ns-3 Software Architecture

ns-3 project
http://mww.nsnam.org/
feedback: ns-developers@isi.edu

October 14, 2007

Introduction

Thisns-3 design document is one of a set of project documents:

e Software Architecture (this document)
e Manual

e Tutorial

This document is written in Latex and is to be maintained insien control on thens-3 code server. Both PDF and HTML
versions should be available on the server. Changes to thement should be discussed on the ns-developers@isi.edu

mailing list.

Contents

1 Introduction 2
1.1 nS3OVEIVIEBW o o o e e 2
1.2 Longer-termvVision e e e e e e 2
1.3 0Outline e e 3

2 Software Architecture 4
2.1 BAaSICS e e e 4
2.2 USECASES . . . v i it i e e e e e 4
2.3 Classandobjectdesign e 6

2.3.1 Componentsystem e e e e e 6
2.3.2 Objectcreation e e e e 7
2.4 Memory Management. e e e e e e e 8
2.4.1 Referencecountingsmartpointer e e 9
25 Configuration e 9
2.5.1 Stocktopologycode e 9
2.5.2 Default values and command linearguments 9
2.6 TracCing e e e 10
2.7 Scaling e 11
2.8 Emulation e e 11
2.9 SCrpting o e e 11

3 Key simulation objects 12
3.1 Node . . . o 12
3.2 NetDeviceand Channel e e 13
3.3 Packet e e 14
3.4 Socketsand Applications e e e e e 14

3.4. 1 SOCKES e e e 15

4 Core Modules 16

4.1 EventScheduling e e e 16
411 Simulationtime e e 16
4.1.2 Eventcreationand expiration e e 16

4.2 Callbacks e e 17

5 Internet Node 18
5.1 InternetNode members L i e 18
5.2 Send packetprocessingchain e e 19
5.3 Receive packetprocessingchain L e e 19

6 ns-3routing 21

6.1
6.2
6.3
6.4
6.5
6.6
6.7

OVEIVIEBW . . . o e 21
Global Unicast Routing APl e 21
Global Routing Implementation e 21
Multicast Routing APL o L e e 22
Support for multiple routing protocols L e 23
Optimized Link State Routing (OLSR) e 24
Roadmap and Future work e e e e e 25

1 Introduction

This document provides an overview of the high-level goat$ software architecture for thes-3 network simulatorns-3 is
aimed at eventually replacing time-2 simulator. This document is intended to provide a brief gecitural overview ohs-3,
to complement reading the code and main source code docatioenivhich is in Doxygehformat.

1.1 ns-3Overview

ns-3is a discrete-event network simulator oriented towarda/oek research and education, with a special focus on Interne
based systems. Ths-3 project is designing a follow-on successor to the popude? simulator.

In ns-2, simulation scripts are written in OTcl. Ims-3, simulation scripts are written in C++, with support for exsions
that allow simulation scripts to be written in Python. Th@&sg¢hon bindings have yet to be written, but the goal is fordul

near-full APl support at the Python level.

ns-3is intended to provide better support tham#2 for the following items:

Modularity of components

Scalability of simulations

Integration/reuse of externally developed code and sofwtlities

Emulation

Tracing and statistics

Validation

ns-3 is a rewrite of the core of the simulatons-2 does not presently run ins-3, although we are studying approaches to
allow ns-2 to be run as part afis-3, as well as studying which models will be ported fros2 to work natively inns-3.

1.2 Longer-term vision

The Pls and developers on the project envision tisa® can become more than a basic iteration of previous simulator
approaches. Here is an incomplete list of the features teaifanterest to add:

e Core refactoring: While striving to maintain as much model reuse as possibidyding a backward compatibility
capability), we plan to rearchitect the simulator for bett@se of use, scalability (principally by class redesigtively
supporting multi-processor and distributed simulatiarg] support for 64-bit machines), encapsulation, and stippo
for integration of other software. The simulator shouldilgawith realistic models at different levels of abstraxtj
allow for simulations of IPv4 and IPv6 networks, as well aselpresearch-oriented network architectures.

e Software and testbed integration:We see a tremendous opportunity, with an open-source dionuta leverage the
software developed under other open-source projects. Wetheee specific goals in mind:

1. Abstraction layers, interfaces, and new techniquesuppsrting implementation code within tms-3 environ-
ment, such as ports of popular operating system implemensaand routing daemons;

Lhttp://www.nsnam.org/doxygen/index.html

2. Support for standard input and output file formats, so éxiting tools can be used for generating simulation
input and analyzing simulation output (e.g., pcap-foretttaces for viewing with tcpdump);

3. Techniquesto allow users to easily migrate experimegtigsden simulation and network emulation environments.
e Wireless models. The ns-2 simulator needs updating to account for the growth in wegleetworking, including
the many variants of IEEE 802.11 networking, emerging IEEBdards such as WiMax (802.16), and cellular data

services (GPRS, CDMA). Additional new models beyond wsslare also needed, such as peer-to-peer and delay-
tolerant networks.

e Education. ns-3 is first and foremost a simulator for the academic researafmuanity. However, our project will
emphasize makings-3 more useful to educators with a specific goal of its integrainto undergraduate networking
courses.

1.3 Outline

This document is organized as follows:

Chapter 2 describes the overall end-to-end software acthital model

Chapter 3 introduces the key objects in the system relatisgmding and receiving packets: nodes, network devices,
channels, packets, and sockets.

Chapter 4 describes core objects in the simulator.

Chapter 5 outlines how the InternetNode object sends amiviescpackets.

Chapter 6 describes the current routing implementation.

2 Software Architecture

This chapter provides an introductory software architedtoverview ofns-3, including use cases, architecture for reusable
components, design for configuration, memory managemeicipand strategy for integrating outside and legacy code.

2.1 Basics

ns-3is a user-space program that runs on Unix- and Linux-bassdisys and on Windows (currently via Cygwin and possibly
via native win32 APIs in the future). It is written in C++, Wit planned Python scripting interface(s) for users. Thadas

on IPv4 and IPv6-based networks, but other non-IP architestsuch as sensors or DTNs are to be suppante8lis meant

to be modifiable and extendable by users; some users will led@bise example scripts that are provided, but it is exjgecte
that most (research) users will want to either write newgsmor modify or add to the simulator models in some way. Ssurc
code distributions are therefore expected to be the pegfeneans for distributings-3.

ns-3 contains support for the following:

e construction of virtual networks (nodes, channels, apfiims) and support for items such as event schedulerd; topo
ogy generators, timers, random variables, and other abjectupport discrete-event network simulation focused on
Internet-based and possibly other packet network systems.

e support for network emulation; the ability for simulatopbpesses to emit and consume real network packets
e distributed simulation support; the ability for simulatsto be distributed across multiple processors or machines
e support for animation of network simulations

e support for tracing, logging, and computing statisticsoagimulation output

ns-3 has a modular implementation containinga e library supporting generic aspects of the simulator (dgmgjobjects,
random number generators, smart pointers, callbacksiasts, reference list), andsa mul at or library defining simulation

time objects, schedulers, and eventx @dxmon library defines objects that are independent of specific oitarchitectures,
such as generic packets and tracing objects. Finallyntae library defines abstract base classes for fundamental base
objects in the simulator, such as nodes, channels, and retlgoices. Internet-related models (IP and transportooas)

are found in the nt er net - node library. Specific devices such as Ethernet ardewi ce libraries. Users may write and
link their own libraries. The modular implementation alfor smaller compilation unitsi1s-3 executable programs may be
built to either statically or dynamically link the librage

2.2 Use cases

To introduce the design ois-3 we first review design issues and usage models that have aridens-2, and mention trends
in simulation use within the networking research community

e Model extensibility. Most research users want to extend the simulator by writewg simulation scripts, modifying
existing models, or writing new models. To facilitate modebdification,ns-3 continues the use of object-oriented
design with polymorphic classes, allowing users to sulscthe aspects that they wish to modify. To facilitate the
addition of new modelsps-3 adopts a component-based architecture for compile-tinrairetime addition of new
models, interface aggregation, and encapsulation, witlemuiring modification of the base modelsns3.

Simulation code reuse. Many users start their work withs-2 by adapting existing code. Some common code is
written in terms of base-class object pointers, allowingrim-time substitution of subclassed objeats:3 will use
several techniques to facilitate simulation code reuseh s1$ inheritance to extend existing classes, the provigion
(extensible) stock topology objects, simulation frameggdhat are easily modifiable, an example script repositorg,

a system for run-time configuration of classes and defaiuliega

Run-time configuration. ns-3 provides a flexible technique to allow users to redefine defalues and class types
without recompiling the simulator. The default value datsd is integrated with a command-line argument parsing
facility, making all the variables configurable from the aoand-line as well.

Tracing. ns-3 features a callback-based approach to tracing that deestnalcing sources from tracing sinks and that
is focused on flexibility for the user. Packet traces will bed® available in libpcap format, to allow for post-procegsi
tools built around that trace format. Built-in statistic8lalso be widely available.

Scaling. ns-3 will include techniques for improving the scalability ofwilations, including distributed simulation
techniques introduced with PDNS and GTNetS, scalabilihmégues introduced for wireless simulations such as
caching of computationally-intensive results, and flditipin tracing infrastructure (to avoid large traces).

Software integration. ns-3 is oriented towards the reuse of existing software such atingpdaemons, applications,
and kernel code. The design is built around encapsulat@miques that decouple the interface from the implemen-
tation, an architecture that better mirrors how real-wakdices are built (e.g., explicitly handling multiple irfeces

per node), and an abstraction library that allows implesgon code to run in both real and simulated environments.

Network emulation. Increasingly, network research that involves simulatigo ancludes an experimental component,
with facilities such as PlanetLab, Emulab, and ORBIT. Redezrs would like to more easily move between simulation
and experimental domains. The 3 design is intended to facilitate this interaction betweagerugation and experiments,
with a packet design oriented towards serialization andrigd&zation, and encapsulation techniques that wilhalteal
application and kernel code to run in the simulator, theiiefproving traceability to real-world implementations.

Scripting The primaryns-3 user interface at present is a C++ “main” program, and we @xpat C++ will continue
to be a preferred language for many users. HowegeB,will also feature Python bindings allowing for users to defin
scripts and replaceable components in Python.

We organize the rest of the discussion in this chapter asvistl

N o g M w Nk

Class and object design
Memory management
Configuration

Tracing

Scaling

Emulation

Scripting

The next chapter goes into more detail on the Node, Chanme&:Packet object designs.

2.3 Class and object design

This section describes the C++ class desigmésBobjects. In brief, the design patterns in use include aassject-oriented
design (polymorphic interfaces and implementations) asstpon of interface and implementation, the non-virtualblp
interface design pattern, object and interface aggreagatidype-safe query interface, a run-time replaceable oomuts
system, and reference counting for memory management.eTfaosliar with component models such as COM or Bonobo
will recognize elements of the designne-3, although thens-3design is not strictly in accordance with either.

2.3.1 Component system

Thens-3 component system is motivated in strong part by a recognitiat a common use case f2 has been the use of
polymorphism to extend protocol models. For instance,igfized versions of TCP such as RenoTcpAgent derive frord (an
override functions from) class TcpAgent.

However, two problems that have arisen in tise2 model are downcasts and “weak base class.” Downcastingsreefehe
procedure of using a base class pointer to an object andiggetyat run time to find out type information, used to exglici
cast the pointer to a subclass pointer so that the subclalssafifbe used. Weak base class refers to the problems that aris
when a class cannot be effectively reused (derived fromauee it lacks necessary functionality, leading the deerltp
have to modify the base class and causing proliferationsé lbass API calls, some of which may not be semanticallyecorr
for all subclasses.

ns-3is using a version of the query interface design pattern didathese problems. This design is based on elements of the
Component Object Model desiyand GNOME Bonoba,although full binary-level compatibility of replaceableraponents

is not supported and we have tried to simplify the syntax amgbict on model developers. The aspects of COM that we are
using provide:

e a component-oriented programming model, based on sepauatinterface and implementation. Interface objects are
what client code uses to talk to the underlying implemeatat\When the class design follows this pattern, it allows
components supporting similar interfaces to be swapped out

e what if interfaces of replaceable components are not the83a@0OM provides a Querylnterface capability which, in
our implementation, provides a type-safe way to query wéredh object has a given capability or interface. The key to
this architecture is that interfaces can be added or agg@garun-time to objects without requiring rebuilding loét
base classes, thereby avoiding weak base classes and thionekent-side C++ downcasts to provide run-time type
information (RTTI).

e a system of unique identifiers for interfaces and classes.

e a component manager that is able to instantiate factoriéobjects themselves based on the identifiers mentioned
above.

e a memory management policy rooted in reference counting.

We do not enforce the COM rule that interfaces are pure atistral that one must separate the interface from implementat
A different, fuller port of COM tons-3 was prototyped by Craig Dowellwho initially suggested the use of COM concepts
and implementation foms-3.

Lhttp://en.wikipedia.org/wiki/Component_Object_Model
2http://en.wikipedia.org/wiki/Bonobo_%28computing%29
Shttp://code.nsnam.org/craigdo/ns-3-com

Query interface example

Query interface is a type-safe way to achieve a safe dowingastd to allow interfaces to be aggregated to an objecie]
using the query interface must inherit from the Interfaceebeass.

An example of the use of query interface is shown below. Gtersa node pointamn0 that points to an InternetNode object
with an implementation of IPv4. The client code wishes tofigure a default route. To do so, it must access an objectnvithi
the node that has an interface to the IP forwarding configuralt performs the following two steps:

Ptr<llpv4> ipvd = n0O->Querylnterface<l|pv4d> (llpv4d::iid);
i pv4->Set Def aul t Route (| pv4Address ("10.1.1.2"), 1);

In the first line a (smart) pointer of type llpv4 (“interfacePv4”) is declared and assigned to the result of a Quersfade
on the node for the interface type llpv4. This pointer valuk e returned null if the node doesn’t support the requetste
interface. If non-null, this pointer can be used like a ttiadial pointer to access the API of the llpv4 object.

To summarize, two benefits that we expect to leverage frogatta as follows:

e Encapsulation: By separating interface from implementation, it permitgpliementors to replace elements of the
protocol stack while remaining compliant with client cottattsupports the same interface. For example, one type of
node may include natives-3 models of protocols, while another may be a port of a Linuxlstand both may be
accessed by the same interface.

e Aggregation: Querylnterface allows for aggregation of interfaces attimme. For instance, an existing Node object
may have an “Energy Model” object and its interface aggmesdy&d it at run time (without modifying and recompiling
the node class). An existing model (such as a wireless nétajesan then query interface for the energy model and
act appropriately if the interface has been either builbithe underlying Node object or aggregated to it at run time.

We hope that this mode of programming will require much lessdfor developers to modify tls-3 base classes or libraries.

See also theanpl es/ mai n- query-i nterface. cc program.

2.3.2 Object creation

Objects in C++ may be statically, dynamically, or autometiccreated. This holds true fois-3 also, but some objects in the
system— those using the replaceable component system-sbiaeeadditional frameworks available. Specifically, refee
counted objects are dynamically allocated using operaat a templated MakeNewObject method, omaf8 component
manager.

The ComponentManager class is inspired by COM and is a ctesbta create any Interface class by Classld, where Classld i

a symbolic name associated to a particular class. Eachudagsthe component manager declares aumg® : C assl d

static variable that is bound to a constructor. The follapdode shows how the component manager can be used to create
new objects of type A:

Ptr<A> a = 0;
a = Conponent Manager:: Create<A> (A :cid, A:iid);

The above code (from the unit tests for component-managereates a class A (which is subclassed from Interface) and
returning a pointer to A (as specified by A's interface ID)..

The above code sample can be changed in a few ways. First,tdtisaly aggregates interface B, a pointer to interface B
can be returned even if the underlying object is of type A:

Ptr b = 0;
b = Conponent Manager:: Create<A> (A :cid, B::iid);

Finally, the system accommodates non-default constrsickasume that another constructor for A exists that takembehn
argument, such asl ass A:: A (bool bo). If the constructor for this class has registered a new digsuch as
cidOneBool), the following can be called:

Ptr b = 0;
b = Component Manager : : Cr eat e<A, bool > (A::ci dOneBool, B::iid, true);

where the last parameter is the passed-in boolean valus tAstructor, and again assigning returning the intefagcger
B to the created object of type A. The classlds can be ovesridd run time also by the default value system describeavbelo

If a reference counted object is being new’ed and assignaddterence counting smart pointer (class Ptr), then a tetegpl
helper function is available and recommended to be used:

ns3::Ptr b = ns3:: Create ();

This is simply a wrapper around operator new that correcilydhes the reference counting system.

2.4 Memory Management

Memory managementin a C++ program is a complex processsafiten done incorrectly or inconsistently. We have settled
on a reference counting design described as follows.

All objects using reference counting maintain an intereérence count to determine when an object can safely dedete
Each time that a pointer is obtained to an interface, theabbjeeference count is incremented by calliRgf () . It is the
obligation of the user of the pointer to explicitynr ef () the pointer when done. When the reference count falls to, zero
the object is deleted.

e When the client code obtains a pointer from the object itdetiugh object creation, or via Querylinterface, it does not
have to increment the reference count.

e When client code obtains a pointer from another source, (@g@ying a pointer) it must caRef () to increment the
reference count.

o All users of the object pointer must célhr ef () to release the reference.

The burden for callindJnr ef () is somewhat relieved by the use of the reference countingtgoater class described
below.

Users using a low-level APl who wish to explicitly allocatemreference-counted objects on the heap, using operatgr n
are responsible for deleting such objects.

Packet objects are handled differently (without referesmenting); their design is described in the next chapter.

2.4.1 Reference counting smart pointer

ns-3 provides a smart pointer class similarBoost : : i nt r usi ve_pt r . This smart-pointer class assumes that the under-
lying type provides a pair of Ref and Unref methods that apeeted to increment and decrement the internal refcouhieof t
object instance. We saw an example of this class in the qu&sface code above.

This implementation allows you to manipulate the smart favias if it was a normal pointer: you can compare it with zero,
compare it against other pointers, assign zero to it, etc.

It is possible to extract the raw pointer from this smart peinvith the GetPointer and PeekPointer methods.

If you want to store a newed object into a smart pointer, wemanend you to use the MakeNewObject template functions to
create the object and store it in a smart pointer to avoid nngieaks. These functions are really small conveniancetions
and their goal is just is save you a small bit of typing.

2.5 Configuration

Configuration of objects is typically done by accessing gedails public API to change the values of member variabléstT
is no different inns-3 but the design tries to ease this for users with the folloviadniques.

2.5.1 Stock topology code

A number of static methods are being defined to aid in topotamstruction. These objects typically use base classgrsint
to refer to constituent objects (enabling software reusd)ae therefore a primary benefactor of the COM-like framms
(Querylnterface, Component Manager) described above.thfeomoment, only a few PointToPointTopology and CSMA
objects are available (isr ¢/ devi ces/ poi nt -t 0- poi nt/ poi nt -t o- poi nt -t opol ogy. cc, h) but more topolo-
gies such as WirelessGrid are planned.

For example, the following method constructs a point-teaplink (using PointToPointChannel and PointToPointNetize
objects) between two nodes nl and n2, with the specified détahd one way progagation delay. It essentially wraps
a bunch of low-level API calls to create these NetDevices @hdnnel. The type of objects used in this topology can be
overridden as long as they derive from the common base slasssl in these topology objects. Users may write their own
topology objects, buts-3 will maintain a few.

2.5.2 Default values and command line arguments

Simulation users often want to run many instances with giighifferent parametersis-2 had a system whereby users could
change the value of a C++ variable if it was suitably bound (et cl / | i b/ ns-def aul t. t cl script ofns-2).

In ns-3, we have developed the following system for default valaad,have hooked it into a command-line argument parsing
facility. The basic idea is to use a templated global vaedhtility to store bindings between string names of vagabl
“help” text on allowable parameters, and the default vatiselfi. This avoids users needing to rebuild core libraeshiange
parameters, and allows users to avoid rebuilding any filedl tthe command-line facility is used.

The program irsanpl es/ mai n- def aul t - val ue. cc shows how this facility can be used. Briefly, any variable of a
supported type in the system can be bound to a unique strifigsbgleclaring a static variable such as

10

static IntegerDefaultValue<int> defaultTestIntl ("testlntl", "helplntl", 33);

which declares that testintl is an integer with a defaull@alf 33. The second parameter is a string that can be modified
by the developer to encode whatever information is usefgl (enits). Then, any actual integer in the system can lee lat
assigned to the value of defaultTestInt1, as typically daren object’s constructor.

If a variable in the system has been bound to the string ftistl the following C++ statement (typically invoked neaet
top of a main program) will cause it to be initialized inste¢aa.g. the integer value 57:

Bind("testlntl1l", "57");

While a user can change this default by modifying the mairg@m, the command line can be used as well. Running
"./sanpl e-defaul t-val ue -hel p" will cause a list of possible configurable values to be pdmvet. For this
example, the following string is printed:

--testInt1=[int32_t(-2147483648: 2147483647): 33] hel pInt 1

This tells the user that testintl is of typat 32_t with a range of values specified between the parentheses, defhult
value of 33 (that can be overridden).

This facility can also be used to swap out the type of an olgieain-time, if the particular class has been integratemtim
system. For instance, the fibxanpl es/ si npl e- poi nt -t 0- poi nt . cc shows a line as follows:

Bi nd (" Queue", "DropTail Queue");

where DropTailQueue is a subclass of class Queue. This fypeding will allow callers of th&Queue: : Cr eat eDef aul t
() factory method to obtain a suitably subclassed Queue object

Consult thesanpl es/ nai n- def aul t - val ue. cc example program for more information on how to use this figcil

2.6 Tracing

The design objective has been to offer the user a lot of fléibin selecting which events to monitor, and to allow users
freedom to use possibly complex logic to decide what thinded to trace files or to perform inline statistics calcldas.

To provide this flexibility, every model must define a set afc& event sources. Each of these trace event source caatgener
one type of event and can specify any number of argumentsnigegger-event information from the trace event source to
the listening trace event sinks.

While this design allows users to hand-specify a differesité sink to each trace source, ns-3 also provides a set pfesim
trace helpers which perform bulk connection of the defaalte sources to a set of trace sinks which generate tracénfiles
various specific formats. For example, pcap output can bieltsi generated for the default ipv4 stack by instantigtam ob-
ject of type PcapTrace and calling its TraceAlllp methode Ekample fileexanpl es/ si npl e- poi nt -t 0- poi nt. cc
contains examples for producing both ascii and pcap trasieg this high-level API.

To integrate in this framework, model developers need to:
o define and instantiate a set of trace sources of type Calllbac&Source

11

e trigger trace events by invoking each of the trace sourde thi per-event arguments needed

e implement a method named CreateTraceResolver which takesaContext as argument and returns a TraceResolver.
Implementing this method is pretty trivial: it is a matterin§tanciating a CompositeTraceResolver and register each
trace source in it.

Later, when the time comes to connect the user’s trace sthis i, the user’s callbacks. See section 4.2) to the nodel’
trace sources, the user can use the TraceRoot::Conneabdnetiich takes as an argument a string pattern which iden-
tifies the set of trace sources stored in trace resolverrninstato connect. For example, a string pattern could loak lik
‘Inodes/*/netdevices/*/*” which would identify all tracevents in all netdevice objects contained in all nodes.

2.7 Scaling

‘ Note: the ns-3.0.5 release does not include specific sufipataling techniques. This section will be added at a lddte.

2.8 Emulation

‘ Note: the ns-3.0.5 release does not include support foratiounl

2.9 Scripting

Gustavo Carneiro and Craig Dowell are working on Pythormpsiorg; the gjc/ns-3-pybindgen and craigdo/ns-3-swig s2po
tories have prototypes of both a set of bindings written ithBg, and bindings written using SWIG. Check the ns-de\asiop
list for discussion of the design.

Note: the ns-3.0.5 release does not include support foroRyhripting. This section will be added at a later date.

12

3 Key simulation objects

This chapter walks through the primary simulation objentthie simulator, relating to the sending and receiving okpt
between nodes. Figure 3.1 depicts, at a high-level, thectsbyee will discuss in this chapter: Node, NetDevice, Chgnne
Packet, and interface aspects thereof.

3.1 Node

class Node is intended mainly as a base classig, but it can be instantiated as well (i.e., it is not an abstckass). It
contains only a few objects: a unique integer ID, a systemféDdistributed simulation), a list of NetDevices, and a 6§
Applications. Figure 3.1 depicts this high-level view.

Node
4 N\

-~ (sockets, libc)

Packet

— —|~ Linux-1like
API * unique id (m.uid)

* Buf fer object

* Tags contai ner object

Channel

Channel

Figure 3.1: High-level node architecture.

Users can create their own Node subclassesnafddwill provide a few. Currentlycl ass | nt er net Node is provided,
which implements a rudimentary UDP/IPv4 stack.

The design tries to avoid putting too many dependencies®hdbe class Node, Application, or NetDevice for the foltayvi

e |P version, or whether IP is at all even used in the Node.

e implementation details of the IP stack

The design therefore uses the design pattern of softwarapsultation to allow Applications and NetDevices to talk to
implementation- independent interfaces (that can be gdetia Querylnterface— see section 2.3) of the underlying/TC
implementations.

For instance, we expect to support a natige3 version of TCP/IP as well as ported Linux or FreeBSD stackhes€é
implementation details can be hidden behind an IPv4 interédject that is queried by the application or scenario ldpeg.

13

If users want to experiment with non-IP stacks, they can deigwut having IP dependencies on the NetDevices, Channels
and Applications. This is why the Stack objects in Figure &4 illustrated with dotted lines; these may be built quite
differently for different Node subclasses. We try to pravian interface to the NetDevice corresponding to the device-
independent sublayer in Linux, and model the interface erdbp of the stacks using typical Unix-like abstractionsgfoin
(C-based) sockets API and other system calls such as fouift ior other utilities.

3.2 NetDevice and Channel

A key node object i€l ass Net Devi ce, which represents a physical interface on a node (such athanriet interface).
We discuss also in this section tbkass Channel , which is closely coupled to the attached NetDevices.

The basic idea is to mimic the Linux architecture at the baupdetween device-independent sublayer of the network
device layer and the IP layer (figure 3.2). The top interfat&letDevice approximates the point in the Linux kernel
wheredev_queue_xmi t () is called. The data members of NetDevice are similar to tHosad in Linuxstr uct

net _devi ce. The IPv4 or IPv6 portion of a devica{ruct i n_devi ce) is modeled by a separate object on top of
NetDevice (not discussed in this section).

Net Devi ce: : Send
(const Packet & p, const Address& dest
uint16_t protocoINrnber)

m r ecei veCal | back
(cal l back registered to recei ve packets)

!

pure virtual quueuing operation *NetDevice

cl ass Net Devi ce subcl asses:
stores: i nout stores

- node pointer coo uzue - Queue pointer
- Addresses ?if present) - Receive() nethod
- Mru - (subcl assed)
- up/down state Channel pointer
- receive

cal | back)

- up/ down —t *Net Devi ce: : Recei ve ()

cal | back (Packet p)

notification

- Get Channel () from *Channe

Figure 3.2: Overview of boundary between Network Device apyler layer (typically layer-3).

Figure 3.2 illustrates some of the main objects and actiovaing sending a packet up and down the stack. First, tisere
an abstractl ass Net Devi ce that implements a Node pointer, MacAddress, string nangg, (&th0"), MTU, and has

a flag for setting the state to be up or down. Two callbacksraskided; the first allows a higher-layer protocol to registe
a function to be used to send the packet up the stack; thisacdllis present to decouple the NetDevice from the higher
layer protocol above (typically layer-3 but may also be stinimg like a bridging layer), as described in the previougise.
Another callback allows the NetDevice to notify listenefa@hange in state. Finally, there is a method provided tarned
base class Channel pointer, which is forwarded to a Net@estibclass that actually has the pointer.

NetDevices in use in the simulation will all subclass frons thase class; an example is in

src/ devi ces/ poi nt -t o- poi nt - net - devi ce. cc, h. These subclasses are matched to a particular corresgondin
channel type. That s, for example, a PointToPointNetDeis@ttached to a PointToPointChannel. This conventioviges
type-safety in avoiding the connection of incompatible @&l and NetDevice types. The subclass (denetést Devi ce

in the figure) also provides a Receive() method to allow peckebe sent to it from the Channel; e.g. PointToPointChlanne
calls PointToPointNetDevice::Receive(). Any queue impdatations are stored in these subclasses.

14

Packets traversing the stack in the outbound directiontballbase class NetDevice::Send() which forwards the pdoket
the appropriate subclass method. Packets traversingdble ist the inbound direction will call the callback regigtewith
m_receiveCallback when the NetDevice is done processagalcket and wants to hand it to the higher layer.

3.3 Packet

The design of the Packet frameworkref 3 was heavily guided by a few important use-cases:

e avoid changing the core of the simulator to introduce nevesygf packet headers or trailers
e maximize the ease of integration with real-world code argiesys

e make it easy to support fragmentation, defragmentatiah, @ncatenation which are important, especially in wggle
systems.

e make memory management of this object efficient

o allow actual application data or dummy application bytessimulated applications

ns-3 Packet objects contain a buffer of bytes: protocol headedsttailers are serialized in this buffer of bytes using user
provided serialization and deserialization routines. &tietent of this byte buffer is expected to match bit-forthé content
of a real packet on a real network implementing the prototuiterest.

Fragmentation and defragmentation are quite natural téeimg@nt within this context: since we have a buffer of reaklsyt
we can split it in multiple fragments and re-assemble thesgnients. We expect that this choice will make it really gasy
wrap our Packet data structure within Linux-style skb or B&{le mbuf to integrate real-world kernel code in the siatoit.
We also expect that performing a real-time plug of the sitoulep a real-world network will be easy.

Because we understand that simulation developers oftémtwistore in packet objects data which is not found in the real
packets (such as timestamps or any kind of similar in-bama) dgnens-3 Packet class can also store extra per-packet "Tags"
which are 16 bytes blobs of data. Any Packet can store any auoflunique Tags, each of which is uniquely identified by
its C++ type. These tags make it easy to attach per-modetdapacket without having to patch the main Packet class or
Packet facilities.

Memory management of Packet objects is entirely automaticextremely efficient: memory for the application-leveypa
load can be modelized by a virtual buffer of zero-filled byftasvhich memory is never allocated unless explicitely resfed
by the user or unless the packet is fragmented. Furtherroopgijng, adding, and, removing headers or trailers to agtack
has been optimized to be virtually free through a techniquenn as Copy On Write.

3.4 Sockets and Applications

Applications are user defined processes that generate ttaffiend across the networks to be simulatest3 provides a
framework for developing different types of applicatiohsit have different traffic patterns. There is an Applicatiase
class that allows one to define new traffic generation patera inheritance from this class. Then one simply creates
the application and associates it with a node, and the agtjic will send traffic down the protocol stack. The way that
applications on a node communicate with the node’s protsteak is via sockets.

15

3.4.1 Sockets

The sockets API exported tts-3 attempts to mimic the standard BSD sockets API. The majdergifiice in the implemen-
tation is that while BSD socket calls are synchronous (thathiey do not return control to their caller until they coetp),

the ns-3 socket API calls return immediately. This is due to the faetttin a simulation environment where one machine
is simulating possibly thousands of socket calls acrodereifit simulated machines simultaneously, the simulatoply
cannot afford to wait for the socket function call to retufine way the software handles the situation instead is byrrieim
immediately, then using callbacks when other portions eftthde need to be notified of a socket event. For example, when i
the course of the simulation a socket is directed to listen@ specific port, the caller also provides a callback to leanten

the socket receives a connection request. The listen()Jade#turns immediately, and then whenever the socket reséie
connection, it invokes the callback to handle the connact®imilar things happen for the other common socket APks, li
send(), connect(), and bind().

In ns-3.0.5, a packet socket analogous to Linux or BSD pastetets was added, which allow an application to directly
access a NetDevice, bypassing the TCP/IP stack.

16

4 Core Modules

This chapter discusses the design and implementation efatements ims-3. These items are built in two modulesaf e
andsi nul at or) with no other dependencies on the simulation code.

4.1 Event Scheduling

The ns-3 event scheduling framework was designed with th@xfimg use-cases in mind:

maximize code portability by ensuring reproducible timghkations in user models.

make it possible to increase the precision of the interna tvariable in the future.

make it easy to associate a specific function to be called \atsgecific event expires

make it easy to pass per-event data from the point when the svecheduled to the point when the event expires

4.1.1 Simulation time

Simulation time is kept track of internally using a 64bitager in units of nanoseconds. To make sure that this internal
variable can be easily changed to represent a higher-pretisie or that we can use a variable with a larger dynamigean
user programs never access directly this time variableedals the current simulation time is exported to the useuitin a
single method Simulator::Now () which returns an opaquecthjf type Time. Users can also easily create instancessof th
type through the functions Seconds, MilliSeconds, Micia®els, or NanoSeconds each of which takes a single argument i
the specified unit and returns an instance of a Time object.

Instances of the class Time can be used just like normal ensegr floating-point values: they support all the normal
arithmetic operators and can be converted to values in afgpime unit with Time::GetSeconds, Time::GetMilliSeatm
Time::GetMicroSeconds, and, Time::GetNanoSeconds.

These instances of the class Time store their time value ¥ &46it fixed-point integer variable. That is, the useiblés

time variables are kept track of with 64 bits of fractionakiger precision. If users are careful to perform all thethemtic
operations on Time variables, they can easily ensure thatdbde will behave exactly in the same way on multiple platfs.

4.1.2 Event creation and expiration

To schedule an event, users can call any of the Simulattrerfide functions:

voi d MyEvent (double a)
{

}

Eventld id = Sinul ator:: Schedul e (Seconds (10.0), &WEvent, 3.1415);

NS_ASSERT (is.lsRunning ());

17

i d. Cancel ();
NS_ASSERT (is.lsExpired ());
Si nul ator: : Renove (id);

Sinulator::Run ();

These Schedule functions all take as first argument a Tiriablar Their second argument is always a function pointdr an
the other arguments are the values which will be passed tastireevent function when the event expires. There can be up to
5 values to be passed to the user function.

Once scheduled, any event can be canceled (its cancel bittig sue) or removed (it is removed from the event list):Hbot
operations will ensure that the event never expires.

4.2 Callbacks

The callback APl ims-3is designed to minimize the overall coupling between varipieces of of the simulator by making
each module depend on the callback API itself rather tharemgmn other modules. It acts as a sort of third-party to
which work is delegated and which forwards this work to thepar target module. This callback API, being based on C++
templates, is type-safe; that is, it performs static typec&b to enforce proper signature compatibility betweelersabnd
callees. The APl is minimal, providing only two services:

e callback type declaration: a way to declare a type of caklvéith a given signature, and,

e callback instantiation: a way to instantiate a templateegated forwarding callback which can forward any calls to
another C++ class member method or C++ function.

The implementation is based on use of templates to impletherftunctor Design Pattern. It is used to declare the type of
a callback. Up to five arguments can be passed with the funptiinter to the callback. Callback instances are built with
the makeCallback template functions. Callback instanese plain old data (POD) semantics: the memory they alldsate
managed automatically, without user intervention whidbved one to pass around Callback instances by value. A sample
program is found irsanpl es/ mai n- cal | back. cc

18

5 Internet Node

Class InternetNode defines the canonical IP-based node isirthulator. Recall in Chapter 3 that class Node is an alistrac
base class that has a list of NetDevices and a list of Appdicat but the protocol layers between the Applications and
NetDevices are undefined in this base class. Class InteodetNrovides an implementation of these IP-based layed3 an
layer-4 protocols. We envision that ports of other opegatigstems (such as Linux or FreeBSD) will be defined as other
types of Node, hopefully with similar configuration interés.

This chapter provides a brief overview of the objects thateng the layer-3 and layer-4 plumbing, and by way of desionipt
traces the path of a packet through these objects.

5.1 InternetNode members

The InternetNode::Construct() function (called by thesgbronstructor) describes what makes up an InternetNode.

frominternet-node. cc

Pt r <l pv4L3Prot ocol > i pv4 = Creat e<l pv4L3Protocol > (this);

Pt r <Ar pL3Prot ocol > arp = Creat e<ArpL3Protocol > (this);

Regi st er Prot ocol Handl er (MakeCal | back (&l pv4L3Protocol :: Recei ve,
PeekPoi nter (ipv4)), |pv4L3Protocol:: PROT_NUMBER, O0);

Regi st er Prot ocol Handl er (MakeCal | back (&Ar pL3Prot ocol : : Recei ve,
PeekPoi nter (arp)), ArpL3Protocol::PROT_NUMBER, O0);

Pt r <I pv4L4Denux> i pv4L4Denux = Creat e<l| pv4L4Denux> (this);
Pt r <UdpL4Pr ot ocol > udp = Creat e<UdpL4Pr ot ocol > (this);
i pv4L4Denux- >l nsert (udp);

Pt r <Udpl npl > udpl npl = Creat e<Udpl npl > (udp);
Ptr<lpvdl npl > i pv4l mpl = Create<lpvdl npl> (ipvd);

Cbj ect:: Addl nterface (ipv4);

Cbj ect:: Addlinterface (arp);

oj ect:: AddInterface (ipvalnpl);
bj ect:: Addl nterface (udplnpl);

Cbj ect:: Addl nterface (ipv4L4Denux);

There are a few things to note in this function. First, seMaras create instances of the layer-3 and layer-4 progyeoid
assign their pointers tas-3 smart pointers. Note the use of the Create method, whicheisyplated wrapper around operator
new. Each of these objects has a back-pointer ("this") tdrttegnetNode. Note: This class does not make use yet of the
replaceable component system; objects are created witRraate functions.)

A callback-based demultiplexer is used for demultiplexpagkets from layer 2 to layer 3; the Receive function of twels3
protocols (ARP and Ipv4) are presently registered. An Ipiiaemux is also created to allow multiple transport protecol

be demultiplexed from IPv4. These are functionally analggimns-2Classifiers, and they direct packets to the right layer-3
or layer-4 protocol. When we later have Tcp and Ipv6 modktsse will be added as well to the demultiplexers as well.

The lines prefaced by "Object::" create objects whosefiates are aggregated to the node and are available to thglQuer
terface facility.

19

The next two sections graphically depict how the variougotsjin the src/internet-node directory relate to one avoth

5.2 Send packet processing chain

Function/object trace for sending a packet

Step in packet sending process:

Applicati on| L .
1. The Application has previously created a socket (here, a UdpSocket).

It calls Socket::Send(). Either real data or dummy data is passed at the API.
i Socket::Send()

::GetAddress(outgoing i 2. Socket::Send() forwards to UdpSocket::DoSend() and later to UdpSocket::DoSendTo().
(UdpSocket)4_ _.& Ipv4 {.5 These functions set the proper source and destination addresses, handle socket calls
such as bind() and connect() and then the UdpL4Protocol::Send() function is called.

::Send
0 3. UdpL4Protocol is a subclass of Ipv4L4Protocol. This is where the
(UdpL4Protocol) protocol logic for UDP is implemented. The Send() method adds the
UDP header, initializes the checksum, and sends the packet to the Ipv4 layer.
=Send() Here, a private API (Ipv4Private) is queried, and the Send() method is called.
(IDv4Private) 4. Ipv4Private is a class designed to the pImpl idiom; here it simply forwards
P the Send() call to an Ipv4L3Protocol instance.
:Send()
\ ::Lookup(5. Ipv4L3Protocol is a subclass of L3Protocol. It adds the IP header,
(Ipv4L3Protocol |Je— > Ipv4Route looks up a route, and sends the packet to an appropriate Ipv4interface
instance.
:Send()
(Arplpv4interface ;L_c:o(kup(? ArpPrivate) 6. Ipvéinterface is an abstract base class; here, we depict the Arplpv4interface
concrete class. This object looks up the MAC address if Arp is supported on this
::Send() NetDevice technology, and if there is a cache hit, it sends it to the NetDevice, or
y else it first initiates an Arp request.

Net Devi ce

Figure 5.1: Steps in the send packet processing chain (lid&/example).

5.3 Receive packet processing chain

20

Function/object trace for receiving a packet

Application

(m_rxCallback)->Recv() or RecvDummy()

(UdpSocket)

(m_rxCallback)->ForwardUp()

Ipv4EndPoint
A
va4EndPointDemy§
::ForwardUp()

e

—

- /::Lookup()
UdpL4Protocol

A

:Receive() \ Ipv4L4Demux

—

- /::GetProtocoI()

Ipv4L3Protocol

:Receive()

7
\ Node::ProtocoIHaﬁdIers

_:}____

- m_receiveCallback
Net Devi ce

Step in packet receive process:

7. UdpSocket itself calls one of two callbacks to get the data
to the application. If the Application is sending fake data, the RecvDummy()
callback is called; else, the Recv() callback is called.

6. Ipv4EndPoint has a callback where a Socket object is able to
register a receive method. Here, this callback calls to
UdpSocket::ForwardUp()

5. UdpL4Protocol is a subclass of Ipv4L4Protocol. This is where the
protocol logic for UDP is implemented. The Receive() method removes the
UDP header and looks up the per-flow context state, which is an
Ipv4EndPoint class stored in an Ipv4EndPointDemux (indexed by src addr,
src port, dest addr, dest port). It then calls Ipv4EndPoint::ForwardUp()
when done.

4. Ipv4L3Protocol is a subclass of L3Protocol. It removes the IP header,
checks checksum, and either Forwards the packet or calls ForwardUp().
ForwardUp() then looks up the L4Protocol bound to the IP protocol number,
and calls the Ipv4L4Protocol::Receive() method.

3. Node::ReceiveFromDevice stores a set of callbacks that are looked
up based on protocol number and device. In this case, the lookup

will result in Ipv4L3Protocol::Receive() being called.

2. This is typically the Node::ReceiveFromDevice() function

1. NetDevice calls the function registered at m_receiveCallback

Figure 5.2: Steps in the receive packet processing chad{UDP example).

21

6 ns-3routing

This chapter describes the overall design of routing inntkernet-node module, and some details about the routingapps
currently implemented.

6.1 Overview

We intend to support traditional routing approaches antbgais, ports of open source routing implementations, acdif

tate research into unorthodox routing techniques.. Foulsitions that are not primarily focused on routing and tlapsy
want correct routing tables to occur somehow, we have arafjldntralized routing capability. A singleton object (&lo
alRouteManager) be instantiated, builds a network map,papadlates a forwarding table on each node at time t=0 in the
simulation. Simulation script writers can use the same feleto manually enter routes as well.

Presently, global centralized IPv4 unicast routing ovehlpmint-to-point and shared (CSMA) links is supported, & as
an implementation of a static multicast routing API (for #gvThe global centralized routing will be modified in theute
to reduce computations once profiling finds the performantdmecks.

6.2 Global Unicast Routing API

The public API is very minimal. User scripts include the éoliing:
#i ncl ude "ns3/ gl obal - rout e- manager. h"

After IP addresses are configured, the following functidhwi cause all of the nodes that have an Ipv4 interface tenee
forwarding tables entered automatically by the GlobalRManager:

A obal Rout eManager : : Popul at eRout i ngTabl es ();

6.3 Global Routing Implementation

A singleton object (GlobalRouteManager) is responsibiefipulating the static routes on each node, using the plhlic

API of that node. It queries each node in the topology for aligIRouter" interface. If found, it uses the API of that ifaee

to obtain a "link state advertisement (LSA)" for the routemk State Advertisements are used in OSPF routing, and we
follow their formatting.

The GlobalRouteManager populates a link state databakd ®ihs gathered from the entire topology. Then, for eacheout
in the topology, the GlobalRouteManager executes the O®BFRest path first (SPF) computation on the database, and
populates the routing tables on each node.

The quagga (http://www.quagga.net) OSPF implementatias used as the basis for the routing computation logic. One
benefit of following an existing OSPF SPF implementatiomat OSPF already has defined link state advertisementd for al
common types of network links: - point-to-point (serialkg) - point-to-multipoint (Frame Relay, ad hoc wirelessnn
broadcast multiple access (ATM) - broadcast (Ethernety@fbee, we think that enabling these other link types wilhbere
straightforward now that the underlying OSPF SPF framewsik place.

22

Presently, we can handle IPv4 point-to-point, numberddslias well as shared broadcast (CSMA) links, and we do not do
equal-cost multipath.

The GlobalRouteManager first walks the list of nodes andeggges a GlobalRouter interface to each one as follows:

typedef std::vector < Ptr<Node> >::iterator lterator;
for (lIterator i = NodeList::Begin (); i != NodeList::End (); i++)
{
Pt r <Node> node = =*i;
Pt r <@ obal Rout er > gl obal Rout er = Creat e<d obal Rout er > (node) ;
node- >AddIl nt erface (gl obal Router);

This interface is later queried and used to generate a Liate $tdvertisement for each router, and this link state detalis
fed into the OSPF shortest path computation logic. The IpR#ia finally used to populate the routes themselves.

6.4 Multicast Routing API

The following function is used to add a static multicast eotat a node:

voi d

| pv4St ati cRouti ng: : AddMul ti cast Route (I pv4Address origin,
| pv4Addr ess group,
uint32_t inputlnterface,
std::vector<uint32_t> outputlnterfaces);

A multicast route must specify an origin IP address, a mastigroup and an input network interface index as conditmas
provide a vector of output network interface indices overohipackets matching the conditions are sent.

Typically there are two main types of multicast routes: esuf the first kind are used during forwarding. All of the citioths
must be exlicitly provided. The second kind of routes araluseyet packets off of a local node. The difference is in thpitn
interface. Routes for forwarding will always have an explicput interface specified. Routes off of a node will alwasgs
the input interface to a wildcard specified by the index IpgdihgProtocol::IF_INDEX_ANY.

For routes off of a local hode wildcards may be used in theiro@agpd multicast group addresses. The wildcard used for
Ipv4Adresses is that address returned by Ipv4Addressagyef) — typically "0.0.0.0". Usage of a wildcard allows oree t
specify default behavior to varying degrees.

For example, making the origin address a wildcard, but fegttie multicast group specific allows one (in the case of &nod
with multiple interfaces) to create different routes usdififferent output interfaces for each multicast group.

If the origin and multicast addresses are made wildcards,have created essentially a default multicast addresstmat
forward to multiple interfaces. Compare this to the actugfhdlt multicast address that is limited to specifying agkn
output interface for compatibility with existing functiality in other systems.

Another command sets the default multicast route:

voi d
| pv4St ati cRouting:: Set Defaul t Mul ticast Route (uint32_t outputlnterface);

23

This is the multicast equivalent of the unicast version &&DItRoute. We tell the routing system what to do in the case
where a specific route to a destination multicast group idowtd. The system forwards packets out the specified irterfa
in the hope that "something out there" knows better how taertlue packet. This method is only used in initially sending
packets off of a host. The default multicast route is not atied during forwarding — exact routes must be specifiedgusin
AddMulticastRoute for that case.

Since we’re basically sending packets to some entity wektimay know better what to do, we don’t pay attention to "sub-
tleties" like origin address, nor do we worry about forwaglout multiple interfaces. If the default multicast rowgeset, it

is returned as the selected route from LookupStatic irespeof origin or multicast group if another specific rouseniot
found.

Finally, a number of additional functions are provided tizfeand remove multicast routes:

uint32_t GetNMul ticast Routes (void) const;
I pv4Mul ticast Route *Get MulticastRoute (uint32_t i) const;
I pv4Mul ti cast Route *»Get Def aul t Mul ti cast Route (void) const;

bool RenobveMul ticastRoute (I pv4Address origin,
| pv4Addr ess group,
uint32_t inputlnterface);

voi d RemoveMul ticast Route (uint32_t index);

6.5 Support for multiple routing protocols

Typically, multiple routing protocols are supported in uspace and coordinate to write a single forwarding tablehen t
kernel. Presently ims-3, the implementation allows for multiple routing protoctdsbuild/keep their own routing state,
and the IPv4 implementation will query each one of theseimguprotocols (in some order determined by the simulation
author) until a route is found. This may better faciliate ititegration of disparate routing approaches that may Hieuwlif to
coordinate the writing to a single table, approaches whenenmformation than destination IP address (e.g., soungtng)

is used to determine the next hop, and on-demand routingpappes where packets must be cached.

There are presently two routing protocols defined:

e class Ipv4StaticRouting (covering both unicast and matiy
e Optimized Link State Routing (a MANET protocol defined in RB626)

voi d
| pv4L3Pr ot ocol : : Lookup (
uint32_t iflndex,
| pv4Header const &i pHeader,
Packet packet,
| pv4Rout i ngPr ot ocol : : Rout eRepl yCal | back rout eRepl y)

NS_LOG_FUNCTI ON;

NS LOG PARAM (" (" << iflndex << ", " << & pHeader << ", " << &packet <<
&routeReply << ")");

24

for (lpv4Routi ngProtocol List::const_iterator rprotolter =
m_rout i ngProtocol s. begin ();
rprotolter !'= mroutingProtocols.end ();
rprotolter++)
{
NS_LOG LOd C (" Requesting route");
if ((+xrprotolter).second->RequestRoute (iflndex, ipHeader, packet,
rout eReply))

return;
}
if (ipHeader. GetDestination ().IsMilticast () &&
i fl ndex == | pv4Rout i ngProtocol :: | F_I NDEX_ANY)
{

NS LOG LOA C ("Multicast destination with | ocal source");

| pv4L3Prot ocol : : Lookup (I pv4Header const & pHeader,
Packet packet,
pv4Route *route = mstaticRouting->Get Defaul tRoute ();

if (route)

{
NS LOG LOGE C ("Local source. Using unicast default route for "

"mul ticast packet");

routeReply (true, *route, packet, ipHeader);
return;

}

}
11
/1 No route found
11
routeReply (fal se, Ipv4Route (), packet, ipHeader);

}

6.6 Optimized Link State Routing (OLSR)

This is the first dynamic routing protocol fos-3. The implementation is found in the src/routing/olsr dicgg, and an
example script is in examples/simple-point-to-point.cls

The following commands will enable OLSR in a simulation.
ol sr:: Enabl eAl | Nodes (); // Start OLSR on all nodes
ol sr:: Enabl eNodes(I nputlterator begin, Inputlterator end); // Start on

/1 a list of nodes
ol sr:: Enabl eNode (Ptr<Node> node); // Start OLSR on "node" only

Once instantiated, the agent can be started with the Stamfmand, and the OLSR "main interface" can be set with the
SetMaininterface() command. A number of protocol constan¢ defined in olsr-agent-impl.cc.

25

6.7 Roadmap and Future work

Some goals for future support are:

Users should be able to trace (either debug print, or reidioea trace file) the routing table in a format such as used in an
Unix implementation:

netstat -nr (or # route -n)
Kernel |IP routing table

Destination Gat eway Genmask Flags MSS Wndow irtt Iface
127.0.0.1 * 255. 255, 255. 255 UH 00 0Olo
172.16.1.0 * 255.255.255.0 U 00 0 ethO
172.16.2.0 172.16.1.1 255.255.255.0 UG 00 0 ethO

ip route show

192.168.99.0/ 24 dev eth0O scope link
127.0.0.0/8 dev o scope |ink
default via 192.168.99. 254 dev et hO

Global computation of multicast routing should be impleteeinas well. This would ignore group membership and en-

sure that a copy of every sourced multicast datagram wouldelieered to each node. This might be implemented as an
RPF mechanism that functioned on-demand by querying theafaling table, and perhaps optimized by a small multicast

forwarding cache. It is a bit trickier to implement over wass links where the input interface is the same as the output
interface; other aspects of the packet must be considektharforwarding logic slightly changed to allow for forwang

out the same interface.

In the future, work on bringing XORP or quagga routingie3, but it will take several months to port and enable.

There are presently no roadmap plans for IPv6.

26

