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Preface

S-Lang is an interpreted language that was designed from the start to be easily embedded into a
program to provide it with a powerful extension language. Examples of programs that use S-Lang
as an extension language include the jed text editor and the slrn newsreader. Although S-Lang
does not exist as a separate application, it is distributed with a quite capable program called slsh
(“slang-shell”) that embeds the interpreter and allows one to execute S-Lang scripts, or simply
experiment with S-Lang at an interactive prompt. Many of the the examples in this document are
presented in the context of one of the above applications.

S-Lang is also a programmer’s library that permits a programmer to develop sophisticated platform-
independent software. In addition to providing the S-Lang interpreter, the library provides facilities
for screen management, keymaps, low-level terminal I/O, etc. However, this document is concerned
only with the extension language and does not address these other features of the S-Lang library.
For information about the other components of the library, the reader is referred to The S-Lang
Library Reference.

A Brief History of S-Lang

I first began working on S-Lang sometime during the fall of 1992. At that time I was writing
a text editor (jed), which I wanted to endow with a macro language. It occured to me that an
application-independent language that could be embedded into the editor would prove more useful
because I could envision embedding it into other programs. As a result, S-Lang was born.

S-Lang was originally a stack language that supported a postscript-like syntax. For that reason,
I named it S-Lang, where the S was supposed to emphasize its stack-based nature. About a year
later, I began to work on a preparser that would allow one unfamiliar with stack based languages
to make use of a more traditional infix syntax. Currently, the syntax of the language resembles
C, nevertheless some postscript-like features still remain, e.g., the ‘%’ character is still used as a
comment delimiter.
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Chapter 1

Introduction

S-Lang is a powerful interpreted language that may be embedded into an application to make
the application extensible. This enables the application to be used in ways not envisioned by the
programmer, thus providing the application with much more flexibility and power. Examples of
applications that take advantage of the interpreter in this way include the jed editor and the slrn
newsreader.

1.1 Language Features

The language features both global and local variables, branching and looping constructs, user-defined
functions, structures, datatypes, and arrays. In addition, there is limited support for pointer types.
The concise array syntax rivals that of commercial array-based numerical computing environments.

1.2 Data Types and Operators

The language provides built-in support for string, integer (signed and unsigned long and short),
double precision floating point, and double precision complex numbers. In addition, it supports user
defined structure types, multi-dimensional array types, lists, and associative arrays. To facilitate the
construction of sophisticated data structures such as linked lists and trees, the language also inclues
a “reference” type. The reference type provides much of the same flexibility as pointers in other
languages. Finally, applications embedding the interpreter may also provide special application
specific types, such as the Mark Type that the jed editor provides.

The language provides standard arithmetic operations such as addition, subtraction, multiplication,
and division. It also provides support for modulo arithmetic as well as operations at the bit level,
e.g., exclusive-or. Any binary or unary operator may be extended to work with any data type,
including user-defined types. For example, the addition operator (+) has been extended to work
between string types to permit string concatenation.

The binary and unary operators work transparently with array types. For example, if a and b are
arrays, then a + b produces an array whose elements are the result of element by element addition of
a and b. This permits one to do vector operations without explicitly looping over the array indices.

1



2 Chapter 1. Introduction

1.3 Statements and Functions

The S-Lang language supports several types of looping constructs and conditional statements.
The looping constructs include while, do...while, for, forever, loop, foreach, and for. The
conditional statements include if, if-then-else, and !if.

User defined functions may be defined to return zero, one, or more values. Functions that return zero
values are similar to “procedures” in languages such as PASCAL. The local variables of a function
are always created on a stack allowing one to create recursive functions. Parameters to a function
are always passed by value and never by reference. However, the language supports a reference data
type that allows one to simulate pass by reference.

Unlike many interpreted languages, S-Lang allows functions to be dynamically loaded (function
autoloading). It also provides constructs specifically designed for error handling and recovery as
well as debugging aids (e.g., function tracebacks).

Functions and variables may be declared as private belonging to a namespace associated with the
compilation unit that defines the function or variable. The ideas behind the namespace implemen-
tation stem from the C language and should be quite familiar to any one familiar with C.

1.4 Error Handling

The S-Lang language has a try/throw/catch/finally exception model whose semantics are similar
to that of other languages. Users may also extend the exception class hierarchy with user-defined
exceptions. The ERROR BLOCK based exception model of S-Lang 1.x is still supported but deprecated.

1.5 Run-Time Library

Functions that compose the S-Lang run-time library are called intrinsics. Examples of S-Lang
intrinsic functions available to every S-Lang application include string manipulation functions such
as strcat, strchop, and strcmp. The S-Lang library also provides mathematical functions such as
sin, cos, and tan; however, not all applications enable the use of these intrinsics. For example, to
conserve memory, the 16 bit version of the jed editor does not provide support for any mathematics
other than simple integer arithmetic, whereas other versions of the editor do support these functions.

Most applications embedding the languages will also provide a set of application specific intrinsic
functions. For example, the jed editor adds over 100 application specific intrinsic functions to the
language. Consult your application specific documentation to see what additional intrinsics are
supported.

Operating systems that support dynamic linking allow a slang interpreter to dynamically link ad-
ditional libraries of intrinsic functions and variables into the interpreter. Such loadable objects are
called modules. A separate chapter of this manual is devoted to this important feature.
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1.6 Input/Output

The language supports C-like stdio input/output functions such as fopen, fgets, fputs, and fclose.
In addition it provides two functions, message and error, for writing to the standard output device
and standard error. Specific applications may provide other I/O mechanisms, e.g., the jed editor
supports I/O to files via the editor’s buffers.

1.7 Obtaining more information about S-Lang

Comprehensive information about the library may be obtained via the World Wide Web from
http://www.jedsoft.org/slang/ . In particular see http://www.jedsoft.org/slang/download.html for
downloading the latest version of the library.

Users with generic questions about the interpreter are encouraged to post questions to the Usenet
newsgroup alt.lang.s-lang. More specific questions relating to the use of S-Lang within some
application may be better answered in an application-specifc forum. For example, users with ques-
tions about using S-Lang as embedded in the jed editor are more likely to be answered in the
comp.editors newsgroup or on the jed mailing list. Similarly users with questions concerning slrn
will find news.software.readers to be a valuable source of information.

Developers who have embedded the interpreter are encouraged to join the S-Lang mailing list. To
subscribe to the list or just browse the archives, visit http://www.jedsoft.org/slang/mailinglists.html
.

http://www.jedsoft.org/slang/
http://www.jedsoft.org/slang/download.html
http://www.jedsoft.org/slang/mailinglists.html
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Chapter 2

Overview of the Language

This purpose of this section is to give the reader a feel for the S-Lang language, its syntax, and its
capabilities. The information and examples presented in this section should be sufficient to provide
the reader with the necessary background to understand the rest of the document.

2.1 Variables and Functions

S-Lang is different from many other interpreted languages in the sense that all variables and func-
tions must be declared before they can be used.

Variables are declared using the variable keyword, e.g.,

variable x, y, z;

declares three variables, x, y, and z. Note the semicolon at the end of the statement. All S-Lang

statements must end in a semi-colon.

Unlike compiled languages such as C, it is not necessary to specify the data type of a S-Lang
variable. The data type of a S-Lang variable is determined upon assignment. For example, after
execution of the statements

x = 3;

y = sin (5.6);

z = "I think, therefore I am.";

x will be an integer, y will be a double, and z will be a string. In fact, it is even possible to re-assign
x to a string:

x = "x was an integer, but now is a string";

Finally, one can combine variable declarations and assignments in the same statement:

variable x = 3, y = sin(5.6), z = "I think, therefore I am.";

Most functions are declared using the define keyword. A simple example is

5



6 Chapter 2. Overview of the Language

define compute_average (x, y)

{

variable s = x + y;

return s / 2.0;

}

which defines a function that simply computes the average of two numbers and returns the result.
This example shows that a function consists of three parts: the function name, a parameter list, and
the function body.

The parameter list consists of a comma separated list of variable names. It is not necessary to declare
variables within a parameter list; they are implicitly declared. However, all other local variables used
in the function must be declared. If the function takes no parameters, then the parameter list must
still be present, but empty:

define go_left_5 ()

{

go_left (5);

}

The last example is a function that takes no arguments and returns no value. Some languages
such as PASCAL distinguish such objects from functions that return values by calling these objects
procedures. However, S-Lang, like C, does not make such a distinction.

The language permits recursive functions, i.e., functions that call themselves. The way to do this in
S-Lang is to first declare the function using the form:

define function-name ();

It is not necessary to declare a list of parameters when declaring a function in this way.

Perhaps the most famous example of a recursive function is the factorial function. Here is how to
implement it using S-Lang:

define factorial (); % declare it for recursion

define factorial (n)

{

if (n < 2) return 1;

return n * factorial (n - 1);

}

This example also shows how to mix comments with code. S-Lang uses the ‘%’ character to start a
comment and all characters from the comment character to the end of the line are ignored.

2.2 Strings

Perhaps the most appealing feature of any interpreted language is that it frees the user from the
responsibility of memory management. This is particularly evident when contrasting how S-Lang
handles string variables with a lower level language such as C. Consider a function that concatenates
three strings. An example in S-Lang is:
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define concat_3_strings (a, b, c)

{

return strcat (a, b, c);

}

This function uses the built-in strcat function for concatenating two or more strings. In C, the
simplest such function would look like:

char *concat_3_strings (char *a, char *b, char *c)

{

unsigned int len;

char *result;

len = strlen (a) + strlen (b) + strlen (c);

if (NULL == (result = (char *) malloc (len + 1)))

exit (1);

strcpy (result, a);

strcat (result, b);

strcat (result, c);

return result;

}

Even this C example is misleading since none of the issues of memory management of the strings
has been dealt with. The S-Lang language hides all these issues from the user.

Binary operators have been defined to work with the string data type. In particular the + operator
may be used to perform string concatenation. That is, one can use the + operator as an alternative
to strcat:

define concat_3_strings (a, b, c)

{

return a + b + c;

}

See the section on 3.1.4 (Strings) for more information about string variables.

2.3 Referencing and Dereferencing

The unary prefix operator, &, may be used to create a reference to an object, which is similar to a
pointer in other languages. References are commonly used as a mechanism to pass a function as an
argument to another function as the following example illustrates:

define compute_functional_sum (funct)

{

variable i, s;

s = 0;

for (i = 0; i < 10; i++)

{

s += (@funct)(i);
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}

return s;

}

variable sin_sum = compute_functional_sum (&sin);

variable cos_sum = compute_functional_sum (&cos);

Here, the function compute functional sum applies the function specified by the parameter funct
to the first 10 integers and returns the sum. The two statements following the function definition
show how the sin and cos functions may be used.

Note the @ operator in the definition of compute functional sum. It is known as the dereference
operator and is the inverse of the reference operator.

Another use of the reference operator is in the context of the fgets function. For example,

define read_nth_line (file, n)

{

variable fp, line;

fp = fopen (file, "r");

while (n > 0)

{

if (-1 == fgets (&line, fp))

return NULL;

n--;

}

return line;

}

uses the fgets function to read the nth line of a file. In particular, a reference to the local variable
line is passed to fgets, and upon return line will be set to the character string read by fgets.

Finally, references may be used as an alternative to multiple return values by passing information
back via the parameter list. The example involving fgets presented above provided an illustration
of this. Another example is

define set_xyz (x, y, z)

{

@x = 1;

@y = 2;

@z = 3;

}

variable X, Y, Z;

set_xyz (&X, &Y, &Z);

which, after execution, results in X set to 1, Y set to 2, and Z set to 3. A C programmer will note
the similarity of set xyz to the following C implementation:

void set_xyz (int *x, int *y, int *z)

{

*x = 1;
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*y = 2;

*z = 3;

}

2.4 Arrays

The S-Lang language supports multi-dimensional arrays of all datatypes. For example, one can
define arrays of references to functions as well as arrays of arrays. Here are a few examples of
creating arrays:

variable A = Int_Type [10];

variable B = Int_Type [10, 3];

variable C = [1, 3, 5, 7, 9];

The first example creates an array of 10 integers and assigns it to the variable A. The second example
creates a 2-d array of 30 integers arranged in 10 rows and 3 columns and assigns the result to B.
In the last example, an array of 5 integers is assigned to the variable C. However, in this case the
elements of the array are initialized to the values specified. This is known as an inline-array .

S-Lang also supports something called a range-array . An example of such an array is

variable C = [1:9:2];

This will produce an array of 5 integers running from 1 through 9 in increments of 2.

Arrays are passed by reference to functions and never by value. This permits one to write functions
that can initialize arrays. For example,

define init_array (a)

{

variable i, imax;

imax = length (a);

for (i = 0; i < imax; i++)

{

a[i] = 7;

}

}

variable A = Int_Type [10];

init_array (A);

creates an array of 10 integers and initializes all its elements to 7.

There are more concise ways of accomplishing the result of the previous example. These include:

A = [7, 7, 7, 7, 7, 7, 7, 7, 7, 7];

A = Int_Type [10]; A[[0:9]] = 7;

A = Int_Type [10]; A[*] = 7;
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The second and third methods use an array of indices to index the array A. In the second, the range
of indices has been explicitly specified, whereas the third example uses a wildcard form. See chapter
10 (Arrays) for more information about array indexing.

Although the examples have pertained to integer arrays, the fact is that S-Lang arrays can be of
any type, e.g.,

A = Double_Type [10];

B = Complex_Type [10];

C = String_Type [10];

D = Ref_Type [10];

create 10 element arrays of double, complex, string, and reference types, respectively. The last
example may be used to create an array of functions, e.g.,

D[0] = &sin;

D[1] = &cos;

The language also defines unary, binary, and mathematical operations on arrays. For example, if A
and B are integer arrays, then A + B is an array whose elements are the sum of the elements of A
and B. A trivial example that illustrates the power of this capability is

variable X, Y;

X = [0:2*PI:0.01];

Y = 20 * sin (X);

which is equivalent to the highly simplified C code:

double *X, *Y;

unsigned int i, n;

n = (2 * PI) / 0.01 + 1;

X = (double *) malloc (n * sizeof (double));

Y = (double *) malloc (n * sizeof (double));

for (i = 0; i < n; i++)

{

X[i] = i * 0.01;

Y[i] = 20 * sin (X[i]);

}

2.5 Lists

A S-Lang list is like an array except that it may contain a heterogeneous collection of data, e.g.,

my_list = { 3, 2.9, "foo", &sin };

is a list of four objects, each with a different type. Like an array, the elements of a list may be
accessed via an index, e.g., x=my list[2] will result in the assignment of "foo" to x. The most
important difference between an array and a list is that an array’s size is fixed whereas a list may
grow or shrink. Algorithms that require such a data structure may execute many times faster when
a list is used instead of an array.
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2.6 Structures and User-Defined Types

A structure is similar to an array in the sense that it is a container object. However, the elements
of an array must all be of the same type (or of Any Type), whereas a structure is heterogeneous. As
an example, consider

variable person = struct

{

first_name, last_name, age

};

variable bill = @person;

bill.first_name = "Bill";

bill.last_name = "Clinton";

bill.age = 51;

In this example a structure consisting of the three fields has been created and assigned to the variable
person. Then an instance of this structure has been created using the dereference operator and
assigned to bill. Finally, the individual fields of bill were initialized. This is an example of an
anonymous structure.

A named structure is really a new data type and may be created using the typedef keyword:

typedef struct

{

first_name, last_name, age

}

Person_Type;

variable bill = @Person_Type;

bill.first_name = "Bill";

bill.last_name = "Clinton";

bill.age = 51;

One advantage of creating a new type is that array elements of such types are automatically initialized
to instances of the type. For example,

People = Person_Type [100];

People[0].first_name = "Bill";

People[1].first_name = "Hillary";

may be used to create an array of 100 such objects and initialize the first name fields of the first
two elements. In contrast, the form using an anonymous would require a separate step to instantiate
the array elements:

People = Struct_Type [100];

People[0] = @person;

People[0].first_name = "Bill";

People[1] = @person;

People[1].first_name = "Hillary";
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Another big advantage of a user-defined type is that the binary and unary operators may be over-
loaded onto such types. This is explained in more detail below.

The creation and initialization of a structure may be facilitated by a function such as

define create_person (first, last, age)

{

variable person = @Person_Type;

person.first_name = first;

person.last_name = last;

person.age = age;

return person;

}

variable Bill = create_person ("Bill", "Clinton", 51);

Other common uses of structures is the creation of linked lists, binary trees, etc. For more informa-
tion about these and other features of structures, see the section on 12.3 (Linked Lists).

2.7 Namespaces

The language supports namespaces that may be used to control the scope and visibility of variables
and functions. In addition to the global or public namespace, each S-Lang source file or compilation
unit has a private or anonymous namespace associated with it. The private namespace may be used
to define symbols that are local to the compilation unit and inaccessable from the outside. The
language also allows the creation of named (non-anonymous or static) namespaces that permit
access via the namespace operator. See the chapter on 9 (Namespaces) for more information.



Chapter 3

Data Types and Literal Constants

The current implementation of the S-Lang language permits up to 65535 distinct data types, includ-
ing predefined data types such as integer and floating point, as well as specialized application-specific
data types. It is also possible to create new data types in the language using the typedef mechanism.

Literal constants are objects such as the integer 3 or the string "hello". The actual data type given
to a literal constant depends upon the syntax of the constant. The following sections describe the
syntax of literals of specific data types.

3.1 Predefined Data Types

The current version of S-Lang defines integer, floating point, complex, and string types. It also
defines special purpose data types such as Null Type, DataType Type, and Ref Type. These types
are discussed below.

3.1.1 Integers

The S-Lang language supports both signed and unsigned characters, short integer, long integer,
and long long integer types. On most 32 bit systems, there is no difference between an integer and
a long integer; however, they may differ on 16 and 64 bit systems. Generally speaking, on a 16 bit
system, plain integers are 16 bit quantities with a range of -32767 to 32767. On a 32 bit system,
plain integers range from -2147483648 to 2147483647.

An plain integer literal can be specified in one of several ways:

• As a decimal (base 10) integer consisting of the characters 0 through 9, e.g., 127. An integer
specified this way cannot begin with a leading 0. That is, 0127 is not the same as 127.

• Using hexadecimal (base 16) notation consisting of the characters 0 to 9 and A through F. The
hexadecimal number must be preceded by the characters 0x. For example, 0x7F specifies an
integer using hexadecimal notation and has the same value as decimal 127.

• In Octal notation using characters 0 through 7. The Octal number must begin with a leading
0. For example, 0177 and 127 represent the same integer.

13
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Short, long, long long, and unsigned types may be specified by using the proper suffixes: L indicates
that the integer is a long integer, LL indicates a long long integer, h indicates that the integer is
a short integer, and U indicates that it is unsigned. For example, 1UL specifies an unsigned long
integer.

Finally, a character literal may be specified using a notation containing a character enclosed in single
quotes as ’a’. The value of the character specified this way will lie in the range 0 to 256 and will
be determined by the ASCII value of the character in quotes. For example,

i = ’0’;

assigns to i the character 48 since the ’0’ character has an ASCII value of 48.

A “wide” character (unicode) may be specified using the form ’\x{y...y}’ where y...y are hexadec-
imal digits. For example,

’\x{12F}’ % Latin Small Letter I With Ogonek;

’\x{1D7BC}’ % Mathematical Sans-Serif Bold Italic Small Sigma

Any integer may be preceded by a minus sign to indicate that it is a negative integer.

3.1.2 Floating Point Numbers

Single and double precision floating point literals must contain either a decimal point or an exponent
(or both). Here are examples of specifying the same double precision point number:

12. 12.0 12e0 1.2e1 120e-1 .12e2 0.12e2

Note that 12 is not a floating point number since it contains neither a decimal point nor an exponent.
In fact, 12 is an integer.

One may append the f character to the end of the number to indicate that the number is a single
precision literal. The following are all single precision values:

12.f 12.0f 12e0f 1.2e1f 120e-1f .12e2f 0.12e2f

3.1.3 Complex Numbers

The language implements complex numbers as a pair of double precision floating point numbers.
The first number in the pair forms the real part, while the second number forms the imaginary part.
That is, a complex number may be regarded as the sum of a real number and an imaginary number.

Strictly speaking, the current implementation of the S-Lang does not support generic complex
literals. However, it does support imaginary literals permitting a more generic complex number
with a non-zero real part to be constructed from the imaginary literal via addition of a real number.

An imaginary literal is specified in the same way as a floating point literal except that i or j is
appended. For example,

12i 12.0i 12e0j
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all represent the same imaginary number.

A more generic complex number may be constructed from an imaginary literal via addition, e.g.,

3.0 + 4.0i

produces a complex number whose real part is 3.0 and whose imaginary part is 4.0.

The intrinsic functions Real and Imag may be used to retrieve the real and imaginary parts of a
complex number, respectively.

3.1.4 Strings

A string literal must be enclosed in double quotes as in:

"This is a string".

As described below, the string literal may contain a suffix that specifies how the string is to be
interpreted, e.g., a string literal such as

"$HOME/.jedrc"$

with the ’$’ suffix will be subject to variable name expansion.

Although there is no imposed limit on the length of a string, string literals must be less than 256
characters in length. It is possible to construct strings longer than this by string concatenation, e.g.,

"This is the first part of a long string"

+ " and this is the second part"

Any character except a newline (ASCII 10) or the null character (ASCII 0) may appear explicitly in
a string literal. However, these characters may embedded implicitly using the mechanism described
below.

The backslash character is a special character and is used to include other special characters (such
as a newline character) in the string. The special characters recognized are:

\" -- double quote

\’ -- single quote

\\ -- backslash

\a -- bell character (ASCII 7)

\t -- tab character (ASCII 9)

\n -- newline character (ASCII 10)

\e -- escape character (ASCII 27)

\xhhh -- byte expressed in HEXADECIMAL notation

\ooo -- byte expressed in OCTAL notation

\dnnn -- byte expressed in DECIMAL

\x{uuuu} -- the Unicode character U+uuuu

For example, to include the double quote character as part of the string, it must be preceded by a
backslash character, e.g.,
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"This is a \"quote\""

Similarly, the next example illustrates how a newline character may be included:

"This is the first line\nand this is the second"

Suffixes

A string literal may be contain a suffix that specifies how the string is to be interpreted. The suffix
may consist of one or more of the following characters:

R

Backslash substitution will not be performed on the string.

Q

Backslash substitution will be performed on the string. A string without a suffix is equivalent
to one with the Q suffix.

B

If this suffix is present, the string will be interpreted as a binary string (BString Type).

$

Variable name substitution will be performed on the string.

Not all combinations of the above controls characters are supported, nor make sense. For example,
a string with the suffix QR will cause a parse-error because Q and R have opposing meanings.

The Q and R suffixes These suffixes turn on and off backslash expansion. Unless the R suffix is
present, all string literals will have backslash substitution performed. Sometimes it is desirable not
have such expansion. For example, pathnames on an MSDOS or Windows system use the backslash
character as a path separator. The R prefix turns off backslash expansion, and as a result the
following statements are equivalent:

file = "C:\\windows\\apps\\slrn.rc";

file = "C:\\windows\\apps\\slrn.rc"Q;

file = "C:\windows\apps\slrn.rc"R;

The only exception is that a backslash character is not permitted as the last character of a string
with the R suffix. That is,

string = "This is illegal\"R;

is not permitted. Without this exception, a string such as

string = "Some characters: \"R, S, T\"";

would not be parsed properly.
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The $ suffix If the string contains the $ suffix, then variable name expansion will be performed
upon names prefixed by a $ character occuring within the string, e.g.,

"The value of X is $X and the value of Y is $Y"$.

with variable name substitution to be performed on the names X and Y. Such strings may be used
as a convenient alternative to the sprintf function.

Name expansion is carried out according to the following rules: If the string literal occurs in a
function, and the name corresponds to a variable local to the function, then the string representation
of the value of that variable will be substituted. Otherwise, if the name corresponds to a variable
that is local to the compilation unit (i.e., is declared as static or private), then its value’s string
representation will be used. Otherwise, if the name corresponds to a variable that exists as a global
(public) then its value’s string representation will be substituted. If the above searches fail and the
name exists in the environment, then the value of the corresponding environment variable will be
used. Otherwise, the variable will expand to the empty string.

Consider the following example:

private variable bar = "two";

putenv ("MYHOME=/home/baz");

define funct (foo)

{

variable bar = 1;

message ("file: $MYHOME/foo: garage=$MYGARAGE,bar=$bar"$);

}

When executed, this will produce the message:

file: /home/baz/foo: garage=,bar=1

assuming that MYGARAGE is not defined anywhere.

A name may be enclosed in braces. For example,

"${MYHOME}/foo: bar=${bar}"$

This is useful in cases when the name is followed immediately by other characters that may be
interpreted as part of the name, e.g.,

variable HELLO="Hello ";

message ("${HELLO}World"$);

will produce the message ”Hello World”.

3.1.5 Null Type

Objects of type Null Type can have only one value: NULL. About the only thing that you can do
with this data type is to assign it to variables and test for equality with other objects. Nevertheless,
Null Type is an important and extremely useful data type. Its main use stems from the fact that
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since it can be compared for equality with any other data type, it is ideal to represent the value of
an object which does not yet have a value, or has an illegal value.

As a trivial example of its use, consider

define add_numbers (a, b)

{

if (a == NULL) a = 0;

if (b == NULL) b = 0;

return a + b;

}

variable c = add_numbers (1, 2);

variable d = add_numbers (1, NULL);

variable e = add_numbers (1,);

variable f = add_numbers (,);

It should be clear that after these statements have been executed, c will have a value of 3. It should
also be clear that d will have a value of 1 because NULL has been passed as the second parameter.
One feature of the language is that if a parameter has been omitted from a function call, the variable
associated with that parameter will be set to NULL. Hence, e and f will be set to 1 and 0, respectively.

The Null Type data type also plays an important role in the context of structures.

3.1.6 Ref Type

Objects of Ref Type are created using the unary reference operator &. Such objects may be deref-
erenced using the dereference operator @. For example,

sin_ref = &sin;

y = (@sin_ref) (1.0);

creates a reference to the sin function and assigns it to sin ref. The second statement uses the
dereference operator to call the function that sin ref references.

The Ref Type is useful for passing functions as arguments to other functions, or for returning
information from a function via its parameter list. The dereference operator may also used to create
an instance of a structure. For these reasons, further discussion of this important type can be found
in the section on 8.4 (Referencing Variables).

3.1.7 Array Type, List Type, and Struct Type

Variables of type Array Type, List Type, and Struct Type are known as container objects. They
are much more complicated than the simple data types discussed so far and each obeys a special
syntax. For these reasons they are discussed in a separate chapters.

3.1.8 DataType Type Type

S-Lang defines a type called DataType Type. Objects of this type have values that are type names.
For example, an integer is an object of type Integer Type. The literals of DataType Type include:
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Char_Type (signed character)

UChar_Type (unsigned character)

Short_Type (short integer)

UShort_Type (unsigned short integer)

Integer_Type (plain integer)

UInteger_Type (plain unsigned integer)

Long_Type (long integer)

ULong_Type (unsigned long integer)

LLong_Type (long long integer)

ULong_Type (unsigned long long integer)

Float_Type (single precision real)

Double_Type (double precision real)

Complex_Type (complex numbers)

String_Type (strings, C strings)

BString_Type (binary strings)

Struct_Type (structures)

Ref_Type (references)

Null_Type (NULL)

Array_Type (arrays)

List_Type (lists)

DataType_Type (data types)

as well as the names of any other types that an application defines.

The built-in function typeof returns the data type of its argument, i.e., a DataType Type. For
instance typeof(7) returns Integer Type and typeof(Integer Type) returns DataType Type. One
can use this function as in the following example:

if (Integer_Type == typeof (x)) message ("x is an integer");

The literals of DataType Type have other uses as well. One of the most common uses of these literals
is to create arrays, e.g.,

x = Complex_Type [100];

creates an array of 100 complex numbers and assigns it to x.

3.1.9 Boolean Type

Strictly speaking, S-Lang has no separate boolean type; rather it represents boolean values as
Char Type objects. In particular, boolean FALSE is equivalent to Char Type 0, and TRUE as any
non-zero Char Type value. Since the exact value of TRUE is unspecfied, it is unnecessary and even
pointless to define TRUE and FALSE literals in S-Lang.

3.2 Typecasting: Converting from one Type to Another

Occasionally, it is necessary to convert from one data type to another. For example, if you need
to print an object as a string, it may be necessary to convert it to a String Type. The typecast

function may be used to perform such conversions. For example, consider
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variable x = 10, y;

y = typecast (x, Double_Type);

After execution of these statements, x will have the integer value 10 and y will have the double
precision floating point value 10.0. If the object to be converted is an array, the typecast function
will act upon all elements of the array. For example,

x = [1:10]; % Array of integers

y = typecast (x, Double_Type);

will create an array of 10 double precision values and assign it to y. One should also realize that it
is not always possible to perform a typecast. For example, any attempt to convert an Integer Type

to a Null Type will result in a run-time error. Typecasting works only when datatypes are similar.

Often the interpreter will perform implicit type conversions as necessary to complete calcula-
tions. For example, when multiplying an Integer Type with a Double Type, it will convert the
Integer Type to a Double Type for the purpose of the calculation. Thus, the example involving the
conversion of an array of integers to an array of doubles could have been performed by multiplication
by 1.0, i.e.,

x = [1:10]; % Array of integers

y = 1.0 * x;

The string intrinsic function should be used whenever a string representation is needed. Using
the typecast function for this purpose will usually fail unless the object to be converted is similar
to a string— most are not. Moreover, when typecasting an array to String Type, the typecast

function acts on each element of the array to produce another array, whereas the string function
will produce a string.

One use of string function is to print the value of an object. This use is illustrated in the following
simple example:

define print_object (x)

{

message (string (x));

}

Here, the message function has been used because it writes a string to the display. If the string

function was not used and the message function was passed an integer, a type-mismatch error would
have resulted.
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Identifiers

The names given to variables, functions, and data types are called identifiers. There are some
restrictions upon the actual characters that make up an identifier. An identifier name must start
with an alphabetic character ([A-Za-z]), an underscore character, or a dollar sign. The rest of
the characters in the name can be any combination of letters, digits, dollar signs, or underscore
characters. However, all identifiers whose name begins with two underscore characters are reserved
for internal use by the interpreter and declarations of objects with such names should be avoided.

Examples of valid identifiers include:

mary _3 _this_is_ok

a7e1 $44 _44$_Three

However, the following are not legal:

7abc 2e0 #xx

In fact, 2e0 actually specifies the double precision number 2.0.

There is no limit to the maximum length of an identifier. For practical usage it is wise to limit the
length of identifiers to a reasonable value.

The following identifiers are reserved by the language for use as keywords:

abs and andelse break case

catch chs continue define do

do_while else ERROR_BLOCK exch EXIT_BLOCK

finally _for for foreach forever

!if if loop mod mul2

not or orelse pop private

public return shl shr sign

sqr static struct switch __tmp

throw try typedef USER_BLOCK1 USER_BLOCK2

USER_BLOCK0 USER_BLOCK4 USER_BLOCK3 using variable

while xor

21
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Chapter 5

Variables

As many of the preceeding examples have shown, a variable must be declared before it can be used,
otherwise an undefined name error will be generated. A variable is declared using the variable

keyword, e.g,

variable x, y, z;

declares three variables, x, y, and z. This is an example of a variable declaration statement, and
like all statements, it must end in a semi-colon.

Variables declared this way are untyped and inherit a type upon assignment. As such, type-checking
of function arguments, etc is performed at run-time. For example,

x = "This is a string";

x = 1.2;

x = 3;

x = 2i;

results in x being set successively to a string, a float, an integer, and to a complex number (0+2i).
Any attempt to use a variable before it has acquired a type will result in an uninitialized variable
error.

It is legal to put executable code in a variable declaration list. That is,

variable x = 1, y = sin (x);

are legal variable declarations. This also provides a convenient way of initializing a variable.

Variables are classified as either global or local . A variable declared inside a function is said to be
local and has no meaning outside the function. A variable is said to be global if it was declared
outside a function. Global variables are further classified as being public, static, or private,
according to the namespace where they were defined. See the chapter on 9 (Namespaces) for more
information about namespaces.

The following global variables are predefined by the language and live in the public namespace.
They are mainly used as convenience variables:

23
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$0 $1 $2 $3 $4 $5 $6 $7 $8 $9

An intrinsic variable is another type of global variable. Such variables have a definite type which
cannot be altered. Variables of this type may also be defined to be read-only, or constant variables.
An example of an intrinsic variable is PI which is a read-only double precision variable with a value
of approximately 3.14159265358979323846.
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Operators

S-Lang supports a variety of operators that are grouped into three classes: assignment operators,
binary operators, and unary operators.

An assignment operator is used to assign a value to a variable. They will be discussed more fully in
the context of the assignment statement in the section on 7.2 (Assignment Statements).

An unary operator acts only upon a single quantity while a binary operation is an operation between
two quantities. The boolean operator not is an example of an unary operator. Examples of binary
operators include the usual arithmetic operators +, -, *, and /. The operator given by - can be either
an unary operator (negation) or a binary operator (subtraction); the actual operation is determined
from the context in which it is used.

Binary operators are used in algebraic forms, e.g., a + b. Unary operators fall into one of two classes:
postfix-unary or prefix-unary. For example, in the expression -x, the minus sign is a prefix-unary
operator.

All binary and unary operators may be defined for any supported data type. For example, the
arithmetic plus operator has been extended to the String Type data type to permit concatenation
between strings. But just because it is possible to define the action of an operator upon a data type,
it does not mean that all data types support all the binary and unary operators. For example, while
String Type supports the + operator, it does not admit the * operator.

6.1 Unary Operators

The unary operators operate only upon a single operand. They include: not, ~, -, @, &, as well as
the increment and decrement operators ++ and --, respectively.

The boolean operator not acts only upon integers and produces 0 if its operand is non-zero, otherwise
it produces 1.

The bit-level not operator ~ performs a similar function, except that it operates on the individual
bits of its integer operand.

The arithmetic negation operator - is perhaps the most well-known unary operator. It simply
reverses the sign of its operand.

25
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The reference (&) and dereference (@) operators will be discussed in greater detail in the section
on 8.4 (Referencing Variables). Similarly, the increment (++) and decrement (--) operators will be
discussed in the context of the assignment operator.

6.2 Binary Operators

The binary operators may be grouped according to several classes: arithmetic operators, relational
operators, boolean operators, and bitwise operators.

6.2.1 Arithmetic Operators

The arithmetic operators include +, -, *, and /, which perform addition, subtraction, multiplication,
and division, respectively. In addition to these, S-Lang supports the mod operator, which divides
two numbers and produces the remainder, as as well as the power operator ^.

The data type of the result produced by the use of one of these operators depends upon the data
types of the binary participants. If they are both integers, the result will be an integer. However, if
the operands are not of the same type, they will be converted to a common type before the operation
is performed. For example, if one is a floating point type and the other is an integer, the integer
will be converted to a float. In general, the promotion from one type to another is such that no
information is lost, if possible. As an example, consider the expression 8/5 which indicates division
of the integer 8 by the integer 5. The result will be the integer 1 and not the floating point value
1.6. However, 8/5.0 will produce 1.6 because 5.0 is a floating point number.

6.2.2 Relational Operators

The relational operators are >, >=, <, <=, ==, and !=. These perform the comparisons greater than,
greater than or equal, less than, less than or equal, equal, and not equal, respectively. For most
data types, the result of the comparison will be a boolean value; however, for arrays the result will
be an array of boolean values. The section on arrays will explain this is greater detail.

6.2.3 Boolean Operators

S-Lang supports two boolean binary operators: or and and, which for most data types, return a
boolean result. In particular, the or operator returns a non-zero value (boolean TRUE) if either of
its operands are non-zero, otherwise it produces zero (boolean FALSE). The and operator produces
a non-zero value if and only if both its operands are non-zero, otherwise it produces zero. If either of
the operands is an array then a corresponding array of boolean values will result. This is explained
in more detail in the section on arrays.

Neither of these operators perform the so-called boolean short-circuit evaluation. For example,
consider the expression:

(x != 0) and (1/x > 10)
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Here, if x were to have a value of zero, a division by zero error would occur because even though
x!=0 evaluates to zero, the and operator is not short-circuited and the 1/x expression would still be
evaluated. Although these operators are not short-circuited, S-Lang does have another mechanism
of performing short-circuit boolean evaluation via the orelse and andelse expressions. See below
for information about these constructs.

6.2.4 Bitwise Operators

The bitwise binary operators are currently defined for integer operands and are used for bit-level
operations. Operators that fall in this class include &, |, shl, shr, and xor. The & operator performs
a boolean AND operation between the corresponding bits of the operands. Similarly, the | operator
performs the boolean OR operation on the bits. The bit-shifting operators shl and shr shift the
bits of the first operand by the number given by the second operand to the left or right, respectively.
Finally, the xor performs an EXCLUSIVE-OR operation.

These operators are commonly used to manipulate variables whose individual bits have distinct
meanings. In particular, & is usually used to test bits, | can be used to set bits, and xor may be
used to flip a bit.

As an example of using & to perform tests on bits, consider the following: The jed text editor
stores some of the information about a buffer in a bitmapped integer variable. The value of this
variable may be retrieved using the jed intrinsic function getbuf info, which actually returns four
quantities: the buffer flags, the name of the buffer, directory name, and file name. For the purposes
of this section, only the buffer flags are of interest and can be retrieved via a function such as

define get_buffer_flags ()

{

variable flags;

(,,,flags) = getbuf_info ();

return flags;

}

The buffer flags object is a bitmapped quantity where the 0th bit indicates whether or not the buffer
has been modified, the first bit indicates whether or not autosave has been enabled for the buffer,
and so on. Consider for the moment the task of determining if the buffer has been modified. This
can be determined by looking at the zeroth bit: if it is 0 the buffer has not been modified, otherwise
it has been modified. Thus we can create the function,

define is_buffer_modified ()

{

variable flags = get_buffer_flags ();

return (flags & 1);

}

where the integer 1 has been used since it is represented as an object with all bits unset, except for
the zeroth one, which is set. (At this point, it should also be apparent that bits are numbered from
zero, thus an 8 bit integer consists of bits 0 to 7, where 0 is the least significant bit and 7 is the most
significant one.) Similarly, we can create another function
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define is_autosave_on ()

{

variable flags = get_buffer_flags ();

return (flags & 2);

}

to determine whether or not autosave has been turned on for the buffer.

The shl operator may be used to form the integer with only the nth bit set. For example, 1 shl 6

produces an integer with all bits set to zero except the sixth bit, which is set to one. The following
example exploits this fact:

define test_nth_bit (flags, nth)

{

return flags & (1 shl nth);

}

6.2.5 The Namespace Operator

The operator -> is used to in conjunction with a namespace to access an object within the namespace.
For example, if A is the name of a namespace containing the variable v, then A->v refers to that
variable. Namespaces are discussed more fully in the chapter on 9 (Namespaces).

6.2.6 Operator Precedence

6.2.7 Binary Operators and Functions Returning Multiple Values

Care must be exercised when using binary operators with an operand that returns multiple values.
In fact, the current implementation of the S-Lang language will produce incorrect results if both
operands of a binary expression return multiple values. At most, only one of operands of a binary
expression can return multiple values, and that operand must be the first one, not the second. For
example,

define read_line (fp)

{

variable line, status;

status = fgets (&line, fp);

if (status == -1)

return -1;

return (line, status);

}

defines a function, read line that takes a single argument specifying a handle to an open file, and
returns one or two values, depending upon the return value of fgets. Now consider

while (read_line (fp) > 0)

{

text = ();
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% Do something with text

.

.

}

Here the relational binary operator > forms a comparison between one of the return values (the one
at the top of the stack) and 0. In accordance with the above rule, since read line returns multiple
values, it must occur as the left binary operand. Putting it on the right as in

while (0 < read_line (fp)) % Incorrect

{

text = ();

% Do something with text

.

.

}

violates the rule and will result in the wrong answer. For this reason, one should avoid using a
function that returns muliple return values as a binary operand.

6.3 Mixing Integer and Floating Point Arithmetic

If a binary operation (+, -, * , /) is performed on two integers, the result is an integer. If at least
one of the operands is a floating point value, the other will be converted to a floating point value,
and a floating point result be produced. For example:

11 / 2 --> 5 (integer)

11 / 2.0 --> 5.5 (double)

11.0 / 2 --> 5.5 (double)

11.0 / 2.0 --> 5.5 (double)

Sometimes to achive the desired result, it is necessary to explicitly convert from one data type to
another. For example, suppose that a and b are integers, and that one wants to compute a/b using
floating point arithmetic. In such a case, it is necessary to convert at least one of the operands to a
floating point value using, e.g., the double function:

x = a/double(b);

6.4 Short Circuit Boolean Evaluation

The boolean operators or and and are not short circuited as they are in some languages. S-Lang
uses orelse and andelse expressions for short circuit boolean evaluation. However, these are not
binary operators. Expressions of the form:

expr-1 and expr-2 and ... expr-n

can be replaced by the short circuited version using andelse:
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andelse {expr-1 } {expr-2 } ... {expr-n }

A similar syntax holds for the orelse operator. For example, consider the statement:

if ((x != 0) and (1/x > 10)) do_something ();

Here, if x were to have a value of zero, a division by zero error would occur because even though
x!=0 evaluates to zero, the and operator is not short circuited and the 1/x expression would be
evaluated causing division by zero. For this case, the andelse expression could be used to avoid the
problem:

if (andelse

{x != 0}

{1 / x > 10}) do_something ();
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Statements

Loosely speaking, a statement is composed of expressions that are grouped according to the syntax
or grammar of the language to express a complete computation. A semi-colon is used to denote the
the end of a statement.

A statement that occurs within a function is executed only during execution of the function. How-
ever, statements that occur outside the context of a function are evaluated immediately.

The language supports several different types of statements such as assignment statements, condi-
tional statements, and so forth. These are described in detail in the following sections.

7.1 Variable Declaration Statements

Variable declarations were already discussed in the chapter on 5 (Variables). For the sake of com-
pleteness, a variable declaration is a statement of the form

variable variable-declaration-list ;

where the variable-declaration-list is a comma separated list of one or more variable names with
optional initializations, e.g.,

variable x, y = 2, z;

7.2 Assignment Statements

Perhaps the most well known form of statement is the assignment statement . Statements of this
type consist of a left-hand side, an assignment operator, and a right-hand side. The left-hand side
must be something to which an assignment can be performed. Such an object is called an lvalue.

The most common assignment operator is the simple assignment operator =. Examples of its use
include

x = 3;

31
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x = some_function (10);

x = 34 + 27/y + some_function (z);

x = x + 3;

In addition to the simple assignment operator, S-Lang also supports the binary assignment opera-
tors:

+= -= *= /= &= |=

Internally, S-Lang transforms

a += b;

to

a = a + b;

Likewise a-=b is transformed to a=a-b, a*=b is transformed to a=a*b, and so on.

It is extremely important to realize that, in general, a+b is not equal to b+a. For example if a and b

are strings, then a+b will be the string resulting from the concatenation of a and b, which generally
is not he same as the concatenation of b with a. This means that a+=b may not be the same as
a=b+a, as the following example illustrates:

a = "hello"; b = "world";

a += b; % a will become "helloworld"

c = b + a; % c will become "worldhello"

Since adding or subtracting 1 from a variable is quite common, S-Lang also supports the unary
increment and decrement operators ++, and --, respectively. That is, for numeric data types,

x = x + 1;

x += 1;

x++;

are all equivalent. Similarly,

x = x - 1;

x -= 1;

x--;

are also equivalent.

Strictly speaking, ++ and -- are unary operators. When used as x++, the ++ operator is said to be
a postfix-unary operator. However, when used as ++x it is said to be a prefix-unary operator. The
current implementation does not distinguish between the two forms, thus x++ and ++x are equivalent.
The reason for this equivalence is that assignment expressions do not return a value in the S-Lang

language as they do in C. Thus one should exercise care and not try to write C-like code such as

x = 10;

while (--x) do_something (x); % Ok in C, but not in S-Lang
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The closest valid S-Lang form involves a comma-expression:

x = 10;

while (x--, x) do_something (x); % Ok in S-Lang and in C

S-Lang also supports a multiple-assignment statement. It is discussed in detail in the section on
8.7 (Multiple Assignment Statement).

7.3 Conditional and Looping Statements

S-Lang supports a wide variety of conditional and looping statements. These constructs operate
on statements grouped together in blocks. A block is a sequence of S-Lang statements enclosed in
braces and may contain other blocks. However, a block cannot include function declarations. In the
following, statement-or-block refers to either a single S-Lang statement or to a block of statements,
and integer-expression is an integer-valued or boolean expression. next-statement represents the
statement following the form under discussion.

7.3.1 Conditional Forms

if

The simplest condition statement is the if statement. It follows the syntax

if (integer-expression ) statement-or-block next-statement

If integer-expression evaluates to a non-zero (boolean TRUE) result, then the statement or group
of statements implied statement-or-block will get executed. Otherwise, control will proceed to next-
statement .

An example of the use of this type of conditional statement is

if (x != 0)

{

y = 1.0 / x;

if (x > 0) z = log (x);

}

This example illustrates two if statements where the second if statement is part of the block of
statements that belong to the first.

if-else

Another form of if statement is the if-else statement. It follows the syntax:

if (integer-expression ) statement-or-block-1 else statement-or-block-2

next-statement
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Here, if expression evaluates to a non-zero integer, statement-or-block-1 will get executed and control
will pass on to next-statement . However, if expression evaluates to zero, statement-or-block-2 will
get executed before continuing on to next-statement . A simple example of this form is

if (x > 0)

z = log (x);

else

throw DomainError, "x must be positive";

Consider the more complex example:

if (city == "Boston")

if (street == "Beacon") found = 1;

else if (city == "Madrid")

if (street == "Calle Mayor") found = 1;

else found = 0;

This example illustrates a problem that beginners have with if-else statements. Syntactically, this
example is equivalent to

if (city == "Boston")

{

if (street == "Beacon") found = 1;

else if (city == "Madrid")

{

if (street == "Calle Mayor") found = 1;

else found = 0;

}

}

although the indentation indicates otherwise. It is important to understand the grammar and not
be seduced by the indentation!

!if

One often encounters if statements similar to

if (integer-expression == 0) statement-or-block

or equivalently,

if (not(integer-expression )) statement-or-block

The !if statement was added to the language to simplify the handling of such statements. It obeys
the syntax

!if (integer-expression ) statement-or-block

and is functionally equivalent to

if (not (expression )) statement-or-block
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orelse, andelse

These constructs were discussed earlier. The syntax for the orelse statement is:

orelse {integer-expression-1 } ... {integer-expression-n }

This causes each of the blocks to be executed in turn until one of them returns a non-zero integer
value. The result of this statement is the integer value returned by the last block executed. For
example,

orelse { 0 } { 6 } { 2 } { 3 }

returns 6 since the second block is the first to return a non-zero result. The last two block will not
get executed.

The syntax for the andelse statement is:

andelse {integer-expression-1 } ... {integer-expression-n }

Each of the blocks will be executed in turn until one of them returns a zero value. The result of this
statement is the integer value returned by the last block executed. For example,

andelse { 6 } { 2 } { 0 } { 4 }

evaluates to 0 since the third block will be the last to execute.

switch

The switch statement deviates from its C counterpart. The syntax is:

switch (x)

{ ... : ...}

.

.

{ ... : ...}

The ‘:’ operator is a special symbol that in the context of the switch statement, causes the the top
item on the stack to be tested, and if it is non-zero, the rest of the block will get executed and control
will pass out of the switch statement. Otherwise, the execution of the block will be terminated and
the process will be repeated for the next block. If a block contains no : operator, the entire block
is executed and control will pass onto the next statement following the switch statement. Such a
block is known as the default case.

As a simple example, consider the following:

switch (x)

{ x == 1 : message("Number is one.");}

{ x == 2 : message("Number is two.");}

{ x == 3 : message("Number is three.");}

{ x == 4 : message("Number is four.");}

{ x == 5 : message("Number is five.");}

{ message ("Number is greater than five.");}



36 Chapter 7. Statements

Suppose x has an integer value of 3. The first two blocks will terminate at the ‘:’ character
because each of the comparisons with x will produce zero. However, the third block will execute to
completion. Similarly, if x is 7, only the last block will execute in full.

A more familiar way to write the previous example is to make use of the case keyword:

switch (x)

{ case 1 : message("Number is one.");}

{ case 2 : message("Number is two.");}

{ case 3 : message("Number is three.");}

{ case 4 : message("Number is four.");}

{ case 5 : message("Number is five.");}

{ message ("Number is greater than five.");}

The case keyword is a more useful comparison operator because it can perform a comparison between
different data types while using == may result in a type-mismatch error. For example,

switch (x)

{ (x == 1) or (x == "one") : message("Number is one.");}

{ (x == 2) or (x == "two") : message("Number is two.");}

{ (x == 3) or (x == "three") : message("Number is three.");}

{ (x == 4) or (x == "four") : message("Number is four.");}

{ (x == 5) or (x == "five") : message("Number is five.");}

{ message ("Number is greater than five.");}

will fail because the == operation is not defined between strings and integers. The correct way to
write this is to use the case keyword:

switch (x)

{ case 1 or case "one" : message("Number is one.");}

{ case 2 or case "two" : message("Number is two.");}

{ case 3 or case "three" : message("Number is three.");}

{ case 4 or case "four" : message("Number is four.");}

{ case 5 or case "five" : message("Number is five.");}

{ message ("Number is greater than five.");}

7.3.2 Looping Forms

while

The while statement follows the syntax

while (integer-expression ) statement-or-block next-statement

It simply causes statement-or-block to get executed as long as integer-expression evaluates to a
non-zero result. For example,

i = 10;

while (i)

{
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i--;

newline ();

}

will cause the newline function to get called 10 times. However,

i = -10;

while (i)

{

i--;

newline ();

}

would loop forever (or until i wraps from the most negative integer value to the most positive and
then decrements to zero).

If you are a C programmer, do not let the syntax of the language seduce you into writing this
example as you would in C:

i = 10;

while (i--) newline ();

Keep in mind that expressions such as i-- do not return a value in S-Lang as they do in C. The
same effect can be achieved to use a comma to separate the expressions as as in

i = 10;

while (i, i--) newline ();

do...while

The do...while statement follows the syntax

do statement-or-block while (integer-expression );

The main difference between this statement and the while statement is that the do...while form
performs the test involving integer-expression after each execution of statement-or-block rather than
before. This guarantees that statement-or-block will get executed at least once.

A simple example from the jed editor follows:

bob (); % Move to beginning of buffer

do

{

indent_line ();

}

while (down (1));

This will cause all lines in the buffer to get indented via the jed intrinsic function indent line.
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for

Perhaps the most complex looping statement is the for statement; nevertheless, it is a favorite of
many C programmers. This statement obeys the syntax

for (init-expression ; integer-expression ; end-expression ) statement-or-block

next-statement

In addition to statement-or-block , its specification requires three other expressions. When executed,
the for statement evaluates init-expression, then it tests integer-expression. If integer-expression
evaluates to zero, control passes to next-statement . Otherwise, it executes statement-or-block as
long as integer-expression evaluates to a non-zero result. After every execution of statement-or-
block , end-expression will get evaluated.

This statement is almost equivalent to

init-expression ; while (integer-expression ) { statement-or-block

end-expression ; }

The reason that they are not fully equivalent involves what happens when statement-or-block con-
tains a continue statement.

Despite the apparent complexity of the for statement, it is very easy to use. As an example, consider

s = 0;

for (i = 1; i <= 10; i++) s += i;

which computes the sum of the first 10 integers.

loop

The loop statement simply executes a block of code a fixed number of times. It follows the syntax

loop (integer-expression ) statement-or-block next-statement

If the integer-expression evaluates to a positive integer, statement-or-block will get executed that
many times. Otherwise, control will pass to next-statement .

For example,

loop (10) newline ();

will execute the newline function 10 times.

for

Like loop, the for statement simply executes a block of code a fixed number times. Unlike the
loop statement, the for loop is useful in situations where the loop index is needed. It obeys the
syntax
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for loop-variable (first-value , last-value , increment ) block next-statement

Each time through the loop, the loop-variable will take on the successive values dictated by the other
parameters. The first time through, the loop-variable will have the value of first-value. The second
time its value will be first-value + increment , and so on. The loop will terminate when the value
of the loop index exceeds last-value. The current implementation requires the control parameters
first-value, last-value, and increment to be integer-valued expressions.

For example, the for statement may be used to compute the sum of the first ten integers:

s = 0;

_for i (1, 10, 1)

s += i;

The execution speed of the for loop is more than twice as fast as the more powerful for loop
making it a better choice for many situations.

forever

The forever statement is similar to the loop statement except that it loops forever, or until a break

or a return statement is executed. It obeys the syntax

forever statement-or-block

A trivial example of this statement is

n = 10;

forever

{

if (n == 0) break;

newline ();

n--;

}

foreach

The foreach statement is used to loop over one or more statements for every element of an object.
Most often the object will be a container object such as an array, structure, or associative arrays,
but it need not be.

The simple type of foreach statement obeys the syntax

foreach var (object ) statement-or-block

Here object can be an expression that evaluates to a value. Each time through the loop the variable
var will take on a value that depends upon the data type of the object being processed. For container
objects, var will take on values of successive members of the object.

A simple example is
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foreach fruit (["apple", "peach", "pear"])

process_fruit (fruit);

This example shows that if the container object is an array, then successive elements of the array are
assigned to fruit prior to each execution cycle. If the container object is a string, then successive
characters of the string are assigned to the variable.

What actually gets assigned to the variable may be controlled via the using form of the foreach

statement. This more complex type of foreach statement follows the syntax

foreach var ( container-object ) using ( control-list ) statement-or-block

The allowed values of control-list will depend upon the type of container object. For associative
arrays (Assoc Type), control-list specifies whether keys, values, or both are used. For example,

foreach k (a) using ("keys")

{

.

.

}

results in the keys of the associative array a being successively assigned to k. Similarly,

foreach v (a) using ("values")

{

.

.

}

will cause the values to be used. The form

foreach k,v (a) using ("keys", "values")

{

.

.

}

may be used when both keys and values are desired.

Similarly, for linked-lists of structures, one may walk the list via code like

foreach s (linked_list) using ("next")

{

.

.

}

This foreach statement is equivalent

s = linked_list;

while (s != NULL)
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{

.

.

s = s.next;

}

Consult the type-specific documentation for a discussion of the using control words, if any, appro-
priate for a given type.

7.4 break, return, and continue

S-Lang also includes the non-local transfer statements return, break, and continue. The return

statement causes control to return to the calling function while the break and continue statements
are used in the context of loop structures. Consider:

define fun ()

{

forever

{

s1;

s2;

..

if (condition_1) break;

if (condition_2) return;

if (condition_3) continue;

..

s3;

}

s4;

..

}

Here, a function fun has been defined that contains a forever loop consisting of statements s1,
s2,...,s3, and three if statements. As long as the expressions condition 1, condition 2, and
condition 3 evaluate to zero, the statements s1, s2,...,s3 will be repeatedly executed. However, if
condition 1 returns a non-zero value, the break statement will get executed, and control will pass
out of the forever loop to the statement immediately following the loop, which in this case is s4.
Similarly, if condition 2 returns a non-zero number, the return statement will cause control to
pass back to the caller of fun. Finally, the continue statement will cause control to pass back to
the start of the loop, skipping the statement s3 altogether.
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Chapter 8

Functions

There are essentially two classes of functions that may be called from the interpreter: intrinsic
functions and slang functions.

An intrinsic function is one that is implemented in C or some other compiled language and is callable
from the interpreter. Nearly all of the built-in functions are of this variety. At the moment the basic
interpreter provides nearly 300 intrinsic functions. Examples include the trigometric functions sin

and cos, string functions such as strcat, etc. Dynamically loaded modules such as the png and
pcre modules add additional intrinsic functions.

The other type of function is written in S-Lang and is known simply as a “S-Lang function”. Such
a function may be thought of as a group of statements that work together to perform a computation.
The specification of such functions is the main subject of this chapter.

8.1 Calling Functions

The most important rule to remember in calling a function is that if the function returns a value,
do something with it . While this might sound like a trivial statement it is the number one issue that
trips-up novice users of the language.

To elaborate on this point further, consider the fputs function, which writes a a string to a file
descriptor. This function can fail when, e.g., a disk is full, or the file is located on a network share
and the network goes down, etc.

S-Lang supports two mechanisms that a function may use to report a failure: raising an exception,
returning a status code. The latter mechanism is used by the S-Lang fputs function. i.e., it returns
a value to indicate whether or not is was successful. Many users familiar with this function either
seem to forget this fact, or assume that the function will succeed and not bother handling the return
value. While some languages silently remove such values from the stack, S-Lang regards the stack
as a dynamic data structure that programs can utilize. As a result, the value will be left on the
S-Lang stack and can cause problems later on.

There are a number of correct ways of “doing something” with the return value from a function. Of
course the recommended procedure is to use the return value as it was meant to be used. In the
case of fputs, the proper thing to do is to check the return value, e.g.,

43
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if (-1 == fputs ("good luck", fp))

{

% Handle the error

}

Other acceptable ways to “do something” with the return value include assigning it to a dummy
variable,

dummy = fputs ("good luck", fp);

or simply “popping” it from the stack:

fputs ("good luck", fp); pop();

The latter mechanism can also be written as

() = fputs ("good luck", fp);

The last form is a special case of the multiple assignment statement , which is discussed in more
detail below. Since this form is simpler than assigning the value to a dummy variable or explicitly
calling the pop function, it is recommended over the other two mechanisms. Finally, this form has
the redeeming feature that it presents a visual reminder that the function is returning a value that
is not being used.

8.2 Declaring Functions

Like variables, functions must be declared before they can be used. The define keyword is used for
this purpose. For example,

define factorial ();

is sufficient to declare a function named factorial. Unlike the variable keyword used for declaring
variables, the define keyword does not accept a list of names.

Usually, the above form is used only for recursive functions. In most cases, the function name is
almost always followed by a parameter list and the body of the function:

define function-name (parameter-list ) { statement-list }

The function-name is an identifier and must conform to the naming scheme for identifiers discussed
in the chapter on 4 (Identifiers). The parameter-list is a comma-separated list of variable names that
represent parameters passed to the function, and may be empty if no parameters are to be passed.
The variables in the parameter-list are implicitly declared, thus, there is no need to declare them
via a variable declaration statement. In fact any attempt to do so will result in a syntax error.

The body of the function is enclosed in braces and consists of zero or more statements (statement-
list). While there are no imposed limits upon the number statements that may occur within a S-
Lang function, it is considered poor programming practice if a function contains many statements.
This notion stems from the belief that a function should have a simple, well defined purpose.
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8.3 Parameter Passing Mechanism

Parameters to a function are always passed by value and never by reference. To see what this means,
consider

define add_10 (a)

{

a = a + 10;

}

variable b = 0;

add_10 (b);

Here a function add 10 has been defined, which when executed, adds 10 to its parameter. A variable
b has also been declared and initialized to zero before being passed to add 10. What will be the
value of b after the call to add 10? If S-Lang were a language that passed parameters by reference,
the value of b would be changed to 10. However, S-Lang always passes by value, which means that
b will retain its value during and after after the function call.

S-Lang does provide a mechanism for simulating pass by reference via the reference operator. This
is described in greater detail in the next section.

If a function is called with a parameter in the parameter list omitted, the corresponding variable in
the function will be set to NULL. To make this clear, consider the function

define add_two_numbers (a, b)

{

if (a == NULL) a = 0;

if (b == NULL) b = 0;

return a + b;

}

This function must be called with two parameters. However, either of them may omitted by calling
the function in one of the following ways:

variable s = add_two_numbers (2,3);

variable s = add_two_numbers (2,);

variable s = add_two_numbers (,3);

variable s = add_two_numbers (,);

The first example calls the function using both parameters, but at least one of the parameters was
omitted in the other examples. If the parser recognizes that a parameter has been omitted by finding
a comma or right-parenthesis where a value is expected, it will substitute NULL for missing value.
This means that the parser will convert the latter three statements in the above example to:

variable s = add_two_numbers (2, NULL);

variable s = add_two_numbers (NULL, 3);

variable s = add_two_numbers (NULL, NULL);

It is important to note that this mechanism is available only for function calls that specify more
than one parameter. That is,
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variable s = add_10 ();

is not equivalent to add 10(NULL). The reason for this is simple: the parser can only tell whether or
not NULL should be substituted by looking at the position of the comma character in the parameter
list, and only function calls that indicate more than one parameter will use a comma. A mechanism
for handling single parameter function calls is described later in this chapter.

8.4 Referencing Variables

One can achieve the effect of passing by reference by using the reference (&) and dereference (@)
operators. Consider again the add 10 function presented in the previous section. This time it is
written as:

define add_10 (a)

{

@a = @a + 10;

}

variable b = 0;

add_10 (&b);

The expression &b creates a reference to the variable b and it is the reference that gets passed to
add 10. When the function add 10 is called, the value of the local variable a will be a reference
to the variable b. It is only by dereferencing this value that b can be accessed and changed. So,
the statement @a=@a+10 should be read as “add 10 to the value of the object that a references and
assign the result to the object that a references”.

The reader familiar with C will note the similarity between references in S-Lang and pointers in C.

References are not limited to variables. A reference to a function may also be created and passed
to other functions. As a simple example from elementary calculus, consider the following function
which returns an approximation to the derivative of another function at a specified point:

define derivative (f, x)

{

variable h = 1e-6;

return ((@f)(x+h) - (@f)(x)) / h;

}

define x_squared (x)

{

return x^2;

}

dydx = derivative (&x_squared, 3);

When the derivative function is called, the local variable f will be a reference to the x squared

function. The x squared function is called is called with the specified parameters by dereferencing
f with the dereference operator.
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8.5 Functions with a Variable Number of Arguments

When a S-Lang function is called with parameters, those parameters are placed on the run-time
stack. The function accesses those parameters by removing them from the stack and assigning them
to the variables in its parameter list. This details of this operation are for the most part hidden
from the programmer. But what happens when the number of parameters in the parameter list is
not equal to the number of parameters passed to the function? If the number passed to the function
is less than what the function expects, a StackUnderflow error could result as the function tries
to remove items from the stack. If the number passed is greater than the number in the parameter
list, then the extras will remain on the stack. The latter feature makes it possible to write functions
that take a variable number of arguments.

Consider the add 10 example presented earlier. This time it is written

define add_10 ()

{

variable x;

x = ();

return x + 10;

}

variable s = add_10 (12); % ==> s = 22;

For the uninitiated, this example looks as if it is destined for disaster. The add 10 function appears
to accept zero arguments, yet it was called with a single argument. On top of that, the assignment
to x looks strange. The truth is, the code presented in this example makes perfect sense, once you
realize what is happening.

First, consider what happens when add 10 is called with the parameter 12. Internally, 12 is pushed
onto the stack and then the function called. Now, consider the function add 10 itself. In it, x is a
local variable. The strange looking assignment ‘x=()’ causes whatever is on the top of the stack to
be assigned to x. In other words, after this statement, the value of x will be 12, since 12 is at the
top of the stack.

A generic function of the form

define function_name (x, y, ..., z)

{

.

.

}

is transformed internally by the parser to

define function_name ()

{

variable x, y, ..., z;

z = ();

.

.

y = ();

x = ();
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.

.

}

before further parsing. (The add 10 function, as defined above, is already in this form.) With this
knowledge in hand, one can write a function that accepts a variable number of arguments. Consider
the function:

define average_n (n)

{

variable x, y;

variable s;

if (n == 1)

{

x = ();

s = x;

}

else if (n == 2)

{

y = ();

x = ();

s = x + y;

}

else throw NotImplementedError;

return s / n;

}

variable ave1 = average_n (3.0, 1); % ==> 3.0

variable ave2 = average_n (3.0, 5.0, 2); % ==> 4.0

Here, the last argument passed to average n is an integer reflecting the number of quantities to be
averaged. Although this example works fine, its principal limitation is obvious: it only supports one
or two values. Extending it to three or more values by adding more else if constructs is rather
straightforward but hardly worth the effort. There must be a better way, and there is:

define average_n (n)

{

variable s, x;

s = 0;

loop (n)

{

x = (); % get next value from stack

s += x;

}

return s / n;

}

The principal limitation of this approach is that one must still pass an integer that specifies how
many values are to be averaged. Fortunately, a special variable exists that is local to every function
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and contains the number of values that were passed to the function. That variable has the name
NARGS and may be used as follows:

define average_n ()

{

variable x, s = 0;

if (_NARGS == 0)

usage ("ave = average_n (x, ...);");

loop (_NARGS)

{

x = ();

s += x;

}

return s / _NARGS;

}

Here, if no arguments are passed to the function, the usage function will generate a UsageError

exception along with a simple message indicating how to use the function.

8.6 Returning Values

As stated earlier, the usual way to return values from a function is via the return statement. This
statement has the simple syntax

return expression-list ;

where expression-list is a comma separated list of expressions. If the function does not return any
values, the expression list will be empty. A simple example of a function that can return multiple
values (two in this case) is:

define sum_and_diff (x, y)

{

variable sum, diff;

sum = x + y; diff = x - y;

return sum, diff;

}

8.7 Multiple Assignment Statement

In the previous section an example of a function returning two values was given. That function can
also be written somewhat simpler as:

define sum_and_diff (x, y)

{
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return x + y, x - y;

}

This function may be called using

(s, d) = sum_and_diff (12, 5);

After the above line is executed, s will have a value of 17 and the value of d will be 7.

The most general form of the multiple assignment statement is

( var_1, var_2, ..., var_n ) = expression;

Here expression is an arbitrary expression that leaves n items on the stack, and var k represents
an l-value object (permits assignment). The assignment statement removes those values and assigns
them to the specified variables. Usually, expression is a call to a function that returns multiple
values, but it need not be. For example,

(s,d) = (x+y, x-y);

produces results that are equivalent to the call to the sum and diff function. Another common use
of the multiple assignment statement is to swap values:

(x,y) = (y,x);

(a[i], a[j], a[k]) = (a[j], a[k], a[i]);

If an l-value is omitted from the list, then the corresponding value will be removed fro the stack.
For example,

(s, ) = sum_and_diff (9, 4);

assigns the sum of 9 and 4 to s and the difference (9-4) is removed from the stack. Similarly,

() = fputs ("good luck", fp);

causes the return value of the fputs function to be discarded.

It is possible to create functions that return a variable number of values instead of a fixed number .
Although such functions are discouraged, it is easy to cope with them. Usually, the value at the
top of the stack will indicate the actual number of return values. For such functions, the multiple
assignment statement cannot directly be used. To see how such functions can be dealt with, consider
the following function:

define read_line (fp)

{

variable line;

if (-1 == fgets (&line, fp))

return -1;

return (line, 0);

}
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This function returns either one or two values, depending upon the return value of fgets. Such a
function may be handled using:

status = read_line (fp);

if (status != -1)

{

s = ();

.

.

}

In this example, the last value returned by read line is assigned to status and then tested. If it
is non-zero, the second return value is assigned to s. In particular note the empty set of parenthesis
in the assignment to s. This simply indicates that whatever is on the top of the stack when the
statement is executed will be assigned to s.

8.8 Exit-Blocks

An exit-block is a set of statements that get executed when a functions returns. They are very useful
for cleaning up when a function returns via an explicit call to return from deep within a function.

An exit-block is created by using the EXIT BLOCK keyword according to the syntax

EXIT BLOCK { statement-list }

where statement-list represents the list of statements that comprise the exit-block. The following
example illustrates the use of an exit-block:

define simple_demo ()

{

variable n = 0;

EXIT_BLOCK { message ("Exit block called."); }

forever

{

if (n == 10) return;

n++;

}

}

Here, the function contains an exit-block and a forever loop. The loop will terminate via the
return statement when n is 10. Before it returns, the exit-block will get executed.

A function can contain multiple exit-blocks, but only the last one encountered during execution will
actually get used. For example,

define simple_demo (n)

{
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EXIT_BLOCK { return 1; }

if (n != 1)

{

EXIT_BLOCK { return 2; }

}

return;

}

If 1 is passed to this function, the first exit-block will get executed because the second one would
not have been encountered during the execution. However, if some other value is passed, the second
exit-block would get executed. This example also illustrates that it is possible to explicitly return
from an exit-block, but nested exit-blocks are illegal.
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Namespaces

By default, all global variables and functions are defined in the global or public namespace. In
addition to the global namespace, every compilation unit (e.g., a file containing S-Lang code) has
a private, or anonymous namespace. The private namespace is used when one wants to restrict
the usage of one or more functions or variables to the compilation unit that defines them without
worrying about objects with the same names defined elsewhere.

Objects are declared as belonging to the private namespace using the private declaration keyword.
Similarly if a variable is declared using the public qualifier, it will be placed in the public namespace.
For example,

private variable i;

public variable j;

defines a variable called i in the private namespace and one called j in the public namespace.

The implements function may be used to create a new namespace of a specified name and have it
associated with the compilation unit. Objects may be placed into this namespace space using the
static keyword, e.g.,

static variable X;

static define foo () {...}

For this reason, such a namespace will be called the static namespace associated with the compilation
unit. Such objects may be accessed from outside the local compilation unit using the namespace
operator -> in conjunction with the name of the namespace.

Since it is possible for three namespaces (private, static, public) to be associated with a compilation
unit, it is important to understand how names are resolved by the parser. During the compilation
stage, symbols are looked up according to the current scope. If in a function, the local variables of
the function are searched first. Then the search proceeds with symbols in the private namespace,
followed by those in the static namespace associated with the compilation unit (if any), and finally
with the public namespace. If after searching the public namespace the symbol has not been resolved,
an UndefinedNameError exception will result.

In addition to using the implements function, there are other ways to associate a namespace with
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a compilation unit. One is via the optional namespace argument of the evalfile function. For
example,

() = evalfile ("foo.sl", "bar");

will cause foo.sl to be loaded and associated with a namespace called bar. Then any static symbols
of foo.sl may accessed using the bar-> prefix.

It is important to note that if a static namespace has been associated with the compilation unit,
then any symbols in that unit declared without an namespace qualifier will be placed in the static
namespace. Otherwise such symbols will be placed in the public namespace, and any symbols
declared as static will be placed in the private namespace.

To illustrate these concepts, consider the following example:

% foo.sl

variable X = 1;

static variable Y;

private variable Z;

public define set_Y (y) { Y = y; }

static define set_z (z) { Z = z; }

If foo.sl is loaded via

() = evalfile ("foo.sl");

then no static namespace will be associated with it. As a result, X will be placed in the public
namespace since it was declared with no namespace qualifier. Also Y and set z will be placed in
the private namespace since no static namespace has been associated with the file. In this scenario
there will be no way to get at the Z variable from outside of foo.sl since both it and the function
that accesses it (set z) are placed in the private namespace.

On the other hand, suppose that the file is loaded using a namespace argument:

() = evalfile ("foo.sl", "foo");

In this case X, Y, and get z will be placed in the foo namespace. These objects may be accessed
from outside foo.sl using the foo-> prefix, e.g.,

foo->set_z (3.0);

if (foo->X == 2) foo->Y = 1;

Because a file may be loaded with or without a namespace attached to it, it is a good idea to avoid
using the static qualifier. To see this, consider again the above example but this time without the
use of the static qualifier:

% foo.sl

variable X = 1;

variable Y;

private variable Z;

public define set_Y (y) { Y = y; }

define set_z (z) { Z = z; }
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When loaded without a namespace argument, the variable Z will remain in the private namespace,
but the set z function will be put in the public namespace. Previously set z was put in the private
namespace making both it and Z inaccessible.
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Chapter 10

Arrays

An array is a container object that can contain many values of one data type. Arrays are very useful
objects and are indispensable for certain types of programming. The purpose of this chapter is to
describe how arrays are defined and used in the S-Lang language.

10.1 Creating Arrays

The S-Lang language supports multi-dimensional arrays of all data types. Since the Array Type is
a data type, one can even have arrays of arrays. To create a multi-dimensional array of SomeType
and assign to some variable, use:

a = SomeType [dim0, dim1, ..., dimN];

Here dim0 , dim1 , ... dimN specify the size of the individual dimensions of the array. The current
implementation permits arrays to contain as many as 7 dimensions. When a numeric array is created,
all its elements are initialized to zero. The initialization of other array types depend upon the data
type, e.g., the elements in String Type and Struct Type arrays are initialized to NULL.

As a concrete example, consider

a = Integer_Type [10];

which creates a one-dimensional array of 10 integers and assigns it to a. Similarly,

b = Double_Type [10, 3];

creates a 30 element array of double precision numbers arranged in 10 rows and 3 columns, and
assigns it to b.

10.1.1 Range Arrays

There is a more convenient syntax for creating and initializing 1-d arrays. For example, to create
an array of ten integers whose elements run from 1 through 10, one may simply use:
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a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

Similarly,

b = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];

specifies an array of ten doubles.

An even more compact way of specifying a numeric array is to use a range-array . For example,

a = [0:9];

specifies an array of 10 integers whose elements range from 0 through 9. The syntax for the most
general form of range array is given by

[first-value : last-value : increment]

where the increment is optional and defaults to 1. This creates an array whose first element is
first-value and whose successive values differ by increment . last-value sets an upper limit upon the
last value of the array as described below.

If the range array [a:b:c] is integer valued, then the interval specified by a and b is closed. That is,
the kth element of the array x k is given by x k=a+kc and satisfies a¡=x k¡=b. Hence, the number
of elements in an integer range array is given by the expression 1 + (b-a)/c.

The situation is somewhat more complicated for floating point range arrays. The interval specified
by a floating point range array [a:b:c] is semi-open such that b is not contained in the interval.
In particular, the kth element of [a:b:c] is given by x k=a+kc such that a¡=x k¡b when c¿=0,
and b¡x k¡=a otherwise. The number of elements in the array is one greater than the largest k that
satisfies the open interval constraint.

Here are a few examples that illustrate the above comments:

[1:5:1] ==> [1,2,3,4,5]

[1.0:5.0:1.0] ==> [1.0, 2.0, 3.0, 4.0]

[5:1:-1] ==> [5,4,3,2,1]

[5.0:1.0:-1.0] ==> [5.0, 4.0, 3.0, 2.0];

[1:1] ==> [1]

[1.0:1.0] ==> []

[1.0:1.0001] ==> [1.0]

[1:-3] ==> []

10.1.2 Creating arrays via the dereference operator

Another way to create an array is to apply the dereference operator @ to the DataType Type literal
Array Type. The actual syntax for this operation resembles a function call

variable a = @Array Type (data-type , integer-array );

where data-type is of type DataType Type and integer-array is a 1-d array of integers that specify
the size of each dimension. For example,
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variable a = @Array_Type (Double_Type, [10, 20]);

will create a 10 by 20 array of doubles and assign it to a. This method of creating arrays derives
its power from the fact that it is more flexible than the methods discussed in this section. It is
particularly useful for creating arrays during run-time in situations where the data-type can vary.

10.2 Reshaping Arrays

It is sometimes useful to change the ‘shape’ of an array using the reshape function. For example,
a 1-d 10 element array may be reshaped into a 2-d array consisting of 5 rows and 2 columns. The
only restriction on the operation is that the arrays must be commensurate. The reshape function
follows the syntax

reshape (array-name , integer-array );

where array-name specifies the array to be reshaped to the dimensions given by integer-array,
a 1-dimensional array of integers. It is important to note that this does not create a new array, it
simply reshapes the existing array. Thus,

variable a = Double_Type [100];

reshape (a, [10, 10]);

turns a into a 10 by 10 array, as well as any other variables attached to the array.

The reshape function works like reshape except that it creates a new array instead of changing
the shape of an existing array:

new_a = _reshape (a, [10,10]);

10.3 Simple Array Indexing

An individual element of an array may be referred to by its index . For example, a[0] specifies the
zeroth element of the one dimensional array a, and b[3,2] specifies the element in the third row
and second column of the two dimensional array b. As in C, array indices are numbered from 0.
Thus if a is a one-dimensional array of ten integers, the last element of the array is given by a[9].
Using a[10] would result in an IndexError exception.

A negative index may be used to index from the end of the array, with a[-1] referring to the last
element of a. Similarly, a[-2] refers to the next to the last element, and so on.

One may use the indexed value like any other variable. For example, to set the third element of an
integer array to 6, use

a[2] = 6;

Similarly, that element may be used in an expression, such as

y = a[2] + 7;
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Unlike other S-Lang variables which inherit a type upon assignment, array elements already have a
type and any attempt to assign a value with an incompatible type will result in a TypeMismatchError
exception. For example, it is illegal to assign a string value to an integer array.

One may use any integer expression to index an array. A simple example that computes the sum of
the elements of a 10 element 1-d array is

variable i, s;

s = 0;

for (i = 0; i < 10; i++) s += a[i];

(In practice, do not carry out sums this way— use the sum function instead, which is much simpler
and faster, i.e., s=sum(a)).

10.4 Indexing Multiple Elements with Ranges

Unlike many other languages, S-Lang permits arrays to be indexed by other integer arrays. Suppose
that a is a 1-d array of 10 doubles. Now consider:

i = [6:8];

b = a[i];

Here, i is a 1-dimensional range array of three integers with i[0] equal to 6, i[1] equal to 7, and
i[2] equal to 8. The statement b = a[i]; will create a 1-d array of three doubles and assign it to
b. The zeroth element of b, b[0] will be set to the sixth element of a, or a[6], and so on. In fact,
these two simple statements are equivalent to

b = Double_Type [3];

b[0] = a[6];

b[1] = a[7];

b[2] = a[8];

except that using an array of indices is not only much more convenient, but executes much faster.

More generally, one may use an index array to specify which elements are to participate in a calcu-
lation. For example, consider

a = Double_Type [1000];

i = [0:499];

j = [500:999];

a[i] = -1.0;

a[j] = 1.0;

This creates an array of 1000 doubles and sets the first 500 elements to -1.0 and the last 500 to
1.0. Actually, one may do away with the i and j variables altogether and use

a = Double_Type [1000];

a[[0:499]] = -1.0;

a[[500:999]] = 1.0;
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It is important to note that the syntax requires the use of the double square brackets, and in
particular that a[[0:499]] is not the same as a[0:499]. In fact, the latter will generate a syntax
error.

Index-arrays are not contrained to be one-dimensional arrays. Suppose that I represents a multidi-
mensional index array, and that A is the array to be indexed. Then what does A[I] represent? Its
value will be an array of the same type as A, but with the dimensionality of I . For example,

a = 1.0*[1:10];

i = _reshape ([4,5,6,7,8,9], [2,3]);

defines a to be a 10 element array of doubles, and i to be 2x3 array of integers. Then a[i] will be
a 2x3 array of doubles with elements:

a[4] a[5] a[6]

a[7] a[8] a[9]

Often, it is convenient to use a “rubber” range to specify indices. For example, a[[500:]] specifies
all elements of a whose index is greater than or equal to 500. Similarly, a[[:499]] specifies the
first 500 elements of a. Finally, a[[:]] specifies all the elements of a. The latter form may also be
written as a[*].

One should be careful when using index arrays with negative elements. As pointed out above, a
negative index is used to index from the end of the array. That is, a[-1] refers to the last element
of a. How should a[[[0:-1]] be interpreted?

In version 1 of the interpreter, when used in an array indexing context, a construct such as [0:-1]
was taken to mean from the first element through the last. While this might seem like a convenient
shorthand, in retrospect it was a bad idea. For this reason, the meaning of a ranges over negative
valued indices was changed in version 2 of the interpreter as follows: First the index-range gets
expanded to an array of indices according to the rules for range arrays described above. Then if any
of the resulting indices are negative, they are interpreted as indices from the end of the array. For
example, if a is an array of 10 elements, then a[[-2:3]] is first expanded to a[[-2,-1,0,1,2,3]],
and then to the 6 element array

[ a[8], a[9], a[0], a[1], a[2], a[3] ]

So, what does a[[0:-1]] represent in the new interpretation? Since [0:-1] expands to an empty
array, a[[0:-1]] will also produce an empty array.

Indexing of multidimensional arrays using ranges works similarly. Suppose a is a 100 by 100 array of
doubles. Then the expression a[0, *] specifies all elements in the zeroth row. Similarly, a[*, 7]

specifies all elements in the seventh column. Finally, a[[3:5],[6:12]] specifies the 3 by 7 region
consisting of rows 3, 4, and 5, and columns 6 through 12 of a.

Before leaving this section, a few examples are presented to illustrate some of these points.

The “trace” of a matrix is an important concept that occurs frequently in linear algebra. The trace
of a 2d matrix is given by the sum of its diagonal elements. Consider the creation of a function that
computes the trace of such a matrix.

The most straightforward implementation of such a function uses an explicit loop:
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define array_trace (a, n)

{

variable s = 0, i;

for (i = 0; i < n; i++) s += a[i, i];

return s;

}

Better yet is to recognize that the diagonal elements of an n by n array are given by an index array
I with elements 0, n+1, 2*n+2, ..., n*n-1, or more precisely as

[0:n*n-1:n+1]

Hence the above may be written more simply as

define array_trace (a, n)

{

return sum (a[[0:n*n-1:n+1]]);

}

The following example creates a 10 by 10 integer array, sets its diagonal elements to 5, and then
computes the trace of the array:

a = Integer_Type [10, 10];

a[[0:99:11]] = 5;

the_trace = array_trace(a, 10);

In the previous examples, the size of the array was passed as an additional argument. This is
unnecessary because the size may be obtained from array itself by using the array shape function.
For example, the following function may be used to obtain the indices of the diagonal element of an
array:

define diag_indices (a)

{

variable dims = array_shape (a);

if (length (dims) != 2)

throw InvalidParmError, "Expecting a 2d array";

if (dims[0] != dims[1])

throw InvalidParmError, "Expecting a square array";

variable n = dims[0];

return [0:n*(n-1):n+1];

}

Using this function, the trace function may be written more simply as

define array_trace (a)

{

return sum (a[diag_indices(a)]);

}

Another example of this technique is a function that creates an n by n unit matrix:
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define unit_matrix (n)

{

variable a = Int_Type[n, n];

a[diag_indices(a)] = 1;

return a;

}

10.5 Arrays and Variables

When an array is created and assigned to a variable, the interpreter allocates the proper amount
of space for the array, initializes it, and then assigns to the variable a reference to the array. So, a
variable that represents an array has a value that is really a reference to the array. This has several
consequences, most good and some bad. It is believed that the advantages of this representation
outweigh the disadvantages. First, we shall look at the positive aspects.

When a variable is passed to a function, it is always the value of the variable that gets passed. Since
the value of a variable representing an array is a reference, a reference to the array gets passed. One
major advantage of this is rather obvious: it is a fast and efficient way to pass the array. This also
has another consequence that is illustrated by the function

define init_array (a)

{

variable i;

variable n = length(a);

_for i (0, n-1, 1)

a[i] = some_function (i);

}

where some function is a function that generates a scalar value to initialize the ith element. This
function can be used in the following way:

variable X = Double_Type [100000];

init_array (X);

Since the array is passed to the function by reference, there is no need to make a separate copy of the
100000 element array. As pointed out above, this saves both execution time and memory. The other
salient feature to note is that any changes made to the elements of the array within the function will
be manifested in the array outside the function. Of course, in this case this is a desirable side-effect.

To see the downside of this representation, consider:

a = Double_Type [10];

b = a;

a[0] = 7;

What will be the value of b[0]? Since the value of a is really a reference to the array of ten doubles,
and that reference was assigned to b, b also refers to the same array. Thus any changes made to the
elements of a, will also be made implicitly to b.
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This begs the question: If the assignment of a variable attached to an an array to another variable
results in the assignment of the same array, then how does one make separate copies of the array?
There are several answers including using an index array, e.g., b = a[*]; however, the most natural
method is to use the dereference operator:

a = Double_Type [10];

b = @a;

a[0] = 7;

In this example, a separate copy of a will be created and assigned to b. It is very important to note
that S-Lang never implicitly dereferences an object. So, one must explicitly use the dereference
operator. This means that the elements of a dereferenced array are not themselves dereferenced.
For example, consider dereferencing an array of arrays, e.g.,

a = Array_Type [2];

a[0] = Double_Type [10];

a[1] = Double_Type [10];

b = @a;

In this example, b[0] will be a reference to the array that a[0] references because a[0] was not
explicitly dereferenced.

10.6 Using Arrays in Computations

Many functions and operations work transparently with arrays. For example, if a and b are arrays,
then the sum a + b is an array whose elements are formed from the sum of the corresponding
elements of a and b. A similar statement holds for all other binary and unary operations.

Let’s consider a simple example. Suppose, that we wish to solve a set of n quadratic equations whose
coefficients are given by the 1-d arrays a, b, and c. In general, the solution of a quadratic equation
will be two complex numbers. For simplicity, suppose that all we really want is to know what subset
of the coefficients, a, b, c, correspond to real-valued solutions. In terms of for loops, we can write:

index_array = Char_Type [n];

_for i (0, n-1, 1)

{

d = b[i]^2 - 4 * a[i] * c[i];

index_array [i] = (d >= 0.0);

}

In this example, the array index array will contain a non-zero value if the corresponding set of
coefficients has a real-valued solution. This code may be written much more compactly and with
more clarity as follows:

index_array = ((b^2 - 4 * a * c) >= 0.0);

Moreover, it executes about 20 times faster than the version using an explicit loop.

S-Lang has a powerful built-in function called where. This function takes an array of boolean
values and returns an array of indices that correspond to where the elements of the input array are
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non-zero. The utility of this simple operation cannot be overstated. For example, suppose a is a 1-d
array of n doubles, and it is desired to set all elements of the array whose value is less than zero to
zero. One way is to use a for loop:

_for i (0, n-1, 1)

if (a[i] < 0.0) a[i] = 0.0;

If n is a large number, this statement can take some time to execute. The optimal way to achieve
the same result is to use the where function:

a[where (a < 0.0)] = 0;

Here, the expression (a < 0.0) returns a boolean array whose dimensions are the same size as a

but whose elements are either 1 or 0, according to whether or not the corresponding element of a is
less than zero. This array of zeros and ones is then passed to the where function, which returns a
1-d integer array of indices that indicate where the elements of a are less than zero. Finally, those
elements of a are set to zero.

Consider once more the example involving the set of n quadratic equations presented above. Suppose
that we wish to get rid of the coefficients of the previous example that generated non-real solutions.
Using an explicit for loop requires code such as:

nn = 0;

_for i (0, n-1, 1)

if (index_array [i]) nn++;

tmp_a = Double_Type [nn];

tmp_b = Double_Type [nn];

tmp_c = Double_Type [nn];

j = 0;

_for i (0, n-1, 1)

{

if (index_array [i])

{

tmp_a [j] = a[i];

tmp_b [j] = b[i];

tmp_c [j] = c[i];

j++;

}

}

a = tmp_a;

b = tmp_b;

c = tmp_c;

Not only is this a lot of code, making it hard to digest, but it is also clumsy and error-prone. Using
the where function, this task is trivial and executes in a fraction of the time:

i = where (index_array != 0);

a = a[i];

b = b[i];

c = c[i];
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Most of the examples up till now assumed that the dimensions of the array were known. Although
the intrinsic function length may be used to get the total number of elements of an array, it cannot
be used to get the individual dimensions of a multi-dimensional array. The array shape function
may be used to determine the dimensionality of an array. It may be used to determine the number
of rows of an array as follows:

define num_rows (a)

{

return array_shape (a)[0];

}

The number of columns may be obtained in a similar manner:

define num_cols (a)

{

variable dims = array_shape (a);

if (length(dims) > 1) return dims[1];

return 1;

}

The array shape function may also be used to create an array that has the same number of dimen-
sions as another array:

define make_int_array (a)

{

return @Array_Type (Int_Type, array_shape (a));

}

Finally, the array info function may be used to get additional information about an array, such as
its data type and size.
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Associative Arrays

An associative array differs from an ordinary array in the sense that its size is not fixed and that it
is indexed by a string, called the key . For example, consider:

A = Assoc_Type [Int_Type];

A["alpha"] = 1;

A["beta"] = 2;

A["gamma"] = 3;

Here, A has been assigned to an associative array of integers (Int Type) and then three keys were
been added to the array.

As the example suggests, an associative array may be created using one of the following forms:

Assoc Type [type ] Assoc Type [type , default-value ] Assoc Type []

The last form returns an un-typed associative array capable of storing values of any type.

The form involving a default-value is useful for associating a default value with non-existent array
members. This feature is explained in more detail below.

There are several functions that are specially designed to work with associative arrays. These include:

• assoc get keys, which returns an ordinary array of strings containing the keys of the array.

• assoc get values, which returns an ordinary array of the values of the associative array. If
the associative array is un-typed, then an array of Any Type objects will be returned.

• assoc key exists, which can be used to determine whether or not a key exists in the array.

• assoc delete key, which may be used to remove a key (and its value) from the array.

To illustrate the use of an associative array, consider the problem of counting the number of repeated
occurrences of words in a list. Let the word list be represented as an array of strings given by
word list. The number of occurrences of each word may be stored in an associative array as
follows:
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a = Assoc_Type [Int_Type];

foreach word (word_list)

{

if (0 == assoc_key_exists (a, word))

a[word] = 0;

a[word]++; % same as a[word] = a[word] + 1;

}

Note that assoc key exists was necessary to determine whether or not a word was already added
to the array in order to properly initialize it. However, by creating the associative array with a
default value of 0, the above code may be simplified to

variable a, word;

a = Assoc_Type [Int_Type, 0];

foreach word (word_list)

a[word]++;

Associative arrays are extremely useful and have may other applications. Whenever there is a one
to one mapping between a string and some object, one should always consider using an associative
array to represent the mapping. To illustrate this point, consider the following code fragment:

define call_function (name, arg)

{

if (name == "foo") return foo (arg);

if (name == "bar") return bar (arg);

.

.

if (name == "baz") return baz (arg);

throw InvalidParmError;

}

This represents a mapping between names and functions. Such a mapping may be written in terms
of an associative array as follows:

private define invalid_fun (arg) { throw InvalidParmError; }

Fun_Map = Assoc_Type[Ref_Type, &invalid_fun];

define add_function (name, fun)

{

Fun_Map[name] = fun;

}

add_function ("foo", &foo);

add_function ("bar", &bar);

.

.

add_function ("baz", &baz);

define call_function (name, arg)

{

return (@Fun_Map[name])(arg);

}
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The most redeeming feature of the version involving the series of if statements is that it is easy
to understand. However, the version involving the associative array has two significant advantages
over the former. Namely, the function lookup will be much faster with a time that is independent
of the item being searched, and it is extensible in the sense that additional functions may be added
at run-time, e.g.,

add_function ("bing", &bing);
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Chapter 12

Structures and User-Defined Types

A structure is a heterogeneous container object, i.e., it is an object with elements whose values do
not have to be of the same data type. The elements or fields of a structure are named, and one
accesses a particular field of the structure via the field name. This should be contrasted with an
array whose values are of the same type, and whose elements are accessed via array indices.

A user-defined data type is a structure with a fixed set of fields defined by the user.

12.1 Defining a Structure

The struct keyword is used to define a structure. The syntax for this operation is:

struct {field-name-1 , field-name-2 , ... field-name-N };

This creates and returns a structure with N fields whose names are specified by field-name-1 , field-
name-2 , ..., field-name-N . When a structure is created, the values of its fields are initialized to
NULL.

For example,

variable t = struct { city_name, population, next };

creates a structure with three fields and assigns it to the variable t.

Alternatively, a structure may be created by dereferencing Struct Type. Using this technique, the
above structure may be created using one of the two forms:

t = @Struct_Type ("city_name", "population", "next");

t = @Struct_Type (["city_name", "population", "next"]);

This approach is useful when creating structures dynamically where one does not know the name of
the fields until run-time.

Like arrays, structures are passed around by reference. Thus, in the above example, the value of t
is a reference to the structure. This means that after execution of
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u = t;

both t and u refer to the same underlying structure, since only the reference was copied by the
assignment. To actually create a new copy of the structure, use the dereference operator, e.g.,

variable u = @t;

It create new structure whose field names are identical to the old and copies the field values to the
new structure. If any of the values are objects that are passed by reference, then only the references
will be copied. In other words,

t = struct{a};

t.a = [1:10];

u = @t;

will produce a structure u that references the same array as t.

12.2 Accessing the Fields of a Structure

The dot (.) operator is used to specify the particular field of structure. If s is a structure and
field name is a field of the structure, then s.field name specifies that field of s. This specification
can be used in expressions just like ordinary variables. Again, consider

t = struct { city_name, population, next };

described in the last section. Then,

t.city_name = "New York";

t.population = 13000000;

if (t.population > 200) t = t.next;

are all valid statements involving the fields of t.

12.3 Linked Lists

One of the most important uses of structures is the creation of dynamic data structures such as
linked-lists. A linked-list is simply a chain of structures that are linked together such that one
structure in the chain is the value of a field of the previous structure in the chain. To be concrete,
consider the structure discussed earlier:

t = struct { city_name, population, next };

and suppose that it is desired to create a linked-list of such objects to store population data. The
purpose of the next field is to provide the link to the next structure in the chain. Suppose that
there exists a function, read next city, that reads city names and populations from a file. Then
the list may be created using:
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define create_population_list ()

{

variable city_name, population, list_root, list_tail;

variable next;

list_root = NULL;

while (read_next_city (&city_name, &population))

{

next = struct {city_name, population, next };

next.city_name = city_name;

next.population = population;

next.next = NULL;

if (list_root == NULL)

list_root = next;

else

list_tail.next = next;

list_tail = next;

}

return list_root;

}

In this function, the variables list root and list tail represent the beginning and end of the
list, respectively. As long as read next city returns a non-zero value, a new structure is created,
initialized, and then appended to the list via the next field of the list tail structure. On the first
time through the loop, the list is created via the assignment to the list root variable.

This function may be used as follows:

Population_List = create_population_list ();

if (Population_List == NULL)

throw RunTimeError, "List is empty";

Other functions may be created that manipulate the list. Here is one that finds the city with the
largest population:

define get_largest_city (list)

{

variable largest;

largest = list;

while (list != NULL)

{

if (list.population > largest.population)

largest = list;

list = list.next;

}

return largest.city_name;

}
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vmessage ("%s is the largest city in the list",

get_largest_city (Population_List)));

The get largest city is a typical example of how one traverses a linear linked-list by starting at
the head of the list and successively moves to the next element of the list via the next field.

In the previous example, a while loop was used to traverse the linked list. It is also possible to use
a foreach loop for this:

define get_largest_city (list)

{

variable largest, elem;

largest = list;

foreach item (list)

{

if (item.population > largest.population)

largest = item;

}

return largest.city_name;

}

Here a foreach loop has been used to walk the list via its next field. If the field name linking
the elements was not called next, then it would have been necessary to use the using form of the
foreach statement. For example, if the field name implementing the linked list was next item, then

foreach item (list) using ("next_item")

{

.

.

}

would have been used. In other words, unless otherwise indicated via the using clause, foreach
walks the list using a field named next.

Now consider a function that sorts the list according to population. To illustrate the technique, a
bubble-sort will be used, not because it is efficient (it is not), but because it is simple, intuitive, and
provides another example of structure manipulation:

define sort_population_list (list)

{

variable changed;

variable node, next_node, last_node;

do

{

changed = 0;

node = list;

next_node = node.next;

last_node = NULL;

while (next_node != NULL)
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{

if (node.population < next_node.population)

{

% swap node and next_node

node.next = next_node.next;

next_node.next = node;

if (last_node != NULL)

last_node.next = next_node;

if (list == node) list = next_node;

node = next_node;

next_node = node.next;

changed++;

}

last_node = node;

node = next_node;

next_node = next_node.next;

}

}

while (changed);

return list;

}

Note the test for equality between list and node, i.e.,

if (list == node) list = next_node;

It is important to appreciate the fact that the values of these variables are references to structures,
and that the comparison only compares the references and not the actual structures they reference.
If it were not for this, the algorithm would fail.

12.4 Defining New Types

A user-defined data type may be defined using the typedef keyword. In the current implementation,
a user-defined data type is essentially a structure with a user-defined set of fields. For example, in
the previous section a structure was used to represent a city/population pair. We can define a data
type called Population Type to represent the same information:

typedef struct

{

city_name,

population

} Population_Type;

This data type can be used like all other data types. For example, an array of Population Type
types can be created,

variable a = Population_Type[10];
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and ‘populated’ via expressions such as

a[0].city_name = "Boston";

a[0].population = 2500000;

The new type Population Type may also be used with the typeof function:

if (Population_Type == typeof (a))

city = a.city_name;

The dereference @ may be used to create an instance of the new type:

a = @Population_Type;

a.city_name = "Calcutta";

a.population = 13000000;

Another feature that user-defined types possess is that the action of the binary and unary operations
may be defined for them. This idea is discussed in more detail below.

12.5 Operator Overloading

The binary and unary operators may be extended to user-defined types. To illustrate how this
works, consider a data type that represents a vector in 3-space:

typedef struct { x, y, z } Vector_Type;

and a function that instantiates such an object:

define vector_new (x, y, z)

{

variable v = @Vector_Type;

v.x = double(x); v.y = double(y); v.z = double(z);

return v;

}

This function may be used to define a function that adds two vectors together:

define vector_add (v1, v2)

{

return vector_new (v1.x+v2.x, v1.y+v2.y, v1.z+v2.z);

}

Using these functions, three vectors representing the points (2,3,4), (6,2,1), and (-3,1,-6) may
be created using

V1 = vector_new (2,3,4);

V2 = vector_new (6,2,1);

V3 = vector_new (-3,1,-6);
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and then added together via

V4 = vector_add (V1, vector_add (V2, V3));

The problem with the last statement is that it is not a very natural way to express the addition of
three vectors. It would be far better to extend the action of the binary + operator to the Vector Type

objects and then write the above sum more simply as

V4 = V1 + V2 + V3;

The add binary function defines the result of a binary operation between two data types:

add binary (op , result-type , funct , typeA ,typeB );

Here, op is a string representing any one of the binary operators ("+", "-", "*", "/", "==",...), and
funct is reference to a function that carries out the binary operation between objects of types typeA
and typeB to produce an object of type result-type.

This function may be used to extend the + operator to Vector Type objects:

__add_binary ("+", Vector_Type, &vector_add, Vector_Type, Vector_Type);

Similarly the subtraction and equality operators may be extended to Vector Type via

define vector_minus (v1, v2)

{

return vector_new (v1.x-v2.x, v1.y-v2.y, v1.z-v2.z);

}

__add_binary ("-", Vector_Type, &vector_minus, Vector_Type, Vector_Type);

define vector_eqs (v1, v2)

{

return (v1.x==v2.x) and (v1.y==v2.y) and (v1.z==v2.z);

}

__add_binary ("==", Char_Type, &vector_eqs, Vector_Type, Vector_Type);

permitting a statement such as

if (V2 != V1) V3 = V2 - V1;

The - operator is also an unary operator that is customarily used to change the sign of an object.
Unary operations may be extended to Vector Type objects using the add unary function:

define vector_chs (v)

{

return vector_new (-v.x, -v.y, -v.z);

}

__add_unary ("-", Vector_Type, &vector_chs, Vector_Type);
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A trivial example of the use of the unary minus is V4 = -V2.

It is interesting to consider the extension of the multiplication operator * to Vector Type. A vector
may be multiplied by a scalar to produce another vector. This can happen in two ways as reflected
by the following functions:

define vector_scalar_mul (v, a)

{

return vector_new (a*v.x, a*v.y, a*v.z);

}

define scalar_vector_mul (a, v)

{

return vector_new (a*v.x, a*v.y, a*v.z);

}

Here a represents the scalar, which can be any object that may be multiplied by a Double Type,
e.g., Int Type, Float Type, etc. Instead of using multiple statements involving add binary to
define the action of Int Type+Vector Type, Float Type+Vector Type, etc, a single statement using
Any Type to represent a “wildcard” type may be used:

__add_binary ("*", Vector_Type, &vector_scalar_mul, Vector_Type, Any_Type);

__add_binary ("*", Vector_Type, &scalar_vector_mul, Any_Type, Vector_Type);

There are a couple of natural possibilities for Vector Type*Vector Type: The cross-product defined
by

define crossprod (v1, v2)

{

return vector_new (v1.y*v2.z-v1.z*v2.y,

v1.z*v2.x-v1.x*v2.z,

v1.x*v2.y-v1.y*v2.x);

}

and the dot-product:

define dotprod (v1, v2)

{

return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;

}

The binary * operator between two vector types may be defined to be just one of these functions—
it cannot be extended to both. If the dot-product is chosen then one would use

__add_binary ("*", Double_Type, &dotprod, Vector_Type_Type, Vector_Type);

Just because it is possible to define the action of a binary or unary operator on an user-defined
type, it is not always wise to do so. A useful rule of thumb is to ask whether defining a particular
operation leads to more readable and maintanable code. For example, simply looking at

c = a + b;
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in isolation one can easily overlook the fact that a function such as vector add may be getting
executed. Moreover, in cases where the action is ambiguous such as Vector Type*Vector Type it
may not be clear what

c = a*b;

means unless one knows exactly what choice was made when extending the * operator to the types.
For this reason it may be wise to leave Vector Type*Vector Type undefined and use “old-fashioned”
function calls such as

c = dotprod (a, b);

d = crossprod (a, b);

to avoid the ambiguity altogether.

Finally, the add string function may be used to define the string representation of an object.
Examples involving the string representation include:

message ("The value is " + string (V));

vmessage ("The result of %S+%S is %S", V);

str = The value of V is $V"$;

For the Vector Type one might want to use the string represention generated by

define vector_string (v)

{

return sprintf ("(%S,%S,%S)", v.x, v.y, v.z);

}

__add_string (Vector_Type, &vector_string);
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Chapter 13

Lists

Sometimes it is desirable to utilize an object that has many of the properties of an array, but can
also easily grow or shrink upon demand. The List Type object has such properties.

An empty list may be created either by the list new function or more simply using curly braces,
e.g.,

list = {};

More generally a list of objects may be created by simply enclosing them in braces. For example,

list = { "hello", 7, 3.14, {&sin, &cos}}

specifies a list of 4 elements, where the last element is also a list. The number of items in a list may
be obtained using the length function. For the above list, length(list) will return 4.

One may examine the contents of the list using an array index notation. For the above example,
list[0] refers to the zeroth element of the list ("hello" in this case). Similarly,

list[1] = [1,2,3];

changes the first element of the list (7) to the array [1,2,3]. Also as the case for arrays one may
index from the end of the list using negative indices, e.g., list[-1] refers to the last element of the
list.

The functions list insert and list append may be used to add items to a list. In particular,
list insert(list,obj,nth) will insert the object obj into the list at the nth position. Similarly,
list append(list,obj,nth) will insert the object obj into the list right after nth position. If

list = { "hello", 7, 3.14, {&sin, &cos}}

then

list_insert (list, 0, "hi");

list_append (list, 0, "there");

list_insert (list, -1, "before");

list_append (list, -1, "after");
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will result in the list

{"hi", "there", "hello", 7, 3.14, "before", {&sin,&cos}, "after"}

One might be tempted to use

list = {"hi", list};

to insert "hi" at the head of the list. However, this simply creates a new list of two items: hi and
the original list.

Items may be removed from a list via the list delete function, which deletes the item from the
specified position and shrinks the list. In the context of the above example,

list_delete (list, 2);

will shrink the list to

{"hi", "there", 7, 3.14, "before", {&sin,&cos}, "after"}

Another way of removing items from the list is to use the list pop function. The main difference
between it and list delete is that list pop returns the deleted item. For example,

item = list_pop (list, -2);

would reduce the list to

{"hi", "there", 7, 3.14, "before", "after"}

and assign {&sin,&cos} to item. If the position parameter to list pop is left unspecified, then the
position will default to the zeroth, i.e., list pop(list) is equaivalent to list pop(list,0).

To copy a list, use the dereference operator @:

new_list = @list;

Keep in mind that this does not perform a so-called deep copy. If any of the elements of the list are
objects that are assigned by reference, only the references will be copied.

The list reverse function may be used to reverse the elements of a list. Note that this does not
create a new list. To create new list that is the reverse of another, copy the original using the
dereference operator (@) and reverse that, i.e.,

new_list = list_reverse (@list);
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Error Handling

All non-trivial programs or scripts must be deal with the possibility of run-time errors. In fact, one
sign of a seasoned programmer is that such a person pays particular attention to error handling. This
chapter presents some techniques for handling errors using S-Lang. First the traditional method of
using return values to indicate errors will be discussed. Then attention will turn to S-Lang’s more
powerful exception handling mechanisms.

14.1 Traditional Error Handling

The simplist and perhaps most common mechanism for signalling a failure or error in a function is
for the function to return an error code, e.g.,

define write_to_file (file, str)

{

variable fp = fopen (file, "w");

if (fp == NULL)

return -1;

if (-1 == fputs (str, fp))

return -1;

if (-1 == fclose (fp))

return -1;

return 0;

}

Here, the write to file function returns 0 if successful, or -1 upon failure. It is up to the calling
routine to check the return value of write to file and act accordingly. For instance:

if (-1 == write_to_file ("/tmp/foo", "bar"))

{

() = fprintf (stderr, "Write failed\n");

exit (1);

}

The main advantage of this technique is in its simplicity. The weakness in this approach is that the
return value must be checked for every function that returns information in this way. A more subtle
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problem is that even minor changes to large programs can become unwieldy. To illustrate the latter
aspect, consider the following function which is supposed to be so simple that it cannot fail:

define simple_function ()

{

do_something_simple ();

more_simple_stuff ();

}

Since the functions called by simple function are not supposed to fail, simple function itself
cannot fail and there is no return value for its callers to check:

define simple ()

{

simple_function ();

another_simple_function ();

}

Now suppose that the function do something simple is changed in some way that could cause it to
fail from time to time. Such a change could be the result of a bug-fix or some feature enhancement.
In the traditional error handling approach, the function would need to be modified to return an
error code. That error code would have to be checked by the calling routine simple function and
as a result, it can now fail and must return an error code. The obvious effect is that a tiny change in
one function can be felt up the entire call chain. While making the appropriate changes for a small
program can be a trivial task, for a large program this could be a major undertaking opening the
possibility of introducing additional errors along the way. In a nutshell, this is a code maintainence
issue. For this reason, a veteran programmer using this approach to error handling will consider
such possibilities from the outset and allow for error codes the first time regardless of whether the
functions can fail or not, e.g.,

define simple_function ()

{

if (-1 == do_something_simple ())

return -1;

if (-1 == more_simple_stuff ())

return -1;

return 0;

}

define simple ()

{

if (-1 == simple_function ())

return -1;

if (-1 == another_simple_function ())

return -1;

return 0;

}

Although latter code containing explicit checks for failure is more robust and more easily maintain-
able than the former, it is also less readable. Moreover, since return values are now checked the
code will execute somewhat slower than the code that lacks such checks. There is also no clean
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separation of the error handling code from the other code. This can make it difficult to maintain if
the error handling semantics of a function change. The next section discusses another approach to
error handling that tries to address these issues.

14.2 Error Handling through Exceptions

This section describes S-Lang’s exception model. The idea is that when a function encounters an
error, instead of returning an error code, it simply gives up and throws an exception. This idea will
be fleshed out in what follows.

14.2.1 Introduction to Exceptions

Consider the write to file function used in the previous section but adapted to throw an exception:

define write_to_file (file, str)

{

variable fp = fopen (file, "w");

if (fp == NULL)

throw OpenError;

if (-1 == fputs (str, fp))

throw WriteError;

if (-1 == fclose (fp))

throw WriteError;

}

Here the throw statement has been used to generate the appropriate exception, which in this case is
either an OpenError exception or a WriteError exception. Since the function now returns nothing
(no error code), it may be called as

write_to_file ("/tmp/foo", "bar");

next_statement;

As long as the write to file function encounters no errors, control passes from write to file to
next statement.

Now consider what happens when the function encounters an error. For concreteness assume that the
fopen function failed causing write to file to throw the OpenError exception. The write to file

function will stop execution after executing the throw statement and return to its caller. Since no
provision has been made to handle the exception, next statement will not execute and control will
pass to the previous caller on the call stack. This process will continue until the exception is either
handled or until control reaches the top-level at which point the interpreter will terminate. This
process is known as unwinding of the call stack.

An simple exception handler may be created through the use of a try-catch statement, such as

try

{

write_to_file ("/tmp/foo", "bar");
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}

catch OpenError:

{

message ("*** Warning: failed to open /tmp/foo.");

}

next_statement;

The above code works as follows: First the statement (or statements) inside the try-block are
executed. As long as no exception occurs, once they have executed, control will pass on to
next statement, skipping the catch statement(s).

If an exception occurs while executing the statements in the try-block, any remaining statements
in the block will be skipped and control will pass to the “catch” portion of the exception handler.
This may consist of one or more catch statements and an optional finally statement. Each catch

statement specifies a list of exceptions it will handle as well as the code that is to be excecuted
when a matching exception is caught. If a matching catch statement is found for the exception,
the exception will be cleared and the code associated with the catch statement will get executed.
Control will then pass to next statement (or first to the code in an optional finally block).

Catch-statements are tested against the exception in the order that they appear. Once a matching
catch statement is found, the search will terminate. If no matching catch-statement is found, an
optional finally block will be processed, and the call-stack will continue to unwind until either a
matching exception handler is found or the interpreter terminates.

In the above example, an exception handler was established for the OpenError exception. The error
handling code for this exception will cause a warning message to be displayed. Execution will resume
at next statement.

Now suppose that write to file successfully opened the file, but that for some reason, e.g., a full
disk, the actual write operation failed. In such a case, write to file will throw a WriteError

exception passing control to the caller. The file will remain on the disk but not fully written. An
exception handler can be added for WriteError that removes the file:

try

{

write_to_file ("/tmp/foo", "bar");

}

catch OpenError:

{

message ("*** Warning: failed to open /tmp/foo.");

}

catch WriteError:

{

() = remove ("/tmp/foo");

message ("*** Warning: failed to write to /tmp/foo");

}

next_statement;

Here the exception handler for WriteError uses the remove intrinsic function to delete the file and
then issues a warning message. Note that the remove intrinsic uses the traditional error handling
mechanism— in the above example its return status has been discarded.
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Above it was assumed that failure to write to the file was not critical allowing a warning message
to suffice upon failure. Now suppose that it is important for the file to be written but that it is still
desirable for the file to be removed upon failure. In this scenario, next statement should not get
executed upon failure. This can be achieved as follows:

try

{

write_to_file ("/tmp/foo", "bar");

}

catch WriteError:

{

() = remove ("/tmp/foo");

throw WriteError;

}

next_statement;

Here the exception handler for WriteError removes the file and then re-throws the exception.

14.2.2 Obtaining information about the exception

When an exception is generated, an exception object is thrown. The object is a structure containing
the following fields:

error

The exception error code (Int Type).

descr

A brief description of the error (String Type).

file

The filename containing the code that generated the exception (String Type).

line

The line number where the exception was thrown (Int Type).

function

The name of the currently executing function, or NULL if at top-level (String Type).

message

A text message that may provide more information about the exception (String Type).

object

A user-defined object.

If it is desired to have information about the exception, then an alternative form of the try statement
must be used:
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try (e)

{

% try-block code

}

catch SomeException: { code ... }

If an exception occurs while executing the code in the try-block, then the variable e will be assigned
the value of the exception object. As a simple example, suppose that the file foo.sl consists of:

define invert_x (x)

{

if (x == 0)

throw DivideByZeroError;

return 1/x;

}

and that the code is called using

try (e)

{

y = invert_x (0);

}

catch DivideByZeroError:

{

vmessage ("Caught %s, generated by %s:%d\n",

e.descr, e.file, e.line);

vmessage ("message: %s\nobject: %S\n",

e.message, e.object);

y = 0;

}

When this code is executed, it will generate the message:

Caught Divide by Zero, generated by foo.sl:5

message: Divide by Zero

object: NULL

In this case, the value of the message field was assigned a default value. The reason that the object
field is NULL is that no object was specified when the exception was generated. In order to throw an
object, a more complex form of throw statement must be used:

throw exception-name [, message [, object ] ]

where the square brackets indicate optional parameters

To illustrate this form, suppose that invert x is modified to accept an array object:

private define invert_x(x)

{

variable i = where (x == 0);

if (length (i))



14.2. Error Handling through Exceptions 89

throw DivideByZeroError,

"Array contains elements that are zero", i;

return 1/x;

}

In this case, the message field of the exception object will contain the string "Array contains

elements that are zero" and the object field will be set to the indices of the zero elements.

14.2.3 The finally block

The full form of the try-catch statement obeys the following syntax:

try [(opt-e)] { try-block-statements } catch Exception-List-1 :

{ catch-block-1-statements } . . catch Exception-List-N : {
catch-block-N-statements } [ finally { finally-block-statements } ]

Here an exception-list is simply a list of exceptions such as:

catch OSError, RunTimeError:

The last clause of a try-statement is the finally-block , which is optional and is introduced using the
finally keyword. If the try-statement contains no catch-clauses, then it must specify a finally-
clause, otherwise a syntax error will result.

If the finally-clause is present, then its corresponding statements will be executed regardless of
whether an exception occurs. If an exception occurs while executing the statements in the try-
block, then the finally-block will execute after the code in any of the catch-blocks. The finally-clause
is useful for freeing any resources (file handles, etc) allocated by the try-block regardless of whether
an exception has occurred.

14.2.4 Creating new exceptions: the Exception Hierarchy

The following table gives the class hierarchy for the built-in exceptions.

AnyError

OSError

MallocError

ImportError

ParseError

SyntaxError

DuplicateDefinitionError

UndefinedNameError

RunTimeError

InvalidParmError

TypeMismatchError

UserBreakError

StackError

StackOverflowError

StackUnderflowError
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ReadOnlyError

VariableUnitializedError

NumArgsError

IndexError

UsageError

ApplicationError

InternalError

NotImplementedError

LimitExceededError

MathError

DivideByZeroError

ArithOverflowError

ArithUnderflowError

DomainError

IOError

WriteError

ReadError

OpenError

DataError

UnicodeError

InvalidUTF8Error

UnknownError

The above table shows that the root class of all exceptions is AnyError. This means that a catch block
for AnyError will catch any exception. The OSError, ParseError, and RunTimeError exceptions are
subclasses of the AnyError class. Subclasses of OSError include MallocError, and ImportError.
Hence a handler for the OSError exception will catch MallocError but not ParseError since the
latter is not a subclass of OSError.

The user may extend this tree with new exceptions using the new exception function. This function
takes three arguments:

new exception (exception-name , baseclass , description );

The exception-name is the name of the exception, baseclass represents the node in the exception
hierarchy where it is to be placed, and description is a string that provides a brief description of the
exception.

For example, suppose that you are writing some code that processes numbers stored in a binary
format. In particular, assume that the format specifies that data be stored in a specific byte-
order, e.g., in big-endian form. Then it might be useful to extend the DataError exception with
EndianError. This is easily accomplished via

new_exception ("EndianError", DataError, "Invalid byte-ordering");

This will create a new exception object called EndianError subclassed on DataError, and code that
catches the DataError exception will additionally catch the EndianError exception.



Chapter 15

Loading Files: evalfile, autoload,

and require

91



92 Chapter 15. Loading Files: evalfile, autoload, and require



Chapter 16

Modules

16.1 Introduction

A module is a shared object that may be dynamically linked into the interpreter at run-time to
provide the interpreter with additional intrinsic functions and variables. Several modules are dis-
tributed with the stock version of the S-Lang library, including a pcre module that allows the
interpreter to make use of the Perl Compatible Regular Expression library , and a png module that
allows the interpreter to easily read and write PNG files. There are also a number of modules for the
interpreter that are not distributed with the library. See http://www.jedsoft.org/slang/modules/
for links to some of those.

16.2 Using Modules

In order to make use of a module, it must first be “imported” into the interpreter. There are two
ways to go about this. One is to use the import function to dynamically link-in the specfied module,
e.g.,

import ("pcre");

will dynamically link to the pcre module and make its symbols available to the interpreter using
the active namespace. However, this is not the preferred method for loading a module.

Module writers are encouraged to distribute a module with a file of S-Lang code that performs the
actual import of the module. Rather than a user making direct use of the import function, the
preferred method of loading the modules is to load that file instead. For example the pcre module is
distributed with a file called pcre.sl that contains little more than the import("pcre") statement.
To use the pcre module, load pcre.sl, e.g.,

require ("pcre");

The main advantage of this approach to loading a module is that the functionality provided by the
module may be split between intrinsic functions in the module proper, and interpreted functions
contained in the .sl file. In such a case, loading the module via import would only provide partial
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functionality. The png module provides a simple example of this concept. The current version of
the png module consists of a couple intrinsic functions (png read and png write) contained in the
shared object (png-module.so), and a number of other interpreted S-Lang functions defined in
png.sl. Using the import statement to load the module would miss the latter set of functions.

In some cases, the symbols in a module may conflict with symbols that are currently defined by
the interpreter. In order to avoid the conflict, it may be necessary to load the module into its
own namespace and access its symbols via the namespace prefix. For example, the GNU Scientific
Library Special Function module, gslsf, defines a couple hundred functions, some with common
names such as zeta. In order to avoid any conflict, it is recommended that the symbols from such
a module be imported into a separate namespace. This may be accomplished by specifying the
namespace as a second argument to the require function, e.g.,

require ("gslsf", "gsl");

.

.

y = gsl->zeta(x);

This form requires that the module’s symbols be accessed via the namespace qualifier "gsl->".
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File Input/Output

S-Lang provides built-in support for two different I/O facilities. The simplest interface is modeled
upon the C language stdio interface and consists of functions such as fopen, fgets, etc. The other
interface is modeled on a lower level POSIX interface consisting of functions such as open, read,
etc. In addition to permitting more control, the lower level interface permits one to access network
objects as well as disk files.

17.1 Input/Output via stdio

17.1.1 Stdio Overview

The stdio interface consists of the following functions:

• fopen: opens a file for reading or writing.

• fclose: closes a file opened by fopen.

• fgets: reads a line from a file.

• fputs: writes text to a file.

• fprintf: writes formatted text to a file.

• fwrite: writes one of more objects to a file.

• fread: reads a specified number of objects from a file.

• fread bytes: reads a specified number of bytes from a file and returns them as a string.

• feof: tests if a file pointer is at the end of the file.

• ferror: tests whether or not the stream associated with a file has an error.

• clearerr: clears the end-of-file and error indicators for a stream.

• fflush, forces all buffered data associated with a stream to be written out.
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• ftell: queries the file position indicator a the stream.

• fseek: sets the position of a file position indicator of the stream.

• fgetslines: reads all the lines from a text file and returns them as an array of strings.

In addition, the interface supports the popen and pclose functions on systems where the corre-
sponding C functions are available.

Before reading or writing to a file, it must first be opened using the fopen function. The only
exceptions to this rule involve use of the pre-opened streams: stdin, stdout, and stderr. fopen

accepts two arguments: a file name and a string argument that indicates how the file is to be
opened, e.g., for reading, writing, update, etc. It returns a File Type stream object that is used
as an argument to all other functions of the stdio interface. Upon failure, it returns NULL. See the
reference manual for more information about fopen.

17.1.2 Stdio Examples

In this section, some simple examples of the use of the stdio interface is presented. It is important
to realize that all the functions of the interface return something, and that return value must be
handled in some way by the caller.

The first example involves writing a function to count the number of lines in a text file. To do this,
we shall read in the lines, one by one, and count them:

define count_lines_in_file (file)

{

variable fp, line, count;

fp = fopen (file, "r"); % Open the file for reading

if (fp == NULL)

throw OpenError, "$file failed to open"$;

count = 0;

while (-1 != fgets (&line, fp))

count++;

() = fclose (fp);

return count;

}

Note that &line was passed to the fgets function. When fgets returns, line will contain the line
of text read in from the file. Also note how the return value from fclose was handled (discarded
in this case).

Although the preceding example closed the file via fclose, there is no need to explicitly close a
file because the interpreter will automatically close a file when it is no longer referenced. Since the
only variable to reference the file is fp, it would have automatically been closed when the function
returned.

Suppose that it is desired to count the number of characters in the file instead of the number of
lines. To do this, the while loop could be modified to count the characters as follows:
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while (-1 != fgets (&line, fp))

count += strlen (line);

The main difficulty with this approach is that it will not work for binary files, i.e., files that contain
null characters. For such files, the file should be opened in binary mode via

fp = fopen (file, "rb");

and then the data read using the fread function:

while (-1 != fread (&line, Char_Type, 1024, fp))

count += length (line);

The fread function requires two additional arguments: the type of object to read (Char Type in
the case), and the number of such objects to be read. The function returns the number of objects
actually read in the form of an array of the specified type, or -1 upon failure.

Sometimes it is more convenient to obtain the data from a file in the form of a character string
instead of an array of characters. The fread bytes function may be used in such situations. Using
this function, the equivalent of the above loop is

while (-1 != fread_bytes (&line, 1024, fp))

count += bstrlen (line);

The foreach construct also works with File Type objects. For example, the number of characters
in a file may be counted via

foreach ch (fp) using ("char")

count++;

Similarly, one can count the number of lines using:

foreach line (fp) using ("line")

{

num_lines++;

count += strlen (line);

}

Often one is not interested in trailing whitespace in the lines of a file. To have trailing whitespace
automatically stripped from the lines as they are read in, use the "wsline" form, e.g.,

foreach line (fp) using ("wsline")

{

.

.

}

Finally, it should be mentioned that none of these examples should be used to count the number of
bytes in a file when that information is more readily accessible by another means. For example, it
is preferable to get this information via the stat file function:
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define count_chars_in_file (file)

{

variable st;

st = stat_file (file);

if (st == NULL)

throw IOError, "stat_file failed";

return st.st_size;

}

17.2 POSIX I/O

17.3 Advanced I/O techniques

The previous examples illustrate how to read and write objects of a single data-type from a file, e.g.,

num = fread (&a, Double_Type, 20, fp);

would result in a Double Type[num] array being assigned to a if successful. However, suppose that
the binary data file consists of numbers in a specified byte-order. How can one read such objects
with the proper byte swapping? The answer is to use the fread bytes function to read the objects
as a (binary) character string and then unpack the resulting string into the specified data type, or
types. This process is facilitated using the pack and unpack functions.

The pack function follows the syntax

BString Type pack (format-string , item-list );

and combines the objects in the item-list according to format-string into a binary string and returns
the result. Likewise, the unpack function may be used to convert a binary string into separate data
objects:

(variable-list ) = unpack (format-string , binary-string );

The format string consists of one or more data-type specification characters, and each may be
followed by an optional decimal length specifier. Specifically, the data-types are specified according
to the following table:

c char

C unsigned char

h short

H unsigned short

i int

I unsigned int

l long

L unsigned long

j 16 bit int

J 16 unsigned int
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k 32 bit int

K 32 bit unsigned int

f float

d double

F 32 bit float

D 64 bit float

s character string, null padded

S character string, space padded

z character string, null padded

x a null pad character

A decimal length specifier may follow the data-type specifier. With the exception of the s and S

specifiers, the length specifier indicates how many objects of that data type are to be packed or
unpacked from the string. When used with the s or S specifiers, it indicates the field width to be
used. If the length specifier is not present, the length defaults to one.

With the exception of c, C, s, S, z, and x, each of these may be prefixed by a character that indicates
the byte-order of the object:

> big-endian order (network order)

< little-endian order

= native byte-order

The default is to use the native byte order.

Here are a few examples that should make this more clear:

a = pack ("cc", ’A’, ’B’); % ==> a = "AB";

a = pack ("c2", ’A’, ’B’); % ==> a = "AB";

a = pack ("xxcxxc", ’A’, ’B’); % ==> a = "\0\0A\0\0B";

a = pack ("h2", ’A’, ’B’); % ==> a = "\0A\0B" or "\0B\0A"

a = pack (">h2", ’A’, ’B’); % ==> a = "\0\xA\0\xB"

a = pack ("<h2", ’A’, ’B’); % ==> a = "\0B\0A"

a = pack ("s4", "AB", "CD"); % ==> a = "AB\0\0"

a = pack ("s4s2", "AB", "CD"); % ==> a = "AB\0\0CD"

a = pack ("S4", "AB", "CD"); % ==> a = "AB "

a = pack ("S4S2", "AB", "CD"); % ==> a = "AB CD"

When unpacking, if the length specifier is greater than one, then an array of that length will be
returned. In addition, trailing whitespace and null characters are stripped when unpacking an object
given by the S specifier. Here are a few examples:

(x,y) = unpack ("cc", "AB"); % ==> x = ’A’, y = ’B’

x = unpack ("c2", "AB"); % ==> x = [’A’, ’B’]

x = unpack ("x<H", "\0\xAB\xCD"); % ==> x = 0xCDABuh

x = unpack ("xxs4", "a b c\0d e f"); % ==> x = "b c\0"

x = unpack ("xxS4", "a b c\0d e f"); % ==> x = "b c"

17.3.1 Example: Reading /var/log/wtmp

Consider the task of reading the Unix system file /var/log/utmp, which contains login records about
who logged onto the system. This file format is documented in section 5 of the online Unix man
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pages, and consists of a sequence of entries formatted according to the C structure utmp defined in
the utmp.h C header file. The actual details of the structure may vary from one version of Unix
to the other. For the purposes of this example, consider its definition under the Linux operating
system running on an Intel 32 bit processor:

struct utmp {

short ut_type; /* type of login */

pid_t ut_pid; /* pid of process */

char ut_line[12]; /* device name of tty - "/dev/" */

char ut_id[2]; /* init id or abbrev. ttyname */

time_t ut_time; /* login time */

char ut_user[8]; /* user name */

char ut_host[16]; /* host name for remote login */

long ut_addr; /* IP addr of remote host */

};

On this system, pid t is defined to be an int and time t is a long. Hence, a format specifier for
the pack and unpack functions is easily constructed to be:

"h i S12 S2 l S8 S16 l"

However, this particular definition is naive because it does not allow for structure padding performed
by the C compiler in order to align the data types on suitable word boundaries. Fortunately, the
intrinsic function pad pack format may be used to modify a format by adding the correct amount of
padding in the right places. In fact, pad pack format applied to the above format on an Intel-based
Linux system produces the result:

"h x2 i S12 S2 x2 l S8 S16 l"

Here we see that 4 bytes of padding were added.

The other missing piece of information is the size of the structure. This is useful because we would
like to read in one structure at a time using the fread function. Knowing the size of the various data
types makes this easy; however it is even easier to use the sizeof pack intrinsic function, which
returns the size (in bytes) of the structure described by the pack format.

So, with all the pieces in place, it is rather straightforward to write the code:

variable format, size, fp, buf;

typedef struct

{

ut_type, ut_pid, ut_line, ut_id,

ut_time, ut_user, ut_host, ut_addr

} UTMP_Type;

format = pad_pack_format ("h i S12 S2 l S8 S16 l");

size = sizeof_pack (format);

define print_utmp (u)

{
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() = fprintf (stdout, "%-16s %-12s %-16s %s\n",

u.ut_user, u.ut_line, u.ut_host, ctime (u.ut_time));

}

fp = fopen ("/var/log/utmp", "rb");

if (fp == NULL)

throw OpenError, "Unable to open utmp file";

() = fprintf (stdout, "%-16s %-12s %-16s %s\n",

"USER", "TTY", "FROM", "LOGIN@");

variable U = @UTMP_Type;

while (-1 != fread (&buf, Char_Type, size, fp))

{

set_struct_fields (U, unpack (format, buf));

print_utmp (U);

}

() = fclose (fp);

A few comments about this example are in order. First of all, note that a new data type called
UTMP Type was created, although this was not really necessary. The file was opened in binary mode,
but this too was optional because under a Unix system where there is no distinction between binary
and text modes. The print utmp function does not print all of the structure fields. Finally, last but
not least, the return values from fprintf and fclose were handled by discarding them.
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Chapter 18

Debugging

There are several ways to debug a S-Lang script. When the interpreter encounters an uncaught
exception, it can generate a traceback report showing where the error occurred and the values of
local variables in the function call stack frames at the time of the error. Often just knowing where
the error occurs is all that is required to correct the problem. More subtle bugs may require a deeper
analysis to diagnose the problem. While one can insert the appropriate print statements in the code
to get some idea about what is going on, it may be simpler to use the interactive debugger.

18.1 Tracebacks

When the value of the traceback variable is non-zero, the interpreter will generate a traceback
report when it encounters an error. This variable may be set by putting the line

_traceback = 1;

at the top of the suspect file. If the script is running in slsh, then invoking slsh using the -g option
will enable tracebacks:

slsh -g myscript.sl

If traceback is set to a positive value, the values of local variables will be printed in the traceback
report. If set to a negative integer, the values of the local variables will be absent.

Here is an example of a traceback report:

Traceback: error

***string***:1:verror:Run-Time Error

/grandpa/d1/src/jed/lib/search.sl:78:search_generic_search:Run-Time Error

Local Variables:

String_Type prompt = "Search forward:"

Integer_Type dir = 1

Ref_Type line_ok_fun = &_function_return_1

String_Type str = "ascascascasc"

Char_Type not_found = 1
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Integer_Type cs = 0

/grandpa/d1/src/jed/lib/search.sl:85:search_forward:Run-Time Error

There are several ways to read this report; perhaps the simplest is to read it from the bot-
tom. This report says that on line 85 in search.sl the search forward function called the
search generic search function. On line 78 it called the verror function, which in turn called
error. The search generic search function contains 6 local variables whose values at the time of
the error are given by the traceback output. The above example shows that a local variable called
"not found" had a Char Type value of 1 at the time of the error.

18.2 Using the sldb debugger

The interpreter contains a number of hooks that support a debugger. sldb consists of a set of
functions that use these hooks to implement a simple debugger. Although written for slsh, the
debugger may be used by other S-Lang interpreters that permit the loading of slsh library files.
The examples presented here are given in the context of slsh.

In order to use the debugger, the code to to be debugged must be loaded with debugging info enabled.
This can be in done several ways, depending upon the application embedding the interpreter.

For applications that support a command line, the simplest way to access the debugger is to use the
sldb function with the name of the file to be debugged:

require ("sldb");

sldb ("foo.sl");

When called without an argument, sldb will prompt for input. This can be useful for setting or
removing breakpoints.

Another mechanism to access the debugger is to put

require ("sldb");

sldb_enable ();

at the top of the suspect file. Any files loaded by the file will also be compiled with debugging
support, making it unnecessary to add this to all files.

If the file contains any top-level executable statements, the debugger will display the line to be
executed and prompt for input. If the file does not contain any executable statements, the debugger
will not be activated until one of the functions in the file is executed.

As a concrete example, consider the following contrived slsh script called buggy.sl:

define divide (a, b, i)

{

return a[i] / b;

}

define slsh_main ()

{

variable x = [1:5];
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variable y = x*x;

variable i;

_for i (0, length(x), 1)

{

variable z = divide (x, y, i);

() = fprintf (stdout, "%g/%g = %g", x[i], y[i], z);

}

}

Running this via

slsh buggy.sl

yields

Expecting Double_Type, found Array_Type

./buggy.sl:13:slsh_main:Type Mismatch

More information may be obtained by using slsh’s -g option to cause a traceback report to be
printed:

slsh -g buggy.sl

Expecting Double_Type, found Array_Type

Traceback: fprintf

./buggy.sl:13:slsh_main:Type Mismatch

Local variables for slsh_main:

Array_Type x = Integer_Type[5]

Array_Type y = Integer_Type[5]

Integer_Type i = 0

Array_Type z = Integer_Type[5]

Error encountered while executing slsh_main

From this one can see that the problem is that z is an array and not a scalar as expected.

To run the program under debugger control, startup slsh and load the file using the sldb function:

slsh> sldb ("./buggy.sl");

Note the use of "./" in the filename. This may be necessary if the file is not in the slsh search path.

The above command causes execution to stop with the following displayed:

slsh_main at ./buggy.sl:9

9 variable x = [1:5];

(sldb)

This shows that the debugger has stopped the script at line 9 of buggy.sl and is waiting for input.
The print function may be used to print the value of an expression or variable. Using it to display
the value of x yields

(sldb) print x

Caught exception:Variable Uninitialized Error

(sldb)



106 Chapter 18. Debugging

This is because x has not yet been assigned a value and will not be until line 9 has been executed.
The next command may be used to execute the current line and stop at the next one:

(sldb) next

10 variable y = x*x;

(sldb)

The step command functions almost the same as next, except when a function call is involved. In
such a case, the next command will step over the function call but step will cause the debugger to
enter the function and stop there.

Now the value of x may be displayed using the print command:

(sldb) print x

Integer_Type[5]

(sldb) print x[0]

1

(sldb) print x[-1]

5

(sldb)

The list command may be used to get a list of the source code around the current line:

(sldb) list

5 return a[i] / b;

6 }

7 define slsh_main ()

8 {

9 variable x = [1:5];

10 variable y = x*x;

11 variable i;

12 _for i (0, length(x), 1)

13 {

14 variable z = divide (x, y, i);

15 () = fprintf (stdout, "%g/%g = %g", x[i], y[i], z);

The break function may be used to set a breakpoint. For example,

(sldb) break 15

breakpoint #1 set at ./buggy.sl:15

will set a break point at the line 15 of the current file.

The cont command may be used to continue execution until the next break point:

(sldb) cont

Breakpoint 1, slsh_main

at ./buggy.sl:15

15 () = fprintf (stdout, "%g/%g = %g", x[i], y[i], z);

(sldb)

Using the next command produces:
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Received Type Mismatch error. Entering the debugger

15 () = fprintf (stdout, "%g/%g = %g", x[i], y[i], z);

This shows that during the execution of line 15, a TypeMismatchError was generated. Let’s see
what caused it:

(sldb) print x[i]

1

(sldb) print y[i]

1

(sldb) print z

Integer_Type[5]

This shows that the problem was caused by z being an array and not a scalar— something that was
already known from the traceback report. Now let’s see why it is not a scalar. Start the program
again and set a breakpoint in the divide function:

slsh_main at ./buggy.sl:9

9 variable x = [1:5];

(sldb) break divide

breakpoint #1 set at divide

(sldb) cont

Breakpoint 1, divide

at ./buggy.sl:5

5 return a[i] / b;

(sldb)

The values of a[i]/b and b may be printed:

(sldb) print a[i]/b

Integer_Type[5]

(sldb) print b

Integer_Type[5]

From this it is easy to see that z is an array because b is an array. The fix for this is to change line
5 to

z = a[i]/b[i];

The debugger supports several other commands. For example, the up and down commands may
be used to move up and down the stack-frames, and where command may be used to display the
stack-frames. These commands are useful for examining the variables in the other frames:

(sldb) where

#0 ./buggy.sl:5:divide

#1 ./buggy.sl:14:slsh_main

(sldb) up

#1 ./buggy.sl:14:slsh_main

14 variable z = divide (x, y, i);

(sldb) print x
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Integer_Type[5]

(sldb) down

#0 ./buggy.sl:5:divide

5 return a[i] / b;

(sldb) print z

Integer_Type[5]

On some operating systems, the debugger’s watchfpu command may be used to help isolate floating
point exceptions. Consider the following example:

define solve_quadratic (a, b, c)

{

variable d = b^2 - 4.0*a*c;

variable x = -b + sqrt (d);

return x / (2.0*a);

}

define print_root (a, b, c)

{

vmessage ("%f %f %f %f\n", a, b, c, solve_quadratic (a,b,c));

}

print_root (1,2,3);

Running it via slsh produces:

1.000000 2.000000 3.000000 nan

Now run it in the debugger:

<top-level> at ./example.sl:12

11 print_root (1,2,3);

(sldb) watchfpu FE_INVALID

(sldb) cont

*** FPU exception bits set: FE_INVALID

Entering the debugger.

solve_quadratic at ./t.sl:4

4 variable x = -b + sqrt (d);

This shows the the NaN was produced on line 4.

The watchfpu command may be used to watch for the occurrence of any combination of the following
exceptions

FE_DIVBYZERO

FE_INEXACT

FE_INVALID

FE_OVERFLOW

FE_UNDERFLOW

by the bitwise-or operation of the desired combination. For instance, to track both FE INVALID and
FE OVERFLOW, use:

(sldb) watchfpu FE_INVALID | FE_OVERFLOW
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Regular Expressions

The S-Lang library includes a regular expression (RE) package that may be used by an applica-
tion embedding the library. The RE syntax should be familiar to anyone acquainted with regular
expressions. In this section the syntax of the S-Lang regular expressions is discussed.

NOTE: At the moment, the S-Lang regular expressions do not support UTF-8 encoded strings.
The S-Lang library will most likely migrate to the use of the PCRE regular expression library,
deprecating the use of the S-Lang REs in the process. For these reasons, the user is encouraged to
make use of the pcre module if possible.

19.1 S-Lang RE Syntax

A regular expression specifies a pattern to be matched against a string, and has the property that
the contcatenation of two REs is also a RE.

The S-Lang library supports the following standard regular expressions:

. match any character except newline

* matches zero or more occurences of previous RE

+ matches one or more occurences of previous RE

? matches zero or one occurence of previous RE

^ matches beginning of a line

$ matches end of line

[ ... ] matches any single character between brackets.

For example, [-02468] matches ‘-’ or any even digit.

and [-0-9a-z] matches ‘-’ and any digit between 0 and 9

as well as letters a through z.

\< Match the beginning of a word.

\> Match the end of a word.

\( ... \)

\1, \2, ..., \9 Matches the match specified by nth \( ... \)

expression.

In addition the following extensions are also supported:
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\c turn on case-sensitivity (default)

\C turn off case-sensitivity

\d match any digit

\e match ESC char

Here are some simple examples:

"^int " matches the "int " at the beginning of a line.

"\<money\>" matches "money" but only if it appears as a separate word.

"^$" matches an empty line.

A more complex pattern is

"\(\<[a-zA-Z]+\>\)[ ]+\1\>"

which matches any word repeated consecutively. Note how the grouping operators \( and \) are
used to define the text matched by the enclosed regular expression, and then subsequently referred
to \1.

Finally, remember that when used in string literals either in the S-Lang language or in the C
language, care must be taken to ”double-up” the ’\’ character since both languages treat it as an
escape character.

19.2 Differences between S-Lang and egrep REs

There are several differences between S-Lang regular expressions and, e.g., egrep regular expres-
sions.

The most notable difference is that the S-Lang regular expressions do not support the OR operator
| in expressions. This means that "a|b" or "a\|b" do not have the meaning that they have in regular
expression packages that support egrep-style expressions.

The other main difference is that while S-Lang regular expressions support the grouping operators
\( and \), they are only used as a means of specifying the text that is matched. That is, the
expression

"@\([a-z]*\)@.*@\1@"

matches "xxx@abc@silly@abc@yyy", where the pattern \1 matches the text enclosed by the \(
and \) expressions. However, in the current implementation, the grouping operators are not used to
group regular expressions to form a single regular expression. Thus expression such as "\(hello\)*"
is not a pattern to match zero or more occurrences of "hello" as it is in e.g., egrep.

One question that comes up from time to time is why doesn’t S-Lang simply employ some posix-
compatible regular expression library. The simple answer is that, at the time of this writing, none
exists that is available across all the platforms that the S-Lang library supports (Unix, VMS, OS/2,
win32, win16, BEOS, MSDOS, and QNX) and can be distributed under both the GNU licenses. It
is particularly important that the library and the interpreter support a common set of regular
expressions in a platform independent manner.
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S-Lang 2 Interpreter NEWS

A.1 What’s new for S-Lang 2

Here is a brief list of some of the new features and improvements in S-Lang 2.0.

• slsh, the generic S-Lang interpreter now supports and interactive command-line mode with
readline support.

• Native support for Unicode via UTF-8 throughout the library.

• A List Type object has been added to the language, e.g.,

x = {1, 2.7, "foo", [1:10]};

will create a (heterogeneous) list of 4 elements.

• A much improved exception handling model.

• Variable expansion within string literals:

file = "$HOME/src/slang-$VERSION/"$;

• Operator overloading for user-defined types. For example it is possible to define a meaning to
X+Y where X and Y are defined as

typedef struct { x, y, z } Vector;

define vector (x,y,z) { variable v = @Vector; v.x=x; v.y=y; v.z=z;}

X = vector (1,2,3);

Y = vector (4,5,6);

• Syntactic sugar for objected-oriented style method calls. S-Lang 1 code such as

(@s.method)(s, args);

may be written much more simply as

s.method(args);
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This should make ”object-oriented” code somewhat more readable. See also the next section
if your code uses constructs such as

@s.method(args);

because it is not supported by S-Lang 2.

• More intrinsic functions including math functions such as hypot, atan2, floor, ceil, round,
isnan, isinf, and many more.

• Support for long long integers.

X = 18446744073709551615ULL;

• Large file support

• Performance improvements. The S-Lang 2 interpreter is about 20 percent faster for many
operations than the previous version.

• Better debugging support including an interactive debugger. See the section on 18.2 (Using
the sldb debugger) for more information.

See the relevent chapters in in the manual for more information.

A.2 Upgrading to S-Lang 2

For the most part S-Lang 2 is backwards-compatible with S-Lang 1. However there are a few
important differences that need to be understood before upgrading to version 2.

++ and – operators in function calls

Previously the ++ and {–} operators were permitted in a function argument list, e.g.,

some_function (x++, x);

Such uses are flagged as syntax errors and need to be changed to

x++; some_function (x);

Array indexing of strings

Array indexing of strings uses byte-semantics and not character-semantics. This distinction is
important only if UTF-8 mode is in effect. If you use array indexing with functions that use
character semantics, then your code may not work properly in UTF-8 mode. For example, one
might have used

i = is_substr (a, b);

if (i) c = a[[0:i-2]];

to extract that portion of a that preceeds the occurrence of b in a. This may nolonger work
in UTF-8 mode where bytes and characters are not generally the same. The correct way to
write the above is to use the substr function since it uses character semantics:

i = is_substr (a, b);

if (i) c = substr (a, 1, i-1);
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Array indexing with negative integer ranges

Previously the interpretation of a range array was context sensitive. In an indexing situation
[0:-1] was used to index from the first through the last element of an array, but outside this
context, [0:-1] was an empty array. For S-Lang 2, the meaning of such arrays is always
the same regardless of the context. Since by itself [0:-1] represents an empty array, indexing
with such an array will also produce an empty array. The behavior of scalar indices has not
changed: A[-1] still refers to the last element of the array.

Range arrays with an implied endpoint make sense only in indexing situations. Hence the
value of the endpoint can be inferred from the context. Such arrays include [*], [:-1], etc.

Code that use index-ranges with negative valued indices such as

B = A[[0:-2]]; % Get all but the last element of A

will have to be changed to use an array with an implied endpoint:

B = A[[:-2]]; % Get all but the last element of A

Similarly, code such as

B = A[[-3:-1]]; % Get the last 3 elements of A

must be changed to

B = A[[-3:]];

Dereferencing function members of a structure

Support for the non-parenthesized form of function member dereferencing has been dropped.
Code such as

@s.foo(args);

will need to be changed to use the parenthesized form:

(@s.foo)(args);

The latter form will work in both S-Lang 1 and S-Lang 2.

If your code passes the structure as the first argument of the method call, e.g.,

(@s.foo)(s, moreargs);

then it may be changed to

s.foo (moreargs);

However, this objected-oriented form of method calling is not supported by S-Lang 1.

ERROR BLOCKS

Exception handling via ERROR BLOCKS is still supported but deprecated. If your code uses
ERROR BLOCKS it should be changed to use the new exception handling model. For example,
code that looks like:

ERROR_BLOCK { cleanup_after_error (); }

do_something ();

.

.
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should be changed to:

variable e;

try (e)

{

do_something ();

.

.

}

catch RunTimeError:

{

cleanup_after_error ();

throw e.error, e.message;

}

Code that makes use of EXECUTE ERROR BLOCK

ERROR_BLOCK { cleanup_after_error (); }

do_something ();

.

.

EXECUTE_ERROR_BLOCK;

should be changed to make use of a finally clause:

variable e;

try (e)

{

do_something ();

.

.

}

finally

{

cleanup_after_error ();

}

It is not possible to emulate the complete semantics of the clear error function. However,
those semantics are flawed and fixing the problems associated with the use of clear error

was one of the primary reasons for the new exception handling model. The main problem with
the clear error method is that it causes execution to resume at the byte-code following the
code that triggered the error. As such, clear error defines no absolute resumption point. In
contrast, the try-catch exception model has well-defined points of execution. With the above
caveats, code such as

ERROR_BLOCK { cleanup_after_error (); _clear_error ();}

do_something ();

.

.

should be changed to:

variable e;

try (e)
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{

do_something ();

.

.

}

catch RunTimeError:

{

cleanup_after_error ();

}

And code using clear error in conjunction with EXECUTE ERROR BLOCK:

ERROR_BLOCK { cleanup_after_error (); _clear_error ();}

do_something ();

.

.

EXECUTE_ERROR_BLOCK;

should be changed to:

variable e;

try (e)

{

do_something ();

.

.

}

catch RunTimeError:

{

cleanup_after_error ();

}

finally:

{

cleanup_after_error ();

}

fread

When reading Char Type and UChar Type objects the S-Lang 1 version of fread returned
a binary string (BString Type if the number of characters read was greater than one, or a
U/Char Type if the number read was one. In other words, the resulting type depended upon
how many bytes were read with no way to predict the resulting type in advance. In contrast,
when reading, e.g, Int Type objects, fread returned an Int Type when it read one integer, or
an array of Int Type if more than one was read. For S-Lang 2, the behavior of fread with
respect to UChar Type and Char Type types was changed to have the same semantics as the
other data types.

The upshot is that code that used

nread = fread (&str, Char_Type, num_wanted, fp)

will no longer result in str being a BString Type if nread > 1. Instead, str will now become
a Char Type[nread] object. In order to read a specified number of bytes from a file in the
form of a string, use the fread bytes function:
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#if (_slang_version >= 20000)

nread = fread_bytes (&str, num_wanted, fp);

#else

nread = fread (&str, Char_Type, num_wanted, fp)

#endif

The above will work with both versions of the interpreter.

strtrans

The strtrans function has been changed to support Unicode. One ramification of this is that
when mapping from one range of characters to another, the length of the ranges must now be
equal.

str delete chars

This function was changed to support unicode character classes. Code such as

y = str_delete_chars (x, "\\a");

is now implies the deletion of all alphabetic characters from x. Previously it meant to delete
the backslashes and as from from x. Use

y = str_delete_chars (x, "\\\\a");

to achieve the latter.

substr, is substr, strsub

These functions use character-semantics and not byte-semantics. The distinction is important
in UTF-8 mode. If you use array indexing in conjunction with these functions, then read on.
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Copyright

The S-Lang library is distributed under the terms of the GNU General Public License.

B.1 The GNU Public License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software–to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.
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We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed
on, we want its recipients to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The ”Program”,
below, refers to any such program or work, and a ”work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term ”modification”.) Each licensee
is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.
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c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with
a work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
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any associated interface definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution
of the source code, even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based
on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties
to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.
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This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this Li-
cense may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and ”any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make ex-
ceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
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If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least
the ”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
”copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public
License instead of this License.
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