
ns-3 Software Architecture

ns-3 project

http://www.nsnam.org/

feedback: ns-developers@isi.edu

June 17, 2007

Introduction

ns-3.0.3 release version

This ns-3 design document is one of a set of project documents:

• Software Architecture (this document)

• User’s Guide (not yet written)

• Contributor’s Guide (not yet written)

This document is written in Latex and is to be maintained in revision control on thens-3 code server. Both PDF and HTML
versions should be available on the server. Changes to the document should be discussed on the ns-developers@isi.edu
mailing list.

Contents

1 Introduction 3
1.1 ns-3 Overview 3
1.2 Longer-term vision 3
1.3 Outline 4

2 Software Architecture 5
2.1 Basics 5
2.2 Use cases 5
2.3 Class and object design 7

2.3.1 Component system 7
2.3.2 Object creation 8

2.4 Memory Management 9
2.4.1 Reference counting smart pointer 10

2.5 Configuration 10
2.5.1 Stock topology code 10
2.5.2 Default values and command line arguments 10

2.6 Tracing 11
2.7 Scaling 12
2.8 Emulation 12
2.9 Scripting 12

3 Key simulation objects 13
3.1 Node 13
3.2 NetDevice and Channel 14
3.3 Packet 15
3.4 Sockets and Applications 15

3.4.1 Sockets 16

4 Core Modules 17
4.1 Event Scheduling 17

4.1.1 Simulation time 17
4.1.2 Event creation and expiration 17

4.2 Callbacks 18

5 Internet Node 19
5.1 InternetNode members 19
5.2 Send packet processing chain .. 20
5.3 Receive packet processing chain .. 20

1

6 ns-3 routing 22
6.1 Overview 22
6.2 RouteManager 23
6.3 Node routing interface 24
6.4 Proposed roadmap 26

2

1 Introduction

This document provides an overview of the high-level goals and software architecture for thens-3 network simulator.ns-3 is
aimed at eventually replacing thens-2 simulator. This document is intended to provide a brief architectural overview ofns-3,
to complement reading the code and main source code documentation, which is in Doxygen1 format.

1.1 ns-3 Overview

ns-3 is a discrete-event network simulator oriented towards network research and education, with a special focus on Internet-
based systems. Thens-3 project is designing a follow-on successor to the popularns-2 simulator.

In ns-2, simulation scripts are written in OTcl. Inns-3, simulation scripts are written in C++, with support for extensions
that allow simulation scripts to be written in Python. ThesePython bindings have yet to be written, but the goal is for full or
near-full API support at the Python level.

ns-3 is intended to provide better support than inns-2 for the following items:

• Modularity of components

• Scalability of simulations

• Integration/reuse of externally developed code and software utilities

• Emulation

• Tracing and statistics

• Validation

ns-3 is a rewrite of the core of the simulator.ns-2 does not presently run inns-3, although we are studying approaches to
allow ns-2 to be run as part ofns-3, as well as studying which models will be ported fromns-2 to work natively inns-3.

1.2 Longer-term vision

The PIs and developers on the project envision thatns-3 can become more than a basic iteration of previous simulator
approaches. Here is an incomplete list of the features that are of interest to add:

• Core refactoring: While striving to maintain as much model reuse as possible (including a backward compatibility
capability), we plan to rearchitect the simulator for better ease of use, scalability (principally by class redesign, natively
supporting multi-processor and distributed simulations,and support for 64-bit machines), encapsulation, and support
for integration of other software. The simulator should easily, with realistic models at different levels of abstraction,
allow for simulations of IPv4 and IPv6 networks, as well as novel, research-oriented network architectures.

• Software and testbed integration:We see a tremendous opportunity, with an open-source simulator, to leverage the
software developed under other open-source projects. We have three specific goals in mind:

1. Abstraction layers, interfaces, and new techniques for supporting implementation code within thens-3 environ-
ment, such as ports of popular operating system implementations and routing daemons;

1http://www.nsnam.org/doxygen/index.html

3

2. Support for standard input and output file formats, so thatexisting tools can be used for generating simulation
input and analyzing simulation output (e.g., pcap-formatted traces for viewing with tcpdump);

3. Techniques to allow users to easily migrate experiments between simulation and network emulation environments.

• Wireless models. The ns-2 simulator needs updating to account for the growth in wireless networking, including
the many variants of IEEE 802.11 networking, emerging IEEE standards such as WiMax (802.16), and cellular data
services (GPRS, CDMA). Additional new models beyond wireless are also needed, such as peer-to-peer and delay-
tolerant networks.

• Education. ns-3 is first and foremost a simulator for the academic research community. However, our project will
emphasize makingns-3 more useful to educators with a specific goal of its integration into undergraduate networking
courses.

1.3 Outline

This document is organized as follows:

• Chapter 2 describes the overall end-to-end software architectural model

• Chapter 3 introduces the key objects in the system relating to sending and receiving packets: nodes, network devices,
channels, packets, and sockets.

• Chapter 4 describes core objects in the simulator.

• Chapter 5 outlines how the InternetNode object sends and receives packets.

• Chapter 6 includes a proposal for how to add routing tons-3.

4

2 Software Architecture

This chapter provides an introductory software architectural overview ofns-3, including use cases, architecture for reusable
components, design for configuration, memory management policy, and strategy for integrating outside and legacy code.

2.1 Basics

ns-3 is a user-space program that runs on Unix- and Linux-based systems and on Windows (currently via Cygwin and possibly
via native win32 APIs in the future). It is written in C++, with a planned Python scripting interface(s) for users. The focus is
on IPv4 and IPv6-based networks, but other non-IP architectures such as sensors or DTNs are to be supported.ns-3 is meant
to be modifiable and extendable by users; some users will be able to use example scripts that are provided, but it is expected
that most (research) users will want to either write new scripts or modify or add to the simulator models in some way. Source
code distributions are therefore expected to be the preferred means for distributingns-3.

ns-3 contains support for the following:

• construction of virtual networks (nodes, channels, applications) and support for items such as event schedulers, topol-
ogy generators, timers, random variables, and other objects to support discrete-event network simulation focused on
Internet-based and possibly other packet network systems.

• support for network emulation; the ability for simulator processes to emit and consume real network packets

• distributed simulation support; the ability for simulations to be distributed across multiple processors or machines

• support for animation of network simulations

• support for tracing, logging, and computing statistics on the simulation output

ns-3 has a modular implementation containing acore library supporting generic aspects of the simulator (debugging objects,
random number generators, smart pointers, callbacks, unittests, reference list), and asimulator library defining simulation
time objects, schedulers, and events. Acommon library defines objects that are independent of specific network architectures,
such as generic packets and tracing objects. Finally, thenode library defines abstract base classes for fundamental base
objects in the simulator, such as nodes, channels, and network devices. Internet-related models (IP and transport protocols)
are found in theinternet-node library. Specific devices such as Ethernet are indevice libraries. Users may write and
link their own libraries. The modular implementation allows for smaller compilation units.ns-3 executable programs may be
built to either statically or dynamically link the libraries.

2.2 Use cases

To introduce the design ofns-3 we first review design issues and usage models that have arisen with ns-2, and mention trends
in simulation use within the networking research community.

• Model extensibility. Most research users want to extend the simulator by writing new simulation scripts, modifying
existing models, or writing new models. To facilitate modelmodification,ns-3 continues the use of object-oriented
design with polymorphic classes, allowing users to subclass the aspects that they wish to modify. To facilitate the
addition of new models,ns-3 adopts a component-based architecture for compile-time orrun-time addition of new
models, interface aggregation, and encapsulation, without requiring modification of the base models ofns-3.

5

• Simulation code reuse. Many users start their work withns-2 by adapting existing code. Some common code is
written in terms of base-class object pointers, allowing for run-time substitution of subclassed objects.ns-3 will use
several techniques to facilitate simulation code reuse, such as inheritance to extend existing classes, the provisionof
(extensible) stock topology objects, simulation frameworks that are easily modifiable, an example script repository,and
a system for run-time configuration of classes and default values.

• Run-time configuration. ns-3 provides a flexible technique to allow users to redefine default values and class types
without recompiling the simulator. The default value database is integrated with a command-line argument parsing
facility, making all the variables configurable from the command-line as well.

• Tracing. ns-3 features a callback-based approach to tracing that decouples tracing sources from tracing sinks and that
is focused on flexibility for the user. Packet traces will be made available in libpcap format, to allow for post-processing
tools built around that trace format. Built-in statistics will also be widely available.

• Scaling. ns-3 will include techniques for improving the scalability of simulations, including distributed simulation
techniques introduced with PDNS and GTNetS, scalability techniques introduced for wireless simulations such as
caching of computationally-intensive results, and flexibility in tracing infrastructure (to avoid large traces).

• Software integration. ns-3 is oriented towards the reuse of existing software such as routing daemons, applications,
and kernel code. The design is built around encapsulation techniques that decouple the interface from the implemen-
tation, an architecture that better mirrors how real-worlddevices are built (e.g., explicitly handling multiple interfaces
per node), and an abstraction library that allows implementation code to run in both real and simulated environments.

• Network emulation. Increasingly, network research that involves simulation also includes an experimental component,
with facilities such as PlanetLab, Emulab, and ORBIT. Researchers would like to more easily move between simulation
and experimental domains. Thens-3 design is intended to facilitate this interaction between simulation and experiments,
with a packet design oriented towards serialization and deserialization, and encapsulation techniques that will allow real
application and kernel code to run in the simulator, therebyimproving traceability to real-world implementations.

• Scripting The primaryns-3 user interface at present is a C++ “main” program, and we expect that C++ will continue
to be a preferred language for many users. However,ns-3 will also feature Python bindings allowing for users to define
scripts and replaceable components in Python.

We organize the rest of the discussion in this chapter as follows:

1. Class and object design

2. Memory management

3. Configuration

4. Tracing

5. Scaling

6. Emulation

7. Scripting

The next chapter goes into more detail on the Node, Channel, and Packet object designs.

6

2.3 Class and object design

This section describes the C++ class design forns-3objects. In brief, the design patterns in use include classic object-oriented
design (polymorphic interfaces and implementations), separation of interface and implementation, the non-virtual public
interface design pattern, object and interface aggregation, a type-safe query interface, a run-time replaceable components
system, and reference counting for memory management. Those familiar with component models such as COM or Bonobo
will recognize elements of the design inns-3, although thens-3design is not strictly in accordance with either.

2.3.1 Component system

Thens-3 component system is motivated in strong part by a recognition that a common use case forns-2 has been the use of
polymorphism to extend protocol models. For instance, specialized versions of TCP such as RenoTcpAgent derive from (and
override functions from) class TcpAgent.

However, two problems that have arisen in thens-2 model are downcasts and “weak base class.” Downcasting refers to the
procedure of using a base class pointer to an object and querying it at run time to find out type information, used to explicitly
cast the pointer to a subclass pointer so that the subclass API can be used. Weak base class refers to the problems that arise
when a class cannot be effectively reused (derived from) because it lacks necessary functionality, leading the developer to
have to modify the base class and causing proliferation of base class API calls, some of which may not be semantically correct
for all subclasses.

ns-3 is using a version of the query interface design pattern to avoid these problems. This design is based on elements of the
Component Object Model design1 and GNOME Bonobo,2 although full binary-level compatibility of replaceable components
is not supported and we have tried to simplify the syntax and impact on model developers. The aspects of COM that we are
using provide:

• a component-oriented programming model, based on separation of interface and implementation. Interface objects are
what client code uses to talk to the underlying implementation. When the class design follows this pattern, it allows
components supporting similar interfaces to be swapped out.

• what if interfaces of replaceable components are not the same? COM provides a QueryInterface capability which, in
our implementation, provides a type-safe way to query whether an object has a given capability or interface. The key to
this architecture is that interfaces can be added or aggregated at run-time to objects without requiring rebuilding of the
base classes, thereby avoiding weak base classes and the need for client-side C++ downcasts to provide run-time type
information (RTTI).

• a system of unique identifiers for interfaces and classes.

• a component manager that is able to instantiate factories and objects themselves based on the identifiers mentioned
above.

• a memory management policy rooted in reference counting.

We do not enforce the COM rule that interfaces are pure abstract and that one must separate the interface from implementation.
A different, fuller port of COM tons-3 was prototyped by Craig Dowell,3 who initially suggested the use of COM concepts
and implementation forns-3.

1http://en.wikipedia.org/wiki/Component_Object_Model
2http://en.wikipedia.org/wiki/Bonobo_%28computing%29
3http://code.nsnam.org/craigdo/ns-3-com

7

Query interface example

Query interface is a type-safe way to achieve a safe downcasting and to allow interfaces to be aggregated to an object. Objects
using the query interface must inherit from the Interface base class.

An example of the use of query interface is shown below. Consider a node pointern0 that points to an InternetNode object
with an implementation of IPv4. The client code wishes to configure a default route. To do so, it must access an object within
the node that has an interface to the IP forwarding configuration. It performs the following two steps:

Ptr<IIpv4> ipv4 = n0->QueryInterface<IIpv4> (IIpv4::iid);
ipv4->SetDefaultRoute (Ipv4Address ("10.1.1.2"), 1);

In the first line a (smart) pointer of type IIpv4 (“interface to IPv4”) is declared and assigned to the result of a QueryInterface
on the node for the interface type IIpv4. This pointer value will be returned null if the node doesn’t support the requested
interface. If non-null, this pointer can be used like a traditional pointer to access the API of the IIpv4 object.

To summarize, two benefits that we expect to leverage from this are as follows:

• Encapsulation: By separating interface from implementation, it permits implementors to replace elements of the
protocol stack while remaining compliant with client code that supports the same interface. For example, one type of
node may include nativens-3 models of protocols, while another may be a port of a Linux stack, and both may be
accessed by the same interface.

• Aggregation: QueryInterface allows for aggregation of interfaces at runtime. For instance, an existing Node object
may have an “Energy Model” object and its interface aggregated to it at run time (without modifying and recompiling
the node class). An existing model (such as a wireless net device) can then query interface for the energy model and
act appropriately if the interface has been either built in to the underlying Node object or aggregated to it at run time.

We hope that this mode of programming will require much less need for developers to modify thens-3 base classes or libraries.

See also thesamples/main-query-interface.cc program.

2.3.2 Object creation

Objects in C++ may be statically, dynamically, or automatically created. This holds true forns-3 also, but some objects in the
system– those using the replaceable component system– havesome additional frameworks available. Specifically, reference
counted objects are dynamically allocated using operator new, a templated MakeNewObject method, or anns-3 component
manager.

The ComponentManager class is inspired by COM and is a class used to create any Interface class by ClassId, where ClassId is
a symbolic name associated to a particular class. Each classusing the component manager declares a uniquens3::ClassId
static variable that is bound to a constructor. The following code shows how the component manager can be used to create
new objects of type A:

Ptr<A> a = 0;
a = ComponentManager::Create<A> (A::cid, A::iid);

The above code (from the unit tests for component-manager.cc) creates a class A (which is subclassed from Interface) and
returning a pointer to A (as specified by A’s interface ID)..

8

The above code sample can be changed in a few ways. First, if A statically aggregates interface B, a pointer to interface B
can be returned even if the underlying object is of type A:

Ptr b = 0;
b = ComponentManager::Create<A> (A::cid, B::iid);

Finally, the system accommodates non-default constructors. Assume that another constructor for A exists that takes a boolean
argument, such asclass A::A (bool bo). If the constructor for this class has registered a new classId (such as
cidOneBool), the following can be called:

Ptr b = 0;
b = ComponentManager::Create<A,bool> (A::cidOneBool, B::iid, true);

where the last parameter is the passed-in boolean value to A’s constructor, and again assigning returning the interfacepointer
B to the created object of type A. The classIds can be overridden at run time also by the default value system described below.

If a reference counted object is being new’ed and assigned toa reference counting smart pointer (class Ptr), then a templated
helper function is available and recommended to be used:

ns3::Ptr b = ns3::Create ();

This is simply a wrapper around operator new that correctly handles the reference counting system.

2.4 Memory Management

Memory management in a C++ program is a complex process, and is often done incorrectly or inconsistently. We have settled
on a reference counting design described as follows.

All objects using reference counting maintain an internal reference count to determine when an object can safely deleteitself.
Each time that a pointer is obtained to an interface, the object’s reference count is incremented by callingRef(). It is the
obligation of the user of the pointer to explicitlyUnref() the pointer when done. When the reference count falls to zero,
the object is deleted.

• When the client code obtains a pointer from the object itselfthrough object creation, or via QueryInterface, it does not
have to increment the reference count.

• When client code obtains a pointer from another source (e.g., copying a pointer) it must callRef() to increment the
reference count.

• All users of the object pointer must callUnref() to release the reference.

The burden for callingUnref() is somewhat relieved by the use of the reference counting smart pointer class described
below.

Users using a low-level API who wish to explicitly allocate non-reference-counted objects on the heap, using operator new,
are responsible for deleting such objects.

Packet objects are handled differently (without referencecounting); their design is described in the next chapter.

9

2.4.1 Reference counting smart pointer

ns-3 provides a smart pointer class similar toBoost::intrusive_ptr. This smart-pointer class assumes that the under-
lying type provides a pair of Ref and Unref methods that are expected to increment and decrement the internal refcount of the
object instance. We saw an example of this class in the query interface code above.

This implementation allows you to manipulate the smart pointer as if it was a normal pointer: you can compare it with zero,
compare it against other pointers, assign zero to it, etc.

It is possible to extract the raw pointer from this smart pointer with the GetPointer and PeekPointer methods.

If you want to store a newed object into a smart pointer, we recommend you to use the MakeNewObject template functions to
create the object and store it in a smart pointer to avoid memory leaks. These functions are really small conveniance functions
and their goal is just is save you a small bit of typing.

2.5 Configuration

Configuration of objects is typically done by accessing an object’s public API to change the values of member variables. That
is no different inns-3 but the design tries to ease this for users with the followingtechniques.

2.5.1 Stock topology code

A number of static methods are being defined to aid in topologyconstruction. These objects typically use base class pointers
to refer to constituent objects (enabling software reuse) and are therefore a primary benefactor of the COM-like frameworks
(QueryInterface, Component Manager) described above. Forthe moment, only a few PointToPointTopology objects are
available (insrc/devices/p2p/p2p-topology.cc,h) but more topologies such as WirelessGrid are planned.

For example, the following method constructs a point-to-point link (using PointToPointChannel and PointToPointNetDevice
objects) between two nodes n1 and n2, with the specified dataRate and one way progagation delay. It essentially wraps
a bunch of low-level API calls to create these NetDevices andChannel. The type of objects used in this topology can be
overridden as long as they derive from the common base classes used in these topology objects. Users may write their own
topology objects, butns-3 will maintain a few.

2.5.2 Default values and command line arguments

Simulation users often want to run many instances with slightly different parameters.ns-2 had a system whereby users could
change the value of a C++ variable if it was suitably bound (see thetcl/lib/ns-default.tcl script ofns-2).

In ns-3, we have developed the following system for default values,and have hooked it into a command-line argument parsing
facility. The basic idea is to use a templated global variable facility to store bindings between string names of variables,
“help” text on allowable parameters, and the default value itself. This avoids users needing to rebuild core libraries to change
parameters, and allows users to avoid rebuilding any files atall if the command-line facility is used.

The program insamples/main-default-value.cc shows how this facility can be used. Briefly, any variable of a
supported type in the system can be bound to a unique string byfirst declaring a static variable such as

static IntegerDefaultValue<int> defaultTestInt1 ("testInt1", "helpInt1", 33);

10

which declares that testInt1 is an integer with a default value of 33. The second parameter is a string that can be modified
by the developer to encode whatever information is useful (e.g., units). Then, any actual integer in the system can be later
assigned to the value of defaultTestInt1, as typically donein an object’s constructor.

If a variable in the system has been bound to the string “testInt1”, the following C++ statement (typically invoked near the
top of a main program) will cause it to be initialized insteadto e.g. the integer value 57:

Bind("testInt1", "57");

While a user can change this default by modifying the main program, the command line can be used as well. Running
"./sample-default-value -help" will cause a list of possible configurable values to be printed out. For this
example, the following string is printed:

--testInt1=[int32_t(-2147483648:2147483647):33] helpInt1

This tells the user that testInt1 is of typeint32_t with a range of values specified between the parentheses, anda default
value of 33 (that can be overridden).

This facility can also be used to swap out the type of an objectat run-time, if the particular class has been integrated into the
system. For instance, the fileexamples/simple-p2p.cc shows a line as follows:

Bind ("Queue", "DropTailQueue");

where DropTailQueue is a subclass of class Queue. This type of binding will allow callers of theQueue::CreateDefault
() factory method to obtain a suitably subclassed Queue object.

Consult thesamples/main-default-value.cc example program for more information on how to use this facility.

2.6 Tracing

The design objective has been to offer the user a lot of flexibility in selecting which events to monitor, and to allow users
freedom to use possibly complex logic to decide what things to log to trace files or to perform inline statistics calculations.

To provide this flexibility, every model must define a set of trace event sources. Each of these trace event source can generate
one type of event and can specify any number of arguments to convey per-event information from the trace event source to
the listening trace event sinks.

While this design allows users to hand-specify a different trace sink to each trace source, ns-3 also provides a set of simple
trace helpers which perform bulk connection of the default trace sources to a set of trace sinks which generate trace files
in various specific formats. For example, pcap output can be trivially generated for the default ipv4 stack by instantiating
an object of type PcapTrace and calling its TraceAllIp method. The example fileexamples/simple-p2p.cc contains
examples for producing both ascii and pcap traces using thishigh-level API.

To integrate in this framework, model developers need to:

• define and instantiate a set of trace sources of type CallbackTraceSource

• trigger trace events by invoking each of the trace source with the per-event arguments needed

11

• implement a method named CreateTraceResolver which takes aTraceContext as argument and returns a TraceResolver.
Implementing this method is pretty trivial: it is a matter ofinstanciating a CompositeTraceResolver and register each
trace source in it.

Later, when the time comes to connect the user’s trace sinks (that is, the user’s callbacks. See section 4.2) to the model’s
trace sources, the user can use the TraceRoot::Connect method which takes as an argument a string pattern which iden-
tifies the set of trace sources stored in trace resolver instances to connect. For example, a string pattern could look like
’/nodes/*/netdevices/*/*’ which would identify all traceevents in all netdevice objects contained in all nodes.

2.7 Scaling

Note: the ns-3.0.3 release does not include specific supportfor scaling techniques. This section will be added at a laterdate.

2.8 Emulation

Note: the ns-3.0.3 release does not include support for emulation.

2.9 Scripting

Gustavo Carneiro and Craig Dowell are working on Python scripting; check the ns-developers list for discussion of the design.

Note: the ns-3.0.3 release does not include support for Python scripting. This section will be added at a later date.

12

3 Key simulation objects

This chapter walks through the primary simulation objects in the simulator, relating to the sending and receiving of packets
between nodes. Figure 3.1 depicts, at a high-level, the objects we will discuss in this chapter: Node, NetDevice, Channel,
Packet, and interface aspects thereof.

3.1 Node

A Node is an abstract base class inns-3. It contains only a few objects: a unique integer ID, a systemID (for distributed
simulation), a list of NetDevices, and a list of Applications. Figure 3.1 depicts this high-level view.

Channel

Node

NetDevice NetDevice

Stack
(e.g.
IPv4)

...

... Unix-like C-based APIs
(sockets, libc)

Linux-like
API

Packet

Channel

Stack
(e.g.
IPv6)

...

* unique id (m_uid)

* Buffer object

* Tags container object

Application Application

In
te

rf
ac

es

Figure 3.1: High-level node architecture.

Users can create their own Node subclasses, andns-3 will provide a few. Currently,class InternetNode is provided,
which implements a rudimentary UDP/IPv4 stack.

The design tries to avoid putting too many dependencies on the base class Node, Application, or NetDevice for the following:

• IP version, or whether IP is at all even used in the Node.

• implementation details of the IP stack

The design therefore uses the design pattern of software encapsulation to allow Applications and NetDevices to talk to
implementation- independent interfaces (that can be queried via QueryInterface– see section 2.3) of the underlying TCP/IP
implementations.

For instance, we expect to support a nativens-3 version of TCP/IP as well as ported Linux or FreeBSD stacks. These
implementation details can be hidden behind an IPv4 interface object that is queried by the application or scenario developer.
If users want to experiment with non-IP stacks, they can do sowithout having IP dependencies on the NetDevices, Channels,

13

and Applications. This is why the Stack objects in Figure 3.1are illustrated with dotted lines; these may be built quite
differently for different Node subclasses. We try to provide an interface to the NetDevice corresponding to the device-
independent sublayer in Linux, and model the interface on the top of the stacks using typical Unix-like abstractions found in
(C-based) sockets API and other system calls such as found inlibc or other utilities.

3.2 NetDevice and Channel

A key node object isclass NetDevice, which represents a physical interface on a node (such as an Ethernet interface).
We discuss also in this section theclass Channel, which is closely coupled to the attached NetDevices.

The basic idea is to mimic the Linux architecture at the boundary between device-independent sublayer of the network
device layer and the IP layer (figure 3.2). The top interface of NetDevice approximates the point in the Linux kernel
wheredev_queue_xmit() is called. The data members of NetDevice are similar to thosefound in Linux struct
net_device. The IPv4 or IPv6 portion of a device (struct in_device) is modeled by a separate object on top of
NetDevice (not discussed in this section).

NetDevice::Send
(Packet p, MacAddress dest,
uint16_t protocol)

pure virtual
class NetDevice

output
queue

input
queue
(if present)

to Channel

from *Channel

*NetDevice::Receive ()
(Packet p)

m_receiveCallback
(callback registered to receive packets)

dequeuing operation *NetDevice
subclasses:

stores:
- Queue pointer
- Receive() method
- (subclassed)
Channel pointer

stores:
- node pointer
- MacAddress
- MTU
- up/down state
- receive
callback
- up/down
callback
notification
- GetChannel()

Figure 3.2: Overview of boundary between Network Device andupper layer (typically layer-3).

Figure 3.2 illustrates some of the main objects and actions involving sending a packet up and down the stack. First, thereis
an abstractclass NetDevice that implements a Node pointer, MacAddress, string name (e.g., "eth0"), MTU, and has
a flag for setting the state to be up or down. Two callbacks are included; the first allows a higher-layer protocol to register
a function to be used to send the packet up the stack; this callback is present to decouple the NetDevice from the higher
layer protocol above (typically layer-3 but may also be something like a bridging layer), as described in the previous section.
Another callback allows the NetDevice to notify listeners of a change in state. Finally, there is a method provided to return a
base class Channel pointer, which is forwarded to a NetDevice subclass that actually has the pointer.

NetDevices in use in the simulation will all subclass from this base class; an example is in
src/devices/p2p-net-device.cc,h. These subclasses are matched to a particular corresponding channel type.
That is, for example, a PointToPointNetDevice is attached to a PointToPointChannel. This convention provides type-safety
in avoiding the connection of incompatible Channel and NetDevice types. The subclass (denoted*NetDevice in the
figure) also provides a Receive() method to allow packets to be sent to it from the Channel; e.g. PointToPointChannel calls
PointToPointNetDevice::Receive(). Any queue implementations are stored in these subclasses.

Packets traversing the stack in the outbound direction callthe base class NetDevice::Send() which forwards the packetto

14

the appropriate subclass method. Packets traversing the stack in the inbound direction will call the callback registered with
m_receiveCallback when the NetDevice is done processing the packet and wants to hand it to the higher layer.

3.3 Packet

The design of the Packet framework ofns-3 was heavily guided by a few important use-cases:

• avoid changing the core of the simulator to introduce new types of packet headers or trailers

• maximize the ease of integration with real-world code and systems

• make it easy to support fragmentation, defragmentation, and, concatenation which are important, especially in wireless
systems.

• make memory management of this object efficient

• allow actual application data or dummy application bytes for emulated applications

ns-3 Packet objects contain a buffer of bytes: protocol headers and trailers are serialized in this buffer of bytes using user-
provided serialization and deserialization routines. Thecontent of this byte buffer is expected to match bit-for-bitthe content
of a real packet on a real network implementing the protocol of interest.

Fragmentation and defragmentation are quite natural to implement within this context: since we have a buffer of real bytes,
we can split it in multiple fragments and re-assemble these fragments. We expect that this choice will make it really easyto
wrap our Packet data structure within Linux-style skb or BSD-style mbuf to integrate real-world kernel code in the simulator.
We also expect that performing a real-time plug of the simulator to a real-world network will be easy.

Because we understand that simulation developers often wish to store in packet objects data which is not found in the real
packets (such as timestamps or any kind of similar in-band data), thens-3 Packet class can also store extra per-packet "Tags"
which are 16 bytes blobs of data. Any Packet can store any number of unique Tags, each of which is uniquely identified by
its C++ type. These tags make it easy to attach per-model datato a packet without having to patch the main Packet class or
Packet facilities.

Memory management of Packet objects is entirely automatic and extremely efficient: memory for the application-level pay-
load can be modelized by a virtual buffer of zero-filled bytesfor which memory is never allocated unless explicitely requested
by the user or unless the packet is fragmented. Furthermore,copying, adding, and, removing headers or trailers to a packet
has been optimized to be virtually free through a technique known as Copy On Write.

3.4 Sockets and Applications

Applications are user defined processes that generate traffic to send across the networks to be simulated.ns-3 provides a
framework for developing different types of applications that have different traffic patterns. There is an Applicationbase
class that allows one to define new traffic generation patterns via inheritance from this class. Then one simply creates
the application and associates it with a node, and the application will send traffic down the protocol stack. The way that
applications on a node communicate with the node’s protocolstack is via sockets.

15

3.4.1 Sockets

The sockets API exported tons-3 attempts to mimic the standard BSD sockets API. The major difference in the implemen-
tation is that while BSD socket calls are synchronous (that is, they do not return control to their caller until they complete),
the ns-3 socket API calls return immediately. This is due to the fact that in a simulation environment where one machine
is simulating possibly thousands of socket calls across different simulated machines simultaneously, the simulator simply
cannot afford to wait for the socket function call to return.The way the software handles the situation instead is by returning
immediately, then using callbacks when other portions of the code need to be notified of a socket event. For example, when in
the course of the simulation a socket is directed to listen()on a specific port, the caller also provides a callback to handle when
the socket receives a connection request. The listen() method returns immediately, and then whenever the socket receives the
connection, it invokes the callback to handle the connection. Similar things happen for the other common socket APIs, like
send(), connect(), and bind().

16

4 Core Modules

This chapter discusses the design and implementation of core elements inns-3. These items are built in two modules (core
andsimulator) with no other dependencies on the simulation code.

4.1 Event Scheduling

The ns-3 event scheduling framework was designed with the following use-cases in mind:

• maximize code portability by ensuring reproducible time calculations in user models.

• make it possible to increase the precision of the internal time variable in the future.

• make it easy to associate a specific function to be called whena specific event expires

• make it easy to pass per-event data from the point when the event is scheduled to the point when the event expires

4.1.1 Simulation time

Simulation time is kept track of internally using a 64bit integer in units of nanoseconds. To make sure that this internal
variable can be easily changed to represent a higher-precision time or that we can use a variable with a larger dynamic range,
user programs never access directly this time variable. Instead, the current simulation time is exported to the user through a
single method Simulator::Now () which returns an opaque object of type Time. Users can also easily create instances of this
type through the functions Seconds, MilliSeconds, MicroSeconds, or NanoSeconds each of which takes a single argument in
the specified unit and returns an instance of a Time object.

Instances of the class Time can be used just like normal integers or floating-point values: they support all the normal
arithmetic operators and can be converted to values in a specific time unit with Time::GetSeconds, Time::GetMilliSeconds,
Time::GetMicroSeconds, and, Time::GetNanoSeconds.

These instances of the class Time store their time value in a 64.64bit fixed-point integer variable. That is, the user-visible
time variables are kept track of with 64 bits of fractional integer precision. If users are careful to perform all their arithemtic
operations on Time variables, they can easily ensure that their code will behave exactly in the same way on multiple platforms.

4.1.2 Event creation and expiration

To schedule an event, users can call any of the Simulator::Schedule functions:

void MyEvent (double a)
{

...
}

EventId id = Simulator::Schedule (Seconds (10.0), &MyEvent, 3.1415);

NS_ASSERT (is.IsRunning ());

17

id.Cancel ();
NS_ASSERT (is.IsExpired ());
Simulator::Remove (id);

Simulator::Run ();

These Schedule functions all take as first argument a Time variable. Their second argument is always a function pointer and
the other arguments are the values which will be passed to theuser event function when the event expires. There can be up to
5 values to be passed to the user function.

Once scheduled, any event can be canceled (its cancel bit is set to true) or removed (it is removed from the event list): both
operations will ensure that the event never expires.

4.2 Callbacks

The callback API inns-3 is designed to minimize the overall coupling between various pieces of of the simulator by making
each module depend on the callback API itself rather than depend on other modules. It acts as a sort of third-party to
which work is delegated and which forwards this work to the proper target module. This callback API, being based on C++
templates, is type-safe; that is, it performs static type checks to enforce proper signature compatibility between callers and
callees. The API is minimal, providing only two services:

• callback type declaration: a way to declare a type of callback with a given signature, and,

• callback instantiation: a way to instantiate a template-generated forwarding callback which can forward any calls to
another C++ class member method or C++ function.

The implementation is based on use of templates to implementthe Functor Design Pattern. It is used to declare the type of
a callback. Up to five arguments can be passed with the function pointer to the callback. Callback instances are built with
the makeCallback template functions. Callback instances have plain old data (POD) semantics: the memory they allocateis
managed automatically, without user intervention which allows one to pass around Callback instances by value. A sample
program is found insamples/main-callback.cc

18

5 Internet Node

Class InternetNode defines the canonical IP-based node in the simulator. Recall in Chapter 3 that class Node is an abstract
base class that has a list of NetDevices and a list of Applications, but the protocol layers between the Applications and
NetDevices are undefined in this base class. Class InternetNode provides an implementation of these IP-based layer-3 and
layer-4 protocols. We envision that ports of other operating systems (such as Linux or FreeBSD) will be defined as other
types of Node, hopefully with similar configuration interfaces.

This chapter provides a brief overview of the objects that make up the layer-3 and layer-4 plumbing, and by way of description,
traces the path of a packet through these objects.

5.1 InternetNode members

The InternetNode::Construct() function (called by the object constructor) describes what makes up an InternetNode.

from internet-node.cc

54 void
55 InternetNode::Construct (void)
56 {
57 Ptr<Ipv4L3Protocol> ipv4 = Create<Ipv4L3Protocol> (this);
58 Ptr<ArpL3Protocol> arp = Create<ArpL3Protocol> (this);
59 Ptr<UdpL4Protocol> udp = Create<UdpL4Protocol> (this);
60
61 Ptr<L3Demux> l3Demux = Create<L3Demux> (this);
62 Ptr<Ipv4L4Demux> ipv4L4Demux = Create<Ipv4L4Demux> (this);
63
64 l3Demux->Insert (ipv4);
65 l3Demux->Insert (arp);
66 ipv4L4Demux->Insert (udp);
67
68 Ptr<UdpImpl> udpImpl = Create<UdpImpl> (udp);
69 Ptr<ArpPrivate> arpPrivate = Create<ArpPrivate> (arp);
70 Ptr<Ipv4Impl> ipv4Impl = Create<Ipv4Impl> (ipv4);
71 Ptr<Ipv4Private> ipv4Private = Create<Ipv4Private> (ipv4);
72
73 Object::AddInterface (ipv4Private);
74 Object::AddInterface (ipv4Impl);
75 Object::AddInterface (arpPrivate);
76 Object::AddInterface (udpImpl);
77 Object::AddInterface (l3Demux);
78 Object::AddInterface (ipv4L4Demux);
79 }

There are a few things to note in this function. First, lines 57-59 create instances of the layer-3 and layer-4 protocols,and
assign their pointers tons-3smart pointers. Note the use of the Create method, which is a templated wrapper around operator
new. Each of these objects has a back-pointer ("this") to theInternetNode. (Note: This class does not make use yet of the
replaceable component system; objects are created with rawCreate functions.)

19

Next, lines 61-62 create demultiplexers (demuxes). These are analogous tons-2Classifiers, and they direct packets to the right
layer-3 or layer-4 protocol. These demuxes have to be told about what layer-3 protocols are active in a node (line 64-66).
If/when we have Tcp and Ipv6 models, those will be added as well.

Lines 68-71 create some private implementation-related objects that make up the Ipv4, Arp, and Udp implementations.

Finally, we want to make interfaces to these objects available to the QueryInterface facility, so we explicitly add these pointers
in lines 73-78.

The next two sections graphically depict how the various objects in the src/internet-node directory relate to one another.

5.2 Send packet processing chain

NetDevice

Application

UdpSocket

UdpL4Protocol

Ipv4Private

Ipv4L3Protocol

Step in packet sending process:

6. Ipv4Interface is an abstract base class; here, we depict the ArpIpv4Interface
concrete class. This object looks up the MAC address if Arp is supported on this
NetDevice technology, and if there is a cache hit, it sends it to the NetDevice

5. Ipv4L3Protocol is a subclass of L3Protocol. It adds the IP header,
looks up a route, and sends the packet to an appropriate Ipv4Interface
instance.

3. UdpL4Protocol is a subclass of Ipv4L4Protocol. This is where the
protocol logic for UDP is implemented. The Send() method adds the
UDP header, initializes the checksum, and sends the packet to the Ipv4 layer.
Here, a private API (Ipv4Private) is queried, and the Send() method is called.

::Send()

::Send()

Socket::Send()

Function/object trace for sending a packet

2. Socket::Send() forwards to UdpSocket::DoSend() and later to UdpSocket::DoSendTo().
These functions just sanity check the socket state (is_connected?) and then the
UdpL4Protocol::Send() function is called.

1. The Application has previously created a socket (here, a UdpSocket).
It calls Socket::Send(). Either real data or dummy data is passed at the API.

4. Ipv4Private is a class designed to the pImpl idiom; here it simply forwards
the Send() call to an Ipv4L3Protocol instance.

::Send()

Ipv4Route
::Lookup()

ArpIpv4Interface

::Send()

ArpPrivate
::Lookup()

::Send()

Figure 5.1: Steps in the send packet processing chain (Ipv4/UDP example).

5.3 Receive packet processing chain

20

NetDevice

Application

UdpSocket

Ipv4EndPoint

UdpL4Protocol

Ipv4L3Protocol

Step in packet receive process:

1. NetDevice calls the function registered at m_receiveCallback

2. For class InternetNode, this callback is InternetNode::ReceiveFromDevice()

3. InternetNode::ReceiveFromDevice looks up the L3Protocol in the L3Demux
based on the protocol number, and calls its Receive() method

4. Ipv4L3Protocol is a subclass of L3Protocol. It removes the IP header,
checks checksum, and either Forwards the packet or calls ForwardUp().
ForwardUp() then looks up the L4Protocol bound to the IP protocol number,
and calls the Ipv4L4Protocol::Receive() method.

InternetNode

m_receiveCallback

::Receive()
::Lookup()

::GetProtocol()

::Receive()

5. UdpL4Protocol is a subclass of Ipv4L4Protocol. This is where the
protocol logic for UDP is implemented. The Receive() method removes the
UDP header and looks up the per-flow context state, which is an
Ipv4EndPoint class stored in an Ipv4EndPointDemux (indexed by src addr,
src port, dest addr, dest port). It then calls Ipv4EndPoint::ForwardUp()
when done.

::ForwardUp()

::Lookup()

(m_rxCallback)->ForwardUp()

(m_rxCallback)->Recv() or RecvDummy()

Function/object trace for receiving a packet

L3Demux

Ipv4EndPointDemux

Ipv4L4Demux

6. Ipv4EndPoint has a callback where a Socket object is able to
register a receive method. Here, this callback calls to
UdpSocket::ForwardUp()

7. UdpSocket itself calls one of two callbacks to get the data
to the application. If the Application is sending fake data, the RecvDummy()
callback is called; else, the Recv() callback is called.

Figure 5.2: Steps in the receive packet processing chain (Ipv4/UDP example).

21

6 ns-3 routing

This writeup describes some goals and requirements for initial static routing, and a proposed routing roadmap.

Note: the ns-3.0.3 release does not include support for anything but manual static routing. Section 6.4 below shows the
current routing roadmap.

6.1 Overview

Routing (including static routing) is a bit more complex than what is found in ns-2, which relies on a simple shortest path
computation based on node ID or generic hierarchical addresses. Here, we want to account for the fact that our network may
be composed of variably subnetted IP links, and we should offer some alternatives for defining link costs.

There are several components that need to be defined:

• unicast and multicast

• IPv4 and IPv6 (and others)

• routing manager object that can populate static routing tables

• routing API of a node

• forwarding implementation of a node

For starters, we focus on IPv4 and unicast, followed by IPv4 multicast.

For static routing, we propose a RouteManager object, whichis a singleton object responsible for populating per-node for-
warding tables. When a user calls “PopulateRoutingTables ()”, the RouteManager will walk the topology and build a network
map representation of the network, will run a shortest path computation, and will then access the routing API of each node
and populate the forwarding tables. Users may enter per-node static routes, in the usual way, that override the values placed in
the table by the RouteManager. The RouteManager must deal with point-to-point and shared links, must correctly deal with
IP subnetting (and perhaps use different approaches for different address families), and must allow for different costmetric
assignments, such as “every link is a single hop” or “link metrics are a function of the inverse of the bandwidth of the link”.

For dynamic routing, we propose to port XORP or quagga ratherthan rewrite routing protocols for ns-3. There is some
experience with this in previous simulators; most notably,GTNetS has supported ports of quagga BSD and OSPFv3.

The routing API of a node should be a queriable interface withsome implementation independence. Ideally, we ought to be
able to use the same interface for both Linux and idealized stacks, and for manual routing configs as well as dynamic routing
protocols such as XORP that use routing sockets directly.

The node forwarding table is instantiated by some object in the node; either an IPv4 or IPv6-layer object, or something like a
ported Linux stack. It should have the following properties:

• keep ARP and routing tables separate (otherwise, causes problems for parallel links between nodes)

• support multiple forwarding tables

• support for routing metrics (transport protocols), probably via clonable entries

22

Linux is probably the right implementation model for this, since BSD has mixed ARP and IP routing, unfortunately, and
doesn’t support multiple forwarding tables.

Users should be able to trace (either debug print, or redirect to a trace file) the routing table in a format such as used in an
Unix implementation:

netstat -nr (or # route -n)
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.1 * 255.255.255.255 UH 0 0 0 lo
172.16.1.0 * 255.255.255.0 U 0 0 0 eth0
172.16.2.0 172.16.1.1 255.255.255.0 UG 0 0 0 eth0

ip route show
192.168.99.0/24 dev eth0 scope link
127.0.0.0/8 dev lo scope link
default via 192.168.99.254 dev eth0

Static multicast should be implemented as well. This would ignore group membership and ensure that a copy of every sourced
multicast datagram would be delivered to each node. This might be implemented as an RPF mechanism that functioned on-
demand by querying the forwarding table, and perhaps optimized by a small multicast forwarding cache. It is a bit trickier to
implement over wireless links where the input interface is the same as the output interface; other aspects of the packet must
be considered and the forwarding logic slightly changed to allow for forwarding out the same interface.

6.2 RouteManager

This is some type of static or singleton object that performsthe following operations. It doesn’t have to be particularly
efficient or fast (at least initially) because it only executes once (per node) at the beginning of the simulation.

We should try to find applicable code for at least the SP computation sections below. There are plenty of Dijkstra examples
on the web. GTNetS RoutingStatic class also probably could be used as a basis for this.

enum AddressFamily {
Ipv4,
Ipv6,
...

};

enum RouteMetric {
UnitCost,
InverseBandwidth,
...

};

// public function
bool
RouteManager::ComputeRoutes(Ptr<Node> n, uint8_t addressFamily, uint8_t routeMetric) {

/*
walkNodeListToBuildTopology(addressFamily, routeMetric);

23

useDijkstraSPToCreateRoutes(n);
populateNodeTables(n);

*/
}

// public (non-member?) function
bool
ComputeAllRoutes(uint8_t addressFamily, uint8_t routeMetric) {

/*
for each Node in the NodeList {

RouteManager::ComputeRoutes(n, addressFamily, routeMetric);
}

*/
}

6.3 Node routing interface

//
// Interface for static routing
// - interface class patterned after route(8) (Linux man page)
// - the two main operations are "add" and "del"
//
// route [-v] [-A family] add [-net|-host] target [netmask Nm] [gw Gw]
// [metric N] [mss M] [window W] [irtt I] [reject] [mod] [dyn]
// [reinstate] [[dev] If]
//
// route [-v] [-A family] del [-net|-host] target [gw Gw] [netmask Nm]
// [metric N] [[dev] If]
//

class Ipv4RouteMetrics
{

// This will be a class to allow to pass route metrics across the API,
// such as "metric", "mss", "window", "irtt", "flags (mod, dyn, reinstate)

}

class Ipv4RouteObject; // analogous to routing struct in kernel that holds
// state for the route; used to fetch at the API

class Ipv4Route : public Object
{
public:

static const InterfaceId iid;

virtual void AddHostRoute (Ipv4Address target,
Ipv4Mask netmask,
Ipv4Address gateway) = 0;

virtual void AddHostRoute (Ipv4Address target,
Ipv4Mask netmask,
uint32_t interface) = 0;

24

virtual void AddNetworkRoute (Ipv4Address target,
Ipv4Mask netmask,
Ipv4Address gateway) = 0;

virtual void AddNetworkRoute (Ipv4Address target,
Ipv4Mask netmask,
uint32_t interface) = 0;

// Define future variants of the above that allow an Ipv4RouteMetrics to
// also be passed

virtual void AddDefaultRoute (Ipv4Address gateway) = 0;

virtual void AddDefaultRoute (Ipv4Address gateway,
uint32_t interface) = 0;

virtual void DelHostRoute (Ipv4Address target) = 0;

virtual void DelHostRoute (Ipv4Address target,
Ipv4Mask netmask,
Ipv4Address gateway) = 0;

virtual void DelHostRoute (Ipv4Address target,
Ipv4Mask netmask,
uint32_t interface) = 0;

virtual void DelNetworkRoute (Ipv4Address target,
Ipv4Mask netmask) = 0;

virtual void DelNetworkRoute (Ipv4Address target,
Ipv4Mask netmask,
Ipv4Address gateway) = 0;

virtual void DelNetworkRoute (Ipv4Address target,
Ipv4Mask netmask,
uint32_t interface) = 0;

virtual void DelDefaultRoute (void) = 0;

virtual void DelInterfaceRoutes (uint32_t interface) = 0;

/**
* \returns the number of entries in the routing table.

*/
virtual uint32_t GetNRoutes (void) = 0;
/**
* \param i index of route to return

* \returns the route whose index is i

*/
virtual Ipv4RouteObject *GetRoute (uint32_t i) = 0;

25

6.4 Proposed roadmap

• June 15:This writeup

• July 15: Support IPv4 static routing with PointToPoint numbered links

• August 15: Extend IPv4 static routing to Ethernet (shared links), add static multicast forwarding over Ethernet and
PointToPoint

• Sept 15:Add static multicast forwarding over wireless interface

In parallel, work on bringing XORP or quagga routing tons-3, but it will take several months to port and enable.

There are presently no roadmap plans for IPv6.

26

