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Introduction

This ns-3 design document is one of a set of project documents:

e Software Architecture (this document)
e User's Guide (not yet written)

e Contributor’s Guide (not yet written)

This document is written in Latex and is to be maintained insien control on thens-3 code server. Both PDF and HTML
versions should be available on the server. Changes to tbentent should be discussed on the ns-developers@isi.edu

mailing list.



Contents

1 Introduction 3
1.1 nS3OVEIVIEW . . . . o o o e 3
1.2 Longer-termvVision . . . . . . . . e e e e e e e 3
1.3 0Outline . . . . . e e e e e 4

2 Software Architecture 5
2.1 BASICS . . . . e e 5
2.2 USECASES . . . . i o i e e e e 5
2.3 Classandobjectdesign . . . . . . . . . e 7

2.3.1 Componentsystem . . . . . . ... e e e e e 7
2.3.2 Objectcreation . . . . . . . . . e e e e e 8
2.4 Memory Management. . . . . . . . L e e e e e e e e 9
2.4.1 Referencecountingsmartpointer . . . . . . . . . . . e 10
25 Configuration . . . . . . . e e 10
2.5.1 Stocktopologycode . . . . . . . .. e 10
2.5.2 Defaultvalues and command linearguments . . . . . . . ... .. ... .. ... .. ..., 10
2.6 TraCing . . . . . . e e e 11
2.7 Scaling . . . . e 12
2.8 Emulation . . . . . e e 12
2.9 SCripting . . . . . e e 12

3 Key simulation objects 13
3.1 Node . . . . 13
3.2 NetDeviceand Channel . . . . . . . . . . . e e 14
3.3 Packet . . . . e e 15
3.4 Socketsand Applications . . . . . . . . e e e 15

3.4.1 SOCKES . . . . e e e 16

4 Core Modules 17

4.1 EventScheduling . . . . . . . . . . e e e 17
411 Simulationtime . . . . . . . e e 17
4.1.2 Eventcreationand expiration . . . . . . .. e e 17

4.2 Callbacks . . . . . e e 18

5 Internet Node 19
5.1 InternetNode members . . . . . . . e e 19
5.2 Send packetprocessingchain . . . . . . . . .. e e 20
5.3 Receive packetprocessingchain . . . . . . . . . ... e e 20



6 ns-3routing 22

6.1 OVEIVIEW . . . . o o e e 22
6.2 RouteManager. . . . . . . . . . e e e e e 23
6.3 Noderoutinginterface . . . . . . . . . . e e 24

6.4 Proposed roadmap



1 Introduction

This document provides an overview of the high-level goal$ software architecture for thres-3 network simulatorns-3 is
aimed at eventually replacing tims-2 simulator. This document is intended to provide a brief aedural overview ohs-3,
to complement reading the code and main source code docatientvhich is in Doxygehformat.

1.1 ns-3Overview

ns-3is a discrete-event network simulator oriented towards/aek research and education, with a special focus on Interne
based systems. Ths-3 project is designing a follow-on successor to the popuds2 simulator.

In ns-2, simulation scripts are written in OTcl. Ins-3, simulation scripts are written in C++, with support for emsions
that allow simulation scripts to be written in Python. Th&ghon bindings have yet to be written, but the goal is fordul

near-full API support at the Python level.

ns-3is intended to provide better support thama?2 for the following items:

Modularity of components

Scalability of simulations

Integration/reuse of externally developed code and soéwtéilities

Emulation

Tracing and statistics

Validation

ns-3 is a rewrite of the core of the simulatons-2 does not presently run ins-3, although we are studying approaches to
allow ns-2 to be run as part afis-3, as well as studying which models will be ported fros2 to work natively inns-3.

1.2 Longer-term vision

The Pls and developers on the project envision tisaB can become more than a basic iteration of previous simulator
approaches. Here is an incomplete list of the features teaifanterest to add:

e Core refactoring: While striving to maintain as much model reuse as possilldyding a backward compatibility
capability), we plan to rearchitect the simulator for bettase of use, scalability (principally by class redesigtively
supporting multi-processor and distributed simulaticarsj support for 64-bit machines), encapsulation, and stippo
for integration of other software. The simulator shouldilgasvith realistic models at different levels of abstramti
allow for simulations of IPv4 and IPv6 networks, as well aselpresearch-oriented network architectures.

e Software and testbed integration:We see a tremendous opportunity, with an open-source sioruta leverage the
software developed under other open-source projects. Wetheee specific goals in mind:

1. Abstraction layers, interfaces, and new techniquesupperting implementation code within tms-3 environ-
ment, such as ports of popular operating system implementand routing daemons;

Lhttp://www.nsnam.org/doxygen/index.html



2. Support for standard input and output file formats, so éxidting tools can be used for generating simulation
input and analyzing simulation output (e.g., pcap-foretttaces for viewing with tcpdump);

3. Techniquesto allow users to easily migrate experimegttsden simulation and network emulation environments.
e Wireless models. The ns-2 simulator needs updating to account for the growth in waglaetworking, including
the many variants of IEEE 802.11 networking, emerging IEEBdards such as WiMax (802.16), and cellular data

services (GPRS, CDMA). Additional new models beyond wsslare also needed, such as peer-to-peer and delay-
tolerant networks.

e Education. ns-3 is first and foremost a simulator for the academic researchneonity. However, our project will
emphasize makings-3 more useful to educators with a specific goal of its integrathto undergraduate networking
courses.

1.3 Outline

This document is organized as follows:

Chapter 2 describes the overall end-to-end software @atital model

Chapter 3 introduces the key objects in the system relatirsghding and receiving packets: nodes, network devices,
channels, packets, and sockets.

Chapter 4 describes core objects in the simulator.

Chapter 5 outlines how the InternetNode object sends amivepackets.

Chapter 6 includes a proposal for how to add routings®.



2 Software Architecture

This chapter provides an introductory software architesdtaverview ofns-3, including use cases, architecture for reusable
components, design for configuration, memory managemeiaypand strategy for integrating outside and legacy code.

2.1 Basics

ns-3is a user-space program that runs on Unix- and Linux-bassdisys and on Windows (currently via Cygwin and possibly
via native win32 APIs in the future). Itis written in C++, Wita planned Python scripting interface(s) for users. Thadas

on IPv4 and IPv6-based networks, but other non-IP architestsuch as sensors or DTNs are to be supponte@is meant

to be modifiable and extendable by users; some users will leg@lise example scripts that are provided, but it is exgecte
that most (research) users will want to either write newsror modify or add to the simulator models in some way. Seurc
code distributions are therefore expected to be the peddeneans for distributings-3.

ns-3 contains support for the following:

e construction of virtual networks (nodes, channels, agpiins) and support for items such as event schedulerd-topo
ogy generators, timers, random variables, and other abjecsupport discrete-event network simulation focused on
Internet-based and possibly other packet network systems.

e support for network emulation; the ability for simulatoogesses to emit and consume real network packets
e distributed simulation support; the ability for simulai®to be distributed across multiple processors or machines
e support for animation of network simulations

e support for tracing, logging, and computing statistics loa simulation output

ns-3 has a modular implementation containinga e library supporting generic aspects of the simulator (defigjobjects,
random number generators, smart pointers, callbackstast#, reference list), andsa mul at or library defining simulation
time objects, schedulers, and eventx dxmon library defines objects that are independent of specific odtarchitectures,
such as generic packets and tracing objects. Finallyntige library defines abstract base classes for fundamental base
objects in the simulator, such as nodes, channels, and retlgvices. Internet-related models (IP and transportqmat)

are found in the nt er net - node library. Specific devices such as Ethernet ardévi ce libraries. Users may write and
link their own libraries. The modular implementation all¥or smaller compilation unitsis-3 executable programs may be
built to either statically or dynamically link the librage

2.2 Use cases

To introduce the design ais-3 we first review design issues and usage models that have avigens-2, and mention trends
in simulation use within the networking research community

e Model extensibility. Most research users want to extend the simulator by writieng simulation scripts, modifying
existing models, or writing new models. To facilitate modebdification,ns-3 continues the use of object-oriented
design with polymorphic classes, allowing users to sulscthe aspects that they wish to modify. To facilitate the
addition of new modelsps-3 adopts a component-based architecture for compile-timeimtime addition of new
models, interface aggregation, and encapsulation, witfemuiring modification of the base modelsnst3.



Simulation code reuse. Many users start their work withs-2 by adapting existing code. Some common code is
written in terms of base-class object pointers, allowingrim-time substitution of subclassed objeats:3 will use
several techniques to facilitate simulation code reuseh 1$ inheritance to extend existing classes, the provigion
(extensible) stock topology objects, simulation framégdhat are easily modifiable, an example script repositors,

a system for run-time configuration of classes and defalliesa

Run-time configuration. ns-3 provides a flexible technique to allow users to redefine defalues and class types
without recompiling the simulator. The default value datsd is integrated with a command-line argument parsing
facility, making all the variables configurable from the amend-line as well.

Tracing. ns-3 features a callback-based approach to tracing that deestnalcing sources from tracing sinks and that
is focused on flexibility for the user. Packet traces will bede available in libpcap format, to allow for post-procegsi
tools built around that trace format. Built-in statistic#lwalso be widely available.

Scaling. ns-3 will include techniques for improving the scalability ofwillations, including distributed simulation
techniques introduced with PDNS and GTNetS, scalabilichmégues introduced for wireless simulations such as
caching of computationally-intensive results, and fldikipin tracing infrastructure (to avoid large traces).

Software integration. ns-3 is oriented towards the reuse of existing software such aing daemons, applications,
and kernel code. The design is built around encapsulatdmigques that decouple the interface from the implemen-
tation, an architecture that better mirrors how real-wakdices are built (e.g., explicitly handling multiple irfieces
per node), and an abstraction library that allows implemtmt code to run in both real and simulated environments.

Network emulation. Increasingly, network research that involves simulatisio éncludes an experimental component,
with facilities such as PlanetLab, Emulab, and ORBIT. Re$eas would like to more easily move between simulation
and experimental domains. The 3 design is intended to facilitate this interaction betwaemnuation and experiments,
with a packet design oriented towards serialization andui@gzation, and encapsulation techniques that wilhalteal
application and kernel code to run in the simulator, therieiyroving traceability to real-world implementations.

Scripting The primaryns-3 user interface at present is a C++ “main” program, and we exXpat C++ will continue
to be a preferred language for many users. Howenge3 will also feature Python bindings allowing for users to defin
scripts and replaceable components in Python.

We organize the rest of the discussion in this chapter asvist!

N o g > w NPk

Class and object design
Memory management
Configuration

Tracing

Scaling

Emulation

Scripting

The next chapter goes into more detail on the Node, ChanmelPacket object designs.



2.3 Class and object design

This section describes the C++ class desigmeBobjects. In brief, the design patterns in use include atassject-oriented
design (polymorphic interfaces and implementations) aspon of interface and implementation, the non-virtuablic
interface design pattern, object and interface aggregatidype-safe query interface, a run-time replaceable comipts
system, and reference counting for memory management.effaasliar with component models such as COM or Bonobo
will recognize elements of the designns-3, although thens-3design is not strictly in accordance with either.

2.3.1 Component system

Thens-3 component system is motivated in strong part by a recognitiat a common use case f2 has been the use of
polymorphism to extend protocol models. For instance, igized versions of TCP such as RenoTcpAgent derive frord (an
override functions from) class TcpAgent.

However, two problems that have arisen in tise2 model are downcasts and “weak base class.” Downcastingsrefehe
procedure of using a base class pointer to an object andipgetyat run time to find out type information, used to exglici
cast the pointer to a subclass pointer so that the subclakssalifbe used. Weak base class refers to the problems that aris
when a class cannot be effectively reused (derived fromabee it lacks necessary functionality, leading the de\exlop
have to modify the base class and causing proliferationeé lotass API calls, some of which may not be semanticallyecorr
for all subclasses.

ns-3is using a version of the query interface design pattern tadathese problems. This design is based on elements of the
Component Object Model desiyand GNOME Bonoba,although full binary-level compatibility of replaceableroponents

is not supported and we have tried to simplify the syntax amgkict on model developers. The aspects of COM that we are
using provide:

e a component-oriented programming model, based on sepawmitinterface and implementation. Interface objects are
what client code uses to talk to the underlying implemeatatiWhen the class design follows this pattern, it allows
components supporting similar interfaces to be swapped out

e what if interfaces of replaceable components are not thee8a@0OM provides a Queryinterface capability which, in
our implementation, provides a type-safe way to query wéradin object has a given capability or interface. The key to
this architecture is that interfaces can be added or agtgéga run-time to objects without requiring rebuilding bét
base classes, thereby avoiding weak base classes and thfonekent-side C++ downcasts to provide run-time type
information (RTTI).

e a system of unique identifiers for interfaces and classes.

e a component manager that is able to instantiate factoridsohjects themselves based on the identifiers mentioned
above.

e a memory management policy rooted in reference counting.

We do not enforce the COM rule that interfaces are pure atisirad that one must separate the interface from implementat
A different, fuller port of COM tons-3 was prototyped by Craig Dowellwho initially suggested the use of COM concepts
and implementation foms-3.

Lhttp://en.wikipedia.org/wiki/Component_Object_Model
2http://en.wikipedia.org/wiki/Bonobo_%28computing%29
Shttp://code.nsnam.org/craigdo/ns-3-com



Query interface example

Query interface is a type-safe way to achieve a safe dowingemstd to allow interfaces to be aggregated to an objectebj
using the query interface must inherit from the Interfaceebelass.

An example of the use of query interface is shown below. Giarsh node pointem0 that points to an InternetNode object
with an implementation of IPv4. The client code wishes tofigume a default route. To do so, it must access an objectnvithi
the node that has an interface to the IP forwarding configamatt performs the following two steps:

Ptr<ilpv4> ipvd = n0O->Querylnterface<l|pv4d> (llpv4d::iid);
i pv4->Set Def aul t Route (| pv4Address ("10.1.1.2"), 1);

In the first line a (smart) pointer of type llpv4 (“interface Pv4”) is declared and assigned to the result of a Queryfhite
on the node for the interface type llpv4. This pointer valu# be returned null if the node doesn’t support the requeste
interface. If non-null, this pointer can be used like a ttiadial pointer to access the API of the llpv4 object.

To summarize, two benefits that we expect to leverage frogdtd as follows:

e Encapsulation: By separating interface from implementation, it permitgplementors to replace elements of the
protocol stack while remaining compliant with client cottat supports the same interface. For example, one type of
node may include natives-3 models of protocols, while another may be a port of a Linuxlstand both may be
accessed by the same interface.

e Aggregation: Querylnterface allows for aggregation of interfaces attinore. For instance, an existing Node object
may have an “Energy Model” object and its interface aggred&t it at run time (without modifying and recompiling
the node class). An existing model (such as a wireless nét&leran then query interface for the energy model and
act appropriately if the interface has been either builbithie underlying Node object or aggregated to it at run time.

We hope that this mode of programming will require much lesschfor developers to modify ths-3 base classes or libraries.

See also theanpl es/ mai n- query-i nterface. cc program.

2.3.2 Object creation

Objects in C++ may be statically, dynamically, or autormaticcreated. This holds true fois-3 also, but some objects in the
system— those using the replaceable component system-stiaeeadditional frameworks available. Specifically, refee
counted objects are dynamically allocated using operaat, a templated MakeNewObject method, omaf8 component
manager.

The ComponentManager class is inspired by COM and is a ctesbta create any Interface class by Classld, where Classld i

a symbolic name associated to a particular class. Eachuidasgthe component manager declares a unige : G assl d

static variable that is bound to a constructor. The follayvd@de shows how the component manager can be used to create
new objects of type A:

Ptr<A> a = 0;
a = Conponent Manager:: Create<A> (A :cid, A :iid);

The above code (from the unit tests for component-managereates a class A (which is subclassed from Interface) and
returning a pointer to A (as specified by A's interface ID)..



The above code sample can be changed in a few ways. First,tdtisaly aggregates interface B, a pointer to interface B
can be returned even if the underlying object is of type A:

Ptr<B> b = 0;
b = Conponent Manager:: Create<A> (A :cid, B::iid);

Finally, the system accommodates non-default constrsichgsume that another constructor for A exists that takexéeln
argument, such asl ass A:: A (bool bo). If the constructor for this class has registered a new ddgqsuch as
cidOneBool), the following can be called:

Ptr<B> b = 0;
b = Component Manager : : Cr eat e<A, bool > (A:: ci dOneBool, B::iid, true);

where the last parameter is the passed-in boolean value twoA'structor, and again assigning returning the intenfateter
B to the created object of type A. The classlds can be ovesridd run time also by the default value system describedwelo

If a reference counted object is being new’ed and assignadéterence counting smart pointer (class Ptr), then a taexbl
helper function is available and recommended to be used:

ns3::Ptr<B> b = ns3:: Create<B> ();

This is simply a wrapper around operator new that correcilydies the reference counting system.

2.4 Memory Management

Memory managementin a C++ program is a complex processsanften done incorrectly or inconsistently. We have settled
on a reference counting design described as follows.

All objects using reference counting maintain an intere&rence count to determine when an object can safely dedete
Each time that a pointer is obtained to an interface, theabbjeeference count is incremented by calliRgf () . It is the
obligation of the user of the pointer to explicitynr ef () the pointer when done. When the reference count falls to, zero
the object is deleted.

e When the client code obtains a pointer from the object itbetiugh object creation, or via Querylinterface, it does not
have to increment the reference count.

e When client code obtains a pointer from another source,(eopying a pointer) it must calRef () to increment the
reference count.

o All users of the object pointer must calhr ef () to release the reference.

The burden for callindJnr ef () is somewhat relieved by the use of the reference countingtgmnter class described
below.

Users using a low-level APl who wish to explicitly allocatemreference-counted objects on the heap, using operaggr n
are responsible for deleting such objects.

Packet objects are handled differently (without referezmenting); their design is described in the next chapter.



2.4.1 Reference counting smart pointer

ns-3 provides a smart pointer class similarBoost : : i nt r usi ve_pt r . This smart-pointer class assumes that the under-
lying type provides a pair of Ref and Unref methods that apeeted to increment and decrement the internal refcoutieof t
object instance. We saw an example of this class in the qu&yface code above.

This implementation allows you to manipulate the smart fmwias if it was a normal pointer: you can compare it with zero,
compare it against other pointers, assign zero to it, etc.

It is possible to extract the raw pointer from this smart peirwith the GetPointer and PeekPointer methods.

If you want to store a newed object into a smart pointer, wemanend you to use the MakeNewObject template functions to
create the object and store it in a smart pointer to avoid nmgieaks. These functions are really small conveniancetfans
and their goal is just is save you a small bit of typing.

2.5 Configuration

Configuration of objects is typically done by accessing gedits public API to change the values of member variabldatT
is no different inns-3 but the design tries to ease this for users with the follovigainiques.

2.5.1 Stock topology code

A number of static methods are being defined to aid in topotamstruction. These objects typically use base classgmint
to refer to constituent objects (enabling software reusd)are therefore a primary benefactor of the COM-like frarmes
(Querylnterface, Component Manager) described above.theomoment, only a few PointToPointTopology objects are
available (insr c/ devi ces/ p2p/ p2p-t opol ogy. cc, h)but more topologies such as WirelessGrid are planned.

For example, the following method constructs a point-taaplink (using PointToPointChannel and PointToPointNex2e
objects) between two nodes nl and n2, with the specified dédadhd one way progagation delay. It essentially wraps
a bunch of low-level API calls to create these NetDevices @hdnnel. The type of objects used in this topology can be
overridden as long as they derive from the common base classgl in these topology objects. Users may write their own
topology objects, buts-3 will maintain a few.

2.5.2 Default values and command line arguments

Simulation users often want to run many instances with gigtifferent parametersis-2 had a system whereby users could
change the value of a C++ variable if it was suitably bound (et cl / | i b/ ns-def aul t. t cl script ofns-2).

In ns-3, we have developed the following system for default valaasg, have hooked it into a command-line argument parsing
facility. The basic idea is to use a templated global vaedhtility to store bindings between string hames of vagapl
“help” text on allowable parameters, and the default valself. This avoids users needing to rebuild core libraresttange
parameters, and allows users to avoid rebuilding any filedl &the command-line facility is used.

The program insanpl es/ mai n- def aul t - val ue. cc shows how this facility can be used. Briefly, any variable of a
supported type in the system can be bound to a unique strifigsbgeclaring a static variable such as

static IntegerDefaultVal ue<int> defaultTestIntl ("testintl", "helplntl", 33);
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which declares that testintl is an integer with a defauli@alf 33. The second parameter is a string that can be modified
by the developer to encode whatever information is usefgl. (@nits). Then, any actual integer in the system can lee lat
assigned to the value of defaultTestInt1, as typically daren object’s constructor.

If a variable in the system has been bound to the string fieistl the following C++ statement (typically invoked nebet
top of a main program) will cause it to be initialized inste¢ack.g. the integer value 57:

Bind("testlntl", "57");

While a user can change this default by modifying the mairgmm, the command line can be used as well. Running
"./sanpl e-def aul t-val ue -hel p" will cause a list of possible configurable values to be pdnb@t. For this
example, the following string is printed:

--testInt1=[int32_t(-2147483648: 2147483647): 33] hel pI nt1

This tells the user that testintl is of typat 32_t with a range of values specified between the parentheses, defhult
value of 33 (that can be overridden).

This facility can also be used to swap out the type of an olgjieain-time, if the particular class has been integrateal tine
system. For instance, the fisxanpl es/ si npl e- p2p. cc shows a line as follows:

Bi nd (" Queue", "DropTail Queue");

where DropTailQueue is a subclass of class Queue. This fypeding will allow callers of theQueue: : Cr eat eDef aul t
() factory method to obtain a suitably subclassed Queue object

Consult thesanpl es/ nai n- def aul t - val ue. cc example program for more information on how to use this figcil

2.6 Tracing

The design objective has been to offer the user a lot of fleibh selecting which events to monitor, and to allow users
freedom to use possibly complex logic to decide what thinded to trace files or to perform inline statistics calcudats.

To provide this flexibility, every model must define a set afce event sources. Each of these trace event source caaigener
one type of event and can specify any number of argumentsngegqer-event information from the trace event source to
the listening trace event sinks.

While this design allows users to hand-specify a differesate: sink to each trace source, ns-3 also provides a set pfesim
trace helpers which perform bulk connection of the defanalté sources to a set of trace sinks which generate trace files
in various specific formats. For example, pcap output carribialty generated for the default ipv4 stack by instantigt

an object of type PcapTrace and calling its TraceAlllp mdththe example filexanpl es/ si npl e- p2p. cc contains
examples for producing both ascii and pcap traces usindhtbislevel API.

To integrate in this framework, model developers need to:

o define and instantiate a set of trace sources of type CallivackSource

e trigger trace events by invoking each of the trace sourck thi¢ per-event arguments needed

11



e implement a method named CreateTraceResolver which takesaContext as argument and returns a TraceResolver.
Implementing this method is pretty trivial: it is a matterinftanciating a CompositeTraceResolver and register each
trace source in it.

Later, when the time comes to connect the user’s trace sthies i§, the user’s callbacks. See section 4.2) to the model’
trace sources, the user can use the TraceRoot::Connecbanethich takes as an argument a string pattern which iden-
tifies the set of trace sources stored in trace resolvernostto connect. For example, a string pattern could loak lik

‘Inodes/*/netdevices/*/*” which would identify all tracevents in all netdevice objects contained in all nodes.

2.7 Scaling

‘ Note: the ns-3.0.3 release does not include specific sufipataling techniques. This section will be added at a ldéte.

2.8 Emulation

‘ Note: the ns-3.0.3 release does not include support foratioal

2.9 Scripting

Gustavo Carneiro and Craig Dowell are working on Pythorpsicryj; check the ns-developers list for discussion of thegte

Note: the ns-3.0.3 release does not include support fordPyshripting. This section will be added at a later date. ‘
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3 Key simulation objects

This chapter walks through the primary simulation objentthie simulator, relating to the sending and receiving okpts
between nodes. Figure 3.1 depicts, at a high-level, thectsbyee will discuss in this chapter: Node, NetDevice, Chgnne
Packet, and interface aspects thereof.

3.1 Node

A Node is an abstract base classn®3. It contains only a few objects: a unique integer ID, a systBnffor distributed
simulation), a list of NetDevices, and a list of Applicat®rFigure 3.1 depicts this high-level view.

Node
4 N\

e 7 ,u‘“ X_I I ke C_ based APl S
-~ (sockets, libc)

Packet

— —|~ Linux-1like
API * unique id (m.uid)

* Buf fer object

* Tags contai ner object

Channel

Channel

Figure 3.1: High-level node architecture.

Users can create their own Node subclassesnar®will provide a few. Currentlycl ass | nt er net Node is provided,
which implements a rudimentary UDP/IPv4 stack.

The design tries to avoid putting too many dependenciesehdke class Node, Application, or NetDevice for the folluyvi

e |P version, or whether IP is at all even used in the Node.

e implementation details of the IP stack

The design therefore uses the design pattern of softwarapsotation to allow Applications and NetDevices to talk to
implementation- independent interfaces (that can be gdetia Querylnterface— see section 2.3) of the underlyin§/me
implementations.

For instance, we expect to support a natnge3 version of TCP/IP as well as ported Linux or FreeBSD stackbesgé

implementation details can be hidden behind an IPv4 intertdject that is queried by the application or scenario lopes.
If users want to experiment with non-IP stacks, they can deigmwut having IP dependencies on the NetDevices, Channels
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and Applications. This is why the Stack objects in Figure &4 illustrated with dotted lines; these may be built quite
differently for different Node subclasses. We try to pravidn interface to the NetDevice corresponding to the device-
independent sublayer in Linux, and model the interface erdbp of the stacks using typical Unix-like abstractionsfdin
(C-based) sockets API and other system calls such as fodit iar other utilities.

3.2 NetDevice and Channel

A key node object i€l ass Net Devi ce, which represents a physical interface on a node (such ashemriet interface).
We discuss also in this section thkass Channel , which is closely coupled to the attached NetDevices.

The basic idea is to mimic the Linux architecture at the ba@updetween device-independent sublayer of the network
device layer and the IP layer (figure 3.2). The top interfat&letDevice approximates the point in the Linux kernel
wheredev_queue_xni t () is called. The data members of NetDevice are similar to tHosad in Linux st ruct

net _devi ce. The IPv4 or IPv6 portion of a devicas{ruct i n_devi ce) is modeled by a separate object on top of
NetDevice (not discussed in this section).

Net Devi ce: : Send
(Packet p, MacAddress dest,
uint16_t protocol)

m r ecei veCal | back
(cal l back registered to recei ve packets)

!

pure virtual quueuing operation *NetDevice
cl ass Net Devi ce subcl asses:
stores: i nout stores

- node pointer coo uzue - Queue pointer
- MacAddr ess ?if present ) - Receive() nethod
- Mru - (subcl assed)
- up/down state Channel pointer
- receive

cal | back )

- up/ down —t *Net Devi ce: : Recei ve ()

cal | back (Packet p)

notification

- Get Channel () from *Channe

Figure 3.2: Overview of boundary between Network Device apper layer (typically layer-3).

Figure 3.2 illustrates some of the main objects and actiovalving sending a packet up and down the stack. First, tisere
an abstract| ass Net Devi ce that implements a Node pointer, MacAddress, string nante, (&th0"), MTU, and has

a flag for setting the state to be up or down. Two callbacksraskided; the first allows a higher-layer protocol to registe
a function to be used to send the packet up the stack; thisacllis present to decouple the NetDevice from the higher
layer protocol above (typically layer-3 but may also be stitimgy like a bridging layer), as described in the previougisa.
Another callback allows the NetDevice to notify listenef@aa@hange in state. Finally, there is a method provided tarned
base class Channel pointer, which is forwarded to a Net@estibclass that actually has the pointer.

NetDevices in use in the simulation will all subclass frons thase class; an example is in

src/ devi ces/ p2p- net - devi ce. cc, h. These subclasses are matched to a particular corresgpokannel type.
That is, for example, a PointToPointNetDevice is attactoed PointToPointChannel. This convention provides tyfdetga
in avoiding the connection of incompatible Channel and #iBe types. The subclass (denoteldet Devi ce in the
figure) also provides a Receive() method to allow packetstednt to it from the Channel; e.g. PointToPointChannescall
PointToPointNetDevice::Receive(). Any queue implemgaits are stored in these subclasses.

Packets traversing the stack in the outbound directiontballbase class NetDevice::Send() which forwards the pdoket
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the appropriate subclass method. Packets traversingdbk ist the inbound direction will call the callback registdrwith
m_receiveCallback when the NetDevice is done processimgdlcket and wants to hand it to the higher layer.

3.3 Packet

The design of the Packet frameworkrsf 3 was heavily guided by a few important use-cases:

e avoid changing the core of the simulator to introduce nevesypf packet headers or trailers
e maximize the ease of integration with real-world code arsteans

e make it easy to support fragmentation, defragmentatiosh, @ncatenation which are important, especially in wssle
systems.

e make memory management of this object efficient

o allow actual application data or dummy application bytesimulated applications

ns-3 Packet objects contain a buffer of bytes: protocol headedsti@ilers are serialized in this buffer of bytes using user
provided serialization and deserialization routines. €tmtent of this byte buffer is expected to match bit-forthé& content
of a real packet on a real network implementing the proto€otterest.

Fragmentation and defragmentation are quite natural téeément within this context: since we have a buffer of reaklgyt
we can split it in multiple fragments and re-assemble thesgnfients. We expect that this choice will make it really e¢asy
wrap our Packet data structure within Linux-style skb or B&le mbuf to integrate real-world kernel code in the siatat.
We also expect that performing a real-time plug of the sitault a real-world network will be easy.

Because we understand that simulation developers oftémtaistore in packet objects data which is not found in the real
packets (such as timestamps or any kind of similar in-bamal)dénens-3 Packet class can also store extra per-packet "Tags"
which are 16 bytes blobs of data. Any Packet can store any auoflunique Tags, each of which is uniquely identified by
its C++ type. These tags make it easy to attach per-modekdagpacket without having to patch the main Packet class or
Packet facilities.

Memory management of Packet objects is entirely automaticextremely efficient: memory for the application-leveypa
load can be modelized by a virtual buffer of zero-filled byftmawvhich memory is never allocated unless explicitely rested
by the user or unless the packet is fragmented. Furthermopsiing, adding, and, removing headers or trailers to a gack
has been optimized to be virtually free through a techniquann as Copy On Write.

3.4 Sockets and Applications

Applications are user defined processes that generatesttaffiend across the networks to be simulatest3 provides a
framework for developing different types of applicatiohat have different traffic patterns. There is an Applicatiase
class that allows one to define new traffic generation pattgia inheritance from this class. Then one simply creates
the application and associates it with a node, and the agtjic will send traffic down the protocol stack. The way that
applications on a node communicate with the node’s protsteak is via sockets.
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3.4.1 Sockets

The sockets API exported tts-3 attempts to mimic the standard BSD sockets API. The majdergifice in the implemen-
tation is that while BSD socket calls are synchronous (thathiey do not return control to their caller until they coetg)),

the ns-3 socket API calls return immediately. This is due to the faetttin a simulation environment where one machine
is simulating possibly thousands of socket calls acroderéifit simulated machines simultaneously, the simuldtoply
cannot afford to wait for the socket function call to retufine way the software handles the situation instead is byrietg
immediately, then using callbacks when other portions efdibde need to be notified of a socket event. For example, when i
the course of the simulation a socket is directed to listen@ specific port, the caller also provides a callback to leawtien

the socket receives a connection request. The listen()adetturns immediately, and then whenever the socket resé¢ie
connection, it invokes the callback to handle the connact®imilar things happen for the other common socket APks, li
send(), connect(), and bind().
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4 Core Modules

This chapter discusses the design and implementation efaiements ims-3. These items are built in two modulesaf e
andsi nul at or ) with no other dependencies on the simulation code.

4.1 Event Scheduling

The ns-3 event scheduling framework was designed with th@fing use-cases in mind:

maximize code portability by ensuring reproducible timé&atations in user models.

make it possible to increase the precision of the interna tvariable in the future.

make it easy to associate a specific function to be called \atsgecific event expires

make it easy to pass per-event data from the point when the svecheduled to the point when the event expires

4.1.1 Simulation time

Simulation time is kept track of internally using a 64bitdéger in units of nanoseconds. To make sure that this internal
variable can be easily changed to represent a higher-pyetime or that we can use a variable with a larger dynamigean
user programs never access directly this time variablee&us the current simulation time is exported to the userugh a
single method Simulator::Now () which returns an opaquedipf type Time. Users can also easily create instancesof th
type through the functions Seconds, MilliSeconds, Miciels, or NanoSeconds each of which takes a single argument i
the specified unit and returns an instance of a Time object.

Instances of the class Time can be used just like normal ensegr floating-point values: they support all the normal
arithmetic operators and can be converted to values in dfgpgme unit with Time::GetSeconds, Time::GetMilliSeats
Time::GetMicroSeconds, and, Time::GetNanoSeconds.

These instances of the class Time store their time value h.@46it fixed-point integer variable. That is, the useibles

time variables are kept track of with 64 bits of fractionakiger precision. If users are careful to perform all theithemtic
operations on Time variables, they can easily ensure teatthde will behave exactly in the same way on multiple pliatfs.

4.1.2 Event creation and expiration

To schedule an event, users can call any of the SimulattvrerBde functions:

voi d MyEvent (double a)
{

}

Eventld id = Sinulator:: Schedul e (Seconds (10.0), &WEvent, 3.1415);

NS_ASSERT (is.lsRunning ());
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i d. Cancel ();
NS_ASSERT (is.lsExpired ());
Si nul ator: : Renove (id);

Sinulator::Run ();

These Schedule functions all take as first argument a Tiniahlar Their second argument is always a function pointer an
the other arguments are the values which will be passed tastieevent function when the event expires. There can be up to
5 values to be passed to the user function.

Once scheduled, any event can be canceled (its cancel bittig sue) or removed (it is removed from the event list):thot
operations will ensure that the event never expires.

4.2 Callbacks

The callback APl ims-3 is designed to minimize the overall coupling between vagipieces of of the simulator by making
each module depend on the callback API itself rather tharemigémn other modules. It acts as a sort of third-party to
which work is delegated and which forwards this work to thegar target module. This callback API, being based on C++
templates, is type-safe; that is, it performs static typec&s to enforce proper signature compatibility betweetecabnd
callees. The APl is minimal, providing only two services:

e callback type declaration: a way to declare a type of cakheith a given signature, and,

e callback instantiation: a way to instantiate a templateegated forwarding callback which can forward any calls to
another C++ class member method or C++ function.

The implementation is based on use of templates to impletherftunctor Design Pattern. It is used to declare the type of
a callback. Up to five arguments can be passed with the funpiinter to the callback. Callback instances are built with
the makeCallback template functions. Callback instanese plain old data (POD) semantics: the memory they alldsate
managed automatically, without user intervention whidbved one to pass around Callback instances by value. A sample
program is found irsanpl es/ mai n- cal | back. cc
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5 Internet Node

Class InternetNode defines the canonical IP-based node isirthulator. Recall in Chapter 3 that class Node is an alistrac
base class that has a list of NetDevices and a list of Appdicat but the protocol layers between the Applications and
NetDevices are undefined in this base class. Class Inteodetirovides an implementation of these IP-based layed3 an
layer-4 protocols. We envision that ports of other opemsgstems (such as Linux or FreeBSD) will be defined as other
types of Node, hopefully with similar configuration intecés.

This chapter provides a brief overview of the objects thateng the layer-3 and layer-4 plumbing, and by way of desionipt
traces the path of a packet through these objects.

5.1 InternetNode members

The InternetNode::Construct() function (called by theembonstructor) describes what makes up an InternetNode.

fromi nternet-node. cc

54 void

55 | nt ernet Node: : Construct (void)

56 {

57 Pt r<l pv4L3Prot ocol > i pv4 = Create<l pv4L3Protocol > (this);
58 Pt r <Ar pL3Pr ot ocol > arp Cr eat e<Ar pL3Prot ocol > (this);

59 Pt r <UdpL4Pr ot ocol > udp Cr eat e<UdpL4Prot ocol > (this);

60

61 Pt r <L3Denmux> | 3Demux = Create<L3Derux> (this);

62 Ptr<l pv4L4Dermux> i pv4L4Dermux = Creat e<l pv4L4Denux> (this);
63

64 | 3Denux- >l nsert (ipv4);

65 | 3Denux- >l nsert (arp);

66 i pv4L4Demux- >l nsert (udp);

67

68 Pt r <Udpl mpl > udpl npl = Creat e<Udpl npl > (udp) ;

69 Ptr<ArpPrivate> arpPrivate = Create<ArpPrivate> (arp);

70 Ptr<lpv4l mpl > i pv4l npl = Create<|pvdl npl > (ipvd);

71 Ptr<lpv4Private> i pvd4Private = Create<l|pv4Private> (ipv4);
72

73 bj ect: : AddI nterface (ipv4Private);

74 bj ect: : AddI nterface (ipvé4lnpl);

75 oj ect:: Addl nterface (arpPrivate);

76  Object::Addlnterface (udplnpl);

77  oject::Addlnterface (I 3Denux);

78 bj ect: : AddI nterface (i pv4L4Denux);

79 }

There are a few things to note in this function. First, lin@s3® create instances of the layer-3 and layer-4 protoenid,
assign their pointers tas-3smatrt pointers. Note the use of the Create method, whichemalated wrapper around operator
new. Each of these objects has a back-pointer ("this") tdriteenetNode. fote: This class does not make use yet of the
replaceable component system; objects are created witiCraate functions.)
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Next, lines 61-62 create demultiplexers (demuxes). Thesarsalogous tas-2Classifiers, and they direct packets to the right
layer-3 or layer-4 protocol. These demuxes have to be totdialvhat layer-3 protocols are active in a node (line 64-66).
Iffwhen we have Tcp and Ipv6 models, those will be added ak wel

Lines 68-71 create some private implementation-relatgeiobbthat make up the Ipv4, Arp, and Udp implementations.

Finally, we want to make interfaces to these objects aviaitalithe Querylnterface facility, so we explicitly add tegminters

in lines 73-78.

The next two sections graphically depict how the variougotsjin the src/internet-node directory relate to one aoth

5.2 Send packet processing chain

Function/object trace for sending a packet

Appl i cation

i Socket::Send()

( UdpSocket )

:Send()

UdpL4Protocol

::Send()

( Ipv4Private )

:Send()

A :Lookup(
( Ipv4L3Protocol  J+— > Ipv4Route

:Send()

::Lookup(
Arplpvéinterface )e— -» ArpPrivate

:Send()
A

Net Devi ce

Step in packet sending process:

1. The Application has previously created a socket (here, a UdpSocket).
It calls Socket::Send(). Either real data or dummy data is passed at the API.

2. Socket::Send() forwards to UdpSocket::DoSend() and later to UdpSocket::DoSendTo().
These functions just sanity check the socket state (is_connected?) and then the
UdpL4Protocol::Send() function is called.

3. UdpL4Protocol is a subclass of Ipv4L4Protocol. This is where the
protocol logic for UDP is implemented. The Send() method adds the
UDP header, initializes the checksum, and sends the packet to the Ipv4 layer.
Here, a private API (Ipv4Private) is queried, and the Send() method is called.

4. Ipv4Private is a class designed to the pImpl idiom; here it simply forwards
the Send() call to an Ipv4L3Protocol instance.

5. Ipv4L3Protocol is a subclass of L3Protocol. It adds the IP header,
looks up a route, and sends the packet to an appropriate Ipv4interface
instance.

6. Ipv4interface is an abstract base class; here, we depict the Arplpv4interface
concrete class. This object looks up the MAC address if Arp is supported on this
NetDevice technology, and if there is a cache hit, it sends it to the NetDevice

Figure 5.1: Steps in the send packet processing chain (yiy8/example).

5.3 Receive packet processing chain
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Step in packet receive process:

Function/object trace for receiving a packet

Appl i cati on .
7. UdpSocket itself calls one of two callbacks to get the data
A

to the application. If the Application is sending fake data, the RecvDummy()
(m_rxCallback)->Recv() or RecvDummy() callback is called; else, the Recv() callback is called.

( UdpSocket )

6. Ipv4EndPoint has a callback where a Socket object is able to
(m_rxCallback)->ForwardUp() register a receive method. Here, this callback calls to
UdpSocket::ForwardUp()
Ipv4EndPoint
va4EndPointDem;x§ . L
::ForwardUp() 5. UdpL4Protocol is a subclass of Ipv4L4Protocol. This is where the
- -~ protocol logic for UDP is implemented. The Receive() method removes the
4~ ::Lookup() UDP header and looks up the per-flow context state, which is an
UdpL4Protocol Ipv4EndPoint class stored in an Ipv4EndPointDemux (indexed by src addr,
src port, dest addr, dest port). It then calls Ipv4EndPoint::ForwardUp()
] when done.
“Receive() \ Ipv4L4Demux
IovAL3Protocol — - 4. Ipv4L3Protocol is a subclass of L3Protocol. It removes the IP header,
p ::GetProtocol() checks checksum, and either Forwards the packet or calls ForwardUp().
ForwardUp() then looks up the L4Protocol bound to the IP protocol number,
\ L3Demux and calls the Ipv4L4Protocol::Receive() method.
::Receive() 4
/ ::Lookup()
P ~ 3. InternetNode::ReceiveFromDevice looks up the L3Protocol in the L3Demux
{ InternetNode ) based on the protocol number, and calls its Receive() method
D 2. For class InternetNode, this callback is InternetNode::ReceiveFromDevice()

: m_receiveCallback 1. NetDevice calls the function registered at m_receiveCallback
Net Devi ce _|

Figure 5.2: Steps in the receive packet processing chad{UDP example).
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6 ns-3routing

This writeup describes some goals and requirements faalisiatic routing, and a proposed routing roadmap.

Note: the ns-3.0.3 release does not include support fohamytut manual static routing. Section 6.4 below shows|the
current routing roadmap.

6.1 Overview

Routing (including static routing) is a bit more complexnhahat is found in ns-2, which relies on a simple shortest path
computation based on node ID or generic hierarchical addseedHere, we want to account for the fact that our network may
be composed of variably subnetted IP links, and we shoulet efime alternatives for defining link costs.

There are several components that need to be defined:

unicast and multicast

IPv4 and IPv6 (and others)

routing manager object that can populate static routinigtab

routing API of a node

forwarding implementation of a node

For starters, we focus on IPv4 and unicast, followed by IPwdticast.

For static routing, we propose a RouteManager object, wisiehsingleton object responsible for populating per-nade f
warding tables. When a user calls “PopulateRoutingTallehe RouteManager will walk the topology and build a netko
map representation of the network, will run a shortest pathmutation, and will then access the routing API of each node
and populate the forwarding tables. Users may enter pee-stadic routes, in the usual way, that override the valuasaal in

the table by the RouteManager. The RouteManager must ddapwaint-to-point and shared links, must correctly deahwit
IP subnetting (and perhaps use different approaches fiarelift address families), and must allow for different costric
assignments, such as “every link is a single hop” or “link miestare a function of the inverse of the bandwidth of thelink

For dynamic routing, we propose to port XORP or quagga ratian rewrite routing protocols for ns-3. There is some
experience with this in previous simulators; most notaBIyNetS has supported ports of quagga BSD and OSPFv3.

The routing API of a node should be a queriable interface watime implementation independence. Ideally, we ought to be
able to use the same interface for both Linux and idealizaeckst and for manual routing configs as well as dynamic rgutin
protocols such as XORP that use routing sockets directly.

The node forwarding table is instantiated by some objediémiode; either an IPv4 or IPv6-layer object, or somethikegy i
ported Linux stack. It should have the following properties

e keep ARP and routing tables separate (otherwise, causbkepre for parallel links between nodes)
e support multiple forwarding tables

e support for routing metrics (transport protocols), prolyatia clonable entries
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Linux is probably the right implementation model for thisnee BSD has mixed ARP and IP routing, unfortunately, and
doesn’t support multiple forwarding tables.

Users should be able to trace (either debug print, or retlicea trace file) the routing table in a format such as used in an
Unix implementation:

# netstat -nr (or # route -n)
Kernel 1P routing table

Destination Gat eway Genmask Flags MSS Wndow irtt Iface
127.0.0.1 * 255. 255, 255. 255 UH 00 0lo
172.16.1.0 * 255.255.255.0 U 00 0 ethO
172.16.2.0 172.16.1. 1 255. 255. 255. 0 uG 00 0 ethO

# ip route show

192. 168. 99. 0/ 24 dev ethO scope |ink
127.0.0.0/8 dev o scope |ink
default via 192.168.99. 254 dev et hO

Static multicast should be implemented as well. This wogitre group membership and ensure that a copy of every sburce
multicast datagram would be delivered to each node. Thisitig implemented as an RPF mechanism that functioned on-
demand by querying the forwarding table, and perhaps op¢ichby a small multicast forwarding cache. Itis a bit tricki@
implement over wireless links where the input interfacenis $ame as the output interface; other aspects of the pacisét m
be considered and the forwarding logic slightly changedlemefor forwarding out the same interface.

6.2 RouteManager

This is some type of static or singleton object that perfothesfollowing operations. It doesn’t have to be particylarl
efficient or fast (at least initially) because it only exezzibnce (per node) at the beginning of the simulation.

We should try to find applicable code for at least the SP coatjmurt sections below. There are plenty of Dijkstra examples
on the web. GTNetS RoutingStatic class also probably cosldded as a basis for this.

enum AddressFam |y {
| pv4,
| pv6,

}

enum RouteMetric {

Uni t Cost ,
| nver seBandwi dt h,

};...

/1 public function
bool
Rout eManager : : Conput eRout es(Ptr<Node> n, uint8_t addressFamly, uint8_t routeMetric) {
| *
wal kNodeLi st ToBui | dTopol ogy(addressFam |y, routeMetric);
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useDi j kst raSPToCr eat eRout es(n);
popul at eNodeTabl es(n) ;
*
/
}

/1 public (non-menber?) function
bool
Comput eAl | Rout es(uint8_t addressFamily, uint8_t routeMetric) {
| x
for each Node in the NodeList {
Rout eManager : : Comput eRout es(n, addressFam |y, routeMetric);

}
*/

6.3 Node routing interface

11

/1l Interface for static routing

/1l - interface class patterned after route(8) (Linux man page)
/1l - the two nmain operations are "add" and "del "

11

/1 route [-v] [-Afanmily] add [-net|-host] target [netmask Nm [gw Gpj
[l [metric N] [mes M [window W [irtt 1] [reject] [nod] [dyn]

[l [reinstate] [[dev] If]

11

/1 route [-v] [-Afanily] del [-net|-host] target [gw GA] [netmask Nnj
[l [metric N [[dev] If]

11
class | pv4Rout eMetrics
{
/1 This will be a class to allowto pass route nmetrics across the API
/!l such as "netric", "nmss", "window', "irtt", "flags (nod, dyn, reinstate)
}

class | pv4RouteObject; // analogous to routing struct in kernel that holds
/]l state for the route; used to fetch at the AP

class I pv4Route : public Object

{
publi c:
static const Interfaceld iid;

virtual void AddHost Route (I pv4Address target,
| pv4Mask net nask,
| pv4Addr ess gat eway) = O;

virtual void AddHost Route (| pv4Address target,

| pv4dMask net nask,
uint32_t interface) = 0;
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virtual void AddNetworkRoute (I pv4Address target,
| pv4Mask net nask,
| pv4Addr ess gat eway) = O;

virtual void AddNetworkRoute (I pv4Address target,
| pv4Mask net nask,
uint32_t interface) = 0;

/1 Define future variants of the above that allow an | pv4RouteMetrics
/1 al so be passed

virtual void AddDef aul t Route (I pv4Address gateway) = O;

virtual void AddDefaul t Route (I|pv4Address gateway,
uint32_t interface) = 0;

virtual void Del Host Route (1 pv4Address target) = 0;

virtual void Del Host Route (I pv4Address target,
| pv4Mask net mask,
| pv4Addr ess gateway) = O;

virtual void Del Host Route (1 pv4Address target,
| pv4Mask net mask,
uint32_t interface) = 0;

virtual void Del NetworkRoute (I pv4Address target,
| pv4Mask net mask) = O;

virtual void Del NetwrkRoute (Ipv4Address target,
| pv4Mask net mask,
| pv4Address gateway) = O;

virtual void Del NetwrkRoute (I pv4Address target,
| pv4aMask net mask,
uint32_t interface) = 0;

virtual void Del Defaul t Route (void) = O;

virtual void DellnterfaceRoutes (uint32_t interface) = O;

| **

* \returns the nunmber of entries in the routing table.
*/

virtual uint32_t GetNRoutes (void) = O;

[ x*

* \parami index of route to return
* \returns the route whose index is i
*/

virtual |pv4RouteObject »GetRoute (uint32_t i) = 0;
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6.4 Proposed roadmap

June 15: This writeup

July 15: Support IPv4 static routing with PointToPoint numbere#sin

August 15: Extend IPv4 static routing to Ethernet (shared links), atddics multicast forwarding over Ethernet and
PointToPoint

Sept 15: Add static multicast forwarding over wireless interface

In parallel, work on bringing XORP or quagga routingi®3, but it will take several months to port and enable.

There are presently no roadmap plans for IPv6.
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