Python Library Reference
Release 2.4.3

Guido van Rossum

Fred L. Drake, Jr., editor

29 March 2006

Python Software Foundation
Email: docs@python.org

Copyright(© 2001-2006 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applica-
tions, from simple text processing scripts to interactive Web browsers.

While thePython Reference Manudéscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability.
This library contains built-in modules (written in C) that provide access to system functionality such as file 1/O
that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are
explicitly designed to encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules
(which may or may not be available, depending on whether the underlying platform supports them and on the
configuration choices made at compile time). It also documents the standard types of the language and its built-in
functions and exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuemains the highest authority on syntactic and semantic questions.
Finally, the manual entitleExtending and Embedding the Python Interpretescribes how to add new extensions

to Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-In Objects 3
2.1 Built-in FUNCLioNS L e e e 3
2.2 Non-essential Built-in Functions. 15
2.3 BUIlt-iNTypes e e 15
2.4 BUIlt-INEXCEPLIONS o o e e e e e e e 34
25 Built-inConstants. 38

3 Python Runtime Services 41
3.1 sys — System-specific parameters and functions. 41
3.2 gc — Garbage Collectorinterface. e 47
3.3 weakref —Weakreferences. 49
3.4 fpectl — Floating pointexceptioncontrol 54
3.5 atexit —Exithandlers. 55
3.6 types — Namesforbuilt-intypes. e 56
3.7 UserDict — Class wrapper for dictionaryobjects 58
3.8 UserList — Classwrapperforlistobjects 59
3.9 UserString — Class wrapper forstringobjects. 59
3.10 operator — Standard operatorsasfunctions. Lo 60
3.11 inspect —Inspectliveobjects. 64
3.12 traceback — Printorretrieve astacktraceback. L. 69
3.13 linecache — Randomaccesstotextlines., 71
3.14 pickle — Python object serialization oL 72
3.15 cPickle — Afasterpickle 81
3.16 copy _reg — Registempickle supportfunctions. 81
3.17 shelve — Python objectpersistence. e 82
3.18 copy — Shallow anddeep copyoperations e 84
3.19 marshal — Internal Python object serialization. 85
3.20 warnings —Warningcontrol. e 86
3.21 imp — Accessthemport internals. 89
3.22 zipimport — Import modules from Ziparchives. 91
3.23 pkgutii — Package extension utility 93
3.24 modulefinder = —Find modulesusedbyascript 93
3.25 code — Interpreterbaseclasses 94
3.26 codeop — Compile Pythoncode e 95
3.27 pprint —Dataprettyprinter e 97
3.28 repr — Alternaterepr() implementation. 99
3.29 new — Creation of runtime internal objects. L. 100
3.30 site — Site-specific configurationhook Lo 101
3.31 user — User-specific configurationhook 102
3.32 __builtin __—Built-inobjects 102
3.33 __main __ — Top-level scriptenvironment., 103

3.34 __future __—Future statementdefinitions o L. 103
String Services 105
4.1 string —Commonstringoperations 105
4.2 re — Regularexpressionoperations. e e e 110
4.3 struct — Interpretstrings as packed binarydata, . 120
4.4 difflib — Helpers for computingdeltas L 122
45 fpformat — Floating pointconversions. o e 130
4.6 Stringl0 — Read and write stringsasfiles. 131
4.7 cStringl0O — Fasterversion oBtringlO 131
4.8 textwrap — Textwrappingandfilling., 131
4.9 codecs — Codecregistryandbaseclasses. 133
4.10 unicodedata —Unicode Database. 142
4.11 stringprep — Internet String Preparation. 143
Miscellaneous Services 145
5.1 pydoc — Documentation generator and online help system. 145
5.2 doctest — Testinteractive Pythonexamples. 146
5.3 unittest —Unittestingframework. 170
5.4 test — Regressiontests package forPython. 180
5.5 test.test _support — Utility functionsfortests. 182
5.6 decimal — Decimal floating point arithmetic 183
5.7 math — Mathematical functions. 199
5.8 cmath — Mathematical functions for complexnumbers 201
5.9 random — Generate pseudo-randomnumbers. oo 202
5.10 whrandom — Pseudo-random number generator. 205
5.11 bhisect — Array bisectionalgorithm 206
5.12 collections — High-performance container datatypes 206
5.13 heapq — Heap queue algorithm. 210
5.14 array — Efficientarraysofnumericvalues., 212
5.15 sets — Unordered collections of uniqueelements. 214
5.16 itertools — Functions creating iterators for efficient looping. 217
5.17 ConfigParser = — Configurationfileparser. 226
5.18 fileinput — lterate over lines from multiple inputstreams 229
5.19 calendar — General calendar-related functions. 230
5.20 cmd— Support for line-oriented command interpretets. 231
5.21 shlex —Simplelexicalanalysis 233
Generic Operating System Services 237
6.1 o0s — Miscellaneous operating systeminterfaces. 237
6.2 os.path — Common pathname manipulations. 255
6.3 dircache — Cacheddirectorylistings. 258
6.4 stat — Interpretingstat() results. 258
6.5 statcache — Anoptimizationofos.stat), 260
6.6 statvfs — Constants used withs.statvfs() oo L 261
6.7 fileemp — File and Directory Comparisons v i i i e 261
6.8 subprocess — Subprocessmanagemento 263
6.9 popen2 — Subprocesses with accessible l/Ostreams. 268
6.10 datetime —Basicdateandtimetypes. 270
6.11 time —Timeaccessand CoNVErSIONS v v v v v v i i e e e 286
6.12 sched —Eventscheduler. e 291
6.13 mutex — Mutual exclusion Support. e 292
6.14 getpass — Portable passwordinput. 293
6.15 curses — Terminal handling for character-celldisplays. 293
6.16 curses.textpad — Text input widget for curses programs 307
6.17 curses.wrapper — Terminal handler for curses programs 308
6.18 curses.ascii — Utilities for ASCllcharacters 309
6.19 curses.panel — A panel stack extensionforcurses.. 311
6.20 getopt — Parser forcommand lineoptions. 312

6.21 optparse — More powerful command lineoptionparser. 314
6.22 tempfile — Generate temporary files and directories. 338
6.23 errno — Standard errnosystemsymbols. oL 340
6.24 glob — UNIX style pathname patternexpansion 346
6.25 fnmatch — UNix filename patternmatching 346
6.26 shutii —High-levelfileoperations 347
6.27 locale — Internationalizationservices 348
6.28 gettext — Multilingual internationalization services. 353
6.29 logging — Logging facility for Python. 362
6.30 platform — Access to underlying platform’s identifyingdata. 382
7 Optional Operating System Services 385
7.1 signal — Sethandlers forasynchronousevents. 385
7.2 socket — Low-level networkinginterface. 387
7.3 select — Waiting for I/O completion. 396
7.4 thread — Multiplethreadsofcontrol. 397
7.5 threading — Higher-level threadinginterface. 399
7.6 dummy_thread — Drop-inreplacement for thétaread module 406
7.7 dummy_threading — Drop-in replacement for théareading module 406
7.8 Queue —Asynchronizedqueueclass. 406
7.9 mmap— Memory-mapped filesupport L 407
7.10 anydbm — Generic access to DBM-style databases L. 409
7.11 dbhash — DBM-style interface to the BSD database libraty. 410
7.12 whichdb — Guess which DBM module created adatabase. 411
7.13 bsddb — Interface to Berkeley DB library 411
7.14 dumbdbm— Portable DBM implementation, 413
7.15 zlib — Compression compatiblewithzipo 414
7.16 gzip — Supportforgzipfiles 416
7.17 bz2 — Compression compatible witheip2 o oo oo 416
7.18 zipfile — Workwith ZIP archives. 418
7.19 tarfile — Read and write tar archivefiles. L 421
7.20 readline —GNUreadlineinterface. 426
7.21 rlcompleter — Completion function for GNU readline. 429
8 Unix Specific Services 431
8.1 posix — The most common POSIXsystemecalls. 431
8.2 pwd—Thepassworddatabase. 432
8.3 grp —Thegroupdatabase L 433
8.4 crypt —Functiontocheck MiX passwords. o e 433
8.5 dl —CallCfunctionsinsharedobjects, 434
8.6 dbm— Simple “database”interface. 435
8.7 gdbm— GNU'sreinterpretationofdbm. L 436
8.8 termios —POSIXstylettycontrol. 437
8.9 tty — Terminalcontrolfunctions. 438
8.10 pty — Pseudo-terminal utilities e 438
8.11 fentl — Thefentl() andioctl() systemcalls., 439
8.12 pipes — Interfacetoshellpipelines 441
8.13 posixfile — File-like objects with locking support 442
8.14 resource — Resource usageinformation. Lo 444
8.15 nis — Interfaceto Sun’s NIS (YellowPages) 446
8.16 syslog — UNiIx sysloglibraryroutines. 446
8.17 commands— Utilities for runningcommands o, 447
9 The Python Debugger 449
9.1 DebuggerCommands e 450
9.2 HOWItWOrKS o 452
10 The Python Profiler 455
10.1 Introductiontothe profiler e 455

11

12

10.2 How Is This Profiler Different From The Old Profiler?. 455

10.3 InstantUsers Manual. 456
10.4 What Is Deterministic Profiling?. 458
10.5 Reference Manual e 458
10.6 Limitations. e e 461
10.7 Calibration. 461
10.8 Extensions — Deriving Better Profilers.o 462
10.9 hotshot — High performance logging profiler 462
10.10timeit — Measure execution time of small code snippets 464
Internet Protocols and Support 469
11.1 webbrowser — Convenient Web-browser controller. 469
11.2 cgi — Common Gateway Interface support.. L L 471
11.3 cgitb — Traceback managerforCGlscripts. 478
11.4 urlib —OpenarbitraryresourcesbyURL 478
11.5 urllib2 —extensible library foropeningURLs 483
11.6 httplib — HTTP protocolclient. 492
11.7 ftplib —FTP protocol client. 496
11.8 gopherlib — Gopher protocolclient o 499
11.9 poplib —POP3protocolclient. 499
11.10imaplib — IMAP4 protocolclient 501
11.11nntplib — NNTP protocol client. 506
11.12smtplib — SMTP protocolclient. 510
11.13smtpd — SMTP Server. o o e e 513
11.14telnetlib — Telnetclient 514
11.15urlparse — Parse URLsintocomponents. v i 516
11.16SocketServer — A framework for network servers. L 518
11.17BaseHTTPServer —BasicHTTPserver it i 521
11.18SimpleHTTPServer — Simple HTTP requesthandler 523
11.19CGIHTTPServer — CGl-capable HTTPrequesthandler 524
11.20cookielib — Cookie handling for HTTP clients. 524
11.21Cookie — HTTP state management. o 0 v i i it et e e e e 532
11.22xmlrpclib — XML-RPCclientaccess o it 536
11.23SimpleXMLRPCServer — Basic XML-RPCserver. 539
11.24DocXMLRPCServer — Self-documenting XML-RPC server. 541
11.25asyncore — Asynchronous sockethandler. 542
11.26asynchat — Asynchronous socket command/response handler. 545
Internet Data Handling 549
12.1 formatter = — Genericoutputformatting 549
12.2 email — Anemail and MIME handlingpackage 553
12.3 mailcap — Mailcapfile handling.. 579
12.4 mailbox — Read various mailboxformats o Lo 580
12.5 mhlib — Accessto MH mailboxes 582
12.6 mimetools — Tools for parsing MIMEmessages v v i ... 584
12.7 mimetypes — Map filenamesto MIME types. 585
12.8 MimeWriter — Generic MIME filewriter o o 587
12.9 mimify — MIME processingof mailmessages. 588
12.10multifile — Support for files containing distinctparts. 589
12.11rfc822 — Parse RFC 2822 mailheaders. 591
12.12base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 595
12.13binascii — Convert between binaryamdscii o 596
12.14binhex — Encode and decode binhex4files 598
12.15quopri — Encode and decode MIME quoted-printabledata 598
12.16uu — Encode and decode uuencodefiles oL L Lo 599
12.17xdrlib — Encode and decode XDRdata. 600
12.18netrc —netrcfile processing. e 602
12.19robotparser — Parserforrobots.txt oL o 603

13

14

15

16

17

18

12.20csv — CSV File Readingand Writing. o i i i e 604

Structured Markup Processing Tools 609
13.1 HTMLParser — Simple HTML and XHTML parser. 609
13.2 sgmllib — Simple SGML parser. i e e 611
13.3 htmllib — AparserforHTMLdocuments, 613
13.4 htmlentitydefs — Definitions of HTML general entities 615
13.5 xml.parsers.expat — Fast XML parsingusingExpat 615
13.6 xml.dom — The Document Object Model APL. 623
13.7 xml.dom.minidom — Lightweight DOM implementation. 633
13.8 xml.dom.pulldom — Support for building partial DOMtrees 637
13.9 xml.sax — Supportfor SAX2 parsers. o o i 638
13.10xml.sax.handler — Baseclassesfor SAX handlers 639
13.11 xml.sax.saxutils — SAXUtilities L 643
13.12xml.sax.xmlreader — Interface for XML parsers. 644
13.13xmllib — A parserfor XML documents. 648
Multimedia Services 651
14.1 audioop — Manipulaterawaudiodata 651
14.2 imageop — Manipulaterawimagedata.o 654
14.3 aifc — Read and write AIFFand AIFCfiles. 655
14.4 sunau — Read and write Sun AUfiles L L 657
14.5 wave — Read and write WAV files. 659
14.6 chunk —Read IFFchunkeddata. 661
14.7 colorsys — Conversions betweencolorsystems. 662
14.8 rghimg — Read and write “SGIRGB"files o o 663
14.9 imghdr — Determine thetypeofanimage 663
14.10sndhdr — Determine type of soundfile L oo Lo 664
14.11ossaudiodev — Access to OSS-compatible audio devices. 664
Cryptographic Services 669
15.1 hmac — Keyed-Hashing for Message Authentication. 669
15.2 md5— MD5 message digestalgorithm. L 669
15.3 sha — SHA-1 message digestalgorithm. 670
Graphical User Interfaces with Tk 673
16.1 Tkinter — Pythoninterfaceto Tcl/Tk., 673
16.2 Tix —ExtensionwidgetsforTK. e 684
16.3 ScrolledText =~ — Scrolled TextWidget. 689
16.4 turtle —Turtle graphicsforTK o o 689
165 Idle e 690
16.6 Other Graphical User Interface Packages 694
Restricted Execution 695
17.1 rexec — Restricted executionframework L o Lo 695
17.2 Bastion — Restrictingaccesstoobjects 698
Python Language Services 701
18.1 parser — Access Pythonparsetrees. e 701
18.2 symbol — Constants used with Python parsetrees 710
18.3 token — Constants used with Pythonparsetrees 710
18.4 keyword — Testing for Pythonkeywords oo 711
18.5 tokenize — Tokenizer for Pythonsource.o o 711
18.6 tabnanny — Detection of ambiguous indentation 712
18.7 pyclbr — Pythonclass browsersupport e 712
18.8 py_compile — Compile Pythonsourcefiles. 713
18.9 compileall ~— Byte-compile Pythonlibraries 714
18.10dis — Disassembler for Python bytecode. 714
18.11 pickletools — Tools for pickle developers.. o L 721

18.12distutils — Building and installing Python modules. 722
19 Python compiler package 723
19.1 Thebasicinterface 723
19.2 LIimitationS. . . . o o o e e 724
19.3 Python Abstract Syntax. e 724
19.4 Using Visitorsto Walk ASTS o o e 728
19.5 Bytecode Generation. e e e 729
20 SGI IRIX Specific Services 731
20.1 al —Audiofunctionsonthe SGI L 731
20.2 AL —Constants used withthed module 733
20.3 cd — CD-ROM access on SGISystems v v i v i e e e e e e 733
20.4 fl — FORMS library for graphical userinterfaces. 736
20.5 FL — Constantsused withtife module 741
20.6 flp — Functions for loading stored FORMS designs. 741
20.7 fm — Font Managelinterface. L 741
20.8 gl — Graphics Libraryinterface e 742
20.9 DEVICE— Constants used withttgd module 744
20.10GL— Constants used withtlgg module 744
20.11imgfile — Support for SGlimglibfiles o o oo 744
20.12jpeg —Read andwrite JPEGfiles. 745
21 SunOS Specific Services 747
21.1 sunaudiodev — AccesstoSunaudiohardware. 747
21.2 SUNAUDIODEWV- Constants used witbunaudiodev 748
22 MS Windows Specific Services 749
22.1 msvert —Useful routines from the MS VE€rruntime 749
22.2 _winreg —WIiNdows registry @CCeSS v v v v v i i e 750
22.3 winsound — Sound-playing interface for Windows. 754
A Undocumented Modules 757
Al Frameworks e 757
A.2 Miscellaneous useful utilities. L 757
A.3 Platformspecificmodules 757
Ad Multimedia. e e e e 757
A5 Obsolete e 758
A.6 SGl-specific Extensionmodules. L L 759
B Reporting Bugs 761
C History and License 763
C.1 Historyofthesoftware e 763
C.2 Terms and conditions for accessing or otherwise using Python 764
C.3 Licenses and Acknowledgements for Incorporated Software. 766
Module Index 775
Index 779

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as nhumbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of aimport statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you dontaveto read it like a novel — you can also browse the table of contents (in front of

the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see randale) and read a section or

two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in
Types, Exceptions and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter
5 of thePython Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thamport statement. It mainly exists so that you can replace it with another
function that has a compatible interface, in order to change the semanticsiofgbe statement. For
examples of why and how you would do this, see the standard library motolelss andrexec . See
also the built-in modulémp, which defines some useful operations out of which you can build your own
__import __() function.

For example, the statemeritmport spam ' results in the following call: __import __('spam’,
globals(), locals(), [1) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’]) ". Note that even though

locals() and['eggs’] are passed in as arguments, themport __() function does not set the
local variable nameeggs ; this is done by subsequent code that is generated for the import statement.
(In fact, the standard implementation does not uséoitals argument at all, and uses iggobalsonly to
determine the package context of ihgport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up
till the first dot) is returnedpotthe module named bhyame However, when a non-empfsomlistargument

is given, the module named mameis returned. This is done for compatibility with the bytecode gener-
ated for the different kinds of import statement; when usingpbrt spam.ham.eggs ', the top-level
packagespam must be placed in the importing namespace, but when uioig‘ spam.ham import

eggs’, the spam.ham subpackage must be used to find #ggs variable. As a workaround for this
behavior, usgetattr() to extract the desired components. For example, you could define the following
helper:

def my_import(name):
mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

basestring ()
This abstract type is the superclass$or andunicode . It cannot be called or instantiated, but it can be
used to test whether an object is an instancgof or unicode . isinstance(obj, basestring)
is equivalent tasinstance(obj, (str, unicode)) . New in version 2.3.

bool ([x])
Convert a value to a Boolean, using the standard truth testing proceduis félise or omitted, this returns
False ; otherwise it returndrue . bool is also a class, which is a subclasgrdf . Classbool cannot
be subclassed further. Its only instanceskakse andTrue .

New in version 2.2.1. Changed in version 2.3: If no argument is given, this function rétalses .

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a
call fails, but if it is false, callingpbjectwill never succeed. Note that classes are callable (calling a class
returns a new instance); class instances are callable if they havesdl __() method.

chr (i)
Return a string of one character whesgcii code is the integar For examplechr(97) returns the string
'a’ . Thisis the inverse afrd() . The argument must be in the range [0..255], inclusikedueError
will be raised ifi is outside that range.

classmethod (function
Return a class method function

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...): ...

The @classmethod form is a function decorator — see the description of function definitions in chapter 7
of the Python Reference Manufdr details.

It can be called either on the class (suclCa§)) or on an instance (such &%).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different tharr€or Java static methods. If you want those, segicmethod() in
this section.

For more information on class methods, consult the documentation on the standard type hierarchy in chapter
3 of thePython Reference Manugt the bottom). New in version 2.2. Changed in version 2.4: Function
decorator syntax added.

cmp(X, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative
if X < vy, zeroifx == yand strictly positive ifx > vy.

compile (string, filename, kinEi flags[, donLinherit]])
Compile thestring into a code object. Code objects can be executed Bxan statement or evaluated by
a call toeval() . Thefilenameargument should give the file from which the code was read; pass some

recognizable value if it wasn’t read from a filegtring>’ is commonly used). Thikind argument spec-
ifies what kind of code must be compiled; it can’erec’ if string consists of a sequence of statements,
‘eval’ if it consists of a single expression, @ingle’ if it consists of a single interactive statement

(in the latter case, expression statements that evaluate to something elSetieanill be printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single
newline character\py’), and the input must be terminated by at least one newline character. If line
endings are represented gn’ , use the stringeplace() = method to change them intm’

4 Chapter 2. Built-In Objects

The optional argumentfagsanddont_inherit (which are new in Python 2.2) control which future state-
ments (see PEP 236) affect the compilatiorsting. If neither is present (or both are zero) the code is
compiled with those future statements that are in effect in the code that is calling compileflabthergu-
ment is given andlont_inherit is not (or is zero) then the future statements specified bfldlgsargument
are used in addition to those that would be used anywajonf_inherit is a non-zero integer then tiflags
argument is it — the future statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise or-ed together to specify multiple statements.
The bitfield required to specify a given feature can be found acdnepiler _flag attribute on the
_Feature instance inthe _future __ module.

complex ([real[, imag]])
Create a complex number with the vakeal + imagFj or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). fimagis omitted, it defaults to zero and the function serves as a
numeric conversion function likimt() ,long() andfloat() . If both arguments are omitted, returns
0j .

delattr ~ (object, namg
This is a relative oketattr() . The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
exampledelattr(x, ' foobar) is equivalenttadel x. foobar.

dict ([mapping—or—sequende
Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument is a mapping
object, return a dictionary mapping the same keys to the same values as does the mapping object. Otherwise
the positional argument must be a sequence, a container that supports iteration, or an iterator object. The
elements of the argument must each also be of one of those kinds, and each must in turn contain exactly two
objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a given key is
seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one": 2, "two": 3}

edict({'one”: 2, 'two": 3}

edict({'one: 2, 'two: 3}.items())
edict({'one”: 2, 'two’: 3}.iteritems())
edict(zip((one’, 'two’), (2, 3)))
edict([['two’, 3], ['one’, 2]])

edict(one=2, two=3)

edict([([one’, 'two’][i-2], i) for i in (2, 3)])

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments
added.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attributes for that object. This information is gleaned from the objeati&t
attribute, if defined, and from the class or type object. The list is not necessarily complete. If the object is a
module object, the list contains the names of the module’s attributes. If the object is a type or class object,
the list contains the names of its attributes, and recursively of the attributes of its bases. Otherwise, the list
contains the object’s attributes’ names, the names of its class’s attributes, and recursively of the attributes of
its class’s base classes. The resulting list is sorted alphabetically. For example:

2.1. Built-in Functions 5

>>> import struct

>>> dir()

[__builtins__’, *__doc__’, '__name__', ’struct]

>>> dir(struct)

[__doc_’, '__name__’, ’calcsize’, 'error’, 'pack’, 'unpack’]

Note: Becauselir() is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators
apply. For plain and long integers, the result is the sanfeaas b, a % b) . For floating point numbers
theresultig g, a % b), whereq is usuallymath.floor(a / b) but may be 1 less than that. In any
caseq * b + a % bisverycloset@, if a % bis non-zero it has the same signtaand0 <= abs(a
% b) < abs(b).

Changed in version 2.3: Usirivmod() with complex numbers is deprecated.

enumerate (iterable)
Return an enumerate objedterable must be a sequence, an iterator, or some other object which supports
iteration. Thenext() method of the iterator returned ®numerate() returns a tuple containing a
count (from zero) and the corresponding value obtained from iteratingi@rable enumerate() is
useful for obtaining an indexed serig§, seq[0]) , (1, seq[1]) , (2, seq[2]) ,.... Newin
version 2.3.

eval (expressiofn, globals[, Iocals]])
The arguments are a string and optional globals and locals. If provifielolals must be a dictionary. If
provided,localscan be any mapping object. Changed in version 2.4: forntecigis was required to be a
dictionary.

Theexpressiorargument is parsed and evaluated as a Python expression (technically speaking, a condition
list) using theglobalsandlocals dictionaries as global and local name space. Ifglodbalsdictionary is
present and lacks_'_builtins__", the current globals are copied ingpobals beforeexpressioris parsed.

This means thagxpressiomormally has full access to the standardouiltin -~ __ module and restricted
environments are propagated. If floealsdictionary is omitted it defaults to thglobalsdictionary. If both
dictionaries are omitted, the expression is executed in the environment edadreis called. The return

value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creategi®()). In
this case pass a code object instead of a string. The code object must have been compiletepabsing
as thekind argument.

Hints: dynamic execution of statements is supported byeiee statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around forexa®y or
execfile()

execfile (fiIenameE, gIobaIs[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and
does not create a new moddle.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence
of Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local
namespace. If providedhcalscan be any mapping object. Changed in version 2.4: fornledgls was

2|t is used relatively rarely so does not warrant being made into a statement.

6 Chapter 2. Built-In Objects

required to be a dictionary. If thecalsdictionary is omitted it defaults to thglobalsdictionary. If both
dictionaries are omitted, the expression is executed in the environment estezride() is called. The
return value iNone.

Warning: The defaulocalsact as described for functidacals() below: modifications to the default
locals dictionary should not be attempted. Pass an exgbcials dictionary if you need to see effects of
the code orocals after functionexecfile() returns.execfile() cannot be used reliably to modify
a function’s locals.

file (filenamd, modd, bufsizd])

filter

float

Return a new file object (described in section 2.3MIe' Objects). The first two arguments are the same
as forstdio s fopen() : filenameis the file name to be openemhodeindicates how the file is to be
opened:’r’ for reading,’'w’ for writing (truncating an existing file), an@&’ opens it for appending
(which onsomeUNIx systems means thall writes append to the end of the file, regardless of the current
seek position).

Modes'r+' ,’'w+’ and’a+’ open the file for updating (note thai+ truncates the file). Appent’
to the mode to open the file in binary mode, on systems that differentiate between binary and text files (else
it is ignored). If the file cannot be opend@Error s raised.

In addition to the standarpen() valuesmodemay be’U’ or’rU’ . If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by\any of

the Unix end-of-line conventioriy’ , the Macintosh convention &r\n’ | the Windows convention.

All of these external representations are seetras by the Python program. If Python is built without
universal newline suppomode’'U’ is the same as normal text mode. Note that file objects so opened also
have an attribute callegewlines which has a value dflone (if no newlines have yet been seetw),

\r . \\n” | or atuple containing all the newline types seen.

If modeis omitted, it defaults tor’ . When opening a binary file, you should appébd to themode

value for improved portability. (It's useful even on systems which don't treat binary and text files differently,
where it serves as documentation.) The optidndsizeargument specifies the file’s desired buffer size:

0 means unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately)
that size. A negativeufsizemeans to use the system default, which is usually line buffered for tty devices
and fully buffered for other files. If omitted, the system default is used.

Thefile() constructor is new in Python 2.2 and is an aliasdpen() . Both spellings are equivalent.
The intent is foropen() to continue to be preferred for use as a factory function which returns a new
file object. The spellingfile is more suited to type testing (for example, writinginstance(f,
file)).

(function, lis)
Construct a list from those elementslist for which functionreturns true list may be either a sequence,
a container which supports iteration, or an iteratolisifis a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementgsof
that are false (zero or empty) are removed.

Note that filter(function, list)y is equivalent to [item for item in list if
function(item)] if function is not None and [item for item in list if item] if
function isNone.

([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. Otherwise, the argument may be a
plain or long integer or a floating point number, and a floating point number with the same value (within
Python’s floating point precision) is returned. If no argument is given, refuths

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

frozenset ([iterable])

Return a frozenset object whose elements are taken itenable Frozensets are sets that have no up-

3Specifying a buffer size currently has no effect on systems that don'tdetvbuf() . The interface to specify the buffer size is not
done using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no
reliable way to determine whether this is the case.

2.1. Built-in Functions 7

date methods but can be hashed and used as members of other sets or as dictionary keys. The elements
of a frozenset must be immutable themselves. To represent sets of sets, the inner sets should also be
frozenset objects. Ifiterable is not specified, returns a new empty devzenset([]) . New

in version 2.4.

getattr (object, namE, default])
Return the value of the named attributedobfect nhamemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For exagetkfr(x, 'foobar’)
is equivalent toc.foobar . If the named attribute does not exidefaultis returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namp
The arguments are an object and a string. The restitis if the string is the name of one of the object’s
attributes False if not. (This is implemented by callingetattr(object namé@ and seeing whether
it raises an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.
New in version 2.2.

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.
Changed in version 2.4: Formerly only returned an unsigned literal.

id (objec)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It
expects a valid Python expression as input; if the input is not syntactically védigntaxError will be
raised. Other exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes
this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and
history features.

Consider using theaw _input() function for general input from users.

int ([x[, radix]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespae€ixXiregameter
gives the base for the conversion and may be any integer in the range [2, 36], or zaxhx i§ zero, the
proper radix is guessed based on the contents of string; the interpretation is the same as for integer literals.
If radix is specified andt is not a string,TypeError is raised. Otherwise, the argument may be a plain or
long integer or a floating point number. Conversion of floating point numbers to integers truncates (towards
zero). If the argument is outside the integer range a long object will be returned instead. If no arguments
are given, return®.

isinstance (object, classinfp
Return true if theobjectargument is an instance of tledassinfoargument, or of a (direct or indirect)

8 Chapter 2. Built-In Objects

subclass thereof. Also return truecifassinfois a type object andbjectis an object of that type. ibbject

is not a class instance or an object of the given type, the function always returns falassififois neither

a class object nor a type object, it may be a tuple of class or type objects, or may recursively contain other
such tuples (other sequence types are not accepted)asiinfois not a class, type, or tuple of classes,
types, and such tuples,TgpeError exception is raised. Changed in version 2.2: Support for a tuple of
type information was added.

issubclass (class, classinfp
Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entriassinfowill be checked. In any other
case, alypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (o[, sentine])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumemiust be a collection object which supports the iteration
protocol (the__iter __() method), or it must support the sequence protocol (thgetitem __()
method with integer arguments startingdat If it does not support either of those protocdlgpeError
is raised. If the second argumeséntine] is given, thero must be a callable object. The iterator created in
this case will callo with no arguments for each call to ii@xt() method; if the value returned is equal to
sentine] Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len ()
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([sequenc}a)
Return a list whose items are the same and in the same orderjaencs items. sequencenay be either
a sequence, a container that supports iteration, or an iterator objeegguéncés already a list, a copy is

made and returned, similar sequende] . For instancelist('abc’) returns'a’, 'b’, 'c’]
andlist((1, 2, 3)) returns[1, 2, 3] . If noargumentis given, returns a new empty ljbt,
locals ()

Update and return a dictionary representing the current local symbol t&##ening: The contents of
this dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long ([x[radix]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed
number of arbitrary size, possibly embedded in whitespace radig argument is interpreted in the same
way as forint() , and may only be given whenis a string. Otherwise, the argument may be a plain or
long integer or a floating point number, and a long integer with the same value is returned. Conversion of
floating point numbers to integers truncates (towards zero). If no arguments are given,@&turns

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additiorat arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter
than another it is assumed to be extended Wtne items. If functionis None, the identity function
is assumed; if there are multiple list argumemsp() returns a list consisting of tuples containing the
corresponding items from all lists (a kind of transpose operation).li§harguments may be any kind of
sequence; the result is always a list.

max(s[, args...])
With a single argumers, return the largest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

object ()
Return a new featureless objeobject() is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

2.1. Built-in Functions 9

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (X)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed
in version 2.4: Formerly only returned an unsigned literal.

open (filename[, mode[, bufsize]])
An alias for thefile() function above.

ord (¢
Given a string of length one, return an integer representing the Unicode code point of the character when
the argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord(’'a’) returns the intege®7, ord(u’\u2020) returns8224. This is the inverse ofhr() for
8-bit strings and ofinichr() for unicode objects. If a unicode argument is given and Python was built
with UCS2 Unicode, then the character’'s code point must be in the range [0..65535] inclusive; otherwise
the string length is two, andBypeError will be raised.

pow(X, y[z])
Returnx to the powely; if zis present, retur to the powely, moduloz (computed more efficiently than
pow(x, Yy) % 2. The arguments must have numeric types. With mixed operand types, the coercion rules
for binary arithmetic operators apply. For int and long int operands, the result has the same type as the
operands (after coercion) unless the second argument is negative; in that case, all arguments are converted
to float and a float result is delivered. For examfl@é®*2 returns100, but10**-2 returns0.01 . (This
last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and
the second argument was negative, an exception was raised.) If the second argument is negative, the third
argument must be omitted. #is presentx andy must be of integer types, arydmust be non-negative.
(This restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argpovef)t returned
platform-dependent results depending on floating-point rounding accidents.)

property ([fget[, fse{, fdel[, doc]]]])
Return a property attribute for new-style classes (classes that derivebject).

fgetis a function for getting an attribute value, likewisetis a function for setting, anftlel a function for
del'ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def __init_ (self): self.__x = None
def getx(self): return self._ x
def setx(self, value): self.__x = value
def delx(self): del self._ x
X = property(getx, setx, delx, "I'm the 'X’ property.")

New in version 2.2.

range ([start,] stop{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often fised in
loops. The arguments must be plain integers. Ifdtepargument is omitted, it defaults th If the start
argument is omitted, it defaults . The full form returns a list of plain integefsstart, start + step
start + 2 * step ...] . If stepis positive, the last element is the largetirt + i * stepless than
stop if stepis negative, the last element is the smallstt + i * stepgreater tharstop stepmust not
be zero (or els¥alueError s raised). Example:

10 Chapter 2. Built-In Objects

>>> range(10)

[0, 1, 2, 3, 4,5, 6,7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5,6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

>>> range(1, 0)

I

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. E&hen
is read EOFError is raised. Example:

>>> s = raw_input(-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"”

Ifthereadline module was loaded, theaw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequem{einitializer])
Apply functionof two arguments cumulatively to the itemssg#quencefrom left to right, so as to reduce
the sequence to a single value. For examgléyuce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateg(((1+2)+3)+4)+5) . The left argumenty, is the accumulated value and the right argument,
y, is the update value from theequencelf the optionalinitializer is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the sequence is anifigyizér is not
given andsequenceontains only one item, the first item is returned.

reload (modulg
Reload a previously importetiodule The argument must be a module object, so it must have been suc-
cessfully imported before. This is useful if you have edited the module source file using an external editor
and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as tmeoduleargument).

Whenreload(module) is executed:

ePython modules’ code is recompiled and the module-level code reexecuted, defining a new set of
objects which are bound to names in the module’s dictionary.ifiihe function of extension modules
is not called a second time.

eAs with all other objects in Python the old objects are only reclaimed after their reference counts drop
to zero.

eThe names in the module namespace are updated to point to any new or changed objects.

oOther references to the old objects (such as names external to the module) are not rebound to refer to
the new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the fimport statement for it does not bind
its name locally, but does store a (partially initialized) module objedysimodules . To reload the
module you must firsimport it again (this will bind the name to the partially initialized module object)
before you cameload() it.

2.1. Built-in Functions 11

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a nhame that was defined by the old version, the old definition remains. This
feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for
sys, __main __and__builtin __. In many cases, however, extension modules are not designed to be
initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usirggn ... import ..., callingreload() for
the other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to ugeport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed teval()

reversed (seq
Return a reverse iteratorseqmust be an object which supports the sequence protocol_(then__()
method and the _getitem __() method with integer arguments startingdat New in version 2.4,

round (x[, n])
Return the floating point valuerounded ton digits after the decimal point. I is omitted, it defaults to
zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minusn; if two multiples are equally close, rounding is done away from 0 (so. for examgad(0.5)
is1.0 andround(-0.5) is-1.0).

set ([iterable])
Return a set whose elements are taken fi@mable The elements must be immutable. To represent sets
of sets, the inner sets should fiezenset objects. Ifiterableis not specified, returns a new empty set,
set([]) . Newin version 2.4.

setattr (object, name, valye
This is the counterpart ajetattr() . The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For exampgstattr(x, ' foobar, 123) s equivalent tox. foobar =
123.

slice ([start,] stop{, step])
Return a slice object representing the set of indices specifieaiye(start, stop step . Thestartand
steparguments default thone. Slice objects have read-only data attribugest , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For exampgstart:stop:step] " or ‘a[start:stop, i] ",

sorted (iterable[, Cmp{, ke;[, reverse]]])
Return a new sorted list from the itemsitarable The optional argumentsmp key, andreversehave the
same meaning as those for tiet.sort() method. New in version 2.4.

staticmethod (function
Return a static method fdunction

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

12 Chapter 2. Built-In Objects

class C:
@staticmethod
def f(argl, arg2, ..):. ...

The @staticmethod form is a function decorator — see the description of function definitions in chapter
7 of thePython Reference Manufdr details.

It can be called either on the class (suctCa§)) or on an instance (such &5).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Javator. G-or a more advanced concept, see
classmethod() in this section.

For more information on static methods, consult the documentation on the standard type hierarchy in chapter
3 of thePython Reference Manugt the bottom). New in version 2.2. Changed in version 2.4: Function
decorator syntax added.

str ([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference wittrepr(objec) is thatstr(objec) does not always attempt to return a string
that is acceptable teval() ; its goal is to return a printable string. If no argument is given, returns the
empty string,”

sum(sequenc[a start])
Sumsstart and the items of aequencefrom left to right, and returns the totadtart defaults to0. These-
quencés items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by callingoin(sequenck. Note thatsum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New inversion 2.3.

super (type[, object—or-typd)
Return the superclass tfpe If the second argument is omitted the super object returned is unbound. If the
second argument is an objeidinstance(obj, type must be true. If the second argument is a type,
issubclass(type2 type must be truesuper() only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

Note thatsuper is implemented as part of the binding process for explicit dotted attribute lookups such as
‘super(C, self). __getitem __(name) '. Accordingly, super is undefined for implicit lookups
using statements or operators suchsaper(C, self)[name] ". New in version 2.2.

tuple ([sequenc}e)
Return a tuple whose items are the same and in the same ordegasncs items. sequencanay be
a sequence, a container that supports iteration, or an iterator objesgquences already a tuple, it is
returned unchanged. For instantigle(’abc’) returns(’a’, 'b’, 'c’) andtuple([1, 2,
3]) returns(l, 2, 3) . Ifnoargumentis given, returns a new empty tugle,

type (objec)
Return the type of anbject The return value is a type object. Ttenstance() built-in function is
recommended for testing the type of an object.

With three argumentsype functions as a constructor as detailed below.

type (name, bases, digt
Return a new type object. This is essentially a dynamic form otthes statement. Th@amestring is
the class name and becomes thaeame__ attribute; thebaseduple itemizes the base classes and becomes
the __bases __ attribute; and thelict dictionary is the namespace containing definitions for class body
and becomes the_dict __ attribute. For example, the following two statements create ideritipal
objects:

2.1. Built-in Functions 13

>>> class X(object):
a=1

>>> X = type('X’, (object,), dict(a=1))

New in version 2.2.

unichr (1)

Return the Unicode string of one character whose Unicode code is the intEgeexampleunichr(97)

returns the stringi'a’ . This is the inverse obrd() for Unicode strings. The valid range for the argu-
ment depends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF].
ValueError is raised otherwise. New in version 2.0.

unicode ([objec{, encoding{, errors]]])

vars

Return the Unicode string version objectusing one of the following modes:

If encodingand/orerrorsare givenunicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding Theencodingparameter is a string giving the name of
an encoding; if the encoding is not knowmokupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encodimgron$ is
'strict’ (the default), &/alueError is raised on errors, while a value ‘@jnore’ causes errors to
be silently ignored, and a value ‘oéplace’ causes the official Unicode replacement charackeFFFD

to be used to replace input characters which cannot be decoded. See alsdabe module.

If no optional parameters are givamicode() will mimic the behaviour oktr() except that it returns
Unicode strings instead of 8-bit strings. More preciselyohbfectis a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a_unicode __() method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encodistgiot’ mode.

New in version 2.0. Changed in version 2.2: Supportfounicode __() added.

([object])

Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hadiet __ attribute), returns a dictionary
corresponding to the object’'s symbol table. The returned dictionary should not be modified: the effects on
the corresponding symbol table are undefified.

xrange ([start,] stor{, step])

This function is very similar taange() , but returns an “xrange object” instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing them
all simultaneously. The advantage>afinge() overrange() is minimal (sincexrange() still has

to create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break).

Note: xrange() is intended to be simple and fast. Implementations may impose restrictions to achieve
this. The C implementation of Python restricts all arguments to native C longs ("short” Python integers),
and also requires that the number of elements fit in a native C long.

zip ([iterable, ..])

This function returns a list of tuples, where thth tuple contains théth element from each of the argu-

ment sequences or iterables. The returned list is truncated in length to the length of the shortest argument
sequence. When there are multiple arguments which are all of the same BpQth, is similar tomap()

with an initial argument oNone. With a single sequence argument, it returns a list of 1-tuples. With no
arguments, it returns an empty list. New in version 2.0.

Changed in version 2.4: Formerlip() required at least one argument aigl) raised arypeError
instead of returning an empty list.

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

14

Chapter 2. Built-In Objects

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python program-
ming. They have been kept here to maintain backwards compatibility with programs written for older versions of
Python.

Python programmers, trainers, students and bookwriters should feel free to bypass these functions without con-
cerns about missing something important.

apply (function, arg{, keyworda)
The functionargument must be a callable object (a user-defined or built-in function or method, or a class
object) and the@rgsargument must be a sequence. Tinactionis called withargsas the argument list; the
number of arguments is the length of the tuple. If the optidegivordsargument is present, it must be a
dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument list.
Callingapply() is different from just callingunctiorn(args) , since in that case there is always exactly
one argument. The use apply() is equivalent tdunction(* args ** keyword$. Use ofapply() is
not necessary since the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.8Ise the extended call syntax instead, as described above.

buffer (objec{, offse[, size]])
The objectargument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which referencesabiectargument. The buffer object will
be a slice from the beginning abject (or from the specifiedffse). The slice will extend to the end of
object(or will have a length given by theizeargument).

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations. If coercion is not possible, TgigeError

intern (' string)
Enterstringin the table of “interned” strings and return the interned string — whislrisgitself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return valuargérn() around to benefit from it.

2.3 Built-in Types

The following sections describe the standard types that are built into the interpreter. Historically, Python’s built-
in types have differed from user-defined types because it was not possible to use the built-in types as the basis
for object-oriented inheritance. With the 2.2 release this situation has started to change, although the intended
unification of user-defined and built-in types is as yet far from complete.

The principal built-in types are numerics, sequences, mappings, files classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared,
tested for truth value, and converted to a string (with‘the‘ notation, the equivalenepr() function, or the

slightly differentstr() function). The latter function is implicitly used when an object is written byyttiet

statement. (Information gorint ~ statemenénd other language statements can be found iPytieon Reference
Manualand thePython Tutorial)

2.3.1 Truth Value Testing

Any object can be tested for truth value, for use inifanor while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

2.2. Non-essential Built-in Functions 15

e False

e zero of any numeric type, for exampl,OL, 0.0 , 0] .

e any empty sequence, for examgle,, () ,[] -

e any empty mapping, for examplig, .

e instances of user-defined classes, if the class definesyvanzero __() or __len __() method, when

that method returns the integer zerdoool valueFalse .°

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retarriFalse for false andl or True
for true, unless otherwise stated. (Important exception: the Boolean operatidrad ‘and’ always return one
of their operands.)

2.3.2 Boolean Operations — and, or , not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and y | if xis false, therx, elsey QD
not x if X is false, therTrue , elseFalse (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ’ has a lower priority than non-Boolean operatorsnsd a
anda not bis a syntax error.

bis interpreted agot (a b) ,

2.3.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of
the Boolean operations). Comparisons can be chained arbitrarily; for examgley <= zis equivalent tox <

y and y <= z except thay is evaluated only once (but in both cases not evaluated at all whex < yis

found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal)
<> not equal Q)
is object identity

is not negated object identity

Notes:

(1) <> and!= are alternate spellings for the same operdtoris the preferred spellings> is obsolescent.

5Additional information on these special methods may be found ifPtheon Reference Manual

16 Chapter 2. Built-In Objects

Objects of different types, except different numeric types and different string types, never compare equal; such
objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistendly<¥he and

>= gperators will raise dypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class definesrtipe () method. Refer to
the Python Reference Manutdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the
same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority,”and ‘not in ’, are supported only by sequence types
(below).

2.3.4 Numeric Types —int , float ,long , complex

There are four distinct numeric typgdain integerslong integersfloating point numbersandcomplex numbers

In addition, Booleans are a subtype of plain integers. Plain integers (also justicadigerg are implemented
usinglong in C, which gives them at least 32 bits of precision. Long integers have unlimited precision. Floating
point numbers are implemented usihguble in C. All bets on their precision are off unless you happen to know
the machine you are working with.

Complex numbers have a real and imaginary part, which are each implementediosiblg in C. To extract
these parts from a complex numlzeusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex and octal numbers) yield plain integers unless the value they denote is too large to be
represented as a plain integer, in which case they yield a long integer. Integer literals Witloar * suffix yield

long integers (L' is preferred becausel ' looks too much like eleven!). Numeric literals containing a decimal
point or an exponent sign yield floating point numbers. Appendingr ‘J’ to a numeric literal yields a complex
number with a zero real part. A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than
long integer is narrower than floating point is narrower than complex. Comparisons between numbers of mixed
type use the same rufeThe constructorgit() ,long() ,float() , andcomplex() can be used to produce
numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in
the same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
X/ly guotient ofx andy Q)
x Iy (floored) quotient ok andy (5)
X %y remainderok / vy 4)
- X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer 2)
long(X) x converted to long integer (2)
float(Xx) x converted to floating point
complex(re, im) | a complex number with real pam, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(X, V) thepair(x /I 'y, X %Yy) (3)(4)
pow(X, V) x to the powely
X ¥y x to the powery
SAs a consequence, the I[dt, 2] is considered equal fd.0, 2.0] , and similarly for tuples.

2.3. Built-in Types 17

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus
infinity: 1/2is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either
operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() andceil() inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, aiamod()
Deprecated since release 2.3stead convert to float usiraps() if appropriate.

(5) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sulfficiently large number of bits that
no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation has the same priority as the other unary numeric operatigrigiid ‘- *).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same
priority):

Operation | Result Notes
x|y bitwise or of x andy
X"y bitwise exclusive oiof x andy
X &y bitwiseandof x andy

X << n | xshifted left byn bits 1), (2)
X >> n | xshifted right byn bits 1), (3)
"X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.
(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) Aright shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.3.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter __()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp _iter slot of the type structure for Python objects in the Python/C API.

18 Chapter 2. Built-In Objects

The iterator objects themselves are required to support the following two methods, which together fteratibre
protocot

__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for andin statements. This method corresponds tottheiter slot of the type structure for Python
objects in the Python/C API.

next ()
Return the next item from the container. If there are no further items, raiStapéteration exception.
This method corresponds to ttpe _iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratoiext() method raiseStoplteration , it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint
was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter __() method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the iter __() andnext() methods.

2.3.6 Sequence Types — str , unicode , list ,tuple , buffer , xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

String literals are written in single or double quotégyzzy’ , "frobozz" . See chapter 2 of thEython
Reference Manudbr more about string literals. Unicode strings are much like strings, but are specified in the
syntax using a preceding*character:.u’abc’ , u"def" . Lists are constructed with square brackets, separating
items with commas[a, b, c] . Tuples are constructed by the comma operator (not within square brackets),
with or without enclosing parentheses, but an empty tuple must have the enclosing parenthesesa,sich as

c or () . Asingle item tuple must have a trailing comma, suclidgs .

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don't support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using
thexrange() function. They don't support slicing, concatenation or repetition, and usingot in , min()
ormax() onthem is inefficient.

Most sequence types support the following operations. théand ‘not in ' operations have the same priori-
ties as the comparison operations. Thegnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the tables andt are sequences of the same typg;andj are integers:

Operation Result Notes
X in s True if anitem ofsis equal tox, elseFalse Q)
X not in s | False ifanitem ofsis equal tox, elseTrue (1)
s+t the concatenation afandt (6)
s * n, n * s | nshallow copies of concatenated (2)
9 i] i'th item of s, origin O 3)
qi:j] slice ofsfromitoj 3), (4)
gi:j: K slice ofsfromi to j with stepk (3), (5)
len(9 length ofs
min() smallest item of
max(s) largest item of

"They must have since the parser can't tell the type of the operands.

2.3. Built-in Types 19

Notes:

(1) Whensis a string or Unicode string object tie andnot in operations act like a substring test. In Python
versions before 2.3 had to be a string of length 1. In Python 2.3 and beyonghay be a string of any
length.

(2) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typs).ablote also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists

i 0 m
>>> |ists[0].append(3)
>>> |ists

(3], 3], 311

What has happened is thil] is a one-element list containing an empty list, so all three elements of
[m* 3 are (pointers to) this single empty list. Modifying any of the elementstsf modifies this
single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)

>>> |ists[1].append(5)

>>> lists[2].append(7)

>>> [ists

(3], 8], [71

(3) If i orj is negative, the index is relative to the end of the strieg(s) + iorlen(s) + |is substituted.
But note thatO is still O.

(4) The slice ofsfromi toj is defined as the sequence of items with indlesuch thai <= k < j. Ifiorjis
greater thaten(s), uselen(s). If i is omitted orNone, use0. If j is omitted orNone, uselen(s) . If
i is greater than or equal {pthe slice is empty.

(5) The slice ofsfromi to j with stepk is defined as the sequence of items with index i + n*k such that
0<n< % In other words, the indices arei+k ,i+2*k ,i+3*k and so on, stopping whéiis reached
(but never including). If i orj is greater thaten(s), uselen(s). If i orj are omitted oMNone, they
become “end” values (which end depends on the sidi.dflote, k cannot be zero. Kis None, itis treated
like 1.

(6) If sandt are both strings, some Python implementations such as CPython can usually perform an in-place op-
timization for assignments of the forsxs+t or s+t=t. When applicable, this optimization makes quadratic
run-time much less likely. This optimization is both version and implementation dependent. For perfor-
mance sensitive code, it is preferable to use gtrgoin() method which assures consistent linear
concatenation performance across versions and implementations. Changed in version 2.4: Formerly, string
concatenation never occurred in-place.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:
capitalize 0

Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.
center (width[, fillichar])

Return centered in a string of lengthidth. Padding is done using the speciffdithar (default is a space).
Changed in version 2.4: Support for tfikchar argument.

20 Chapter 2. Built-In Objects

count (sut{, starl[, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart and
endare interpreted as in slice notation.

decode ([encodingi, errors]])
Decodes the string using the codec registereéimmoding encodingdefaults to the default string encoding.

errors may be given to set a different error handling scheme. The defalgtrist’ , meaning that
encoding errors raidgnicodeError . Other possible values aiignore’ , 'replace’ and any other
name registered vieodecs.register _error , see section 4.9.1. New in version 2.2. Changed in

version 2.3: Support for other error handling schemes added.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string enceding.
rors may be given to set a different error handling scheme. The defaulerfors is 'strict’ ,
meaning that encoding errors raise UnicodeError . Other possible values arégnore’
replace’ , 'xmicharrefreplace’ , 'backslashreplace’ and any other name registered via
codecs.register _error , see section 4.9.1. For a list of possible encodings, see section 4.9.2.
New in version 2.0. Changed in version 2.3: Support fmicharrefreplace’ and
'backslashreplace’ and other error handling schemes added.

endswith (suffi>{, starl[, end]])
ReturnTrue if the string ends with the specifieliffix otherwise returrralse . With optionalstart, test
beginning at that position. With optionahd stop comparing at that position.

expandtabs ([tabsize})
Return a copy of the string where all tab characters are expanded using spéalesizds not given, a tab
size of8 characters is assumed.

find (sut{, start[, end]])
Return the lowest index in the string where substsagis found, such thasubis contained in the range
[start, end. Optional argumentstart andendare interpreted as in slice notation. Retutnif subis not
found.

index (sut{, starl[, end]])
Like find() , but raiseValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.
isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.
istitle 0
Return true if the string is a titlecased string and there is at least one character, for example uppercase

characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

For 8-bit strings, this method is locale-dependent.

2.3. Built-in Types 21

isupper ()

Return true if all cased characters in the string are uppercase and there is at least one cased character, false

otherwise.
For 8-bit strings, this method is locale-dependent.

join (seq
Return a string which is the concatenation of the strings in the seqeeqcEhe separator between elements
is the string providing this method.

ljust (width[, fillichar])
Return the string left justified in a string of lengtlidth. Padding is done using the speciffdithar (default

is a space). The original string is returnedavitith is less thaden(s). Changed in version 2.4: Support
for thefillchar argument.

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

Istrip ([chars])
Return a copy of the string with leading characters removed.chhesargument is a string specifying the
set of characters to be removed. If omitted\wne, the charsargument defaults to removing whitespace.
Thecharsargument is not a prefix; rather, all combinations of its values are stripped:

>>> ' gpacious .Istrip()
'spacious

>>> 'www.example.com’.Istrip('cmowz.”)
‘example.com’

Changed in version 2.2.2: Support for ttlearsargument.

replace (old, nevs[, count])
Return a copy of the string with all occurrences of substdlitreplaced bynew If the optional argument
countis given, only the firstountoccurrences are replaced.

rfind (sub[,start[,end]]
Return the highest index in the string where substsng is found, such thasubis contained within
s[start,end]. Optional argumerdtart andendare interpreted as in slice notation. Retutnon failure.

rindex (sut{, starl{, end]])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width[, fillichar])
Return the string right justified in a string of lengtidth. Padding is done using the specifiéitthar
(default is a space). The original string is returnedidith is less thaden(s). Changed in version 2.4:
Support for thdillchar argument.

rsplit ([sep[,maxsplit]])
Return a list of the words in the string, usisgpas the delimiter string. Hnaxsplitis given, at mostaxsplit
splits are done, thaghtmostones. Ifsepis not specified oNone, any whitespace string is a separator.

Except for splitting from the right;split() behaves likesplit() which is described in detail below.
New in version 2.4.

rstrip ([chars])
Return a copy of the string with trailing characters removed. dffe@sargument is a string specifying the
set of characters to be removed. If omitted\wne, the charsargument defaults to removing whitespace.
Thecharsargument is not a suffix; rather, all combinations of its values are stripped:

>>> ' gpacious .rstrip()
' spacious’

>>> 'mississippi’.rstrip(ipz’)
'mississ’

Changed in version 2.2.2: Support for ttlearsargument.

22 Chapter 2. Built-In Objects

split ([sep[,maxsplit]])
Return a list of the words in the string, usisgpas the delimiter string. Ifaxsplitis given, at most
maxsplitsplits are done. (thus, the list will have at mosixsplitl elements). limaxsplitis not specified,
then there is no limit on the number of splits (all possible splits are made). Consecutive delimiters are not

grouped together and are deemed to delimit empty strings (for exariip)2’.split(’,") "returns
Ty, 7, 27). The separgument may consist of multiple characters (for examplg, 2,
3.split(’,) ‘returns '1’, 2", '3). Splitting an empty string with a specified separator
returns [l

If sepis not specified or iNone, a different splitting algorithm is applied. First, whitespace characters
(spaces, tabs, newlines, returns, and formfeeds) are stripped from both ends. Then, words are separated by
arbitrary length strings of whitespace characters. Consecutive whitespace delimiters are treated as a single
delimiter ("1 2 3'.split() "returns 1’1, '2’, '3). Splitting an empty string or a string
consisting of just whitespace returns an empty list.

splitlines ([keepend];)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unles&eependss given and true.

startswith (prefix[, starl[, end]])
ReturnTrue if string starts with therefix otherwise returifralse . With optionalstart, test string begin-
ning at that position. With optiona&nd stop comparing string at that position.

strip ([chars])
Return a copy of the string with the leading and trailing characters removed:hingargument is a string
specifying the set of characters to be removed. If omittedare, thecharsargument defaults to removing
whitespace. Theharsargument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious ".strip()

'spacious’

>>> 'www.example.com’.strip(‘'cmowz.")
‘example’

Changed in version 2.2.2: Support for ttlearsargument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

titte ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased charac-
ters are lowercase.

For 8-bit strings, this method is locale-dependent.

translate (table[, deletechari)
Return a copy of the string where all characters occurring in the optional argdeletgcharsre removed,
and the remaining characters have been mapped through the given translation table, which must be a string
of length 256.

For Unicode objects, theanslate() method does not accept the optiodeletecharargument. In-
stead, it returns a copy of tleewhere all characters have been mapped through the given translation table
which must be a mapping of Unicode ordinals to Unicode ordinals, Unicode stringsrer. Unmapped
characters are left untouched. Characters mappébbte are deleted. Note, a more flexible approach is

to create a custom character mapping codec usingdtiecs module (seencodings.cp1251 for an
example).

upper ()
Return a copy of the string converted to uppercase.
For 8-bit strings, this method is locale-dependent.
zfill (width)
Return the numeric string left filled with zeros in a string of lengildth. The original string is returned if
widthis less tharen(s). New in version 2.2.2.

2.3. Built-in Types 23

String Formatting Operations

String and Unicode objects have one unique built-in operatior¥abgerator (modulo). This is also known as the
string formattingor interpolationoperator. Giverformat %values(whereformatis a string or Unicode object),
%conversion specifications fiormatare replaced with zero or more elementwvalues The effect is similar to
the usingsprintf() in the C language. formatis a Unicode object, or if any of the objects being converted
using thedbsconversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argumentaluesmay be a single non-tuple objéttOtherwise,valuesmust be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

The 9% character, which marks the start of the specifier.

Mapping key (optional), consisting of a parenthesised sequence of characters (for efgonp@ame)).

Conversion flags (optional), which affect the result of some conversion types.

R

Minimum field width (optional). If specified as an’ (asterisk), the actual width is read from the next
element of the tuple inalues and the object to convert comes after the minimum field width and optional
precision.

5. Precision (optional), given as a’* (dot) followed by the precision. If specified as’*(an asterisk), the
actual width is read from the next element of the tupleatues and the value to convert comes after the
precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in therstrstonclude a
parenthesised mapping key into that dictionary inserted immediately aftetdloharacter. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print '%(language)s has %(#)03d quote types.” % \
{language’: "Python", "#": 2}
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘# | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded for numeric values.

- The converted value is left adjusted (overrides Bieconversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+' | Asign character ¢ or ‘- ") will precede the conversion (overrides a "space” flag).

A length modifier b, | , orL) may be present, but is ignored as it is not necessary for Python.

The conversion types are:

8To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

24 Chapter 2. Built-In Objects

Conversion | Meaning Notes
‘o’ Signed integer decimal.
i Signed integer decimal.
‘0’ Unsigned octal. (1)
‘u’ Unsigned decimal.
‘X’ Unsigned hexadecimal (lowercase). (2)
‘X Unsigned hexadecimal (uppercase). (2)
‘e’ Floating point exponential format (lowercase).
‘B Floating point exponential format (uppercase).
“fr Floating point decimal format.
‘F Floating point decimal format.
‘9’ Same asé’ if exponent is greater than -4 or less than precisibhptherwise.
‘G Same asE’ if exponent is greater than -4 or less than precisiéfptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr()). 3)
‘s’ String (converts any python object usisiy()). 4)
‘0% No argument is converted, results in% tharacter in the result.

Notes:

(1) The alternate form causes a leading ze®) (o be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

(2) The alternate form causes a leadiig’ or’0X’ (depending on whether thg"or ‘ X' format was used) to
be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

(3) The%r conversion was added in Python 2.0.

(4) If the object or format provided is@nicode string, the resulting string will also hénicode .

Since Python strings have an explicit lendg¥s conversions do not assume tA@t is the end of the string.

For safety reasons, floating point precisions are clipped t&@onversions for numbers whose absolute value
is over 1e25 are replaced Bygconversions. All other errors raise exceptions.

Additional string operations are defined in standard modstlésg andre .

XRange Type

Thexrange type is an immutable sequence which is commonly used for looping. The advantage@irtge
type is that arxrange object will always take the same amount of memory, no matter the size of the range it
represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, aneitf)e function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence
types (when added to the language) should also support these operations. Strings and tuples are immutable se-
guence types: such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct
use and without having to know the exact precision of floating point values on a particular machine.

2.3. Built-in Types 25

Operation Result Notes
gi] = x itemi of sis replaced by
qgi:j] = t slice ofsfromi toj is replaced by
del di:j] sameas i:j] = []
gi:j:k =t the elements off i: j: k] are replaced by those bf Q)
del g i:j: K removes the elements dfi: j: k] from the list
s.append(X) same asllen(selen(9] = [X (2)
sextend(X) same agllen(s)len(9] = X 3)
s.count(X) return number of’'s for whichg[i] == x
sindex(X[, i[, i]D return smallesk such thag{ k] == xandi <= k < j 4)
sinsert(i, X) sameasi:i] = [X (5)
s.pop([i]) same ax = di]; del di]; return X (6)
sremove(X) same aslel 4 s.index(X)] (4)
s.reverse() reverses the items afin place (7)
s.sort([cmp{, ke){, reverse]]]) sort the items o§in place (7), (8), (9), (10)

Notes:

(1) t must have the same length as the slice it is replacing.

(2) The Cimplementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(3) xcan be any iterable object.

(4) RaisesValueError whenx is not found ins. When a negative index is passed as the second or third
parameter to thandex() method, the list length is added, as for slice indices. If it is still negative, it is
truncated to zero, as for slice indices. Changed in version 2.3: Previmdgy() didn’t have arguments
for specifying start and stop positions.

(5) When a negative index is passed as the first parameter tost() method, the list length is added, as
for slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3:
Previously, all negative indices were truncated to zero.

(6) Thepop() method is only supported by the list and array types. The optional argurdefgults to-1 , so
that by default the last item is removed and returned.

(7) Thesort() andreverse() methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed
list.

(8) Thesort() method takes optional arguments for controlling the comparisons.

cmpspecifies a custom comparison function of two arguments (list items) which should return a negative,
zero or positive number depending on whether the first argument is considered smaller than, equal to, or
larger than the second argumeramp=lambda %, y: cmp(x.lower(), y.lower()) '

key specifies a function of one argument that is used to extract a comparison key from each list element:
‘key=str.lower '

reverseis a boolean value. If set tbrue , then the list elements are sorted as if each comparison were
reversed.

In general, thekey and reverseconversion processes are much faster than specifying an equicabent
function. This is becausampis called multiple times for each list element whideyandreversetouch each
element only once.

Changed in version 2.3: Support fdone as an equivalent to omittingmpwas added.
Changed in version 2.4: Support feeyandreversewas added.
(9) Starting with Python 2.3, theort() method is guaranteed to be stable. A sort is stable if it guarantees not

to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes
(for example, sort by department, then by salary grade).

26 Chapter 2. Built-In Objects

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined.
The C implementation of Python 2.3 and newer makes the list appear empty for the duration, and raises
ValueError if it can detect that the list has been mutated during a sort.

2.3.7 Set Types — set , frozenset

A setobject is an unordered collection of immutable values. Common uses include membership testing, removing
duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. New in version 2.4.

Like other collections, sets supportin set len(se), andfor x in set Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

There are currently two builtin set typeset andfrozenset . Theset type is mutable — the contents can be
changed using methods likkeld() andremove() . Since it is mutable, it has no hash value and cannot be used

as either a dictionary key or as an element of another setfrdhenset type is immutable and hashable — its
contents cannot be altered after is created; however, it can be used as a dictionary key or as an element of another
set.

Instances ofet andfrozenset provide the following operations:

Operation Equivalent | Result
len(9 cardinality of ses
X in s testx for membership irs
X not in s testx for non-membership is
sissubset(t) s<=t test whether every elementsnis int
s.issuperset(t) s>=t test whether every elementtiis in's
s.union(t) s—t new set with elements from bofandt
s.intersection(t) S&t new set with elements commondandt
s.difference(t) s-t new set with elements isibut not int
s.symmetric _difference(t) s™t new set with elements in eithsior t but not both
s.copy() new set with a shallow copy &f
Note, the non-operator versions ofunion() , intersection() , difference() , and
symmetric _difference() , issubset() , and issuperset() methods will accept any iter-
able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions liket('abc’) & ’'cbs’ in favor of the more readable

set('abc’).intersection(’cbs’)

Both set andfrozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A setis less than another set if and only if the first
setis a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if
the first set is a proper superset of the second set (is a superset, but is not equal).

Instances ofset are compared to instances frfozenset based on their members. For example,
‘set('abc’) == frozenset('abc’) "returnsTrue .

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each othat,afdhe following returnFalse : a<b, a==b, or
a>b. Accordingly, sets do not implement the cmp__ method.

Since sets only define partial ordering (subset relationships), the output lidtthert() method is unde-
fined for lists of sets.

Set elements are like dictionary keys; they need to define hoftash __ and__eq__ methods.

Binary operations that miget instances wittfrozenset return the type of the first operand. For example:
‘frozenset(’ab’) | set(’bc’) ' returns an instance dfozenset

The following table lists operations available &&t that do not apply to immutable instancediaizenset

2.3. Built-in Types 27

Operation Equivalent | Result
s.update(t) s—=t update ses, adding elements from
s.intersection _update(t) s&=t update ses, keeping only elements found in baglandt
s.difference _update(t) s-=t update ses, removing elements found in
s.symmetric _difference _update(t) s"=t update ses, keeping only elements found in eitheor t but not
s.add(x) add elemenx to sets
s.remove(X) removex from sets; raises KeyError if not present
sdiscard(x) removes from setsif present
s.pop() remove and return an arbitrary element frgmaisesKeyError
s.clear() remove all elements from sst
Note, the non-operator versions of tingdate() , intersection _update() ,difference _update() ,
andsymmetric _difference _update() methods will accept any iterable as an argument.

The design of the set types was based on lessons learned fra@tshemodule.
See Also:

Comparison to the built-in set types
Differences between theets module and the built-in set types.

2.3.8 Mapping Types — classdict

A mappingobject maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, tbietionary. A dictionary’s keys are almost arbitrary values. Only values
containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity)
may not be used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two
numbers compare equal (suchlaand1.0) then they can be used interchangeably to index the same dictionary
entry.

Dictionaries are created by placing a comma-separated likeyf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wlaexedb are mappingsk is a key, and andx are arbitrary
objects):

Operation Result Notes
len(&) the number of items ia
al K the item ofa with key k Q)
akl = v setal k] tov
del a[kK removea k] froma Q)
a.clear() remove all items frona
a.copy() a (shallow) copy of
a.has _key(k) True if ahas a ke, elseFalse
kin a Equivalent toa.has key(k) 2)
k notin a Equivalent tonot a.has key(k) (2)
a.items() a copy ofa’s list of (key, valug pairs 3)
a.keys() a copy ofa’s list of keys 3)
a.update(b]) updates (and overwrites) key/value pairs from 9)
afromkeys(sedq, value]) Creates a new dictionary with keys frasagand values set tealue @)
a.values() a copy ofa’s list of values (©)
a.get(k[, x|) al k] if k in a, elsex 4)
a.setdefault(K|, x]) a[K] if k in a, elsex (also setting it) (5)
a.pop(k[, x|) a[K] if k in a, elsex (and remove k) (8)
a.popitem() remove and return an arbitrargey, value pair (6)
a.iteritems() return an iterator ovekgy, value pairs (2), (3)
a.iterkeys() return an iterator over the mapping’s keys (2), (3)
a.itervalues() return an iterator over the mapping’s values (2), (3)

28 Chapter 2. Built-In Objects

Notes:

(1) Raises KeyError exception ifk is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations,
and depends on the dictionary’s history of insertions and deletionitenis() , keys() , values() ,
iteritems() , iterkeys() , anditervalues() are called with no intervening modifications to the
dictionary, the lists will directly correspond. This allows the creatiofwdlue key) pairs usingzip()

‘pairs = zip(a.values(), akeys()) . The same relationship holds for thterkeys()
and itervalues() methods: pairs = zip(a.itervalues(), a.iterkeys()) ' provides
the same value fgpairs . Another way to create the same list pairs = [(v, k) for (k, V)

in a.iteritems()] '

(4) Never raises an exceptionkfis not in the map, instead it returrsx is optional; wherx is not provided and
kis not in the mapNone is returned.

(5) setdefault() is like get() , exceptthat ikis missingxis both returned and inserted into the dictionary
as the value ok. x defaults toNone

(6) popitem() s useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictio-
nary is empty, callingoopitem() raises &KeyError

(7) fromkeys() is a class method that returns a new dictionagjuedefaults toNone. New in version 2.3.
(8) pop() raises &KeyError when no default value is given and the key is not found. New in version 2.3.

(9) update() accepts either another mapping object or an iterable of key/value pairs (as a tuple or other iterable
of length two). If keyword arguments are specified, the mapping is then is updated with those key/value
pairs: ‘d.update(red=1, blue=2) '. Changed in version 2.4: Allowed the argument to be an iterable
of key/value pairs and allowed keyword arguments.

2.3.9 File Objects

File objects are implemented using G&lio package and can be created with the built-in constrdieg)
described in section 2.1, “Built-in Function¥File objects are also returned by some other built-in functions and
methods, such ass.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an 1/0-related reason, the excep@&rror is raised. This includes situations
where the operation is not defined for some reason,déek() on a tty device or writing a file opened for
reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the
file be open will raise &alueError after the file has been closed. Callicigse() = more than once is
allowed.

flush ()
Flush the internal buffer, likstdio ’s fflush() . This may be a no-op on some file-like objects.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request 1/O operations
from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such
as thefcntl module oros.read() and friends.Note: File-like objects which do not have a real file
descriptor shouldot provide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, elBalse . Note: If a file-like object is not
associated with a real file, this method shoudd be implemented.

1%file() is new in Python 2.2. The older built-bpen() is an alias foffile()

2.3. Built-in Types 29

next ()
A file object is its own iterator, for exampleer(f) returnsf (unlessf is closed). When a file is used
as an iterator, typically in éor loop (for examplefor line in f: print line), thenext()
method is called repeatedly. This method returns the next input line, or Btigeiteration whenEOF
is hit. In order to make for loop the most efficient way of looping over the lines of a file (a very common
operation), thenext() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead
buffer, combiningnext() with other file methods (likeeadline()) does not work right. However,
usingseek() to reposition the file to an absolute position will flush the read-ahead buffer. New in version
2.3.

read ([size])
Read at mossizebytes from the file (less if the read hiOF before obtainingsizebytes). If thesize
argument is negative or omitted, read all data untikis reached. The bytes are returned as a string object.
An empty string is returned whemoF is encountered immediately. (For certain files, like ttys, it makes
sense to continue reading after ear is hit.) Note that this method may call the underlying C function
fread() more than once in an effort to acquire as clossimebytes as possible. Also note that when
in non-blocking mode, less data than what was requested may be returned, eveizdparameter was
given.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete liné).If the sizeargument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is returned
onlywheneoFris encountered immediatelfote: Unlike stdio 's fgets() , the returned string contains
null characters’\0') if they occurred in the input.

readlines ([sizehint])
Read untilEoF usingreadline() and return a list containing the lines thus read. If the optisizahint
argument is present, instead of reading uga®, whole lines totalling approximatelizehintbytes (pos-
sibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may
choose to ignoreizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thingtas(f) . New in version 2.1.Deprecated since release 2.8lse
‘for line in file’ instead.

seek (offse{, whencd)
Set the file’s current position, liketdio ’'s fseek() . Thewhenceargument is optional and defaults@o
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to
the file’s end). There is no return value. Note that if the file is opened for appending (aloder 'a+’),
anyseek() operations will be undone at the next write. If the file is only opened for writing in append
mode (modea’), this method is essentially a no-op, but it remains useful for files opened in append mode
with reading enabled (moda+’). If the file is opened in text mode (witholtt'”), only offsets returned
by tell() are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell ()
Return the file’s current position, likgdio s ftell()

Note: On Windows tell() can return illegal values (after dgets()) when reading files with Wix-
style line-endings. Use binary modey) to circumvent this problem.

truncate ([size])
Truncate the file’s size. If the optionaizeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that the file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined
new content. Availability: Windows, manyNx variants.

write (str)

11The advantage of leaving the newline on is that returning an empty string is then an unamtsigedngication. It is also possible (in
cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a
file ended in a newline or not (yes this happens!).

30 Chapter 2. Built-In Objects

Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in
the file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a
list of strings. There is no return value. (The name is intended to nmesahines() ; writelines()
does not add line separators.)

Files support the iterator protocol. Each iteration returns the same reéildtraadline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but
should be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attributegltise() = method
changes the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte
strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the
encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured
the terminal). The attribute is read-only and may not be present on all file-like objects. It may dlende
in which case the file uses the system default encoding for converting Unicode strings.

New in version 2.3.

mode
The 1/0O mode for the file. If the file was created using tipen() built-in function, this will be the value
of themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirmpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the form...> ’. This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the--with-universal-newlines option to configure (the default) this read-only
attribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can také\are , \n’ ,\\n’ |, None (unknown,
no newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline
conventions were encountered. For files not opened in universal newline read mode the value of this attribute
will be None.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the
print statement. Classes that are trying to simulate a file object should also have a vsoftdpace
attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types implemented in C will have to provide
a writablesoftspace attribute. Note: This attribute is not used to control tipeint statement, but to
allow the implementation gbrint to keep track of its internal state.

2.3.10 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute accessiame wherem is a module anchameaccesses a
name defined im's symbol table. Module attributes can be assigned to. (Note thainihert statement is not,
strictly speaking, an operation on a module objéoport foo does not require a module object naniedto
exist, rather it requires an (externdgfinitionfor a module nametbo somewhere.)

2.3. Built-in Types 31

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thet

attribute is not possible (you can write __dict __['a]l = 1 , which defineam.a to bel, but you can’t
writem. __dict __ = {}). Modifying __dict __ directly is not recommended.

Modules built into the interpreter are written like thismodule ’sys’ (built-in)> . If loaded from afile,
they are written asmodule 'os’ from ’/usr/local/lib/python2.4/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fung argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

See thePython Reference Manufdr more information.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance mettiods:self is the object on
which the method operates, antim _func is the function implementing the method. Callim§ arg-1, arg-
2, ..., arg-n) is completely equivalent to callingn.im _func(m.im _self, arg-1, arg-2, ..., arg-

n .

Class instance methods are eitheundor unbound referring to whether the method was accessed through an
instance or a class, respectively. When a method is unboumah, itself attribute will beNone and if called, an
explicitself object must be passed as the first argument. In this selfe, must be an instance of the unbound
method’s class (or a subclass of that class), otherwiggaError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objetigth.im _func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resulByipefError being raised. In

order to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass

¢ =C(

c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the buitteimpile() function and can be extracted from function
objects through theiiunc _code attribute.

32 Chapter 2. Built-In Objects

A code object can be executed or evaluated by passing it (instead of a source stringgxecth&tatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypet{dn .
There are no special operations on types. The standard mighe defines names for all standard built-in

types.
Types are written like thisstype 'int’>

The Null Object
This object is returned by functions that don'’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (se@ttieon Reference Manyalt supports no special operations.
There is exactly one ellipsis object, nantéldpsis (a built-in name).

It is written asEllipsis

Boolean Values

Boolean values are the two constant objéatse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in flbadiGn can be

used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written afalse andTrue , respectively.

Internal Objects

See thePython Reference Manu#dr this information. It describes stack frame objects, traceback objects, and
slice objects.

2.3.11 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by tda() built-in function.

__dict
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
Deprecated since release 2.2Jse the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since release 2.2Jse the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

2.3. Built-in Types 33

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

__name__
The name of the class or type.

2.4 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the rerdeggions . This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as wethaeitons
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will
raise aPendingDeprecationWarning . In future versions, support for string exceptions will be removed.

Two distinct string objects with the same value are considered different exceptions. This is done to force program-
mers to use exception names rather than their string value when specifying exception handlers. The string value of
all built-in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined
by library modules.

For class exceptions, intey statement with aexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes front istdehived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where men-
tioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple
containing several items of information (e.g., an error code and a string explaining the code). The associated value
is the second argument to thaise statement. For string exceptions, the associated value itself will be stored

in the variable named as the second argument oéxeept clause (if any). For class exceptions, that variable
receives the exception instance. If the exception class is derived from the standard roBxckgstson , the
associated value is present as the exception instaaigss attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from thexception base class. More information on defining exceptions is available in
the Python Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedstff)e function, when applied to
an instance of this class (or most derived classes) returns the string value of the argument or arguments, or
an empty string if no arguments were given to the constructor. When used as a sequence, this accesses the
arguments given to the constructor (handy for backward compatibility with old code). The arguments are
also available on the instanceisgs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions excgfuplteration andSystemExit . StandardError
itself is derived from the root clagsxception

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @wrerBowError
ZeroDivisionError , FloatingPointError

exceptionLookupError

34 Chapter 2. Built-In Objects

The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: IndexError , KeyError . This can be raised directly tsys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syi€@&mor , OSError . When
exceptions of this type are created with a 2-tuple, the first item is available on the insemge’s attribute
(it is assumed to be an error number), and the second item is available streirer attribute (it is
usually the associated error message). The tuple itself is also available argtheattribute. New in
version 1.5.2.

When arEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tfilename attribute. However, for backwards compatibility,
theargs attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefine
andstrerror attributes are alsblone when the instance was created with other than 2 or 3 arguments.
In this last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when anssert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references
or attribute assignments at allypeError s raised.)

exceptionEOFError
Raised when one of the built-in functiorisgut() orraw _input()) hits an end-of-file conditiorgOF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty
string when they hiEOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined in
the ‘pyconfig.h’ file.

exceptionlOError
Raised when an 1/O operation (such gzt statement, the built-iopen() function or a method of a
file object) fails for an 1/O-related reason, e.g., “file not found” or “disk full”.

This class is derived fronEnvironmentError . See the discussion above for more information on
exception instance attributes.

exceptionimportError
Raised when aimport statement fails to find the module definition or whefnean ... import fails
to find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError s raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@tytrol-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in fundigat() orraw _input() s
waiting for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecturmélitec() function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

2.4. Built-in Exceptions 35

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived frorRuntimeError . In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived frorenvironmentError and is used primarily as thes module’sos.error
exception. Se&nvironmentError above for a description of the possible associated values. New in
version 1.5.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddéemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits
than raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created byeh&ref .proxy() function,
is used to access an attribute of the referent after it has been garbage collected. For more informa-
tion on weak references, see theakref module. New in version 2.2: Previously known as the
weakref .ReferenceError exception.

exceptionRuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by an iterator'sext() method to signal that there are no further values. This is derived from
Exception rather tharStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuiritpart statement, in aexec
statement, in a call to the built-in functieval() or input() , or when reading the initial script or
standard input (also interactively).

Instances of this class have attribufdsname , lineno , offset andtext for easier access to the
details.str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreteisys.version it is also printed at the start of an interactive Python session),

the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exceptionSystemExit
This exception is raised by tsys.exit() function. When it is not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status
(passed to C'exit() function); if it is None, the exit status is zero; if it has another type (such as a
string), the object’s value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly froException and notStandardError | since it is not
technically an error.

A call to sys.exit() is translated into an exception so that clean-up handiee!y clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately

36 Chapter 2. Built-In Objects

(for example, in the child process after a calfook()).

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclassdameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. Itis a subdladsesfrror . New
in version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. Itis a subclasikofieError . Newin
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. Itis a subclasikofieError . Newin
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subcldegotieError . New
in version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegkrror

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not correspoedrio an
value. Theerrno andstrerror values are created from the return values of @etLastError()
and FormatMessage() functions from the Windows Platform API. This is a subclassO&Error .
New in version 2.0.

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seediiengs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

The class hierarchy for built-in exceptions is:

2.4. Built-in Exceptions 37

Exception

+-- SystemExit

+-- Stoplteration

+-- StandardError
+-- Keyboardinterrupt
+-- ImportError
+-- EnvironmentError

| +-- I0Error

| +-- OSError

| +-- WindowsError
+-- EOFETrror

I
I
I
I
I
I
I
| +-- RuntimeError
| | +-- NotlmplementedError
| +-- NameError
| | +-- UnboundLocalError
| +-- AttributeError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- TypeError
| +-- AssertionError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- ArithmeticError
| | +-- OverflowError
| | +-- ZeroDivisionError
| | +-- FloatingPointError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeTranslateError
| +-- ReferenceError
| +-- SystemError
| +-- MemoryError
+---Warning
+-- UserWarning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- SyntaxWarning
+-- OverflowWarning (not generated in 2.4; won't exist in 2.5)
+-- RuntimeWarning
+-- FutureWarning

2.5 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of thbool type. New in version 2.3.

True
The true value of theool type. New in version 2.3.

None
The sole value ofypes .NoneType . None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function.

38 Chapter 2. Built-In Objects

Notlmplemented
Special value which can be returned by the “rich comparison” special methodg (() , It __() ,
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

2.5. Built-in Constants 39

40

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its
interaction with its environment. Here’s an overview:

sys Access system-specific parameters and functions.

gc Interface to the cycle-detecting garbage collector.
weakref Support for weak references and weak dictionaries.
fpectl Provide control for floating point exception handling.
atexit Register and execute cleanup functions.

types Names for built-in types.

UserDict Class wrapper for dictionary objects.

UserList Class wrapper for list objects.

UserString Class wrapper for string objects.

operator All Python’s standard operators as built-in functions.
inspect Extract information and source code from live objects.
traceback Print or retrieve a stack traceback.

linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version gpickle , but not subclassable.

copy _reg Registempickle support functions.

shelve Python object persistence.

copy Shallow and deep copy operations.

marshal Convert Python objects to streams of bytes and back (with different constraints).
warnings Issue warning messages and control their disposition.
imp Access the implementation of tiraport statement.
zipimport support for importing Python modules from ZIP archives.
pkgutil Utilities to support extension of packages.

modulefinder Find modules used by a script.

code Base classes for interactive Python interpreters.

codeop Compile (possibly incomplete) Python code.

pprint Data pretty printer.

repr Alternaterepr() implementation with size limits.

new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.

user A standard way to reference user-specific modules.
__builtin - __ The module that provides the built-in namespace.
__main __ The environment where the top-level script is run.
__future __ Future statement definitions

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv

41

The list of command line arguments passed to a Python sanigt[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed using the
command line option to the interpretargv[0] is set to the stringc’ . If no script name was passed

to the Python interpreteargv has zero length.

byteorder

An indicator of the native byte order. This will have the valoig' on big-endian (most-signigicant byte
first) platforms, andittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names

A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This
information is not available in any other way modules.keys() only lists the imported modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.

dllhandle

Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value

If valueis notNone, this function prints it tesys.stdout , and saves itin_builtin __. _.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk

This function prints out a given traceback and exceptiosywstderr

When an exception is raised and uncaught, the interpretersyallexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook
__excepthook

These objects contain the original valueslsiplayhook andexcepthook at the start of the program.
They are saved so thdisplayhook andexcepthook can be restored in case they happen to get
replaced with broken objects.

exc _info ()

This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception”
is defined as “executing or having executed an except clause.” For any stack frame, only information about
the most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNtbreevalues is returned.
Otherwise, the values returned &rype valueg tracebach . Their meaning istypegets the exception

type of the exception being handled (a class objeet)jegets the exception parameter @issociated value

or the second argument taise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

If exc _clear() is called, this function will return threBlone values until either another exception is
raised in the current thread or the execution stack returns to a frame where another exception is being
handled.

Warning: Assigning theracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback,
the best solution is to use something liggctype, value = sys.exc _info()[:2] to extract

only the exception type and value. If you do need the traceback, make sure to delete it after use (best
done with ary ... finally statement) or to caktxc _info() in a function that does not itself handle

42

Chapter 3. Python Runtime Services

an exception.Note: Beginning with Python 2.2, such cycles are automatically reclaimed when garbage
collection is enabled and they become unreachable, but it remains more efficient to avoid creating cycles.

exc _clear ()
This function clears all information relating to the current or last exception that occurred in the current
thread. After calling this functiongexc _info() will return threeNone values until another exception
is raised in the current thread or the execution stack returns to a frame where another exception is being
handled.

This function is only needed in only a few obscure situations. These include logging and error handling
systems that report information on the last or current exception. This function can also be used to try to free
resources and trigger object finalization, though no guarantee is made as to what objects will be freed, if
any. New in version 2.3.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%seexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handied, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed;
by default, this is als&/usr/local . This can be set at build time with theexec-prefixargument
to theconfigure script. Specifically, all configuration files (e.g. th®¢onfig.h’ header file) are installed
in the directoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are
installed inexec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal to
version[:3]

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes
sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified
by finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer
level. The optional argumeradrg can be an integer giving the exit status (defaulting to zero), or another
type of object. If it is an integer, zero is considered “successful termination” and any nonzero value is
considered “abnormal termination” by shells and the like. Most systems require it to be in the range 0-127,
and produce undefined results otherwise. Some systems have a convention for assigning specific meanings
to specific exit codes, but these are generally underdeveloped; pfograms generally use 2 for command
line syntax errors and 1 for all other kind of errors. If another type of object is padseé,is equivalent to
passing zero, and any other object is printegyte.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify
a clean-up action at program exit. When set, it should be a parameterless function. This function will be
called when the interpreter exits. Only one function may be installed in this way; to allow multiple functions
which will be called at termination, use tl¢exit module. Note: The exit function is not called when
the program is killed by a signal, when a Python fatal internal error is detected, orogherexit() is
called.Deprecated since release 2.4Jseatexit instead.

getcheckinterval 0
Return the interpreter’s “check interval”; ssetcheckinterval() . New in version 2.3.
getdefaultencoding 0
Return the name of the current default string encoding used by the Unicode implementation. New in
version 2.0.

getdlopenflags 0
Return the current value of the flags that are usedlfopen() calls. The flag constants are defined in

3.1. sys — System-specific parameters and functions 43

thedl andDLFCNmodules. Availability: Wix. New in version 2.2.

getfilesystemencoding 0
Return the name of the encoding used to convert Unicode filenames into system file naNw drthe
system default encoding is used. The result value depends on the operating system:

¢On Windows 9x, the encoding is “mbcs”.
¢On Mac OS X, the encoding is “utf-8".

¢On Unix, the encoding is the user’s preference according to the resultlaiginfo(CODESET), or
None if the nLlanginfo(CODESET) failed.

eOn Windows NT+, file names are Unicode natively, so no conversion is performed.
getfilesystemencoding still returns “mbcs”, as this is the encoding that applications should
use when they explicitly want to convert Unicode strings to byte strings that are equivalent when used
as file names.

New in version 2.3.

getrefcount (objec)
Return the reference count of thbject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgseitréscount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This
limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set

by setrecursionlimit()

_getframe ([depth])
Return a frame object from the call stack. If optional intedepthis given, return the frame object that
many calls below the top of the stack. If that is deeper than the call statkeError is raised. The
default fordepthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion ()
Return a tuple containing five components, describing the Windows version currently running. The elements
aremajor, minor, build, platform, andtext textcontains a string while all other values are integers.

platformmay be one of the following values:

Constant | Platform

0 (VER_PLATFORMWIN32s) Win32s on Windows 3.1
1 (VER_PLATFORMWIN32_WINDOWS) Windows 95/98/ME

2 (VER_PLATFORMWIN32_NT) Windows NT/2000/XP
3 (VER_PLATFORMWIN32_CE) Windows CE

This function wraps the Win3&GetVersionEx() function; see the Microsoft documentation for more
information about these fields.

Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing
it to the built-inhex() function. Theversion _info value may be used for a more human-friendly
encoding of the same information. New in version 1.5.2.

44 Chapter 3. Python Runtime Services

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the inter-
preter prints an error message and a stack traceback. Their intended use is to allow an interactive user to
import a debugger module and engage in post-mortem debugging without having to re-execute the command
that caused the error. (Typical useimmport pdb; pdb.pm() ' to enter the post-mortem debugger; see
chapter 9, “The Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return valueskonminfo() above. (Since
there is only one interactive thread, thread-safety is not a concern for these variables, uriice foype

etc.)
maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be ma-
nipulated to force reloading of modules and other tricks. Note that removing a module from this dictionary
is notthe same as callinggload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this Igth[0] , is the directory containing the script

that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter
is invoked interactively or if the script is read from standard inpp#th[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is inserted
beforethe entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.
Changed in version 2.3: Unicode strings are no longer ignored.

platform
This string contains a platform identifier, e.¢gsunos5’ or’linux1’ . This can be used to append
platform-specific components path , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the stringusr/local’ . This can be set at build time with theprefix argument to
theconfigure script. The main collection of Python library modules is installed in the direqiaefix +
"llib/python versiori while the platform independent header files (all exceptonfig.h’) are stored
in prefix + ’/include/python version , whereversionis equal toversion[:3]

psi

ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the inter-
preter is in interactive mode. Their initial values in this case’arse * and’... ' . If a hon-string

object is assigned to either variable,sts() is re-evaluated each time the interpreter prepares to read a
new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’'s “check interval”. This integer value determines how often the interpreter checks for
periodic things such as thread switches and signal handlers. The defa0ld janeaning the check is
performed every 100 Python virtual instructions. Setting it to a larger value may increase performance for
programs using threads. Setting it to a vadwe0 checks every virtual instruction, maximizing responsive-
ness as well as overhead.

setdefaultencoding (namg

3.1. sys — System-specific parameters and functions 45

Set the current default string encoding used by the Unicode implementatinamiédoes not match any
available encodind,ookupError israised. This function is only intended to be used bysitee module
implementation and, where needed difecustomize . Once used by theite module, it is removed
from thesys module’s namespace. New in version 2.0.

setdlopenflags (n
Set the flags used by the interpreter @open() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD _NOW | dI.RTLD _GLOBAL). Symbolic names for the flag mod-
ules can be either found in tli2 module, or in theDLFCNmodule. IfDLFCNis not available, it can be
generated fromv/usr/include/dlfcn.h’ using theh2py script. Availability: UNIX. New in version 2.2.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See chapter 10 for more information on the Python profiler. The system'’s profile function is called similarly
to the system’s trace function (sseettrace()), but it isn’t called for each executed line of code (only
on call and return, but the return event is reported even when an exception has been set). The function is
thread-specific, but there is no way for the profiler to know about context switches between threads, so it
does not make sense to use this in the presence of multiple threads. Also, its return value is not used, so it
can simply returiNone.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stadkrtiv. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a
program that requires deep recursion and a platform that supports a higher limit. This should be done with
care, because a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific;
for a debugger to support multiple threads, it must be registered settrgce() for each thread being
debugged. Note: The settrace() function is intended only for implementing debuggers, profilers,
coverage tools and the like. Its behavior is part of the implementation platform, rather than part of the
language definition, and thus may not be available in all Python implementations.

settscdump (on_flag)
Activate dumping of VM measurements using the Pentium timestamp courgarfidgis true. Deactivate
these dumps ibn_flag is off. The function is available only if Python was compiled witwvith-tsc. To
understand the output of this dump, re>hon/ceval.c’ in the Python sources. New in version 2.4.

stdin
stdout
stderr
File objects corresponding to the interpreter’s standard input, output and error stsédims. is used for all
interpreter input except for scripts but including callsrtput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the prompiispaft() andraw _input()
The interpreter’'s own prompts and (almost all of) its error messagessidér . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it hage) method that takes a
string argument. (Changing these objects doesn't affect the standard I/O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout __

__stderr
These objects contain the original valuestfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in
case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback

46 Chapter 3. Python Runtime Services

information printed when an unhandled exception occurs. The defal®Md8. When set td or less, all
traceback information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the
build number and compiler used. It has a value of the fowersion (# build_number build_date
build_time) [compilef]’ . The first three characters are used to identify the version in the installation
directories (where appropriate on each platform). An example:

>>> import sys
>>> gys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

api _version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version _info
A tuple containing the five components of the version numbajor, minor, micro, releaselevelandse-

rial. All values excepteleaselevebre integers; the release levelaipha’ |, ’beta’ |, 'candidate’ ,
or 'final’ . Theversion _info value corresponding to the Python version 2.04s 0, O,
‘final’, 0) . New in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the
warnings module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource
1000 in the Python DLL. The value is normally the first three charactex®isfion . It is provided in
thesys module for informational purposes; modifying this value has no effect on the registry keys used by
Python. Availability: Windows.

See Also:

Modulesite (section 3.30):
This describes how to use .pth files to extasyd.path

3.2 gc — Garbage Collector interface

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector,
tune the collection frequency, and set debugging options. It also provides access to unreachable objects that the
collector found but cannot free. Since the collector supplements the reference counting already used in Python, you
can disable the collector if you are sure your program does not create reference cycles. Automatic collection can be
disabled by callingyc.disable() . To debug a leaking program cagjt.set _debug(gc.DEBUG _LEAK).

Notice that this includegc. DEBUG_SAVEALL, causing garbage-collected objects to be saved in gc.garbage for
inspection.

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writteystetderr . See

3.2. gc — Garbage Collector interface 47

below for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

get _objects ()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set _threshold (threshold(f, threshold{, threshoIdZ]])
Set the garbage collection thresholds (the collection frequency). StttegholdOto zero disables collec-
tion.

The GC classifies objects into three generations depending on how many collection sweeps they have sur-
vived. New objects are placed in the youngest generation (genefgtidhan object survives a collection

it is moved into the next older generation. Since gener&i@the oldest generation, objects in that gener-

ation remain there after a collection. In order to decide when to run, the collector keeps track of the number
object allocations and deallocations since the last collection. When the number of allocations minus the
number of deallocations exceettisesholdQ collection starts. Initially only generatidh is examined. If
generatiorD has been examined more thdmeshold1times since generatioh has been examined, then
generatiortl is examined as well. Similarlyhreshold2controls the number of collections of generatibn

before collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ threshold]l threshold? .

get _referrers (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers
which support garbage collection; extension types which do refer to other objects but do not support garbage
collection will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been
collected by the garbage collector can be listed among the resulting referrers. To get only currently live
objects, calkollect() before callingget _referrers()

Care must be taken when using objects returnegety._referrers() because some of them could still
be under construction and hence in a temporarily invalid state. Avoid ggihgreferrers() for any
purpose other than debugging.

New in version 2.2.

get _referents (*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects
visited by the arguments’ C-levéh _traverse methods (if any), and may not be all objects actually
directly reachabletp _traverse methods are supported only by objects that support garbage collection,
and are only required to visit objects that may be involved in a cycle. So, for example, if an integer is
directly reachable from an argument, that integer object may or may not appear in the result list.

New in version 2.3.
The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
By default, this list contains only objects with_del __() methods. Objects that have _del __()
methods and are part of a reference cycle cause the entire reference cycle to be uncollectable, including
objects not necessarily in the cycle but reachable only from it. Python doesn't collect such cycles automati-
cally because, in general, it isn’t possible for Python to guess a safe order in which to rurdigle __()
methods. If you know a safe order, you can force the issue by examinirgathagelist, and explicitly
breaking cycles due to your objects within the list. Note that these objects are kept alive even so by virtue of
being in thegarbagelist, so they should be removed fragarbagetoo. For example, after breaking cycles,
dodel gc.garbagel:] to empty the list. It's generally better to avoid the issue by not creating cycles
containing objects with._del __() methods, angarbagecan be examined in that case to verify that no
such cycles are being created.

If DEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than freed.

Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only thasedeith__() methods.

48 Chapter 3. Python Runtime Services

The following constants are provided for use wstit _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to terbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIES set, print information about instance ob-
jects found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, printinformation about objects other
than instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendeggitbagerather than being freed. This can be
useful for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking pro-
gram (equal toDEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES |
DEBUGOBJECTS | DEBUGSAVEALL.

3.3 weakref — Weak references

New in version 2.1.
Theweakref module allows the Python programmer to creaéak reference objects.
In the following, the ternteferentmeans the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. A primary use for weak references is to implement caches or mappings holding large objects, where it's
desired that a large object not be kept alive solely because it appears in a cache or mapping. For example, if you
have a number of large binary image objects, you may wish to associate a name with each. If you used a Python
dictionary to map names to images, or images to names, the image objects would remain alive just because they
appeared as values or keys in the dictionaries. WaakKeyDictionary and WeakValueDictionary

classes supplied by theeakref module are an alternative, using weak references to construct mappings that
don't keep objects alive solely because they appear in the mapping objects. If, for example, an image object is a
value in aWeakValueDictionary , then when the last remaining references to that image object are the weak
references held by weak mappings, garbage collection can reclaim the object, and its corresponding entries in
weak mappings are simply deleted.

WeakKeyDictionary ~ and WeakValueDictionary use weak references in their implementation, setting

up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. Most programs should find that using one of these weak dictionary types is all
they need — it's not usually necessary to create your own weak references directly. The low-level machinery used
by the weak dictionary implementations is exposed byitbakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), methods (both bound and unbound), sets, frozensets, file objects, generators, type ob-
jects, DBcursor objects from thesddb module, sockets, arrays, deques, and regular expression pattern objects.
Changed in version 2.4: Added support for files, sockets, arrays, and patterns.

Several builtin types such &ist anddict do not directly support weak references but can add support through
subclassing:

3.3. weakref — Weak references 49

class Dict(dict):
pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referencable

Extension types can easily be made to support weak references; see section 3.3.3, “Weak References in Extension
Types,” for more information.

classref (objec{, callback])
Return a weak reference tvject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will ddaee to be
returned. Ifcallbackis provided and naione, it will be called when the object is about to be finalized; the
weak reference object will be passed as the only parameter to the callback; the referent will no longer be
available.

Itis allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an objed€s __() method.

Weak references are hashable if tigectis hashable. They will maintain their hash value even after the
objectwas deleted. Ihash() is called the first time only after thebjectwas deleted, the call will raise
TypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardlessaaliitck). If either referent has been
deleted, the references are equal only if the reference objects are the same object.

Changed in version 2.4: This is now a subclassable type rather than a factory function; it derives from
object

proxy (objec{, caIIback])
Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of eitheProxyType or CallableProxyType , depending on whethabjectis callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to their
fundamentally mutable nature, and prevent their use as dictionarydailzackis the same as the parameter
of the same name to thef() function.

getweakrefcount (objec)
Return the number of weak references and proxies which refarjext

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebject

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with
objects that override attribute accesses.

Note: Caution: Because WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure deakKeyDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish "by magic”
(as a side effect of garbage collection).

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure WeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish "by magic”
(as a side effect of garbage collection).

50 Chapter 3. Python Runtime Services

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes

Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError

Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standariteferenceError ~ exception.

See Also:

PEP 0205, Weak Referencés

The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:
pass

>>> 0 = Object()
>>> r = weakref.ref(o)
>>> 02 = r()

>>> 0 is 02

True

If the referent no longer exists, calling the reference object retlome:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresijoris not None
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
0 =r()
if o is None:
referent has been garbage collected
print "Object has been deallocated; can't frobnicate."
else:
print "Object is still live!"
0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

3.3. weakref — Weak references 51

Specialized versions a&f objects can be created through subclassing. This is used in the implementation of
theWeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most
useful to associate additional information with a reference, but could also be used to insert additional processing
on calls to retrieve the referent.

This example shows how a subclasseff can be used to store additional information about an object and affect
the value that's returned when the referent is accessed:

import weakref

class ExtendedRef(weakref.ref):
def __init__(self, ob, callback=None, **annotations):
super(ExtendedRef, self).__init_ (ob, callback)
self.__counter = 0
for k, v in annotations.iteritems():
setattr(self, k, v)

def __call__(self):
""Return a pair containing the referent and the number of
times the reference has been called.

ob = super(ExtendedRef, self).__call__ ()
if ob is not None:

self.__counter += 1

ob = (ob, self.__counter)
return ob

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must incleg©hject* field in the instance structure
for the use of the weak reference mechanism; it must be initializédiol by the object’s constructor. It must
also set thép _weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs
to addPy_TPFLAGS HAVE_.WEAKREF® the tp_flags slot. For example, the instance type is defined with the
following structure:

52 Chapter 3. Python Runtime Services

typedef struct {
PyObject HEAD

PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PylnstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject Pylnstance_Type = {
PyObject_ HEAD_INIT(&PyType_Type)
0,
"module.instance",

[* Lots of stuff omitted for brevity... */

Py TPFLAGS_DEFAULT | Py TPFLAGS_HAVE_WEAKREFS /* tp_flags */

0, [* tp_doc */

0, [* tp_traverse */

0, [* tp_clear */

0, [* tp_richcompare */

offsetof(PyInstanceObject, in_weakreflist), /* tp_weaklistoffset */

The type constructor is responsible for initializing the weak reference ItioL:

static PyObject *
instance_new() {
[* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;

The only further addition is that the destructor needs to call the weak reference manager to clear any weak ref-
erences. This should be done before any other parts of the destruction have occurred, but is only required if the
weak reference list is noNRULL:

static void
instance_dealloc(PylnstanceObject *inst)

[* Allocate temporaries if needed, but do not begin
destruction just yet.
*/

if (inst->in_weakreflist != NULL)
PyObiject_ClearWeakRefs((PyObject *) inst);

/* Proceed with object destruction normally. */

3.3. weakref — Weak references 53

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any
real computer, some floating point operations produce results that cannot be expressed as a hormal floating point
value. For example, try

>>> jmport math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf’ is a special, non-
numeric value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the
non-numeric results, nothing special happened when you asked Python to carry out those calculations. That is in
fact the default behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Thgectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generaBt@RRPE whenever

any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair

of wrapper macros that are inserted into the C code comprising your python sY&I&FPE is trapped and
converted into the PythdRloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation &IGFPE, and set up an appropriate signal handler.

turnoff _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754
exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operation fpieitte module.

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[more output from test elided]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

54 Chapter 3. Python Runtime Services

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-
architecture basis. You may have to modifectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PYyFPE_START_PROTECTand PyFPE_END PROTECTbe inserted into your code in an appropriate fashion.
Python itself has been modified to support fhectl module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The in-
clude file ‘Include/pyfpe.h’ discusses the implementation of this module at some lengtbddles/fpetestmodule.c’
gives several examples of use. Many additional examples can be founbjésts/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are auto-
matically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bystymexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thasgstsxitfunc . In partic-
ular, other core Python modules are free to aexit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usg¢exit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit and register the function that had been bounshymexitfunc

register (func{, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be passed to
funcmust be passed as argumentsagister()

At normal program termination (for instance,sys.exit() is called or the main module’s execution
completes), all functions registered are called in last in, first out order. The assumption is that lower level
modules will normally be imported before higher level modules and thus must be cleaned up later.

If an exception is raised during execution of the exit handlers, a traceback is printed @yde=sEXit
is raised) and the exception information is saved. After all exit handlers have had a chance to run the last
exception to be raised is re-raised.

See Also:

Modulereadline (section 7.20):
Useful example oétexit to read and writeeadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

3.5. atexit — Exit handlers 55

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passedgister() to be passed along to the registered
function when it is called:

def goodbye(name, adjective):
print 'Goodbye, %s, it was %s to meet you.' % (name, adjective)

import atexit
atexit.register(goodbye, 'Donny’, ’nice’)

or:
atexit.register(goodbye, adjective="nice’, name="Donny’)

3.6 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for
the types defined by various extension modules. Also, it does not include some of the types that arise during

processing such as tfistiterator type. Itis safe to usdrom types import * ' — the module does

not export any names besides the ones listed here. New names exported by future versions of this module will all

end in Type'.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove(item)

Starting in Python 2.2, built-in factory functions suchis$§) andstr() are also names for the corresponding
types. This is now the preferred way to access the type instead of usitgpt®®e module. Accordingly, the
example above should be written as follows:

def delete(mylist, item):
if isinstance(item, int):
del mylist[item]
else:
mylist.remove(item)

56 Chapter 3. Python Runtime Services

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

BooleanType
The type of thébool valuesTrue andFalse ; this is an alias of the built-ibool() function. New in
version 2.3.

IntType
The type of integers (e.d.).

LongType
The type of long integers (e.gL).

FloatType
The type of floating point numbers (e.4.0).

ComplexType
The type of complex numbers (e30j). Thisis not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (eigSpam’). This is not defined if Python was built without
Unicode support.

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).

ListType
The type of lists (e.g[0, 1, 2, 3]).

DictType

The type of dictionaries (e.g'Bacon’: 1, 'Ham’: 0}).
DictionaryType

An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

3.6. types — Names for built-in types 57

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects such sgs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Isjice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foungyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string
object. Using this is more portable than using a sequence of the two string types constructed elsewhere
since it only containd&JnicodeType if it has been built in the running version of Python. For example:
isinstance(s, types.StringTypes) . New in version 2.2.

3.7 UserDict — Class wrapper for dictionary objects

The module defines a miximictMixin , defining all dictionary methods for classes that already have a mini-
mum mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such
as the shelve module).

This also module defines a classserDict |, that acts as a wrapper around dictionary objects. The need for this
class has been largely supplanted by the ability to subclass directlydicim (a feature that became available
starting with Python version 2.2). Prior to the introductiondadt , the UserDict class was used to create
dictionary-like sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

TheUserDict module defines thEserDict class andictMixin

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. lfinitialdata is provided,data is initialized with its
contents; note that a referenceidialdata will not be kept, allowing it be used for other purposskate:
For backward compatibility, instancesdéerDict are not iterable.

classlterableUserDict ([initialdata])
Subclass oserDict that supports direct iteration (e.fipr key in myDict).

In addition to supporting the methods and operations of mappings (see section RIS&8pict and
IterableUserDict instances provide the following attribute:

data
A real dictionary used to store the contents oftleerDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem __() , __setitem __() ,__delitem __() , andkeys()

This mixin should be used as a superclass. Adding each of the above methods adds progressively more

58 Chapter 3. Python Runtime Services

functionality. For instance, defining all but_delitem __ will preclude onlypop andpopitem from
the full interface.

In addition to the four base methods, progressively more efficiency comes with defining
__contains __() , __iter __() , anditeritems()

Since the mixin has no knowledge of the subclass constructor, it does not defivie __() orcopy()

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from thellstilt-in

type.

This module defines a class that acts as a wrapper around list objects. Itis a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thBserList class:

classUserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessibléatia the
attribute ofUserList instances. The instance’s contents are initially set to a copigtpéiefaulting to the
empty list[] . list can be either a regular Python list, or an instancgsdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiobseB &t in-
stances provide the following attribute:

data
A real Python list object used to store the contents oltkerList class.

Subclassing requirements:Subclasses dfiserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no
parameters, and offer a mutaldata attribute. Earlier versions of Python did not attempt to create instances of
the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are
writing code that does not need to work with versions of Python earlier than Python 2.2, please consider sub-
classing directly from the built-istr type instead of usin@yserString (there is no built-in equivalent to
MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own
string-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is
especially the case fdutableString

TheUserString module defines the following classes:

classUserString ([sequenc}e)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible viadlaga attribute ofUserString instances. The instance’s

3.8. UserList — Class wrapper for list objects 59

contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode
string, an instance dfiserString (or a subclass) or an arbitrary sequence which can be converted into a
string using the built-irstr() ~ function.

classMutableString ([sequenc]e)
This class is derived from thdserString above and redefines strings to meitable Mutable strings
can't be used as dictionary keys, because dictionaries requinatableobjects as keys. The main intention
of this class is to serve as an educational example for inheritance and necessity to remove (override) the
__hash __() method in order to trap attempts to use a mutable object as dictionary key, which would be
otherwise very error prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.3.6, “String
Methods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content diseeString class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of
Python. For examplegperator.add(x, Y) is equivalent to the expressiorty . The function names are
those used for special class methods; variants without leading and trailihgre also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations,
sequence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

It (a, b

le (a,b)

eq(a, b

ne(a,b)

ge(a, b

gt (a, b

_It __(a,b

_le __(a,b

__eq__(a,b

__ne__(ab

__ge__(ab

gt(a/b
Perform “rich comparisons” betweerandb. Specificallylt(a, b) isequivalentt@a < b,le(a, b)
isequivalentta <= b,eq(a, b) isequivalentt@ == b,ne(a, b) isequivalentt@a != b, gt(a,
b) is equivalenttea > bandge(a, b) is equivalentta >= b. Note that unlike the built-ikmp() ,
these functions can return any value, which may or may not be interpretable as a Boolean value. See the
Python Reference Manufdr more information about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and
boolean operations:

not _(0)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the
interpreter core defines this operation. The result is affected by thenzero __() and__len __()

methods.)
truth (0)

ReturnTrue if oistrue, and=alse otherwise. This is equivalent to using theol constructor.
is _(a, b

Returna is b. Tests object identity. New in version 2.3.

60 Chapter 3. Python Runtime Services

is _not (a, b
Returna is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__(0)
Return the absolute value of

add(a, b
__add__(a,b
Returna + b, for a andb numbers.

and _(a, b
__and__(a,b
Return the bitwise and af andb.

div (a, b
_div __(a,b
Returna/ bwhen__future __.division is not in effect. This is also known as “classic” division.

floordiv (a, b)
__floordiv. __(a,b)
Returna// b. New in version 2.2.

inv (0)

invert (0)

__inv __(0)

__invert __(0)
Return the bitwise inverse of the number This is equivalent td"0o. The namesnvert() and
__invert __() were added in Python 2.0.

Ishift (a, b)
__Ishift __(a, b
Returna shifted left byb.

mod(a, b)
__mod__(a, b
Returna %b.

mul (a, b)
__mul__(a,b
Returna* b, for a andb numbers.

neg(o)
__neg__(0)
Returno negated.

or _(a,b
_or__(ab
Return the bitwise or oh andb.

pos (0)
__pos__(0)
Returno positive.

pow(a, b)
__pow__(a,b
Returna** b, for aandb numbers. New in version 2.3.

rshift (a, b
__rshift __(a, b
Returna shifted right byb.

sub (a, b)
__sub__(a,b

3.10. operator — Standard operators as functions. 61

Returna- b.

truediv (a, b

__truediv __(a, b
Returna/ bwhen__future __.division is in effect. This is also known as division. New in version
2.2.

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

Operations which work with sequences include:

concat (a, b
__concat __(a,b
Returna + b for a andb sequences.

contains (a, b

__contains __(a,b
Return the outcome of the telstin a. Note the reversed operands. The nameontains __() was
added in Python 2.0.

countOf (a,b)
Return the number of occurrencestah a.

delitem (a, b
__delitem __(a,b)
Remove the value daf at indexb.

delslice (a, b, 9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

getitem (a, b
__getitem __(a,b)
Return the value o at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

indexOf (a, b
Return the index of the first of occurrenceloi a.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence artlis an integer.

sequencelncludes (..)
Deprecated since release 2.Qsecontains() instead.

Alias for contains()

setitem (a, b, 9
__setitem __(a,b,9
Set the value o at indexb to c.

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o from indexb to indexc-1 to the sequence

Theoperator module also defines a few predicates to test the type of objRct®: Be careful not to misin-
terpret the results of these functions; ordZallable() has any measure of reliability with instance objects.
For example:

62 Chapter 3. Python Runtime Services

>>> class C:
pass

>>> import operator

>>> 0 = C()

>>> operator.isMappingType(0)
True

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objeat can be called like a function, otherwise it returns false. True is returned for func-
tions, bound and unbound methods, class objects, and instance objects which suppadathe __()
method.

isMappingType (0)
Returns true if the objea supports the mapping interface. This is true for dictionaries and all instance
objects defining__getitem __. Warning: There is no reliable way to test if an instance supports the
complete mapping protocol since the interface itself is ill-defined. This makes this test less useful than it
otherwise might be.

isNumberType (0)
Returns true if the objead represents a number. This is true for all numeric types implemented in C.
Warning: There is no reliable way to test if an instance supports the complete numeric interface since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeat supports the sequence protocol. This returns true for all objects which define
sequence methods in C, and for all instance objects definiggtitem __. Warning: There is no reliable
way to test if an instance supports the complete sequence interface since the interface itself is ill-defined.
This makes this test less useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@ro 255 to their character equivalents.

>>> jmport operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

Theoperator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments foap() , sorted() , itertools.groupby() , or other functions that
expect a function argument.

attrgetter (attr)
Return a callable object that fetchatr from its operand. After,f=attrgetter('name’) ’, the call
‘f(b) ’returns b.name’. New in version 2.4.

itemgetter (item)
Return a callable object that fetchigmmfrom its operand. After,f=itemgetter(2) ’, the call 'f(b) ’
returns b[2] . New in version 2.4.

Examples:

3.10. operator — Standard operators as functions. 63

>>>
>>>
>>>
>>>
[3, 2, 5 1]

from operator import *
inventory = [(apple’, 3), (banana’, 2), ('pear’, 5), (‘orange’, 1)]
getcount = itemgetter(1)
map(getcount, inventory)

>>> sorted(inventory, key=getcount)
[Corange’, 1), (banana’, 2), (‘apple’, 3), (pear’, 5)]

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions

in theoperator module.
Operation Syntax Function
Addition a+b add(a, b)
Concatenation seql + seq2 | concat(seql seq3l
Containment Test 0 in seq contains(seq o)
Division al b div(a, b) # without__future __.division
Division al b truediv(a, b) # with __future __.division
Division all b floordiv(a, b
Bitwise And aé&hb and _(a, b)
Bitwise Exclusive Or a" b xor(a, b)
Bitwise Inversion " a invert(a)
Bitwise Or al b or (a b)
Exponentiation a*™ b pow(a, b)
Identity ais b is _(a b)
Identity aisnot b is _not(a, b)
Indexed Assignment okl = v setitem(o, Kk, V)
Indexed Deletion del o[K] delitem(o, K)
Indexing of K] getitem(o, K)
Left Shift a<<b Ishift(&, b)
Modulo a%b mod(a, b)
Multiplication a* b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not _(a)
Right Shift a>>b rshiftf(a, b)
Sequence Repitition seq* i repeat(seq i)
Slice Assignment seq i: j] =values| setslice(seq i, j, valueg
Slice Deletion del seqdi:j] delslice(seq i, j)
Slicing seq i: j] getslice(seq i, j)
String Formatting s %o mod(s, 0)
Subtraction a-»b sub(a, b)
Truth Test o] truth(o)
Ordering a<bhb It(a b
Ordering a<=b le(a, b)
Equality a==>b eq(a, b)
Difference al=»b ne(a, b)
Ordering a>=ob ge(a, b)
Ordering a>hb ogt(a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

64

Chapter 3. Python Runtime Services

Theinspect module provides several useful functions to help get information about live objects such as mod-
ules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you
examine the contents of a class, retrieve the source code of a method, extract and format the argument list for a
function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting
classes and functions, and examining the interpreter stack.

3.11.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The eleven
functions whose names begin with “is” are mainly provided as convenient choices for the second argument to
getmembers() . They also help you determine when you can expect to find the following special attributes:

3.11. inspect — Inspect live objects 65

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class | __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method Q)
im_func function object containing implementation of method
im_self instance to which this method is bound,NMone
function | __doc__ documentation string
__nhame__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as__doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, bione
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, ddone
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound,Nwone

Note:

(1) Changed in version 2.2n _class used to refer to the class that defined the method.

getmembers (objec{, predicatd)
Return all the members of an object in a list of (hame, value) pairs sorted by name. If the opteatichte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path
Return a tuple of values that describe how Python will interpret the file identifiguhthf it is a module,

66 Chapter 3. Python Runtime Services

or None if it would not be identified as a module. The return tuplé ame suffix mode mtypg,
wherenameis the name of the module without the name of any enclosing pacgafiixis the trailing part

of the file name (which may not be a dot-delimited extensiom)deis theopen() mode that would be
used ' or’rb’), andmtypeis an integer giving the type of the modulatypewill have a value which
can be compared to the constants defined inirtie module; see the documentation for that module for
more information on module types.

getmodulename (path)
Return the name of the module named by theddéh, without including the names of enclosing packages.
This uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be
matched according to the interpreter’s ruldsne is returned.

ismodule (objec)
Return true if the object is a module.

isclass (objec)
Return true if the object is a class.

ismethod (objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (objec)
Return true if the object is a traceback.

isframe (objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objech
Return true if the object is a built-in function.

isroutine (objec)
Return true if the object is a user-defined or built-in function or method.

ismethoddescriptor (objec)
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction() are true.

This is new as of Python 2.2, and, for example, is true of inhdd__. An object passing this test has a
__get__ attribute but not a__set__ attribute, but beyond that the set of attributes varieshame__ is
usually sensible, and_doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return false from the ismethod-
descriptor() test, simply because the other tests promise more — you can, e.g., count on havinfutine im
attribute (etc) when an object passes ismethod().

isdatadescriptor (objech
Return true if the object is a data descriptor.

Data descriptors have both aget _ and a__set__ attribute. Examples are properties (defined in Python)

and getsets and members (defined in C). Typically, data descriptors will alsa hasene__and__doc__

attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed. New
in version 2.3.

3.11.2 Retrieving source code

getdoc (objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second
line onwards is removed.

getcomments (objec)

3.11. inspect — Inspect live objects 67

Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail vilisipaError
if the object is a built-in module, class, or function.

getmodule (objec)
Try to guess which module an object was defined in.

getsourcefile (objec)
Return the name of the Python source file in which an object was defined. This will fail WitheError
if the object is a built-in module, class, or function.

getsourcelines (objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines corre-
sponding to the object and the line number indicates where in the original source file the first line of code
was found. AnOError s raised if the source code cannot be retrieved.

getsource (objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Emar s raised if
the source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains
classes derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing
a class and a tuple of its base classes. Ifuh@ueargument is true, exactly one entry appears in the
returned structure for each class in the given list. Otherwise, classes using multiple inheritance and their
descendants will appear multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is ret(argd;
varargs varkw, defaultd . argsis a list of the argument names (it may contain nested ligtsjrgsand
varkware the names of tifeand** arguments oNone. defaultsis a tuple of default argument values or
None if there are no default arguments; if this tuple hatements, they correspond to the lagtlements
listed inargs.

getargvalues (framé
Get information about arguments passed into a particular frame. A tuple of four things is reiuangs:
varargs varkw, localg) . argsis a list of the argument names (it may contain nested lisejargsand
varkware the names of theand** arguments oNone. localsis the locals dictionary of the given frame.

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo}pnat
Format a pretty argument spec from the four values returnegtargspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, valuefoﬂmat

Format a pretty argument spec from the four values returnegebgrgvalues() . The other four ar-
guments are the corresponding optional formatting functions that are called to turn names and values into
strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

68 Chapter 3. Python Runtime Services

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the
filename, the line number of the current line, the function name, a list of lines of context from the source code,
and the index of the current line within that list.

Warning: Keeping references to frame objects, as found in the first element of the frame records thede func-
tions return, can cause your program to create reference cycles. Once a reference cycle has been crgated, the
lifespan of all objects which can be accessed from the objects which form the cycle can become mucly longer
even if Python’s optional cycle detector is enabled. If such cycles must be created, it is important to ensure
they are explicitly broken to avoid the delayed destruction of objects and increased memory consumption
which occurs.
Though the cycle detector will catch these, destruction of the frames (and local variables) can be made deter-
ministic by removing the cycle infinally clause. This is also important if the cycle detector was disaljled
when Python was compiled or using .disable() . For example:
def handle_stackframe_without_leak():
frame = inspect.currentframe()

try:

do something with the frame
finally:

del frame

The optionalcontextargument supported by most of these functions specifies the number of lines of context to
return, which are centered around the current line.

getframeinfo (framd:, contexl])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record.

getouterframes (frame{, contexﬂ)
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation offrame The first entry in the returned list represefngsne the last entry represents the outermost
call onframes stack.

getinnerframes (tracebacl[, contexﬂ)
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence fshme The first entry in the list represerttmceback the last entry represents where
the exception was raised.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([contexﬂ)
Return a list of frame records for the caller’'s stack. The first entry in the returned list represents the caller;
the last entry represents the outermost call on the stack.

trace ([context])
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print
stack traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayaldes _traceback
(deprecated) anslys.last _traceback and returned as the third item frosgs.exc _info()

3.12. traceback — Print or retrieve a stack traceback 69

The module defines the following functions:

print _tb (tracebacl[, Iimit[, file]])
Print up tolimit stack trace entries fromnaceback If limit is omitted orNone, all entries are printed. ffle
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object
to receive the output.

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up tonit stack trace entries fromracebackto file. This differs from
print _tb() inthe following ways: (1) itracebackis notNone, it prints a headerTraceback (most
recent call last): "+ (2) it prints the exceptiortype andvalue after the stack trace; (3) tiypeis
SyntaxError andvalue has the appropriate format, it prints the line where the syntax error occurred
with a caret indicating the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file). (In fact, it usessys.exc _info() to retrieve the same
information in a thread-safe way instead of using the deprecated variables.)

format _exc ([Iimit])
This is likeprint _exc(limit) but returns a string instead of printing to a file. New in version 2.4.

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, imit[, file]]])
This function prints a stack trace from its invocation point. The optiéreeilgument can be used to spec-
ify an alternate stack frame to start. The optiolmalt andfile arguments have the same meaning as for
print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback thjthack
It is useful for alternate formatting of stack traceslidfit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilenameline numberfunction nametexi) representing the
information that is usually printed for a stack trace. Téetis a string with leading and trailing whitespace
stripped; if the source is not available ithne.

extract _stack ([f[Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract _th() . The optionaF andlimit arguments have the same meaning apfoit _stack()

format _list (list)
Given a list of tuples as returned bytract _tb() orextract _stack() ,returnalistof strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument
list. Each string ends in a newline; the strings may contain internal newlines as well, for those items whose
source text line is ndilone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given
by sys.last _type andsys.last _value . The return value is a list of strings, each ending in a
newline. Normally, the list contains a single string; however,SgntaxError exceptions, it contains
several lines that (when printed) display detailed information about where the syntax error occurred. The
message indicating which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the cor-
responding arguments fwrint _exception() . The return value is a list of strings, each ending in a
newline and some containing internal newlines. When these lines are concatenated and printed, exactly the
same text is printed as dopent _exception()

format _tb (tb[, limit]
A shorthand foformat _list(extract _tb(tb, limit)) .

format _stack ([f[, Iimit]])

70 Chapter 3. Python Runtime Services

A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This function was necessary
because in versions of Python prior to 2.3 when-tBdlag was passed to Python ttietb _lineno was
not updated correctly. This function has no use in versions past 2.3.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refetdo¢henodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> "

try:
exec source in envdir
except:
print "Exception in user code:"
print '-*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using
a cache, the common case where many lines are read from a single file. This is usettdoyettweck module
to retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelinenofrom file namedilename This function will never throw an exception — it will retuth
on errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search pays.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyetling()

checkcache ([filename})
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you
require the updated version.flilenameis omitted, it will check the whole cache entries.

Example:

>>> jmport linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.13. linecache = — Random access to text lines 71

3.14 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a
Python object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte
stream, and “unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierar-

chy. Pickling (and unpickling) is alternatively known as “serialization”, “marshalltngy™flattening”, however,
to avoid confusion, the terms used here are “pickling” and “unpickling”.

This documentation describes both fliekle module and thePickle module.

3.14.1 Relationship to other Python modules

The pickle module has an optimized cousin called ttieickle module. As its name impliegPickle

is written in C, so it can be up to 1000 times faster tipckle . However it does not support subclassing

of the Pickler() and Unpickler() classes, because @Pickle these are functions, not classes. Most
applications have no need for this functionality, and can benefit from the improved performacieieldé

Other than that, the interfaces of the two modules are nearly identical; the common interface is described in this
manual and differences are pointed out where necessary. In the following discussions, we use the term “pickle” to
collectively describe thpickle andcPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module caftemtshal , but in generapickle should always be the
preferred way to serialize Python objeatsarshal exists primarily to support Python’spyc’ files.

Thepickle module differs frommarshal several significant ways:

e Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won't be serialized agaimarshal doesn't do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive
objects will crash your Python interpreter. Object sharing happens when there are multiple references to the
same obiject in different places in the object hierarchy being serializiellle stores such objects only

once, and ensures that all other references point to the master copy. Shared objects remain shared, which
can be very important for mutable objects.

e marshal cannotbe used to serialize user-defined classes and their instpickés. can save and restore
class instances transparently, however the class definition must be importable and live in the same module
as when the object was stored.

e Themarshal serialization format is not guaranteed to be portable across Python versions. Because its
primary job in life is to support.pyc’ files, the Python implementers reserve the right to change the serial-
ization format in non-backwards compatible ways should the need arisquidiie serialization format
is guaranteed to be backwards compatible across Python releases.

Warning: Thepickle module is not intended to be secure against erroneous or maliciously constjucted
data. Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; althpicgle reads and writes file objects,

it does not handle the issue of nhaming persistent objects, nor the (even more complicated) issue of concurrent
access to persistent objects. Tgiekle module can transform a complex object into a byte stream and it can
transform the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do
with these byte streams is to write them onto a file, but it is also conceivable to send them across a network or store
them in a database. The modsleslve provides a simple interface to pickle and unpickle objects on DBM-style
database files.

2Don't confuse this with thenarshal module

72 Chapter 3. Python Runtime Services

3.14.2 Data stream format

The data format used lpickle is Python-specific. This has the advantage that there are no restrictions imposed
by external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python
programs may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printabdecii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printabtal (and of some other characteristicpitkle ’'s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

There are currently 3 different protocols which can be used for pickling.

e Protocol version 0O is the original ASCII protocol and is backwards compatible with earlier versions of
Python.

e Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

e Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style
classes.

Refer to PEP 307 for more information.

If a protocol is not specified, protocol 0 is used. [rotocol is specified as a negative value or
HIGHEST_PROTOCQLthe highest protocol version available will be used.

Changed in version 2.3: THegin parameter is deprecated and only provided for backwards compatibility. You
should use therotocolparameter instead.

A binary format, which is slightly more efficient, can be chosen by specifying a true value foirtleegument
to thePickler constructor or thelump() anddumps() functions. Aprotocolversion ¢= 1 implies use of a
binary format.

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the picllerip() method. To de-
serialize a data stream, you first create an unpickler, then you call the unpitddet(3 method. Thepickle
module provides the following constant:

HIGHEST_PROTOCOL
The highest protocol version available. This value can be passegrataolvalue. New in version 2.3.

Note: Be sure to always open pickle files created with protocols ¢= 1 in binary mode. For the old ASClI-based
pickle protocol 0 you can use either text mode or binary mode as long as you stay consistent.

A pickle file written with protocol 0 in binary mode will contain lone linefeeds as line terminators and therefore
will look “funny” when viewed in Notepad or other editors which do not support this format.

Thepickle module provides the following functions to make the pickling process more convenient:

dump(obj, file[, protoco[, bin]])
Write a pickled representation abj to the open file objectile. This is equivalent tdPickler(file,
protocol bin).dump(obj) .
If the protocol parameter is omitted, protocol O is used. ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQ]Ithe highest protocol version will be used.

Changed in version 2.3: Tharotocol parameter was added. Thén parameter is deprecated and only
provided for backwards compatibility. You should use pinetocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (for backwards compatibility, this is the default).

file must have avrite() ~ method that accepts a single string argument. It can thus be a file object opened
for writing, aStringlO object, or any other custom object that meets this interface.

3.14. pickle — Python object serialization 73

load (file)
Read a string from the open file objdile and interpret it as a pickle data stream, reconstructing and
returning the original object hierarchy. This is equivalent/ttpickler(file).load()
file must have two methodsyaad() method that takes an integer argument, arehalline() method
that requires no arguments. Both methods should return a string. fildhaan be a file object opened for
reading, &StringlO object, or any other custom object that meets this interface.

This function automatically determines whether the data stream was written in binary mode or not.

dumps(obj[, protoco[, bin]])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is omitted, protocol O is used. ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQIthe highest protocol version will be used.

Changed in version 2.3: Tharotocol parameter was added. Thén parameter is deprecated and only
provided for backwards compatibility. You should use pinetocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representa-

tion are ignored.
Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherit&ikoeption

exceptionPicklingError
This exception is raised when an unpicklable object is passed thuthe() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may also
be raised during unpickling, including (but not necessarily limited&tiibuteError , EOFError
ImportError , andindexError

Thepickle module also exports two callabfe®ickler andUnpickler

classPickler (file[, protoco[, bin]])
This takes a file-like object to which it will write a pickle data stream.
If the protocol parameter is omitted, protocol 0 is used.ptbtocol is specified as a negative value, the
highest protocol version will be used.
Changed in version 2.3: THan parameter is deprecated and only provided for backwards compatibility.
You should use thprotocolparameter instead.
Optionalbin if true, tells the pickler to use the more efficient binary pickle format, otherwiserfw|
format is used (this is the default).

file must have avrite() method that accepts a single string argument. It can thus be an open file object,
aStringlO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:
dump(obj)

Write a pickled representation obj to the open file object given in the constructor. Either the binary or
Ascli format will be used, depending on the value of teflag passed to the constructor.

clear _memq)
Clears the pickler's “memo”. The memo is the data structure that remembers which objects the pickler has

already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

3In the pickle module these callables are classes, which you could subclass to customize the behavior. HoweveRiikithe
module these callables are factory functions and so cannot be subclassed. One common reason to subclass is to control what objects can
actually be unpickled. See section 3.14.6 for more details.

74 Chapter 3. Python Runtime Services

Note: Prior to Python 2.3¢clear _memo() was only available on the picklers createdd®ickle . In
thepickle module, picklers have an instance variable caifegmowhich is a Python dictionary. So to
clear the memo for pickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simaiease _memo() .

It is possible to make multiple calls to tlleimp() method of the samBickler instance. These must then be
matched to the same number of calls to fibed() method of the correspondingnpickler instance. If the
same object is pickled by multipump() calls, theload() will all yield references to the same objéct.

Unpickler objects are defined as:

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag aBicklie
factory.

file must have two methodsraad() method that takes an integer argument, areballine() method
that requires no arguments. Both methods should return a string. fildhaoan be a file object opened for
reading, &StringlO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the recon-
stituted object hierarchy specified therein.

noload ()
This is just likeload() except that it doesn’t actually create any objects. This is useful primarily for
finding what's called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5
below for more details.

Note: the noload() method is currently only available obdnpickler objects created with the
cPickle module.pickle moduleUnpickler s do not have thaoload() method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None, True , andFalse

e integers, long integers, floating point numbers, complex numbers
e normal and Unicode strings

e tuples, lists, sets, and dictionaries containing only picklable objects
¢ functions defined at the top level of a module

e built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whasedict __ or __setstate __() is picklable (see section 3.14.5 for
details)

4Warning this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the sdPiekler instance, the object is not pickled again — a reference to it is pickled and the
Unpickler will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a
minimal set of changes. Garbage Collection may also become a problem here.

3.14. pickle — Python object serialization 75

Attempts to pickle unpicklable objects will raise tRe&klingError exception; when this happens, an unspec-
ified number of bytes may have already been written to the underlying file. Trying to pickle a highly recursive
data structure may exceed the maximum recursion defRlapgimeError will be raised in this case. You can
carefully raise this limit withsys.setrecursionlimit()

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither
the function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable
in the unpickling environment, and the module must contain the named object, otherwise an exception will be
raised®

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply.
Note that none of the class’s code or data is pickled, so in the following example the class adftibutes not
restored in the unpickling environment:

class Foo:
attr = 'a class attr’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and
still load objects that were created with an earlier version of the class. If you plan to have long-lived objects that
will see many versions of a class, it may be worthwhile to put a version number in the objects so that suitable
conversions can be made by the class’'setstate __() method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the ob-
jects that are being serialized. This protocol provides a standard way for you to define, customize, and control how
your objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations
that you can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see
section 3.14.6 for more details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, itsinit __() method is normallynot invoked. If it is
desirable that the _init __() method be called on unpickling, an old-style class can define a method
__getinitargs __() , which should return &uple containing the arguments to be passed to the class con-
structor (i.e.__init __()). The__getinitargs __() method is called at pickle time; the tuple it returns is
incorporated in the pickle for the instance.

New-style types can provide a_getnewargs __() method that is used for protocol 2. Implementing this
method is needed if the type establishes some internal invariants when the instance is created, or if the memory
allocation is affected by the values passed totheew__() method for the type (as it is for tuples and strings).
Instances of a new-style tyjigare created using

obj = C._new_ (C, * arg9

where args is the result of calling__getnewargs __() on the original object; if there is no
__getnewargs __() , an empty tuple is assumed.

Classes can further influence how their instances are pickled; if the class defines the mefbistate __() ,
it is called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s

5The exception raised will likely be dmportError or anAttributeError but it could be something else.

76 Chapter 3. Python Runtime Services

dictionary. If there is na__getstate __() method, the instance’s_dict __ is pickled.

Upon unpickling, if the class also defines the methodetstate __() , it is called with the unpickled stafe.

If there is no__setstate __() method, the pickled state must be a dictionary and its items are assigned to the
new instance’s dictionary. If a class defines botlgetstate __() and__setstate __() , the state object
needn't be a dictionary and these methods can do what they’want.

Warning: For new-style classes, if_getstate __() returns a false value, the_setstate __()
method will not be called.

Pickling and unpickling extension types

When thePickler encounters an object of a type it knows nothing about — such as an extension type — it looks
in two places for a hint of how to pickle it. One alternative is for the object to implementraduce __()
method. If provided, at pickling time_reduce __() will be called with no arguments, and it must return either

a string or a tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. The string returned by
__reduce __ should be the object’s local name relative to its module; the pickle module searches the module
namespace to determine the object’'s module.

When a tuple is returned, it must be between two and five elements long. Optional elements can either be omitted,
or None can be provided as their value. The semantics of each element are:

¢ A callable object that will be called to create the initial version of the object. The next element of the tuple
will provide arguments for this callable, and later elements provide additional state information that will
subsequently be used to fully reconstruct the pickled date.

In the unpickling environment this object must be either a class, a callable registered as a “safe constructor”
(see below), or it must have an attributesafe _for _unpickling __ with a true value. Otherwise, an
UnpicklingError will be raised in the unpickling environment. Note that as usual, the callable itself is
pickled by name.

e Atuple of arguments for the callable object,one. Deprecated since release 2.3 this item isNone,
then instead of calling the callable directly, itsbasicnew __() method is called without arguments;
this method should also return the unpickled object. Proviliage is deprecated, however; return a tuple
of arguments instead.

e Optionally, the object’s state, which will be passed to the objectsetstate __() method as described
in section 3.14.5. If the object has no setstate __() method, then, as above, the value must be a
dictionary and it will be added to the object’s dict

e Optionally, an iterator (and not a sequence) yielding successive list items. These list items will be pickled,
and appended to the object using eitlodj.append(item) or obj.extend(list_of_itemg . This
is primarily used for list subclasses, but may be used by other classes as long as thapgend()
andextend() methods with the appropriate signature. (Whetagpend() or extend() is used
depends on which pickle protocol version is used as well as the number of items to append, so both must be
supported.)

e Optionally, an iterator (not a sequence) yielding successive dictionary items, which should be tuples of the
form (key, valug . These items will be pickled and stored to the object using key| = value This
is primarily used for dictionary subclasses, but may be used by other classes as long as they implement

__setitem __.
It is sometimes useful to know the protocol version when implementingduce __. This can be done by
implementing a method named reduce _ex __instead of _reduce __. __reduce _ex__, whenitexists,

is called in preference over_reduce __ (you may still provide__reduce __ for backwards compatibility).
The __reduce _ex__ method will be called with a single integer argument, the protocol version.

6These methods can also be used to implement copying class instances.
"This protocol is also used by the shallow and deep copying operations definedispthenodule.

3.14. pickle — Python object serialization 77

The object class implements both _reduce __ and __reduce _ex__; however, if a subclass over-
rides __reduce __ but not__reduce _ex__, the __reduce _ex__ implementation detects this and calls
__reduce __.

An alternative to implementing a_reduce __() method on the object to be pickled, is to register the callable

with the copy _reg module. This module provides a way for programs to register “reduction functions”

and constructors for user-defined types. Reduction functions have the same semantics and interface as the
__reduce __() method described above, except that they are called with a single argument, the object to be
pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, thiekle module supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of
printableAscii characters. The resolution of such names is not defined bpitckkee module; it will delegate

this resolution to user defined functions on the pickler and unpiékler.

To define external persistent id resolution, you need to sepe¢hgistent _id attribute of the pickler object
and thepersistent _load attribute of the unpickler object.
To pickle objects that have an external persistent id, the pickler must have a qeswsiatent _id() method

that takes an object as an argument and returns ditbee or the persistent id for that object. Wh&lone is
returned, the pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will
pickle that string, along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a cugiersistent ~ _load() function that takes a
persistent id string and returns the referenced object.

Here’s a silly example thahightshed more light:

8The actual mechanism for associating these user defined functions is slightly differgickfer andcPickle . The description given
here works the same for both implementations. Users gbitlde module could also use subclassing to effect the same results, overriding
thepersistent _id() andpersistent _load() methods in the derived classes.

78 Chapter 3. Python Runtime Services

import pickle
from c¢StringlO import StringlO

src = StringlO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, 'X):
return 'the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def __init__ (self, x):
self.x = x
def __str__ (self):
return 'My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringlO(datastream)

up = pickle.Unpickler(dst)

class Fancylnteger(Integer):
def _ str_ (self):
return 'l am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith('the value °):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, ’'Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j
In the cPickle module, the unpicklerpersistent _load attribute can also be set to a Python list, in

which case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this
list. This functionality exists so that a pickle data stream can be “sniffed” for object references without actually
instantiating all the objects in a pickleSettingpersistent _load to a list is usually used in conjunction with
thenoload() method on the Unpickler.

3.14.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets
unpickled and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different

SWe'll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

3.14. pickle — Python object serialization 79

depending on whether you're usipigkle or cPickle .19

In the pickle module, you need to derive a subclass frompickler , overriding theload _global()
method.load _global() should read two lines from the pickle data stream where the first line will the name

of the module containing the class and the second line will be the name of the instance’s class. It then looks up the
class, possibly importing the module and digging out the attribute, then it appends what it finds to the unpickler’s
stack. Later on, this class will be assigned to thelass __ attribute of an empty class, as a way of magically
creating an instance without calling its class’sinit __() . Your job (should you choose to accept it), would

be to havdoad _global() push onto the unpickler’s stack, a known safe version of any class you deem safe to
unpickle. It is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling
of instances. If this sounds like a hack, you're right. Refer to the source code to make this work.

Things are a little cleaner withPickle , but not by much. To control what gets unpickled, you can set the
unpicklersfind _global attribute to a function oNone. If it is None then any attempts to unpickle instances

will raise anUnpicklingError . If it is a function, then it should accept a module name and a class name,
and return the corresponding class object. It is responsible for looking up the class and performing any necessary
imports, and it may raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file,
and returns the line number and line contents each tintedtdline() method is called. If &extReader
instance is pickled, all attribute=xceptthe file object member are saved. When the instance is unpickled, the
file is reopened, and reading resumes from the last location_Thketstate __() and__getstate __()
methods are used to implement this behavior.

class TextReader:
""Print and number lines in a text file."™"
def __init__(self, file):
self.file = file
self.th = open(file)
self.lineno = 0

def readline(self):
self.lineno = selflineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)

def __ getstate__ (self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh’] # remove filehandle entry
return odict

def __ setstate__ (self,dict):

fh = open(dict[‘file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1
self.__dict__.update(dict) # update attributes
self.th = fh # save the file object

10A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of
Python. We intend to someday provide a common interface for controlling this behavior, which will work inpgitkler or cPickle

80 Chapter 3. Python Runtime Services

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,’'w’))

If you want to see thapickle works across Python processes, star