ns-3 Software Architecture

ns-3 project
http://mww.nsnam.org/
feedback: ns-developers@isi.edu

May 20, 2007

Introduction

This ns-3 design document is one of a set of project documents:

e Software Architecture (this document)
e User’s Guide (not yet written)

e Contributor’'s Guide (not yet written)

This document is written in Latex and is to be maintained insien control on thens-3 code server. Both PDF and HTML
versions should be available on the server (HTML not yetgmt)st Changes to the document should be discussed on the
ns-developers@isi.edu mailing list.

Contents

1 Introduction 2
1.1 nS3OVEIVIEBW o o o e e 2
1.2 Longer-termvVision e e e e e e 2
1.3 0Outline e e 3

2 Software Architecture 4
2.1 BAaSICS e e e 4
2.2 USECASES . . . v i it i e e e e e 4
2.3 Replaceablecomponents L e e 6

2.3.1 Queryinterfaceexample 6
2.3.2 Objectcreation e e e e 7
2.4 Memory Management. e e e e e e e 8
2.4.1 Referencecountingsmartpointer e e 8
25 Configuration e 9
2.5.1 Stocktopologycode e 9
2.5.2 Default values and command linearguments 9
2.6 TracCing e e e 10
2.7 Scaling e 10
2.8 Emulation e e 11
2.9 SCrpting o e e 11

3 Key simulation objects 12
3.1 Node . . . o 12
3.2 NetDeviceand Channel e e 13
3.3 Packet e e 14
3.4 Socketsand Applications e e e e e 14

3.4.1 Sockets e e 15

4 Core Modules 16

4.1 EventScheduling e e e 16
411 Simulationtime e e 16
4.1.2 Eventcreationand expiration e e 16

4.2 Callbacks e e 17

1 Introduction

This document provides an overview of the high-level goat$ software architecture for thes-3 network simulatorns-3 is
aimed at eventually replacing time-2 simulator. This document is intended to provide a brief gecitural overview ohs-3,
to complement reading the code and main source code docatioenivhich is in Doxygehformat.

1.1 ns-3Overview

ns-3is a discrete-event network simulator oriented towarda/oek research and education, with a special focus on Interne
based systems. Ths-3 project is designing a follow-on successor to the popude? simulator.

In ns-2, simulation scripts are written in OTcl. Ims-3, simulation scripts are written in C++, with support for exsions
that allow simulation scripts to be written in Python. Th@&sg¢hon bindings have yet to be written, but the goal is fordul

near-full APl support at the Python level.

ns-3is intended to provide better support tham#2 for the following items:

Modularity of components

Scalability of simulations

Integration/reuse of externally developed code and sofwtlities

Emulation

Tracing and statistics

Validation

ns-3 is a rewrite of the core of the simulatons-2 does not presently run ins-3, although we are studying approaches to
allow ns-2 to be run as part afis-3, as well as studying which models will be ported fros2 to work natively inns-3.

1.2 Longer-term vision

The Pls and developers on the project envision tisa® can become more than a basic iteration of previous simulator
approaches. Here is an incomplete list of the features teaifanterest to add:

e Core refactoring: While striving to maintain as much model reuse as possibidyding a backward compatibility
capability), we plan to rearchitect the simulator for bett@se of use, scalability (principally by class redesigtively
supporting multi-processor and distributed simulatiarg] support for 64-bit machines), encapsulation, and stippo
for integration of other software. The simulator shouldilgawith realistic models at different levels of abstraxtj
allow for simulations of IPv4 and IPv6 networks, as well aselpresearch-oriented network architectures.

e Software and testbed integration:We see a tremendous opportunity, with an open-source dionuta leverage the
software developed under other open-source projects. Wetheee specific goals in mind:

1. Abstraction layers, interfaces, and new techniquesuppsrting implementation code within tms-3 environ-
ment, such as ports of popular operating system implemensaand routing daemons;

Lhttp://www.nsnam.org/doxygen/index.html

2. Support for standard input and output file formats, so éxiting tools can be used for generating simulation
input and analyzing simulation output (e.g., pcap-foretttaces for viewing with tcpdump);

3. Techniquesto allow users to easily migrate experimegtigsden simulation and network emulation environments.

e Wireless models. The ns-2 simulator needs updating to account for the growth in wegleetworking, including
the many variants of IEEE 802.11 networking, emerging IEEBdards such as WiMax (802.16), and cellular data
services (GPRS, CDMA). Additional new models beyond wsslare also needed, such as peer-to-peer and delay-
tolerant networks.

e Education. ns-3 is first and foremost a simulator for the academic researafmuanity. However, our project will
emphasize makings-3 more useful to educators with a specific goal of its integrainto undergraduate networking
courses.

1.3 Outline

This document is organized as follows:

e Chapter 2 describes the overall end-to-end software aathital model

e Chapter 3 introduces the key objects in the system reladisgmding and receiving packets: nodes, network devices,
channels, packets, and sockets.

e Chapter 4 describes core objects in the simulator.

2 Software Architecture

This chapter provides an introductory software architedtoverview ofns-3, including use cases, architecture for reusable
components, design for configuration, memory managemeicipand strategy for integrating outside and legacy code.

2.1 Basics

ns-3is a user-space program that runs on Unix- and Linux-bassdisys and on Windows (currently via Cygwin and possibly
via native win32 APIs in the future). It is written in C++, Wit planned Python scripting interface(s) for users. Thadas

on IPv4 and IPv6-based networks, but other non-IP architestsuch as sensors or DTNs are to be suppante8lis meant

to be modifiable and extendable by users; some users will led@bise example scripts that are provided, but it is exjgecte
that most (research) users will want to either write newgsmor modify or add to the simulator models in some way. Ssurc
code distributions are therefore expected to be the pegfeneans for distributings-3.

ns-3 contains support for the following:

e construction of virtual networks (nodes, channels, apfiims) and support for items such as event schedulerd; topo
ogy generators, timers, random variables, and other abjectupport discrete-event network simulation focused on
Internet-based and possibly other packet network systems.

e support for network emulation; the ability for simulatopbpesses to emit and consume real network packets
e distributed simulation support; the ability for simulatsto be distributed across multiple processors or machines
e support for animation of network simulations

e support for tracing, logging, and computing statisticsoagimulation output

ns-3 has a modular implementation containinga e library supporting generic aspects of the simulator (dgmgjobjects,
random number generators, smart pointers, callbacksiasts, reference list), andsa mul at or library defining simulation

time objects, schedulers, and eventx @dxmon library defines objects that are independent of specific oitarchitectures,
such as generic packets and tracing objects. Finallyntae library defines abstract base classes for fundamental base
objects in the simulator, such as nodes, channels, and retlgoices. Internet-related models (IP and transportooas)

are found in the nt er net - node library. Specific devices such as Ethernet ardewi ce libraries. Users may write and
link their own libraries. The modular implementation alfor smaller compilation unitsi1s-3 executable programs may be
built to either statically or dynamically link the librage

2.2 Use cases

To introduce the design ois-3 we first review design issues and usage models that have aridens-2, and mention trends
in simulation use within the networking research community

e Model extensibility. Most research users want to extend the simulator by writewg simulation scripts, modifying
existing models, or writing new models. To facilitate modebdification,ns-3 continues the use of object-oriented
design with polymorphic classes, allowing users to sulscthe aspects that they wish to modify. To facilitate the
addition of new modelsps-3 adopts a component-based architecture for compile-tinrairetime addition of new
models, interface aggregation, and encapsulation, witlemuiring modification of the base modelsns3.

Simulation code reuse. Many users start their work withs-2 by adapting existing code. Some common code is
written in terms of base-class object pointers, allowingrim-time substitution of subclassed objeats:3 will use
several techniques to facilitate simulation code reuseh s1$ inheritance to extend existing classes, the provigion
(extensible) stock topology objects, simulation frameggdhat are easily modifiable, an example script repositorg,

a system for run-time configuration of classes and defaiuliega

Run-time configuration. ns-3 provides a flexible technique to allow users to redefine defalues and class types
without recompiling the simulator. The default value datsd is integrated with a command-line argument parsing
facility, making all the variables configurable from the aoand-line as well.

Tracing. ns-3 features a callback-based approach to tracing that deestnalcing sources from tracing sinks and that
is focused on flexibility for the user. Packet traces will bed® available in libpcap format, to allow for post-procegsi
tools built around that trace format. Built-in statistic8lalso be widely available.

Scaling. ns-3 will include techniques for improving the scalability ofwilations, including distributed simulation
techniques introduced with PDNS and GTNetS, scalabilihmégues introduced for wireless simulations such as
caching of computationally-intensive results, and flditipin tracing infrastructure (to avoid large traces).

Software integration. ns-3 is oriented towards the reuse of existing software such atingpdaemons, applications,
and kernel code. The design is built around encapsulat@miques that decouple the interface from the implemen-
tation, an architecture that better mirrors how real-wakdices are built (e.g., explicitly handling multiple irfeces

per node), and an abstraction library that allows implesgon code to run in both real and simulated environments.

Network emulation. Increasingly, network research that involves simulatigo ancludes an experimental component,
with facilities such as PlanetLab, Emulab, and ORBIT. Redezrs would like to more easily move between simulation
and experimental domains. The 3 design is intended to facilitate this interaction betweagerugation and experiments,
with a packet design oriented towards serialization andrigd&zation, and encapsulation techniques that wilhalteal
application and kernel code to run in the simulator, theiiefproving traceability to real-world implementations.

Scripting The primaryns-3 user interface at present is a C++ “main” program, and we @xpat C++ will continue
to be a preferred language for many users. HowegeB,will also feature Python bindings allowing for users to defin
scripts and replaceable components in Python.

We organize the rest of the discussion in this chapter asvistl

N o g M w Nk

Replaceable components
Memory management
Configuration

Tracing

Scaling

Emulation

Scripting

The next chapter goes into more detail on the Node, Chanme&:Packet object designs.

2.3 Replaceable components

A common use case faois-2 has been the use of polymorphism to extend protocol modetsntance, specialized versions
of TCP such as RenoTcpAgent derive from (and override fonstfrom) class TcpAgent.

Two problems that have arisen in the2 model are downcasts and “weak base class.” Downcastingsrief¢he procedure

of using a base class pointer to an object and querying itratime to find out type information, used to explicitly cast th
pointer to a subclass pointer so that the subclass API casdx Weak base class refers to the problems that arise when
a class cannot be effectively reused (derived from) becialmseks necessary functionality, leading the developédraee to
modify the base class and causing proliferation of basa @& calls, some of which may not be semantically correcafbr
subclasses.

ns-3 is using a version of the query interface design pattern didahese problems. This design is based on the Component
Object Model design,although full binary-level compatibility of replaceableraponents is not supported and we have tried
to simplify the syntax and impact on model developers. Tipeets of COM that we are using provide:

e a component-oriented programming model, based on sepauatinterface and implementation. Interface objects are
what client code uses to talk to the underlying implemeatatiThis allows components supporting similar interfaces
to be swapped out.

e what if interfaces of replaceable components are not the83a@0OM provides a Querylnterface capability which, in
our implementation, provides a type-safe way to query wéredh object has a given capability or interface. The key to
this architecture is that interfaces can be added or agg@garun-time to objects without requiring rebuilding loét
base classes, thereby avoiding weak base classes and thionekent-side C++ downcasts to provide run-time type
information (RTTI).

e a system of unique identifiers for interfaces and classes.

e a component manager that is able to instantiate factoriéobjects themselves based on the identifiers mentioned
above.

e a memory management policy rooted in reference counting.

We do not presently enforce the COM rule that interfaces are pbstract and that one must separate the interface from
implementation. A different, fuller port of COM tes-3 was prototyped by Craig Dowellwho initially suggested the use of
COM concepts and implementation fag-3.

2.3.1 Query interface example

Query interface is a type-safe way to achieve a safe dowingastd to allow interfaces to be aggregated to an objecie]
using the query interface must inherit from the Interfaceebeass.

An example of the use of query interface is shown below. Gtersa node pointamn0 that points to an InternetNode object
with an implementation of IPv4. The client code wishes tofigure a default route. To do so, it must access an objectnvithi
the node that has an interface to the IP forwarding configuralt performs the following two steps:

Ptr<ilpv4> ipvd = n0->Querylnterface<llpv4d> (llpva::iid);
i pv4->Set Def aul t Route (I pv4Address ("10.1.1.2"), 1);

Lhttp://en.wikipedia.org/wiki/Component_Object_Model
2http://code.nsnam.org/craigdo/ns-3-com

In the first line a (smart) pointer of type lipv4 (“interfacePv4”) is declared and assigned to the result of a Quersfade
on the node for the interface type llpv4. This pointer valuk e returned null if the node doesn’t support the requeste
interface. If non-null, this pointer can be used like a ttiadial pointer to access the API of the lipv4 object.

To summarize, two benefits that we expect to leverage frosrettd as follows:

e Encapsulation: By separating interface from implementation, it permitpliementors to replace elements of the
protocol stack while remaining compliant with client cottattsupports the same interface. For example, one type of
node may include natives-3 models of protocols, while another may be a port of a Linuxlstand both may be
accessed by the same interface.

e Aggregation: Queryinterface allows for aggregation of interfaces attimme. For instance, an existing Node object
may have an “Energy Model” object and its interface aggmesdy&d it at run time (without modifying and recompiling
the node class). An existing model (such as a wireless nétajesan then query interface for the energy model and
act appropriately if the interface has been either builbithe underlying Node object or aggregated to it at run time.

We hope that this mode of programming will require much lessdfor developers to modify tims-3 base classes or libraries.

2.3.2 Object creation

Objects in C++ may be statically, dynamically, or automaticcreated. This holds true fois-3 also, but some objects in the
system- those using the replaceable component system-sbiaegeadditional frameworks available. Specifically, refiee
counted objects are dynamically allocated using operaat a templated MakeNewObject method, omaf8 component
manager.

The ComponentManager class is inspired by COM and is a ctzsbta create any Interface class by Classld, where Classld i

a symbolic name associated to a particular class. Eachudagsthe component manager declares a ungde : Cl assl d

static variable that is bound to a constructor. The follgviode shows how the component manager can be used to create
new objects of type A:

Ptr<A> a = 0;
a = Conponent Manager:: Create<A> (A :cid, A :iid);

The above code (from the unit tests for component-managereates a class A (which is subclassed from Interface) and
returning a pointer to A (as specified by As interface ID)..

The above code sample can be changed in a few ways. Firsttédtidaly aggregates interface B, a pointer to interface B
can be returned even if the underlying object is of type A:

Ptr b = 0;
b = Conponent Manager:: Create<A> (A :cid, B::iid);

Finally, the system accommodates non-default constreicAkssume that another constructor for A exists that takeokeln
argument, such asl ass A:: A (bool bo). If the constructor for this class has registered a new didgsuch as
cidOneBool), the following can be called:

Ptr b = 0;
b = Conmponent Manager : : Cr eat e<A, bool > (A::ci dOneBool, B::iid, true);

where the last parameter is the passed-in boolean valus tAstructor, and again assigning returning the intefagcger
B to the created object of type A. The classlds can be ovesridd run time also by the default value system describeavbelo

If a reference counted object is being new’ed and assignaddterence counting smart pointer (class Ptr), then a tetegbl
helper function is available and recommended to be used:

ns3:: Ptr b = ns3:: MakeNewObj ect () ;

2.4 Memory Management

Memory management in a C++ program is a complex process saoftein done incorrectly. We have settled on a reference
counting design described as follows.

All objects using reference counting maintain an intereégrence count to determine when an object can safely dedete
Each time that a pointer is obtained to an interface, theabbjeeference count is incremented by calliRgf () . It is the
obligation of the user of the pointer to explicitynr ef () the pointer when done. When the reference count falls to, zero
the object is deleted.

e When the client code obtains a pointer from the object itdetiugh object creation, or via Querylinterface, it does not
have to increment the reference count.

e When client code obtains a pointer from another source, (@@ying a pointer) it must caRef () to increment the
reference count.

o All users of the object pointer must cédhr ef () to release the reference.

The burden for callindJnr ef () is somewhat relieved by the use of the reference countingtgoater class described
below.

Users using a low-level API who wish to explicitly allocatermreference-counted objects on the heap, using operatgr n
are responsible for deleting such objects.

Packet objects are handled differently (without referesmenting); their design is described in the next chapter.

2.4.1 Reference counting smart pointer

ns-3 provides a smart pointer class similarBoost : : i nt rusi ve_pt r. This smart-pointer class assumes that the under-
lying type provides a pair of Ref and Unref methods that apeeted to increment and decrement the internal refcouieof t
object instance. We saw an example of this class in the qo&gface code above.

This implementation allows you to manipulate the smart favias if it was a normal pointer: you can compare it with zero,
compare it against other pointers, assign zero to it, etc.

It is possible to extract the raw pointer from this smart peinvith the GetPointer and PeekPointer methods.
If you want to store a newed object into a smart pointer, wemanend you to use the MakeNewObject template functions to

create the object and store it in a smart pointer to avoid nngieaks. These functions are really small conveniancetions
and their goal is just is save you a small bit of typing.

2.5 Configuration

Configuration of objects is typically done by accessing gedails public API to change the values of member variabléstT
is no different inns-3 but the design tries to ease this for users with the folloviadpniques.

2.5.1 Stock topology code

A number of static methods are being defined to aid in topotmgstruction. These objects typically use base classgmsint
to refer to constituent objects (enabling software reusd)ae therefore a primary benefactor of the COM-like framms
(Querylnterface, Component Manager) described above.tHeomoment, only a few PointToPointTopology objects are
available (insr c/ devi ces/ p2p/ p2p- t opol ogy. cc, h) but more topologies such as WirelessGrid are planned.

For example, the following method constructs a point-taaplink (using PointToPointChannel and PointToPointNetize
objects) between two nodes nl and n2, with the specified détahd one way progagation delay. It essentially wraps
a bunch of low-level API calls to create these NetDevices @hdnnel. The type of objects used in this topology can be
overridden as long as they derive from the common base slasszl in these topology objects. Users may write their own
topology objects, buts-3 will maintain a few.

2.5.2 Default values and command line arguments

Simulation users often want to run many instances with giiglifferent parametersis-2 had a system whereby users could
change the value of a C++ variable if it was suitably bound ¢eet cl / | i b/ ns- def aul t. tcl script ofns-2).

In ns-3, we have developed the following system for default valaad,have hooked it into a command-line argument parsing
facility. The basic idea is to use a templated global vagdhcility to store bindings between string names of vagapl
“help” text on allowable parameters, and the default vatiselfi. This avoids users needing to rebuild core librageshtange
parameters, and allows users to avoid rebuilding any filadl dtthe command-line facility is used.

The program irsanpl es/ mai n- def aul t - val ue. cc shows how this facility can be used. Briefly, any variable of a
supported type in the system can be bound to a unique strifigsbgeclaring a static variable such as

static IntegerDefaultValue<int> defaultTestlntl ("testlntl", "helplntl", 33);

which declares that testintl is an integer with a defaull@alf 33. The second parameter is a string that can be modified
by the developer to encode whatever information is usefgl (enits). Then, any actual integer in the system can lee lat
assigned to the value of defaultTestInt1, as typically daren object’s constructor.

If a variable in the system has been bound to the string fi&ist] the following C++ statement (typically invoked neaet
top of a main program) will cause it to be initialized instead.g. the integer value 57:

Bind("testlntl1l", "57");

While a user can change this default by modifying the mairg@m, the command line can be used as well. Running
"./sanpl e-defaul t-val ue -hel p" will cause a list of possible configurable values to be pdmvet. For this
example, the following string is printed:

--testInt1=[int32_t(-2147483648: 2147483647): 33] hel pI nt 1

This tells the user that testintl is of typat 32_t with a range of values specified between the parentheses, default
value of 33 (that can be overridden).

This facility can also be used to swap out the type of an olgieain-time, if the particular class has been integratemtim
system. For instance, the fisxanpl es/ si npl e- p2p. cc shows a line as follows:

Bi nd (" Queue", "DropTail Queue");

where DropTailQueue is a subclass of class Queue. This fypeding will allow callers of theQueue: : Cr eat eDef aul t
() factory method to obtain a suitably subclassed Queue object

Consult thesanpl es/ mai n- def aul t - val ue. cc example program for more information on how to use this figcil

2.6 Tracing

The design objective has been to offer the user a lot of flltyilih selecting which events to monitor, and to allow users
freedom to use possibly complex logic to decide what thinded to trace files or to perform inline statistics calcldas.

To provide this flexibility, every model must define a set af& event sources. Each of these trace event source caatgener
one type of event and can specify any number of argumentsrigeger-event information from the trace event source to
the listening trace event sinks.

While this design allows users to hand-specify a differesnte sink to each trace source, ns-3 also provides a set pfesim
trace helpers which perform bulk connection of the defaalte sources to a set of trace sinks which generate trace files
in various specific formats. For example, pcap output carribi@lty generated for the default ipv4 stack by instaritigt

an object of type PcapTrace and calling its TraceAlllp mdththe example filexanpl es/ si npl e- p2p. cc contains
examples for producing both ascii and pcap traces usingnipislevel API.

To integrate in this framework, model developers need to:

o define and instantiate a set of trace sources of type Calllbac&Source
e trigger trace events by invoking each of the trace sourde thi¢ per-event arguments needed

e implement a method named CreateTraceResolver which takasaContext as argument and returns a TraceResolver.
Implementing this method is pretty trivial: it is a matterin§tanciating a CompositeTraceResolver and register each
trace source in it.

Later, when the time comes to connect the user’s trace sthiks i, the user’s callbacks. See section 4.2) to the nmodel’
trace sources, the user can use the TraceRoot::Conneocbanetiich takes as an argument a string pattern which iden-
tifies the set of trace sources stored in trace resolverrninstato connect. For example, a string pattern could loak lik
'Inodes/*/netdevices/*/*' which would identify all tracevents in all netdevice objects contained in all nodes.

2.7 Scaling

‘ Note: the ns-3.0.2 release does not include specific sufipataling techniques. This section will be added at a ldste.

10

2.8 Emulation

‘ Note: the ns-3.0.2 release does not include support foraionl

2.9 Scripting

‘ Note: the ns-3.0.2 release does not include support foroRyhripting. This section will be added at a later date.

11

3 Key simulation objects

This chapter walks through the primary simulation objentthie simulator, relating to the sending and receiving okpt
between nodes. Figure 3.1 depicts, at a high-level, thectsbyee will discuss in this chapter: Node, NetDevice, Chgnne
Packet, and interface aspects thereof.

3.1 Node

A Node is an abstract base classn#®3. It contains only a few objects: a unique integer ID, a systBn(for distributed
simulation), a list of NetDevices, and a list of ApplicatforFigure 3.1 depicts this high-level view.

Node
4 N\

e 7 ,u‘“ X_I I ke C_ based APl S
-~ (sockets, libc)

Packet

— —|~ Linux-1like
API * unique id (m.uid)

* Buf fer object

* Tags contai ner object

Channel

Channel

Figure 3.1: High-level node architecture.

Users can create their own Node subclassesnafddwill provide a few. Currentlycl ass | nt er net Node is provided,
which implements a rudimentary UDP/IPv4 stack.

The design tries to avoid putting too many dependenciesehake class Node, Application, or NetDevice for the follayvi

e |P version, or whether IP is at all even used in the Node.

e implementation details of the IP stack

The design therefore uses the design pattern of softwarapsutation to allow Applications and NetDevices to talk to
implementation- independent interfaces (that can be gdetia Querylnterface— see section 2.3) of the underlying/TeC
implementations.

For instance, we expect to support a natige3 version of TCP/IP as well as ported Linux or FreeBSD stackhesé

implementation details can be hidden behind an IPv4 interfdject that is queried by the application or scenarioldpee.
If users want to experiment with non-IP stacks, they can deigmut having IP dependencies on the NetDevices, Channels

12

and Applications. This is why the Stack objects in Figure &4 illustrated with dotted lines; these may be built quite
differently for different Node subclasses. We try to pravian interface to the NetDevice corresponding to the device-
independent sublayer in Linux, and model the interface erdbp of the stacks using typical Unix-like abstractionsgfoin
(C-based) sockets API and other system calls such as fouift ior other utilities.

3.2 NetDevice and Channel

A key node object i€l ass Net Devi ce, which represents a physical interface on a node (such athanriet interface).
We discuss also in this section tbeass Channel , which is closely coupled to the attached NetDevices.

The basic idea is to mimic the Linux architecture at the beupdetween device-independent sublayer of the network
device layer and the IP layer (figure 3.2). The top interfat&letDevice approximates the point in the Linux kernel
wheredev_queue_xni t () is called. The data members of NetDevice are similar to tHosad in Linux st ruct

net _devi ce. The IPv4 or IPv6 portion of a devica{ruct i n_devi ce) is modeled by a separate object on top of
NetDevice (not discussed in this section).

Net Devi ce: : Send
(Packet p, MacAddress dest,
uint16_t protocol)

m r ecei veCal | back
(cal l back registered to recei ve packets)

!

pure virtual quueuing operation *NetDevice
cl ass Net Devi ce subcl asses:
stores: i nout stores
- node pointer coo uzue - Queue pointer
- MacAddr ess ?if present) - Receive() nethod
- Mru - (subcl assed)
- up/down state Channel pointer
- receive
cal | back)
- up/ down —t *Net Devi ce: : Recei ve ()
cal | back (Packet p)
notification
- Get Channel () from *Channe

Figure 3.2: Overview of boundary between Network Device lagdr-3.

Figure 3.2 illustrates some of the main objects and actior@ving sending a packet up and down the stack. First, tisexe
abstract! ass Net Devi ce thatimplements a Node pointer, MacAddress, string nange, (eth0"), MTU, and has a flag
for setting the state to be up or down. Two callbacks are degdiithe first allows a higher-layer protocol to registerrection

to be used to send the packet up the stack; this callbacksspreo decouple the NetDevice from the layer-3 protocovabo
as described in the previous section. Another callbackvalkhe NetDevice to notify listeners of a change in statealiin
there is a method provided to return a base class Channekpairhich is forwarded to a NetDevice subclass that agtuall
has the pointer.

NetDevices in use in the simulation will all subclass frons thase class; an example is in

src/ devi ces/ p2p- net - devi ce. cc, h. These subclasses are matched to a particular corresgociaamnel type.
That is, for example, a PointToPointNetDevice is attacted PointToPointChannel. This convention provides tyfdetga
in avoiding the connection of incompatible Channel and N&iBe types. The subclass (denoteldet Devi ce in the
figure) also provides a Receive() method to allow packetstednt to it from the Channel; e.g. PointToPointChannes$call
PointToPointNetDevice::Receive(). Any queue implemgaie are stored in these subclasses.

Packets traversing the stack in the outbound directiontballbase class NetDevice::Send() which forwards the pdoket

13

the appropriate subclass method. Packets traversingdble ist the inbound direction will call the callback regigtdwith
m_receiveCallback when the NetDevice is done processigdicket and wants to hand it to the higher layer.

3.3 Packet

The design of the Packet frameworkref 3 was heavily guided by a few important use-cases:

e avoid changing the core of the simulator to introduce nevesygf packet headers or trailers
e maximize the ease of integration with real-world code argiesys

e make it easy to support fragmentation, defragmentatiah, @ncatenation which are important, especially in wggle
systems.

¢ make memory management of this object efficient

o allow actual application data or dummy application bytessimulated applications

ns-3 Packet objects contain a buffer of bytes: protocol headedstiailers are serialized in this buffer of bytes using user
provided serialization and deserialization routines. @tietent of this byte buffer is expected to match bit-forthé content
of a real packet on a real network implementing the prototuiterest.

Fragmentation and defragmentation are quite natural téeimgnt within this context: since we have a buffer of reaklgyt
we can split it in multiple fragments and re-assemble thesgnfients. We expect that this choice will make it really g¢asy
wrap our Packet data structure within Linux-style skb or B&{le mbuf to integrate real-world kernel code in the siatoit.
We also expect that performing a real-time plug of the sitoulep a real-world network will be easy.

Because we understand that simulation developers oftémtwistore in packet objects data which is not found in the real
packets (such as timestamps or any kind of similar in-bama) dlhens-3 Packet class can also store extra per-packet "Tags"
which are 16 bytes blobs of data. Any Packet can store any auoflunique Tags, each of which is uniquely identified by
its C++ type. These tags make it easy to attach per-modetdagacket without having to patch the main Packet class or
Packet facilities.

Memory management of Packet objects is entirely automaticextremely efficient: memory for the application-leveypa
load can be modelized by a virtual buffer of zero-filled byfsvhich memory is never allocated unless explicitely rested
by the user or unless the packet is fragmented. Furtherroopgijng, adding, and, removing headers or trailers to agtack
has been optimized to be virtually free through a techniquann as Copy On Write.

3.4 Sockets and Applications

Applications are user defined processes that generate ttaffiend across the networks to be simulatest3 provides a
framework for developing different types of applicatiohsit have different traffic patterns. There is an Applicatiase
class that allows one to define new traffic generation patteia inheritance from this class. Then one simply creates
the application and associates it with a node, and the agtic will send traffic down the protocol stack. The way that
applications on a node communicate with the node’s protsteak is via sockets.

14

3.4.1 Sockets

The sockets API exported ts-3 attempts to mimic the golden standard BSD sockets API. Thiemdifference in the
implementation is that while BSD socket calls are synchusnghat is, they do not return control to their caller urtiiy
complete), thens-3 socket API returns immediately. This is due to the fact timaa isimulation environment where one
machine is simulating possibly thousands of socket calissscdifferent simulated machines simultaneously, theilsitar
simply cannot afford to wait for the socket function call &iurn. The way the software handles the situation insteag is
returning immediately, then using callbacks when othetipios of the code need to be notified of a socket event. For pleam
when in the course of the simulation a socket is directedsteri() on a specific port, the caller also provides a callback
handle when the socket recieves a connection request. stae()i method returns immediately, and then whenever ttieeso
recieves the connection, it invokes the callback to harfiecbnnection. Similar things happen for the other commokedo
APls, like send(), connect(), and bind().

15

4 Core Modules

This chapter discusses the design and implementation efatements ims-3. These items are built in two modulesaf e
andsi nul at or) with no other dependencies on the simulation code.

4.1 Event Scheduling

The ns-3 event scheduling framework was designed with th@xfimg use-cases in mind:

maximize code portability by ensuring reproducible timghkations in user models.

make it possible to increase the precision of the interna tvariable in the future.

make it easy to associate a specific function to be called \atsgecific event expires

make it easy to pass per-event data from the point when the svecheduled to the point when the event expires

4.1.1 Simulation time

Simulation time is kept track of internally using a 64bitager in units of nanoseconds. To make sure that this internal
variable can be easily changed to represent a higher-pretisie or that we can use a variable with a larger dynamigean
user programs never access directly this time variableedals the current simulation time is exported to the useuitin a
single method Simulator::Now () which returns an opaquecthjf type Time. Users can also easily create instancessof th
type through the functions Seconds, MilliSeconds, Micia®els, or NanoSeconds each of which takes a single argument i
the specified unit and returns an instance of a Time object.

Instances of the class Time can be used just like normal ensegr floating-point values: they support all the normal
arithmetic operators and can be converted to values in afgpime unit with Time::GetSeconds, Time::GetMilliSeatm
Time::GetMicroSeconds, and, Time::GetNanoSeconds.

These instances of the class Time store their time value ¥ &46it fixed-point integer variable. That is, the useiblés

time variables are kept track of with 64 bits of fractionakiger precision. If users are careful to perform all thethemtic
operations on Time variables, they can easily ensure thatdbde will behave exactly in the same way on multiple platfs.

4.1.2 Event creation and expiration

To schedule an event, users can call any of the Simulattrerfide functions:

voi d MyEvent (double a)
{

}

Eventld id = Sinul ator:: Schedul e (Seconds (10.0), &WEvent, 3.1415);

NS_ASSERT (is.lsRunning ());

16

i d. Cancel ();
NS_ASSERT (is.lsExpired ());
Si nul ator: : Renove (id);

Sinulator::Run ();

These Schedule functions all take as first argument a Tiriablar Their second argument is always a function pointdr an
the other arguments are the values which will be passed tastireevent function when the event expires. There can be up to
5 values to be passed to the user function.

Once scheduled, any event can be canceled (its cancel bittig sue) or removed (it is removed from the event list):Hbot
operations will ensure that the event never expires.

4.2 Callbacks

The callback APl ims-3is designed to minimize the overall coupling between varipieces of of the simulator by making
each module depend on the callback API itself rather tharemgmn other modules. It acts as a sort of third-party to
which work is delegated and which forwards this work to thepar target module. This callback API, being based on C++
templates, is type-safe; that is, it performs static typec&b to enforce proper signature compatibility betweelersabnd
callees. The APl is minimal, providing only two services:

e callback type declaration: a way to declare a type of caklvéith a given signature, and,

e callback instantiation: a way to instantiate a templateegated forwarding callback which can forward any calls to
another C++ class member method or C++ function.

The implementation is based on use of templates to impletherftunctor Design Pattern. It is used to declare the type of
a callback. Up to five arguments can be passed with the funptiinter to the callback. Callback instances are built with
the makeCallback template functions. Callback instanese plain old data (POD) semantics: the memory they alldsate
managed automatically, without user intervention whidbved one to pass around Callback instances by value. A sample
program is found irsanpl es/ mai n- cal | back. cc

17

