UserName, UserPassword and UserAccount properties
There are two ways in which you can access an FTP server:

anonymous access: Anonymous access is general access to an FTP server
which will allow you to download files and sometimes upload files in a specified
directory (such as the incoming directory).

Private access: Private access allows you to manage a portion of the FTP
server’s directories, allowing you to download and upload files, delete or rename
files and create directories within your assigned home directory.

In both types of access, you will need to specify a user ID and password, and
you optionally need to specify an account for private access. You will use the
UserName, UserPassword and UserAccount properties to provide that

STARTECH INTERNET COMPONENTS 73

information. The following examples demonstrate the information one might
provide to login anonymously or privately.

Example:

FTP1. User Narre: =" anonynous’ ; {anonymous | ogi n}

FTP1. User Passwor d: =’ j doe@cne. com
or

FTP1. User Narre: =" jsmth’; {private |ogin}

FTP1. User Passwor d: =" nysecret’;

FTP1. Us er Account : =" 12345 ; {this line would only be needed
if logging into an ftp server which required an account to | ogin}

To log in anonymously into an FTP server, you will specify a user name of
‘anonymous’ or ‘guest’ and a password consisting of an e-mail address.
Although it is preferrable to send your e-mail address as a password, note that
any string consisting of a ‘@’ character with preceeding and succeeding
alphanumeric characters will suffice as a password.

To log in privately into an FTP server, you will specify the user name, user
password and optionally the user account provided by the FTP server
administrator.

Logging in to the FTP Server

Once you have provided the FTPServer, FTPPort, UserName, UserPassword
and optionally the UserAccount properties, you are ready to log in. The Login
method is used to iniatiate a connection to an FTP server and negotiate the login
procedure.

Example:

Ft pl. Server: = ftp.mcrosoft. coni;
Ft pl. Port: =21;

FTP1. User Nane: =" anonynous’ ;

FTP1. User Passwor d: =" me@er e’ ;
FTPL1. Logi n;

Once the login transaction has completed, you will receive an OnLoggedin
event. Error handing will be covered in a succeeding section. When you receive
an OnLoggedIin event, the InitialDirectory property will contain the current path
on the FTP server.

After Logging In: doing something useful

Once you have successfully logged in to an FTP server, there are several useful
commands you can issue to navigate through the directory structure, modify the
directory structure by deleting, creating or renaming files, list the files in a
directory, or upload, download, delete or rename files. The following table shows
the various tasks that can be accomplished, the method that is used to
accomplish that task and the event that indicates completion of that task.

STARTECH INTERNET COMPONENTS 74

Method Event

Login Login OnLoggedIn

List Files and Directories FTPRefresh OnListingDone
Delete a File DeleteFile OnFileDeleted
Create a Directory CreateDirectory OnDirectoryCreated
Delete a Directory DeleteDirectory OnDirectoryDeleted
Rename a File or Directory | RenameFile OnFileRenamed
Upload a File PutFile OnFileStored
Download a File GetFile OnFileReceived
Change Directory ChangeDirectory | OnDirectoryChange
End the session Quit OnFTPQuit

Listing Files and Directories

You will use the FTPRefresh method to list files and directories. Once the
command has completed, you will receive an OnListingDone event.

The Listing property (type Tstrings) will contain the file listing as obtained from
the FTP server. The following shows an example of what the Listing property
might contain after obtaining a listing from an FTP server:

total 42

STW MW - - 1 root wheel 627 Sep 7 1995 .Links

STW MW - - 1 root wheel 80 Sep 5 1995 . about. htni
drwxr-xr-x 4 root wheel 512 Feb 8 18:24 archive2
drwxr-xr-x 2 root wheel 512 Jun 19 1995 archive3
drwxrwxr-x 12 root ftpmaint 512 Feb 5 22:03 archive4
d--x--x--x 2 root wheel 512 Dec 1 05:50 bin
dr-xr-xr-x 2 root wheel 512 May 22 1994 dev
dr-xr-xr-x 3 root wheel 512 Nov 23 1994 etc
d--x--x--x 2 root wheel 512 Dec 20 18:42 hidden
drwxrwxr-x 2 archiver ftpmaint 512 Dec 7 1994 info
dr-xrwxr-x 5 root wheel 512 Sep 9 1995 neopolis
drwxrwxr-x 5 archiver ftpmaint 512 Cct 27 00: 57 neosoft
drwxrwxr-x 2 archiver ftpmaint 512 Sep 26 1995 organi zati ons
drwxrwxr-x 18 archiver ftpmaint 512 Feb 9 21:53 pub
drwxrwx--x 5 archiver ftpmaint 512 Mar 27 1995 usr
drwxrwxr-x 3 archiver ftpmaint 512 Dec 12 19: 48 vendor

The TFTP component also parses certain listings into two properties of type
TStrings, the Files and Directories properties. After a listing, the Directories
properties will contain the name of all the subdirectories and links found in the
listing, and the Files property will contain the name of all the files found in the
listing. The TFTP component is currently capable of parsing the following type of
listings:

Unix and variants (Ultrix, Win NT, BSD, etc..)

Vax/VMS listings (VMS-Multinet, VMS-UCX, etc...)

IBM-VM listings

Novell File Server listings

STARTECH INTERNET COMPONENTS 75

After a listing command, the InitialDirectory property is also updated to reflect the
current directory on the server.

Deleting a File

To delete a file on an FTP server, you will use the DeleteFile method. The
DeleteFile method takes one argument, the name of the file or the directory.
Once the command has completed, you will receive an OnFileDeleted event.

Example:
FTPL1. Del eteFil e(‘/pub/jsnmth/test.txt’);

Creating a Directory

To create a directory on an FTP server, you will use the CreateDirectory method.
The CreateDirectory method takes one argument, the name of the directory to
be created. Once the command has completed, you will receive an
OnDirectoryCreated event.

Example:

Ftpl. CreateDirectory(‘/pub/jsmth/newdir’);

Deleting a Directory

To delete a directory on an FTP server, you will use the DeleteDirectory method.
The DeleteDirectory method takes one argument, the name of the directory to be
deleted. Once the command has completed, you will receive an
OnDirectoryDeleted event.

Example:

Ftpl. Del eteDirectory(‘/pub/jsmth/newdir’);

Renaming a File or Directory
To rename a file or directory, you will use the RenameFile method. The
RenameFile method is prototyped as follows:
procedur e RenareFi | e(ol dnane, newnare: string);

where the oldname parameter contains the original file name and the newname

parameter contains the new file name. When the command has completed, you
will receive an OnFileRenamed event.

Example:
Ft pl. RenaneFile(‘/pu b/jsmth/files’,’/pub/jsmth/docs’);

Uploading a File

To upload a file to an FTP server, you will set the LocalFile and RemoteFile
properties and call the PutFile method. The LocalFile property contains the name
of the file to be uploaded. The RemoteFile property contains the name of the
destination file on the FTP server. Once this command has completed, you will

receive an OnFileStored event.

STARTECH INTERNET COMPONENTS 76

Example:

FTP1. Local File:="c:\mrror\defaul t. htm;

FTP1. Rermot eFi | e: =" / pub/ users/jsmth/defaul t. htni;
FTP1. Put File;

Downloading a File

To download a file from an FTP server, you will set the RemoteFile and LocalFile
properties and call the GetFile method. The RemoteFile property contains the
name of the file to be downloaded from the FTP server. The LocalFile property
contains the destination file name on the local file system. Once this command
has completed, you will receive an OnFileReceived event.

Example:

Ft pl. RenoteFi | e: =" / pub/ users/jsmth/default. htni;
Ftpl.Local File:=c:\nmirror\default. htni;
Ftpl. GetF |e;

Changing Directory

To change directory on an FTP server, you will use the ChangeDirectory
method. The ChangeDirectory method takes one parameter, the name of the
new directory to change to. Once this command has completed, you will receive
an OnDirectoryChanged event.

Example:
Ft p1. ChangeDi rectory(‘/pub/users’);

Ending a Session

To end an FTP session, you will use the Quit method. The Quit method takes no
parameters. Once the control has disconnected and is ready for another
connection, you will receive an OnFTPQuit event.

Example:
FTPL. Qui t;

Handling Errors

There are two types of error that can be encountered by the FTP component,
fatal errors and non-fatal errors. Fatal errors are errors that hinder the further
normal operation of the component. Examples of fatal errors are:

Inability to log in after calling the Login method, either because the maximum
user limit has been reached, the user id/password/account information is
invalid or the FTP server is down.

Inability to establish a data connection after calling the GetFile or PutFile
method.

Fatal errors generated by the FTP server, resulting in a premature
disconnection.

After a fatal error, the FTP component will generate an OnFtpError and set the
FTPError property to indicate the type of error that occured, will set the Success

STARTECH INTERNET COMPONENTS 77

property to False and will disconnect from the server, which will result in an
OnFtpQuit event to be triggered.

Non-fatal errors are errors which result in attempts to perform an invalid action
by the user, but do not hinder the further operation of the component. Examples
of non-fatal errors are:

Attempting to create a directory with invalid characters in the directory name
or in a directory where the user does not have sufficient privileges.

Attempting to delete a directory which does not exists or in a directory where
the user does not have sufficient privileges.

Attempting to delete a file which does not exists or in a directory where the
user does not have sufficient privileges.

Attempting to upload a file with invalid characters in the directory name or in
a directory where the user does not have sufficient privileges.

After a non-fatal error, the FTP component will generate an OnFtpError and set
the FTPError property to indicate the type of error that occured, and will set the
Success property to False.

The easiest to handle fatal and non-fatal errors is in the OnFTPError event,
which is prototyped as follows:

procedure (Sender : TCbject; info: Ftplnfo; addinfo: string);

where Sender is the TFtp component which triggered the event, info contains an
error code. Note that the addinfo parameter is not used at this time.

The following table lists possible value of the info parameter and their meaning.

STARTECH INTERNET COMPONENTS

78

ftpWinsockNotlInitialized

The winsock DLL could not be loaded.

ftpConnAborted The connection was aborted due to timeout or other error
ftpConnReset The connection was reset by the remote server
ftpConnectTimeOut No connection occured before the specified timeout
ftpOutOfSockets The maximum number of sockets are already in use

ftpNetworkUnreachable

The winsock interface has detected that the network is unreachable

ftpAddressNotAvailable

The specified remote address is not available from this host

ftpConnectionRefused The remote server forcefully rejected the connection
ftpProtocolError A basic FTP command was nhot recognized by the FTP server
ftpCanceled The transfer was canceled with a StopTransfer call.
ftpUnknown An unknown error happened (you should not receive this error)
ftpGeneralWinsockError The winsock interface has failed

ftpNetworkDown The network is down and a connection could not be established

ftplinvalidAddress

The address specified in FTPServer could not be resolved

ftpInternalError

An internal error occured. (you should not receive this error)

ftpAddressResolutionError

An error occured while trying to resolve the server address

ftpPrematureDisconnect The component disconnected before the transaction completed
ftpHostUnreachable The host is not reachable from this machine at this time
ftpNoServer No server specified in FtpServer.

ftpAlreadyBusy A command was issued before the previous command completed.
ftpAcessDenied Access to the server was denied at login

ftpFileOpen The file specified in LocalFile could not be opened.

ftpFileWrite An error occured while writing to LocalFile (such as disk full)
ftpFileRead An error occured while reading from LocalFile

ftpFileNotFound The file specified as a parameter or in RemoteFile was not found
ftpServerDown The FTP server is down and not accepting connections
ftpDataError An error occured while transferring data

ftpBadURL An improperly format URL has been specified

<|<|<|zZ|z|z|z|<|zZ|<|<|<|<|<|<|<|<[<|Z|<|<|<|=<|<|<|<|<|<

*Although an ftpCancelled error is not fatal as far as the TFtp component is concerned, most
servers will respond by closing the connection if the data connection is closed prematurely.

Non fatal errors can also be handled in the associated completion event for the
command that was issued. For example, to check if a call to the CreateDirectory
method succeeded, you could check the value of the Success property in the
handler for the OnDirectoryCreated event. In the following example, the
CreateDirectory method is called. In the event handler for the
OnDirectoryCreated event, the Success property is checked. If it is true, the
ChangeDirectory method is invoked to change to the new directory. If it is false,
the Quit method is invoked to end the FTP session.

Example:
procedur e TFor m SomePr ocedur e;
begi n
Ftpl. CeateDirectory(newdir);
end;

pr 6cedur e TFornil. Ft p1Di rect oryCreat ed(Sender: T(oj ect);
begi n
i f Success=True then Ftpl. ChangeD rectory(newdir)
else Ftpl.Qit;
end;

Putting it together: a simple file transfer

When you put several commands together, you can accomplish useful tasks. For
example, the steps involved in a simple file transfer are as follows:

STARTECH INTERNET COMPONENTS

Log in to the server (using the Login method)
Start the transfer (using the GetFile or PutFile method)
End the session (using the Quit method)

The first example
we will design is a
simple program to
retrieve a file from
an FTP server
when a button is
pressed. In this
example, we will
write a program to
retrieve the file
ftpnenu. ht m from
the /pub directory
on the Borland FTP
server. We place a

TMemo, a TButton and a TFTP component on a form. When the button is pressed, we
want to initialize the properties of the FTP component (such as what server to log into
and what user ID and password to use) and call the Login method. The code for the
button OnClick handler looks like this:

procedure TForml. Buttonld i ck(Sender: Tbject);

begi n

end;

{specify the password}

Ft pl. FTPServer: = ftp. borl and. com ;

FTP1. FTPPort : =21;

{specify login infornation}

FTP1. User Nane: =" anonynous' ;

FTP1. User Passwor d: =' st art ech@eosoft. com ;
FTP1. User Account: ='";

{disable the button while the transaction is in progress}

But t onl. Enabl ed: =Fal se;
{now | og in}
FTP1. Logi n;

Once the component is logged into the FTP server, the OnLoggedin event of the
FTP component is triggered. When we receive this event, we need to start the
transfer of the desired file. The code for the FTP component's OnLoggedin event
looks like this:

procedur e TForml. Ft plLoggedl n(Sender: TCbject);

begi n

syst en}

end;

{Location of file on ftp server}
Ft pl. Renot eFi | e: =' / pub/ ft pnenu. ht m ;

{specify where we want to store the file on the Iocal

FTP1. Local File: =" c:\test.txt"';

{Finally start the transfer}
FTPL1. GetFi | e;

STARTECH INTERNET COMPONENTS 80

Once the file has been transferred, we will receive an OnFileReceived event. At
this point, we want to display the file in the TMemo component and disconnect
from the FTP server. The code for the FTP component's OnFileReceived event
looks like this:

procedure TForml. Ft plFi | eRecei ved(Sender: Tbj ect);
begi n
{load the file into the meno conponent}
Menol. Li nes. LoadFronFil e(' c:\test.txt");
{di sconnect }

Ftpl. Quit;
end;

Once we have sent the request to be disconnected, we should wait for the
component to indicate that it has been disconnected before enabling the button
for another transaction. The OnFtpQuit event indicates when the component has
been disconnected and is ready for another transaction. The code for the FTP
component's OnFtpQuit event handler looks like this:
procedure TForml. Ft p1Ft pQui t (Sender: Tbj ect);
begi n

But t onl. Enabl ed: =True; {reenabl e the button}
end,;

< Form CIo[x]| 't can be a litte

disconcerting to

<ldoctype html public "-//IETF//DTD HTML//EN"+ ﬂ run this program
<HTML*> . ’
since there are no

<HEAD > ———— 1 indications that
the program is

<TITLE+*EORLAND FTP SITE</TITLE> doing anything
] until the TMemo

<METLZ MAME="CENERLTOR" CONTENT="Internet Assistant for Wo: .
<META NAME="AUTHOL" CONTENT="FEoger Wegehoft's= component IS
< fHEAD > - loaded. The next
1] | 3| section looks at

status notification.
Feh el |

Monitoring Transaction Progress

In an interactive FTP program, it is useful to display the current status of the
transaction, especially over slow connections, to show if “anything is happening”.
The OnFtpinfo event is used to report the progress of an FTP transaction. The
OnFTPInfo event is prototyped as follows:

procedure (Sender : Thject; info: Ftplnfo; addinfo: string);
where Sender is the TFtp component which triggered the event, info is the type

of status notification which is being returned and addinfo contains additional
textual information. The following table lists the possible values for the info

parameter.

I ftpServerConnected | A connection to a server has been established. |

STARTECH INTERNET COMPONENTS

ftpServerDisconnected The server has been disconnected from the server.
ftpTraceln Diagnostic trace of input received from server.
ftpTraceOut Diagnostic trace of output sent to server.
ftpFileSize Notification of file size before transfer
ftpDataTrace A block of data has been sent or received.
ftpLoggedin The component has successfully logged in.
ftpListing An individual line of the listing has been received
ftpStartListing The file listing is about to start.
ftpPermissionDenied The requested command is not permitted
ftpResolvingAddress The server name is being resolved
ftpAddressResolved The server name has been resolved into an address.
ftpTransferDone Obsolete. The file transfer has completed
ftpReady Obsolete. The last command has completed
ftpDirectoryRefresh Obsolete. The file listing is ready

Notes:

When you receive an OnFTPInfo event with an info value of
ftpServerConnected, the addinfo property will contain the IP address of the

server.

The ftpTraceln and ftpTraceOut notifications are very useful for diagnostic
output. The addinfo parameter contains everything received (ftpTraceln) or
sent (ftpTraceOut) by the component. This could, for example, be directed to

a TMemo component for display.
Example:

procedure TForml. Ft plFt pl nf o(Sender: TObject; info: FTPInfo;

addi nfo: string);

begi n
case info of
ftpTraceln, ft pTraceQut:
try
Menol. Li nes. Add(addi nf o) ;
except
Menol. d ear;
Menol. Li nes. Add(addi nf o) ;
end,;
end,;
end,;

The FTPFileSize and FTPDataTrace notifications are used to monitor the

progress of a transaction. The FTPFileSize notification is sent to indicate the

number of bytes to be transferred, after a call to the GetFile or PutFile
method. The addinfo paramter will contain the number of bytes to be
transferred. The FtpDataTrace notification is sent to indicate that a block of
data has been transferred. The BytesTransferred property can be used to
check how many bytes have been transferred so far. The FtpDataTrace
notification is sent during a transfer initiated by a call to the FtpRefresh,
GetFile or PutFile method. Note that during an FtpRefresh ,or listing, the

number of bytes to be transferred is not available. The DoingListing property,

if True, indicates that a listing is in progress. If False, a file transfer is in
progress. The TransferTime property contains the elapsed time for the file

transfer, in milliseconds.

The ftpStartListing and the ftpListing notifications are used to indicate that a

new listing is starting and that an individual line of a listing has been

STARTECH INTERNET COMPONENTS 82

received. The addinfo parameter will contain the individual line of the listing,
in the case of an ftpListing notification. These two notifications can be used if
you want to process the file listing as it is being received , rather than after
receiving an OnListingDone event at the completion of the listing.

Adding Status Notifications to the Example

We will now modify the previous example to display status information. We first
add a TLabel component to the form. We can then use the label's caption to
display status information to the user. The first notification we will add is when
the user presses the button. The code for the OnClick handler of the button will
now look like this:

procedure TFornl. Buttonld i ck(Sender: TChject);
begin
Ft pl. FTPServer: = ftp. borl and. com ;
FTP1. FTPPort : =21,
FTP1. User Nane: =" anonynous' ;
FTP1. User Passwor d: =' st art ech@eosoft. conm ;
FTP1. User Account: ="";
But t onl. Enabl ed: =Fal se;
{display the current status}
Label 1. Text: =" Connecting to '+Ftpl. Ft pServer;
{now | og in}
FTPL1. Logi n;
end;

We will then use the OnFTPInfo event handler to add additional status
notifications. The code for the OnFTPInfo event of the FTP component now
looks like this:

procedure TForml. Ft plFt pl nf o(Sender: Tbhject; info: Ftplnfo;
addi nfo: string);
begin
case info of
ft pServer Connect ed: Label 1. Capti on: =" Connected to ' +addi nf o;
ft pLoggedl n: Label 1. Caption: =" Logged in';
ftpFi | eSize: Label 1. Caption:="File Size: '+addinfo;
ftpDataTrace: Label 1. Caption: = Transferring file:’ +
Int ToStr(Ftpl. BytesTransferred)+ bytes';
ftpTransferDone: Label 1. Caption := IntToStr(
FTpl. BytesTransferred)+ ' transferred in' + IntToStr(
Ftpl. TransferTime) + ns';
ft pServer D sconnect ed: Label 1. Capti on: =" D sconnected';
end;

end;

Advanced usage

When the FTP protocol was first designed, it was envisioned that client programs
would operate on a command line, with the user typing in commands and
viewing the output on the console. Therefore, no one saw a need to define
standards for the directory listing that an FTP server might return. Instead,
listings often match the type of listing generated by the operating system. For
example, compare the three listings presented below, generated from a Unix,
VMS and VM system respectively.

STARTECH INTERNET COMPONENTS 83

total 42

STWTWAT-- 1 root wheel 627 Sep 7 1995 .Links
STWEPWAT - - 1 root wheel 80 Sep 5 1995 .about.htm
drwxr-xr-x 4 root wheel 512 Feb 8 18:24 archive2
dr wxr - Xr - X 2 root wheel 512 Jun 19 1995 archive3
drwxrwxr-x 12 root ftpmaint 512 Feb 5 22:03 archive4d
d- - X--X--X 2 root wheel 512 Dec 1 05:50 bin
dr-xr-xr-x 2 root wheel 512 May 22 1994 dev

dr - Xr-xr-x 3 root wheel 512 Nov 23 1994 etc
d--x--x--x 2 root wheel 512 Dec 20 18:42 hi dden
drwxrwxr-x 2 archiver ftpmaint 512 Dec 7 1994 info

A Unix style listing

Dl SK$SHARE: [ANONYMOUS. PUB. W N3. W NVN|

ADDR1 2 10-JUN-1993 23:42 [NASA RUSH NG (RV, RNED, RVE, RE)
README. TXT, 1 25 23-SEP-1994 17:57 [NASA RUSH NG (RWED, RWED, RE, RE)
UNZ51X EXE 1 172 23-NAR- 1994 17:47 [NASA RUSH NG (RWED, RWED, RE, RE)
W NVNFAQ TXT; 2 70 8-QCT-1994 21:55 [NASA DUMOULI N (RWED, RVED, RE, RE)

W NVN_HAS MOVED. TXT; 1
1 7-APR 1995 00: 47 [ANONYMOUS] (RWED, RVWED, RE,)

Total of 270 blocks in 5 files.

A VMS-Multinet listing

$READ- ME FI RST \ 72 25 1 9/30/93 0:14:04 PUBLIC
RVAC HELPCVE V 79 133 2 11/21/88 19:31: 03 PUBLIC
RVAC MDUWLE V 18000 3 5 11/21/88 19:19:15 PUBLI C
RVAC SCRPT V 76 172 2 11/21/88 19:29:09 PUBLIC
WVAC ASSEMBLE F 80 2480 49 10/06/91 0:31:14 PUBLIC
WWAC HELPCVE V 79 189 3 11/21/88 19:52:59 PUBLIC
WVAC MDUWLE V 21976 3 6 5/25/89 0:29:48 PUBLIC
WWAC SCRPT V 76 235 3 11/21/88 19:52: 24 PUBLIC
XFER READ-ME V 67 39 1 9/25/91 20:48:43 PUBLIC
XMDMEN C \Y 70 62 1 10/06/91 0:35:29 PUBLIC
XMDMIAB ASSEMBLE F 80 46 1 7/14/88 22:44:33 PUBLIC

An IBM-VM listing
As you can see, there are no similarities between the three listings. Most
servers, however, support a command (the SYST command) which allows you to
determine which type of server you are connected to. This command is issued
when you login and the result is stored in the ServerType property. If the
command is not supported, the component will assume that the server is a
default FTP server and will treat it as a Unix type server, which represent over
90% of FTP servers in use today. An unfortunate situation still exists with a few
servers which do not support the SYST command and are not Unix type servers.

The values that the FTPServer property can return are:

ftpstDefault: the SYST command is not supported and ftpstUnix is assumed.
ftpstUnix: a Unix style server

ftpstClix: a Clix server (Unix variant)
ftpstUItrix: an Ultrix server (Unix variant)
ftpstMVS: a MVS server

ftpstQVT: a QVT server

ftpstNCSA: an NCSA server
ftpstChameleon: a Chameleon server
ftpstVMSMultinet: a VMS-Multinet server
ftpstVMSUCX: a VMS-UCx server
ftpstVM: an IBM-VM server
ftpstVMVPS: a variation of a VM server

STARTECH INTERNET COMPONENTS 84

There are other possible server types which will be supported in the future
version of the FTP package, but the types supported here represent over 99% of
known servers.

The information provided by the ServerType property is invaluable in parsing a
directory listing. A utility function has also been added to the FTP unit to help you
in parsing directory listings. The ParseListingLine function is used to parse a line
from a directory listing into name, size and date fields and to determine whether
the entry represents a file or a directory. Note that the ParseListingLine function
is a stand-alone function, not a method of the TFTP component. The
ParseListingLine function is prototyped as follows:

function ParselListingLi ne(Server Type: TFTPServer Type; | i ne:
string;var nane,size,date: string; var IsDr: Bool ean): Bool ean;

where the ServerType parameter is the type of the server which generated the
listing line (such as is returned by the TFTP’s component ServerType property)
and the line parameter is a line from the listing. Upon return, the return value if
True indicates that information about the name, size and date of a file or
directory has been stored in the name, size and date parameters. The IsDir
parameter also indicates if the name parameter represents a directory or a file. If
the function returns false, the line passed to the ParseListingLine function did not
contain any file information. The following example shows how one might handle
the TFTP component’'s OnListingDone event to display files and directories in
separate list boxes.

Example:

procedure Forml. FTP1Li sti ngDone(Sender: TChject);
var

i integer;

nane, dat e, si ze: string;

IsDir: Bool ean;
begi n

Fi | esLi st Box. A ear;

D rsLi st Box. d ear;

for i:=0 to FTpl.Listing.Count-1 do

begi n
i f ParseListingLine(Ftpl.ServerType, FTP1l.Listing[i],
nane, size, date, IsDir) then
begi n
if IsDr then DrsListBox.|l tens.Add(nane)
el se Fil esLi st Box. I t ens. Add(nane) ;
end;
end;

end;

Note that in this version of the FTP package, the ParseListingLine function
supports the following servers:
- Unix and variants (Ultrix, Win NT, BSD, etc..)

Vax/VMS listings (VMS-Multinet, VMS-UCX, etc...)

IBM-VM listings

Novell File Server listings

STARTECH INTERNET COMPONENTS 85

Techniques for Transferring Multiple Files.

There are several ways to transfer multiple files. Only one example is presented
here. The basic technique involves keeping two string lists, one containing the
fully qualified path and names of the local files, the other containing the same
number of entries consisting of the fully qualified path and names of the file of
the files on the remote server. The following step by step example how this is
accomplished.

The following example shows how one might transfer all the files in a local
directory to a directory on an FTP server:

Step 1: Building the list of files

Build a list of all the files to transfer and put it in a TStringList. Then build a list of
the target files on the FTP server and put it in another TStringList.

Your two string lists might look like this:

0 c:\html\files\default.htm /publ/users/jdoe/default.htm

1 c:\html\files\banner.gif /pub/users/jdoe/banner.gif

2 c:\html\files\me.gif /publusers/jdoe/me.gif

3 c:\html\files\page2.htm /pub/users/jdoe/page2.htm

4 c:\html\files\page2girl.jpg | /publ/users/jdoe/page2girl.jpg

When you generate the list of files on the FTP server and the local file systems,
keep in mind the differences of file naming conventions between the two
systems. For example, spaces in file names are acceptable in Windows 95 or
Windows NT, but are not acceptable in Unix. You will therefore want to change
the spaces in a file name to underscore characters or other valid characters
when storing the file on the FTP server.

Step 2: Transferring the first file

Upload the first file. Note that after we set up the FTP component, we delete the
first file from the local and remote list. For example:

Ft pl. Local Fi | e: =Local Li st[0] ;

Ft p1. Renot eFi | e: =Renot eLi st[0] ;

Local Li st. Del ete(0);

Renot eLi st . Del et e(0) ;
Ftpl. PutFil e;

Step 3: Transferring the next file

Handle the OnFileStored event and download the next file, if there are more files
to download. For example:

procedure Forml. Ft plFil eSt ored(Sender: Tbj ect);

begi n
i f Ftpl.Success then
begi n
i f Local Li st. Count>0 then
begi n

Ft pl. Local Fi | e: =Local Li st[0] ;
Ft p1. Renot eFi | e;: =Renot eLi st[0] ;

STARTECH INTERNET COMPONENTS 86

Local Li st. Del et e(0);
Renot eLi st . Del et e(0) ;
Ftpl. PutFil e;
Exit;
end;
end;
Qit; {if we get here, we are done, quit}
end;

Techniques for Transferring Multiple Directories

The technique for transferring multiple directories is similar to the technique for
transferring multiple directories. You will need two additional string lists, for
storing the directory names of the local and remote system. You would start by
processing the directory listing in the following fashion:

Build a list of files to transfer, as was done when transferring multiple files
Build a list of subdirectories to process later.

You would then transfer the first file and handle the OnFileReceived or
OnFileStored event as described above. The difference is that when you run out
of files, you will process the first directory in the following fashion:

Build a list of files to transfer, as was done when transferring multiple files
Build a list of subdirectories to process later.

Create the target directory on the FTP server or the local file system.
Download the first file.

You will repeat this procedure until you run out files and directories to process.
This algorithm is used to download directories recursively in the StarFTP
example program which is included with source code in the FTP package.

The TFTP Component in URL Mode

If you want to avoid the burden of handling events, the TFTP component can be
used in URL mode to download or upload single files, by specifying the URL of a
file to transfer. A Uniform Resource Location, or a URL, is a string which
uniquely identifies a resource on the Internet. The following shows examples of
URLS:

http://iwww.borland.com
ftp://mww.neosoft.com/pub/users/s/startech/dI510.zip
mailto: startech@neosoft.com

An FTP URL specifier consists of the string ‘ftp://’, followed by the server name,
followed by the full path of the of the file to be transferred. For example, the URL
‘ftp://mwww.neosoft.com/pub/users/s/startech/dI510.zip’ specifies that to access
this resource, you would use FTP to connect to www.neosoft.com and transfer
file ‘/publ/users/s/startech/dl510.zip’.

Initializing the FTP component for URL mode.

Prior to starting a transfer with the FTP component in URL mode, you must
specify the name of the local file you will be working with. This file will either be
uploaded to the location specified by the URL, or will be used to store the file

STARTECH INTERNET COMPONENTS 87

referenced by the URL. You will specify the name of the local file using the
LocalFile property. You must specify the URL that you will be working with, using
the Ftp_URL property.

Example:

Ftpl.Local File: =" c:\nyfile.htm;
Ftpl.Ftp URL: = ftp://www neosoft.conl pub/users/s/startech/de
fault. htm;

Starting the File Transfer

To start a file transfer with the FTP component in URL mode, you will use the
GetURL method to download a file or the PutURL method to upload a file. You
can also use the ListURL method to store a listing in a file, provided that the URL
in the Ftp_URL property refers to a directory and not to a file.

Example:
Ft pl. Get URL;

or
Ft p1. Put URL;

or
Ft pl. Li st UR_;

Once the file transfer is initiated, the following will happen:

The component will connect to the server.

The component will login anonymously.

The component will transfer the file.

Finally, the component will log off the server and disconnect.

Monitoring Transaction Progress and Completion

The TFTP component will generate an OnFTPQuit event once a transaction in
URL mode has completed. You can also the monitor the progress of the file
transfer by handling the OnFTPInfo event, as was done in interactive mode.

Handling Errors

Unlike transactions in interactive mode where some errors are non-fatal, all
errors in URL mode are fatal. To determine if an error occured during the
transaction, simply check the FTPError property when you handle the
OnFTPQuit event. A value of ftpNone indicates that an error did not occur. Other
possible values are listed below with their meaning:

STARTECH INTERNET COMPONENTS 88

Value Meaning

ftpServerDown The server is down and is not accepting logins.

ftplnvalidServer The server alias specified in FTPServer could not be resolved.
ftpAlreadyBusy A command was issued before the previous command completed.
ftpNoWinsock The winsock DLL could not be loaded.

ftpNoServer No server specified in FtpServer.

ftpSocketError The FTP server refused the connection

ftpReadError A fatal error occured while reading the connection

ftpWriteError A fatal error occured while writing to the connection
ftpProtocolError A basic FTP command was not recognized by the FTP server
ftpAcessDenied Access to the server was denied at login

ftpCancelled The transfer was cancelled with a StopTransfer call.
ftpFileOpen The file specified in LocalFile could not be opened.

ftpFileWrite An error occured while writing to LocalFile (such as disk full)
ftpFileRead An error occured while reading from LocalFile

ftpFileNotFound The file specified as a parameter or in RemoteFile was not found
ftpPermissionDenied The requested command is not permitted

Other methods,properties and events of the FTP component

The FTP command supports other less frequently used methods and properties,
which are described in the following sections:

The IssueCommand method

The IssueCommand method can be used in interactive mode to issue
commands not supported by the component. The IssueCommand method is
prototyped as follows:

procedur e | ssueCommand(comand: string);

where the command parameter is the command to send to the FTP server.

Example:
FTPL1. | ssueCommand(‘ SI TE) ;

Note that it is the reponsibility of the programmer to handle the response from
the server, whcih can be done by using the OnFtpIinfo event with an info
parameter value of ftpTraceln.

The StopTransfer method

The StopTransfer method can be used in interactive or URL mode to stop a file
transfer in progress. In URL mode, the component will disconnect and the
FTPError property will contain the value ftpCancelled. In interactive mode, the
component will disconnect the data connection to interrupt the file transfer and
will generate a non fatal ftpCancelled error. Note that although the FTP
component treats this error as non fatal, note that most FTP servers will react
negatively to the data channel closing prematurely while downloading a file and
will close the command connection, causing the component to disconnect.

Example:
FTP1. StopTransfer;

STARTECH INTERNET COMPONENTS 89

The TransferMode property

The TransferMode property can be used to specify which transfer mode to use
when transferring files, either image mode (more commonly known as binary
mode) or text mode. In image mode, the file transferred is identical byte for byte
with the original. In text mode, the line ends are adjusted to account for the
different conventions of Unix and other systems. You should set the
TransferMode property prior to starting a transfer with a GetFile, GetURL,
PutFile or PutURL method. Listings are automatically downloaded in text mode.

Example:
FTP1. Tr ansf er Mode: =Bi nar yTr ansf er; {i nrage node}

or
FTP1. Tr ansf er Mode: =Asci i Transf er; {text node}

The WinsockStarted property

The WinsockStarted property can be used to detect the presence of a Winsock
Dynamic Link Library on the system, which is required for the component to
function. While it can be assumed that a 32 bit Windows OS supports Winsock,
the same cannot be said about a 16 bit Windows OS. To check for the presence
of a Wisock DLL, first set the WinsockStarted property to True. Then check that
the WinsockStarted property is still True. This allows you to take corrective
action should your program be running on a platform with no Winsock DLL. Such
corrective actions may include disabling the FTP features if they are not
essential to the program or informing the user of the problem and exiting
gracefully.

Example:

Ft p1l. WnsockSt art ed: =Tr ue;
if not Ftpl.WnsockStarted then

begi n
{take corrective actions}
ShowMessage(* Wnsock is not installed on this system’
+ The Upload Wb Site feature will be disabled.’);
Uol oadMenul. Enabl ed: =Fal se;
end;

The Connected property

The Connected property is True when the component is connected to an FTP
server and False otherwise.

The OnFTPNeedInfo event

It is possible to start an interactive session with the FTP component without first
specifying the FTPServer,UserName, UserPassword and UserAccount
properties. In this case, the OnFTPNeedInfo event will be triggered when the
information is needed. The OnFTPNeedInfo event is prototyped as follows:

procedur e (Sender: T(hj ect ; need: TFt pl nf oNeeded; var val ue: string);
type TFt pl nf oNeeded=(Host , User, Passwor d, Account) ;

STARTECH INTERNET COMPONENTS 90

where the Sender parameter is the FTP component which triggered the event
and the need parameter is the type of information needed. The value parameter
should be set to the needed info prior to exiting the event handler. The need
parameter is one of:

Host: specify the FTP server name or address in the value parameter.
User: specify the user name in the value parameter.

Password: specify the user password in the value parameter.
Account: specify the user account in the value parameter.

The following example shows how one might handle the OnFTPNeedInfo event,
by displaying an input box and passing the value entered in the value parameter.

Example:
procedure Forml. Ft plFTPNeedl nf o(Sender: Tbj ect; need

TFt pl nf oNeeded; var value: string);

var
s: string;
begi n
case need of
Host: s:="server alias or address’;
User: s:=user |D;
Password: s:="user password’
Account: s:='user account’;
end;
val ue: =l nput Box(‘ Need Login Info’',’ Please enter the ‘+s,’");
end;

The FTPURLDialog Component

The FTPUrIDialog component allows you to retrieve a file on an FTP server, or
store a file to an FTP server, with a minimum of user interaction.

Initializing the FTPURLDialog component

Before starting the transfer, there are several properties which must be
initialized, which tell the component which file to download or upload for
example.

The LocalFile and URL properties

Prior to starting a transfer with the FTPURLDialog component, you must specify
the name of the local file you will be working with. This file will either be uploaded
to the location specified by the URL, or will be used to store the file referenced
by the URL. You will specify the name of the local file using the LocalFile
property. You must specify the URL that you will be working with, using the URL

property.

Example:

Ft pURLD al ogl. Local File: =" c:\nyfile. htm;
Ft pURLDI al ogl. URL: =" ft p: // www. neosoft. cond pub/ user s/ s/ st art ech/ def
ault.htm ;

STARTECH INTERNET COMPONENTS 91

Specifying the direction and type of the transfer

You will specify the direction of the transfer with the Action property. Set Action
to fd_GetURL to transfer the file specified by the URL property to the file
specified by the LocalFile property. Set Action to fd_PutURL to transfer the file
specified by the LocalFile property to the file specified by the URL property.

Example:

Ft pURLD al ogl. Action:=fd GetURL; {download a file}
or

Ft pURLD al ogl. Action:=fd PutURL; {upload a file}

You will specify the type of transfer with the TransferType property. Set
TransferType to BinaryTransfer to transfer binary files, or to AsciiTransfer to
transfer text files.

Specifying Login information

If you want to upload a file to a private directory or access a private FTP server,
you must specify the user ID and user password using the UserlID and
UserPass properties. If the UserlD and UserPass properties are not set, you will
log in anonymously.

Example:

FTPURLD al ogl. UserID. =" jsmth’;
FTPURLD al ogl. User Pass: =’ nypassword’ ;

Starting the File Transfer
Getting URL Once you have set the LocalFile, URL,

Transferred 30208 bytes Action and optionally the TransferType,
e UserPass and UserID properties, you
can initiate the file transfer by calling the
Execute method. A dialog box will
popup, with a status bar, showing the progress of the transfer. If Execute returns
False, then the transfer did not succeed and you can check the Error property to
determine the cause of the failure. At the end of the transfer, the Execute
method returns true if the file transfer succeeded, false if the file tranfer failed, in
which case you can determine the exact cause of the failure by reading the Error
property.

Transaction Completion

When the transaction completes, the Execute method returns true if the file
transfer succeeded or false if the file tranfer failed. The Error property yields
additional information about what type of error occurred. The following table lists
the possible values of the Error property and their meaning.

STARTECH INTERNET COMPONENTS 92

Value Meaning

ftpServerDown The server is down and is not accepting logins.

ftplnvalidServer The server alias specified in FTPServer could not be resolved.
ftpAlreadyBusy A command was issued before the previous command completed.
ftpNoWinsock The winsock DLL could not be loaded.

ftpNoServer No server specified in FtpServer.

ftpSocketError The FTP server refused the connection

ftpReadError A fatal error occured while reading the connection

ftpWriteError A fatal error occured while writing to the connection
ftpProtocolError A basic FTP command was not recognized by the FTP server
ftpAcessDenied Access to the server was denied at login

ftpCancelled The transfer was cancelled with a StopTransfer call.
ftpFileOpen The file specified in LocalFile could not be opened.

ftpFileWrite An error occured while writing to LocalFile (such as disk full)
ftpFileRead An error occured while reading from LocalFile

ftpFileNotFound The file specified as a parameter or in RemoteFile was not found
ftpPermissionDenied The requested command is not permitted

A sample FTPURLDialog program

The following code snipped is the code for a button’s OnClick event handler,
which performs a file transfer:
procedure Forml. Buttonld ick(Sender: TObject);
begi n

Ft pURLD al ogl. Local File:="c:\nyfile. htm;

Ft pURLDI al ogl. URL: =" ft p: //www. acrre. comf users/jsnmith/defaul t.
htm ;

FTPURLD al ogl. Acti on: =f d_Put UR_;

FTPURLD al ogl. Tr ansf er Type: =Bi naryTr ansfer;

FTPURLD al ogl. UserID. =" jsnmith’;

FTPURLD al ogl. Passwor d: =" nysecret’;

i f not FTPURLD al ogl. Execut e then

ShowMessage(‘ Transfer Failed!’);

end;

As you can see, the FTPURLDialog component greatly simplifies the task of FTP
file transfers and minimizes the amount of code needed.

Customizing the appearance of the FTPURLDialog Component

You can customize the appearance, placement and strings that are used by the
FTPURLDialog component. This can be done either with the component editor
or programmatically.

Using the component editor to customize the FTPURLDialog component

You can access the component editor in design mode by double clicking the
component or by highlighting the component, right clicking and choosing Edit
from the pop up menu.

STARTECH INTERNET COMPONENTS

FtpURLDialog Component Editor

{Form Appearancez’ Language T Status Display
~Fomt——————— Position
Select I & Screen Center
" Custom
AaBbCcDd Top[0 | Lef [0 |
—Border Color
i+ Dialog |:| Background Edit I
" Single =
~ None . Text Edit |

Form Appearance T T Statuz Dizplay
Connecting... [Connecting.. |
Connected to !EDHHECtEd to |
Logged in iLugged in to server |
Transferring !Transfening file |
Cancel !Ean-::el |
Ok | Cancel | Test | Star Tech

FtpURLDialog Component Editor

Form Appearance T

.. e

iStatus Display

Language

|

Dizplay
v Status Text

[+ Status Bar
v Byte Counter

¥ Cancel Button

—Statuz Bar

Height:
Width:
. Foreground Edit I
|:| Background Editl

Ok | Cancel | Test StarTech
Once you have modified the desired

properties, you can press the Test button to
preview the appearance of the control. The

The first page of the
component editor lets
you specify the font to be
used for the text
messages, the color of
the background and the
text, the position of the
window and the border
used by the window.

The second page of the
component editor lets
you specify the strings
that will be used to
display completion
status to the user. This
allows you to customize

the component for
foreign language
applications.

The third page of the
component editor lets
you specify which
elements of the status
display to use, the size
of the status bar and the
colors used for the status
bar.

Tranzsferring file

34580

STARTECH INTERNET COMPONENTS 94

FTPURLDialog component displayed on the right is an example of a component
with no borders, a different font and all four elements of the status display in use.
Note that displaying the FTPURLDialog with no border is useful if you want to
give the impression that the status display is part of another form rather than a
dialog box.

Modifying the FTPURLDialog Programmatically

If you want to modify the appearance of the control at run time, you can use the
following properties:

The Border property can be set to one of the following values:
bsNone for no border
bsDialog for a dialog box border
bsSingle for a single line border
The Color property can be used to set the background color of the dialog
box.
The Font property can be used to set the font used by the component for
status display.
The StatusBarColor and StatusBarBackground properties can be used to set
the foreground and background color of the status bar.
The StatusBarHeight and StatusBarWidth properties can be used to set the
size of the status bar.
The Position, WindowLeft and WindowTop properties can be used to set the
position of the dialog box.
You can select which elements of the status display will appear in the dialog
box by adding one or more of the following values to the Options set
property:
- StatusText: status text is displayed at the top of the window.
StatusBar: a progress indication bar is displayed in the middle of the
window.
ByteCounter: a line/byte counter is displayed at the bottom of the
status window.
CancelButton: a cancel button is displayed at the bottom of the status
window.
You can specify the text of the status display strings by using the
LanguageStrings property, of type TStrings. The LanguageStrings property
for the FTPURLDialog component consists of five strings, which must be in
the exact order specified below:
Connecting... string
Connected to... string
Logged in string
Transferring file string
Cancel button caption

STARTECH INTERNET COMPONENTS 95

Additional properties of the FTPURLDialog Component

The Caption property is used to specify the caption of the status display window.
Note that if the window has no border, it will not have a title bar and it is therefore
not necessary to provide a caption.

The TimeOut property is used to specify a timeout value for the FTP transaction.
The timeout period is specified in milliseconds. For example, to specify a timeout
value of 30 seconds, you will set the TimeOut property to 30000. If nothing is
received within the time specified in the TimeOut property, the file transfer will be
aborted and the Execute method will return False. In this case, the Error
property should contain the value ftpTimeOut.

STARTECH INTERNET COMPONENTS 96

THE HTTP PACKAGE

The THttp Component

This chapter has yet to be written, the following list of public methods, properties
and events is included as minimal help.

const
HTTP_SI ZEUNKNOM=- 1,

type TH t pl nfo=(httpConnecting, httpConnected, httpSocketError,

htt pl nval i dServer, httpTraceln, httpTraceQut, httpReadError,

htt pWiteError, httpD sconnected, httpHeaderslLoaded, httpCancelled
)

type TH t pMet hod=(httpGCet, htt pPost);

type THtpVersi on=(HITP_1_0, HTTP_0_9);

type THt pl nf oEvt =pr ocedur e(Sender: T(bj ect ;i nf o:

TH t pl nf 0; addi nfo: string) of object;

type THt pQut put Evt =pr ocedur e(Sender: TCbj ect;data: string) of
obj ect;

type THtp = class(TSt ar Sock)
public
pURL: PChar;
Resul t Dat e, Resul t Cont ent Type: string;
Resul t St at us, Resul t Si ze: Longl nt;
procedure Cet;
publ i shed
property Proxy: string read FProxy wite FProxy;
property ProxyPort: integer read FProxyPort wite
FPr oxyPort ;
property UseProxy: Bool ean read FUseProxy wite FUseProxy;
property URLEdit: TEdit read FUrLEdit wite FURLEdit;
property OnHtplnfo: THtpl nfoEvt read FHt pl nf oEvent
wite FH tplnfoEvent;
property OnHtpQutput: THtpQut put Evt read
FH t pQut put Event wite FHt pQut put Event;
property WnsockStart ed,;
property Version;
property HtpVersion: THtpVersion read FHtpVersion wite
FH t pVer si on;
property Result Headers: TStrings read FHeaders wite
Set Header s;
property URL: string read FURL wite FUR;
end;

type El nval i dHt pURL=cl ass(Exception);

The TStarimage Component

This section has yet to be written, the following list of public methods, properties
and events is included as minimal help.

type TStarl mage=cl ass(TCQust onContr ol)
publ i shed

property Filename: TFilenane read FFileNanme wite
Set Fi | enane;

STARTECH INTERNET COMPONENTS

end;

97

STARTECH INTERNET COMPONENTS 98

THE IRC PACKAGE

This chapter has yet to be written, the following list of public methods, properties
and events is included as minimal help.

type Tl rcChannel =record
Nane: string[16];
Topi c: string[100];
Menbers: TStrings;
Limt: string[10];
Mode: string[20];
I nUse: Bool ean;

end;

type Tl RCChannel Li st =record
Nare: PChar;
Topi ¢c: PChar;
Nunikers: integer;
end;

type
TI RC = cl ass(TSt ar Sock)
private
public
property GChannel s[Channel Num Integer]: TIRCChannel read
Get Channel ;
property GChannel List[Num Integer]: TIRCChannel List read
FGet Channel Li st ;
functi on Connect: Bool ean;
procedure Quit(QuitMssage: string);
function Joi nChannel (channel , password: string): integer;
procedure WiteChannel Message(Channel Num i nt eger ; Msg:
string);
procedure WitePrivateMessage(N ckname, Msg: string);
procedur e QueryMde(Channel Num i nteger);
procedur e QueryNanmes(Channel Num i nteger);
procedur e LeaveChannel (Channel Num integer;nsg: string);

procedur e
Set Channel Mode(Channel Num i nt eger ; node, paraneter: string);

procedur e Set Channel Topi ¢c(Channel Num i nt eger ; Topi c:
string);

procedure |InviteToChannel (Channel Num i nteger; N cknane:
string);

procedur e Ki ckFr omChannel (Channel Num

i nt eger ; N cknare, Conment: string);
procedur e F ndWio(Mask: string);
procedure Wite(line: string);
procedur e Cet Channel Li st;

procedur e Get CTCPI nf o(N cknarre: string; I nfoType:
TCTCPI nf0) ;
publ i shed

property | RCServer:string read FServer Wite Set Server;

property IRCPort:Wrd read FPort wite FPort;

property UserN cknanme: string read FNick wite SetN ck;

property User Real Nane: string read FRealNane wite
FReal Nane;

property IRCOnfo: TIRCOnfoEvent read FOninfo wite
FOnl nf o;

STARTECH INTERNET COMPONENTS

property OnSer ver Message: TSer ver MessageEvent
FServer Message wite FServer Message;

property OPri vat eMessage: TPri vat eMessageEvent
FPri vat eMessage wite FPrivat eMessage;

property (nChannel Message: TChannel MessageEvent
FChannel Message wite FChannel Message;

property Channel Enter: TChannel Ent er Event
FChannel Enter wite FChannel Enter;

r ead
r ead
r ead

r ead

property nChannel Leave: TChannel Event read FChannel Leave

wite FChannel Leave;

property Channel O eat e: TChannel Event
FChannel Create wite FChannel O eat e;

property MChannel Dest roy: TChannel | nf oEvent
FChannel Destroy wite FChannel Destroy;

property Channel Topi c: TChannel MessageEvent

FChannel Topi ¢ write FChannel Topi c;

property nChannel MenbersLoaded: TChannel | nf oEvent
FChannel Menbers wite FChannel Menber s;

property nChannel ModeChange: TChannel MessageEvent
FOvbdeSet wite FCOVbdeSet;

property Channel sLi st Done: TNot i f yEvent
FChannel Li st Done wite FChannel Li st Done;
property Channel sLi st Updat i ng: TNot i f yEvent

FChannel sUpdati ng wite FChannel sUpdati ng;

r ead
r ead

r ead

r ead

r ead

r ead

r ead

property nFindResul t: TFi ndResul t Event read FResultEvent

wite FResul t Event;

property Connect ed: Boolean read FConnected
DummyBool ean;

property MNunChannels: integer read FNunChannels
FNunChannel s;

wite

wite

property OnCTCPI nfoRequest: TCTCPEvent read FCTCPRequest

wite FCTCPRequest ;

property OnCTCPInfoResult: TCTCPEvent read FCTCPResult

wite FCTCPResul t;
end;

STARTECH INTERNET COMPONENTS 100

TTCPCLIENT AND TTCPSERVER

This chapter has yet to be written, the following list of public methods, properties
and events is included as minimal help.

TTCPA i ent =cl ass(TSt ar Sock)
pr ot ect ed
constructor O eate(AOmer: TConponent); overri de;
publ i shed
property Handl e;
property Server: string read FServer wite SetServer;
property Host: string read FHost;
property Address: string read FAddress;
property Port: u_short read FPort wite FPort;
property nConnect: TNotifyEvent read FOnConnect wite
FOnConnect ;
property OnD sconnect: TNotifyEvent read FOnD sconnect
wite FOnDi sconnect;
property nRead: TNotifyEvent read FOnRead wite FOnRead;
property OWite: TNoti fyEvent read FOZWite wite
FOnWii te;
property WnsockStart ed,;
end;

TTCPSer ver =cl ass(TSer vSock)
pr ot ect ed
constructor O eate(AOmer: TConponent); overri de;
publ i shed
property Handl e;
property Server:string read FServer wite Set Server;
property Host: string read FHost;
property Address: string read FAddress;
property Port: u_short read FPort wite FPort;
property nAccept: TServerEvent read FOnAccept wite
FOnAccept ;
property OnD sconnect: TServerEvent read FOnD sconnect
wite FOnDi sconnect;
property nRead: TServerEvent read FOnRead wite FOnRead;
property OWite: TServerEvent read FOZWite wite
FOnWii te;
property WnsockStart ed,;
end;

*»***TTCPClient inherits from TStarSock:

TSt ar Sock = cl ass(TConponent)
public

procedure d ose;

procedure Qoen;

property WnsockStarted: Boolean read |SStarted wite
Test Start ed;

function GetBytesSent : integer;

function RecvText : string;

procedure SendText(const s : string);

function SendBuffer(buf: PChar; cnt : integer) : integer;

procedure Set Server(server: string);

property Conn : TSt Socket read FConn;

function GetLocal Host: string;

STARTECH INTERNET COMPONENTS 101

function GetLocal Address: string;
function GetLocal Port: integer;
constructor Create(AOmer : TConponent); overri de;
destruct or Destroy; overri de;
end;

****TTCPServer inherits from TServSock:

TServSock = cl ass(TConponent)
public
procedure d ose;
procedure Listen;
function GetLocal Host: string;
function GetLocal Address: string;
function GetLocal Port: integer;
procedure Set Server(server: string);
function DoAccept: integer;
function GetBytesSent : integer;
function RecvText : string;
procedure SendText(const s : string);
function Getdient(cid : integer) : TStSocket;
function dientGetBytesSent(cid: integer) : integer;
function dientRecvText(cid: integer) : string;
function dientRecvBuffer(cid: integer;buf: PChar; cnt
integer) : integer;
function dientSendBuffer(cid: integer;buf: PChar;cnt:
i nteger): integer;
procedure dientSendText (cid: integer;const s : string);
procedure dientd ose(cid: integer);
constructor Create(AOmer : TConponent); overri de;
destructor Destroy; overri de;
end;

STARTECH INTERNET COMPONENTS 102

APPENDIX A - INTERNET RFC

This section contains information about the Internet RFCs (standards
documents) that apply to the various protocols employed by the StarTech
components.

The SMTP Protocol

The SMTP protocol is used by the components in the SendMail package to send
mail. It is described in RFC 821, which can be obtained from:

http://ww ci s. ohio-state.edu/ htbin/rfc/rfc821. htm

The POP3 Protocol

The POP3 protocol is used by the components in the GetMail package to
retrieve mail from POP3 servers. It is described in RFC 1725, which can be
obtained from:

http://ww ci s. ohio-state.edu/htbin/rfc/rfcl725. htn

THE MIME Protocol

The MIME protocol is used to format multimedia content for transfer over the
Internet. It is described in RFC 1521, which can be obtained from:

http://www ci s. ohi o-state. edu/htbin/rfc/rfcl521. htm

The FTP Protocol

The FTP protocol is used by the components of the FTP package to transfer
files. It is described in RFC 959, which can be obtained from:

http://wwv ci s. ohi o-state. edu/ htbin/rfc/rfc959. ht m

STARTECH INTERNET COMPONENTS 103

Must Read if you are Designing a Mail Client

RFC 1824, "Multimedia E-mail (MIME) User Agent checklist", provides a
mechanism for testing your MIME compatible mail client. It includes the
procedure for contacting an auto responder which will send you various types of
MIME formatted messages.

STARTECH INTERNET COMPONENTS 104

APPENDIX B - ADDITIONAL MATERIAL

Registered MIME Types

The following document describes registered MIME types, which are discussed
in the GetMail section. For the most updated listing and detailed information
about each type, see:

ftp://venera.isi.edu/in-notes/ianalassignnents/ medi a-types/

Type Subt ype Description Ref erence
t ext plain [RFC1521, Bor enst ei n
ri cht ext [RFC1521, Borenstei n
enri ched [RFC1896
t ab- separ at ed- val ues [Paul Li ndner
ht m [RFC1866
sgm [RFC1874
nul tipart m xed [RFC1521, Borenstei n
alternative [RFC1521, Bor enst ei n
di gest [RFC1521, Borenstei n
paral | el [RFC1521, Bor enst ei n
appl edoubl e [MacM ne, Patri k Fal tstronj
header - set [Dave O ocker
formdata [RFC1867
rel ated [RFC1872
report [RFC1892
voi ce- message [RFC1911
message rfc822 [RFC1521, Bor enst ei n
partial [RFC1521, Borenstei n

application

ext er nal - body
news

oct et -stream

post scri pt [RFC1521, Bor enst ei n
oda [RFC1521, Borenstei n
at oni crai | [atom cnai |, Borenstei n
andr ew i nset [andrew i nset, Borenstein
slate [slate,terry crow ey
wta [Wang Info Transfer, Larry Canpbell
dec- dx Doc Trans, Larry Canpbel l
dca-rft [1BM Doc Content Arch, Larry Canpbell

acti vemessage
rtf

appl efile
mac- bi nhex40
news- message-id
news-transmn ssion
wor dperfect5. 1
pdf

zip

macw it ei
mswor d
renmote-printing
mat hemat i ca
cyber cash
commongr ound

i ges

ri scos

eshop

x400- bp

sgn

cal s-1840

vnd. f ramenaker
vnd. m f
vnd. ms- exce
vnd. ns- power poi nt

[RFC1521, Bor enst ei n
[RFC 1036, Henry Spencer

[RFC1521, Borenstei n

[Ehud Shapi ro

[Paul Li ndner

[MacM ne, Patri k Fal t stronj
[MacM ne, Patri k Fal tstronj
[RFC1036, Henry Spencer
[RFC1036, Henry Spencer
[Paul Li ndner

[Paul Li ndner

[Paul Li ndner

[Paul Li ndner

[Paul Li ndner

[RFC1486, Rose

[Van Nostern

[East | ake

[d azer

[Parks

[Smith

[Kat z

[RFC1494

[RFC1874

[RFC1895

[Vex! er

[VeéxI er

[@ll

[atl

STARTECH INTERNET COMPONENTS

105

i mage

audi o

vi deo

vnd. ns- pr oj ect
vnd. ns- wor ks
vnd. ns- t nef
vnd. svd

1 peg
gif

i ef

g3f ax
tiff
cgm
napl ps
vnd. dwg
vnd. svf
vnd. dxf

basi ¢
32kadpcm

npeg
qui cktime
vnd. vi vo

[RFC1521, Borenstei n

[RFC1521, Bor enst ei n

| mage Exchange For mat [RFC1314
[RFC1494

Tag | mage File Format [Rose
Conputer Graphics Metafile [Francis
[Fer ber

[Mol i ne

[Moline

[Mol i ne

[RFC1521, Bor enst ei n]
[RFC1911]

[RFC1521, Bor enst ei n]
[Paul Li ndner]
[Vl fe]

