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Abstract. The Matlab BEM library HILBERT allows the numerical solution of the 2D Laplace
equation on some bounded Lipschitz domain with mixed boundary conditions by use of an
adaptive Galerkin boundary element method (BEM). This paper provides a documentation of
HILBERT. The reader will be introduced to the data structures of HILBERT and mesh-refinement
strategies. We discuss our approach of solving the Dirichlet problem (Section 5), the Neumann
problem (Section 6), the mixed boundary value problem with Dirichlet and Neumann bound-
ary conditions (Section 7), and the extension to problems with non-homogeneous volume forces
(Section 8). Besides a brief introduction to these problems, their equivalent integral formula-
tions, and the corresponding BEM discretizations, we put an emphasis on possible strategies to
steer an adaptive mesh-refining algorithm. In particular, various error estimators are discussed.
Another notable feature is a complete and detailed description of our Matlab implementation
which enhances the reader’s understanding of how to use the HILBERT program package.
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1. Introduction

The boundary element method is a discretization scheme for the numerical solution of elliptic
differential equations. On an analytical level, the differential equation, stated in the domain,
is reformulated in terms of a certain integral equation called representation theorem or third

Green’s formula. For the Laplace equation on some bounded Lipschitz domain Ω ⊂ R2, each
solution of

−∆u = f in Ω(1.1)

can explicitly be written in the form

u(x) = Ñf(x) + Ṽ φ(x)− K̃g(x) for all x ∈ Ω,(1.2)

where φ := ∂nu is the normal derivative and g := u|Γ is the trace of u on Γ := ∂Ω. The involved
linear integral operators read

Ñf(x) := − 1

2π

∫

Ω
log |x− y| f(y) dy,

Ṽ φ(x) := − 1

2π

∫

Γ
log |x− y|φ(y) dΓ(y),

K̃g(x) := − 1

2π

∫

Γ

(y − x) · ny
|y − x|2 g(y) dΓ(y),

(1.3)

where ny denotes the outer unit vector of Ω at some point y ∈ Γ. Put differently, the solution
u of (1.1) is known as soon as the Cauchy data (∂nu, u|Γ) are known on the entire boundary Γ.

If one considers the trace of u, the representation formula (1.2) becomes

g = u|Γ = Nf + V φ− (K − 1/2)g.(1.4)

If one considers the normal derivative of u, the representation formula (1.2) becomes

φ = ∂nu = N1f + (K ′ + 1/2)φ +Wg.(1.5)

The two linear equations (1.4)–(1.5) are known as Calderón system. It involves six linear
integral operators acting only on Γ: the simple-layer potential V , the double-layer potential
K with adjoint operator K ′, the hypersingular integral operator W , and the trace N and the

normal derivative N1 of the Newton potential Ñ .
For the boundary element method, the Laplace equation with given boundary data is equiv-

alently stated in terms of the Calderón system (1.4)–(1.5). This leads to a boundary integral
equation formulated on Γ. This integral equation is solved numerically to obtain (approxima-
tions of) the missing Cauchy data. In a postprocessing step, the computed Cauchy data are
then plugged into the representation formula (1.2) to obtain an approximation of the solution
u of the differential equation.

Examples for this approach are given in the subsequent sections: In Section 5, we consider the
Dirichlet problem, where g = u|Γ is known and where the unknown normal derivative φ = ∂nu
has to be computed. More precisely, we consider the weakly-singular integral formulation of

−∆u = 0 in Ω,

u = g on Γ.
(1.6)
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In Section 6, we consider the Neumann problem, where the normal derivative φ is known and
where the unknown trace g has to be computed. More precisely, we consider the hypersingular
integral formulation of

−∆u = 0 in Ω,

∂nu = φ on Γ.
(1.7)

Finally, in Section 7, we consider a mixed boundary value problem, where Γ is split into two
disjoint parts ΓD and ΓN and where g is known only on ΓD ⊂ Γ, whereas φ is known only on
ΓN ⊂ Γ. More precisely, we consider the so-called symmetric integral formulation of

−∆u = 0 in Ω,

u = g on ΓD,

∂nu = φ on ΓN .

(1.8)

All of these integral formulations lead to first-kind integral equations with elliptic integral
operators so that the Lax-Milgram lemma applies and provides existence and uniqueness of
discrete solutions.

Whereas this documentation focusses on the implementation of the adaptive lowest-order
BEM only, we refer to the literature for details on the analysis and the numerics of BEM:
For instance, the analysis of boundary integral equations is completely presented in the mono-
graph [25]. For the state of the art in numerical analysis, we refer to [30]. Fast BEM is discussed
in [29]. These algorithms are, however, beyond the scope of Matlab and consequently beyond
the scope of HILBERT. Finally, an introductory overview on the analysis of elliptic boundary
integral equations and the boundary element method is best found in [31].

1.1. What is HILBERTHILBERTHILBERT. Throughout, Γ = ∂Ω is the piecewise affine boundary of a polygonal
Lipschitz domain Ω ⊂ R2. Sometimes, Γ is partitioned into finitely many relatively open and
disjoint boundary pieces, e.g. in a Dirichlet boundary ΓD and a Neumann boundary ΓN , i.e.,
Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

Let Eℓ = {E1, . . . , EN} be a finite set of affine line segments Ej ∈ Eℓ, i.e., there holds

Ej = [aj , bj ] := conv{aj , bj}(1.9)

with certain aj, bj ∈ R2 with aj 6= bj . We say that Eℓ is a mesh (or triangulation) of Γ provided

that Γ =
⋃N

j=1Ej and |Ej ∩ Ek| = 0 for all Ej, Ek ∈ Eℓ with Ej 6= Ek. If Γ is partitioned
into ΓD and ΓN , we assume that this partition is resolved by Eℓ, i.e., Ej ∈ Eℓ satisfies either

Ej ⊆ ΓD or Ej ⊆ ΓN . Finally, Kℓ = {z1, . . . , zN} denotes the set of all nodes of the mesh Eℓ,
and we note that there holds #Eℓ = #Kℓ for the closed boundary Γ.

HILBERT [1] is a Matlab library for the solution of (1.6)–(1.8) by use of h-adaptive lowest-
order Galerkin BEM. In particular, missing Neumann data are approximated by an Eℓ-piecewise
constant function Φℓ ≈ φ, and missing Dirichlet data are approximated by an Eℓ-piecewise
affine and continuous function Gℓ ≈ g. Given an initial coarse mesh E0 of Γ, the adaptive loop
generates a sequence of improved meshes Eℓ by iterative local mesh-refinement. Throughout,
HILBERT uses the canonical bases, i.e., characteristic functions χj associated with elements
Ej ∈ Eℓ to represent discrete fluxes Φℓ and nodal hat functions ζk associated with nodes zk ∈ Kℓ

to represent discrete traces (of concentrations) Gℓ.

1.2. Outline of Documentation. Section 2 recalls some analytical preliminaries like the
definition of boundary integrals and the arclength derivative. Moreover, some notation is intro-
duced which is used throughout the entire document. In Section 3, we give a concise overview
on all functions and functionality provided by HILBERT. Section 4 discusses our implementation
of the local mesh-refinement and the marking strategy used in the adaptive mesh-refining algo-
rithms. The Dirichlet problem (1.6) and its numerical solution by use of HILBERT is discussed in
Section 5, whereas Section 6 is concerned with the Neumann problem (1.7). Section 7 treats the
use of HILBERT for the numerical solution of the mixed boundary value problem (1.8). Finally,
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Section 8 is devoted to the implementation of integral equations with non-homegeneous volume
forces in HILBERT and Section 9 gives a detailed overview of new error estimators and functions
for evaluating the integral operators.

2. Preliminaries

2.1. Functions on the Boundary. With each element Ej = [aj , bj ] ∈ Eℓ, we associate the
affine mapping

γj : [−1, 1] → Ej, γj(s) =
1

2

(
aj + bj + s(bj − aj)

)
(2.1)

which maps the reference element [−1, 1] ⊂ R bijectively onto Ej.
Let Pp(Eℓ) be the space of all Eℓ-piecewise polynomials of degree p ∈ N0 with respect to the

arclength. By definition, this means that for all fℓ ∈ Pp(Eℓ) and all elements Ej ∈ Eℓ, the
function fℓ ◦ γj : [−1, 1] → R satisfies

fℓ ◦ γj ∈ Pp[−1, 1],(2.2)

i.e., fℓ ◦ γj is a usual polynomial of degree (at most) p. Note that functions fℓ ∈ Pp(Eℓ) are, in
general, not continuous, but have jumps at the nodes of Eℓ.

In particular, P0(Eℓ) is the space of all Eℓ-piecewise constant functions. If χj ∈ P0(Eℓ) denotes
the characteristic function of Ej ∈ Eℓ, the set {χ1, . . . , χN} is a basis of P0(Eℓ).

One particular example for a function in P0(Eℓ) is the local mesh-width hℓ ∈ P0(Eℓ) which
is defined Eℓ-elementwise by

hℓ|E := length(E) = |b− a| for all E = [a, b] ∈ Eℓ.(2.3)

Let S1(Eℓ) := P1(Eℓ) ∩ C(Γ) denote the set of all continuous and (with respect to the arc-
length) Eℓ-piecewise affine functions. For each node zj ∈ Kℓ of Eℓ, let ζj ∈ S1(Eℓ) be the
associated hat function, i.e., ζj(zk) = δjk. Then, the set {ζ1, . . . , ζN} is a basis of S1(Eℓ).

In HILBERT, we only consider the lowest-order Galerkin BEM, and the spaces P0(Eℓ) and
S1(Eℓ) will be of major interest.

2.2. Boundary Integrals. Let I ⊂ R be a compact interval in R. For Ej ∈ Eℓ, let πj : I → Ej

be a continuously differentiable and bijective mapping. For any function f : Ej → R, the
boundary integral is then defined via

∫

Ej

f dΓ =

∫

Ej

f(x) dΓ(x) :=

∫

I
(f ◦ πj)(t) |π′j(t)| dt.(2.4)

One can prove that this definition is independent of the parametrization πj. For the reference
parametrization γj , there holds

∫

Ej

f dΓ =
length(Ej)

2

∫ 1

−1
f ◦ γj dt,

where length(Ej) := |bj − aj | denotes the Euclidean length of Ej = [aj , bj] ⊂ R2. For the
arclength parametrization

βj : [0, length(Ej)] → Ej , βj(t) := aj +
t

length(Ej)
(bj − aj)

holds
∫

Ej

f dΓ =

∫ length(Ej)

0
f ◦ βj dt.
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2.3. Arclength Derivative. Let I ⊂ R be a compact interval in R. For Ej ∈ Eℓ, let
πj : I → Ej be a continuously differentiable and bijective mapping with |π′j(t)| > 0 for all t ∈ I.

For any function f : Ej → R, the arclength derivative f ′ is then defined by

(f ′ ◦ πj)(t) =
1

|π′j(t)|
(f ◦ πj)′(t) for all x = πj(t) ∈ Ej .(2.5)

Again, one can show that this definition is independent of the chosen parametrization. For the
reference parametrization γj , we obtain

(f ′ ◦ γj)(t) =
2

length(Ej)
(f ◦ γj)′(t) for all x = γj(t) ∈ Ej ,

whereas the arclength parametrization βj leads to

f ′ ◦ βj = (f ◦ βj)′.

3. Overview on Hilbert

3.1. Tree Structure. The BEM library HILBERT is contained in a zip-file hilberttools.zip.
Unzipping this zip-archive, you obtain the following tree structure

hilberttools/

demos/

laplace/

poisson/

paper/

source/

make/

The root directory hilberttools/ contains this documentation documentation.pdf as well as
the m-files. Besides this, it contains the installation file and make.m to build the integral opera-
tors from theMatlab command line. The C-source codes of the integral operators are contained
in source/, and source/make/ contains HILBERT’s make system. The folders demos/laplace/
and demos/poisson/ contain examples and demo files which demonstrate the use of HILBERT.

3.2. Installation. To install HILBERT, unpack the zip-archive, change to the root folder,
start Matlab, and type make at the Matlab command line. If you have started Matlab in
graphical mode, some dialogs pop up and ask certain questions depending on your operating
system. If you are running Windows, you may choose to install optimized pre-compiled binaries
of all Mex functions. You may select between different versions which are optimized for different
numbers of CPU cores. Please note that the precompiled binaries depend on the versions 2008
and 2010 of Microsoft’s Visual C++ Redistributable package. These packages might be installed
on your system already, but in case one of them is missing Matlab will fail when calling any
of the Mex functions that ship with HILBERT. The Visual C++ Redistributable packages are
freely available at http://www.microsoft.com.

If you decide to compile HILBERT yourself, you may customize its configuration. If you select
”No”, a default configuration file will be created in source/make/Configure.m. Otherwise, a
configuration dialog pops up, where you may choose to enable multi-threading or change some
of HILBERT’s internal options. If you enable multi-threading, you have to make sure that you
compile HILBERT using either GCC or Microsoft’s Visual C Compiler and that a POSIX threads
library is available on your system. In case that you use UNIX or Linux, this is most certainly
the case. For Windows, HILBERT ships with the required libraries. If multi-threading is enabled,
HILBERT will use as many CPU cores as you specify to build the integral operator matrices.
This may lead to a huge speed-up on multi-core or multi-processor systems.

As soon as the configuration file has been created, all Mex functions will be compiled. The
progress is indicated on Matlab’s command line.
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If you want to remove the installed binaries, you may type make clean on Matlab’s com-
mand line from within HILBERT’s root directory. If you also want to remove HILBERT’s config-
uration, you may type make realclean.

If you start Matlab in non-graphical mode, text-based dialogs will appear on Matlab’s
command line, which provide the same features and options as the graphical dialogs.

3.3. Data Structure. The set of nodes Kℓ = {z1, . . . , zN} of the mesh Eℓ = {E1, . . . , EN}
is represented by the (N × 2)-array coordinates . The j-th row of coordinates stores the
coordinates of the j-th node zj = (xj , yj) ∈ R2 as

coordinates( j,:) = [ xj yj ].

If Γ is not split into several parts, the mesh Eℓ is represented by the (N × 2)-(formally integer)
array elements . The i-th boundary element Ei = [zj , zk] with nodes zj , zk ∈ Kℓ is stored as

elements( i,:) = [ j k ],

where the nodes are given in counterclockwise order, i.e., the parametrization of the boundary
element Ei ⊂ Γ is mathematically positive. Put differently, the outer normal vector ni ∈ R2

of Γ on a boundary element Ei = [zj , zk] reads

ni =
1

|zk − zj |

(
yk − yj
xj − xk

)
with zj = (xj , yj), zk = (xk, yk).

If Γ is split into Dirichlet boundary ΓD and Neumann boundary ΓN , the mesh Eℓ is represented
by the (ND×2)-array dirichlet and the (NN×2)-array neumann which describe the elements
Ej ⊆ ΓD and Ek ⊆ ΓN as before. Then, there formally holds

elements = [dirichlet;neumann]

with N = ND + NN . The array elements , however, is not explicitly built or stored in this
case.

For problems with non-homogeneous volume force, an additional triangulation Tℓ = {T1, . . . , Tn}
of Ω is necessary. The set of vertices vj ∈ R2 of Tℓ is denoted by Vℓ = {v1, . . . , vm} and rep-
resented by the (m × 2)-array vertices . As for coordinates , the j-th row of vertices
stores the j-th vertex vj = (xj , yj) ∈ R2 as

vertices( j,:) = [ xj yj ].

The triangulation Tℓ is represented by the (n × 3)- (formally integer) array triangles . The
p-th triangle Tp = conv{vi, vj , vk} with vi, vj , vk ∈ Tℓ is stored as

triangles( p,:) = [ i j k ].

The order is chosen in a mathematically positive way, i.e. zi, zj , zk are given in counter-clockwise
order. Moreover, the edge conv{vi, vj} is assumed to be the reference edge of Tp ∈ Tℓ for later
mesh-refinement, see 4.4 below.

3.4. Overview on Functions and Functionality. In this section, we list all functions
provided by HILBERT, describe their input and output parameters, provide a short overview on
their functionality, and give links to a detailed description within this documentation.

Throughout, let Eℓ = {E1, . . . , EN} be a given mesh of Γ with nodes Kℓ = {z1, . . . , zN}
described in terms of coordinates and elements . Recall that χj denotes the characteristic
function associated with Ej ∈ Eℓ and that ζk denotes the hat function associated with zk ∈ Kℓ.
Moreover, as far as non-homogeneous volume forces are involved, Tℓ = {T1, . . . , Tn} denotes a
regular triangulation of Ω into non-degenerate triangles Ti ∈ Tℓ, and Vℓ = {v1, . . . , vm} denotes
the corresponding set of vertices.

3.4.1. General Functions. For marking elements in an adaptive mesh-refining strategy, we
use the Dörfler marking introduced in [13]. This is realized in a generalized way by the function

[marked [,marked2,..]] = markElements(theta [,rho], indicator1 [,indicator2,..]);

7



see Section 4.1 for details.
For the local mesh-refinement of the boundary mesh Eℓ, we realize an Algorithm analyzed

in [3] which is proven to be optimal with respect to the number of generated elements. For a
mesh Eℓ described in terms of coordinates and elements and a vector marked containing
the indices of elements Ej ∈ Eℓ to be refined, the function call reads

[coord,elem,father2son] = refineBoundaryMesh(coordinates,elements,marked);

where the generated mesh Eℓ+1 is described by coord and elem . Moreover, father2son
returns a link between the meshes Eℓ+1 and Eℓ. Further optional arguments of the function are
discussed in Section 4.3. In particular, this includes the mesh-refinement if Γ is split, e.g., into
Dirichlet and Neumann boundary parts.

Next, we consider a function for local mesh-refinement of a coupled mesh. Let Tℓ be a trian-
gulation of the domain Ω and Eℓ = Tℓ|Γ be the boundary mesh for Γ := ∂Ω. The triangulation
is described in terms of vertices and triangles and the boundary mesh is described in
terms of vertices and boundary . A vector marked contains the indices of the elements
Tj ∈ Tℓ of the elements of the triangulation that are refined and a vector marked boundary
contains the indices of the boundary elements Ej ∈ Eℓ that are refined. Then the function call
reads

[vert, tri, bdry, father2volumes, father2boundary] ...

= refineMesh(vertices, triangles, boundary, marked, marked boundary)

For the local mesh-refinement of the volume triangulation Tℓ, we use newest vertex bisection,
where marked elements Ti ∈ Tℓ are refined by one bisection, see Section 4.4. For a triangulation
Tℓ described in terms of vertices and triangles and a vector marked containing the
indices of elements Tj ∈ Tℓ to be refined, the function call reads

[vert,tri] = refineMesh(vertices,triangles,marked);

where the generated mesh Tℓ+1 is described by vert and tri . Further optional arguments of
the function allow to treat meshes, where the boundary mesh Eℓ = Tℓ|Γ is the partition of Γ
induced by Tℓ. We refer to Section 4.4 for a detailed discussion of the optional parameters.

When dealing with mixed boundary partitions and/or non-homogeneous volume forces, it is
sometimes necessary to change the numbering of the boundary nodes Kℓ = {z1, . . . , zN} (or
vertices Vℓ) such that, e.g., the Neumann nodes are first, i.e. Kℓ ∩ ΓN = {z1, . . . , zNN

}. This
reordering is done by use of

[coordinates,neumann,dirichlet] = buildSortedMesh(coordinates,neumann,dirichlet);

Moreover, this function can be used to generate the boundary partition Eℓ := Tℓ|Γ induced by
a volume mesh Tℓ

[vertices,triangles,coordinates,elements] = buildSortedMesh(vertices,triangles);

For further optional parameters, we refer to Section 4.2.

3.4.2. Discrete Integral Operators. The discrete simple-layer potential matrix

V ∈ RN×N
sym , Vjk = 〈V χk , χj〉L2(Γ)(3.1)

is returned by call of

V = buildV(coordinates,elements [,eta]);

Note that V is a dense matrix. Since Matlab does not easily allow matrix compression
techniques like hierarchical matrices [20] or the fast multipole method, the assembly of V (and
the other discrete integral operators below) as well as the storage is of quadratic complexity.
To lower the computational time in Matlab, the computation is done in C via the Matlab-
MEX interface. We stress that all matrix entries can be computed analytically by use of
analytic anti-derivatives derived, e.g., in [22]. If numerical stability is concerned, it is, however,
better to compute certain entries by use of numerical quadrature instead, see [24]. The optional
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admissibility parameter eta determines whether certain entries Vjk are computed by numerical
quadrature instead of analytic integration. Details are found in Section 5.2.

The discrete double-layer potential matrix

K ∈ RN×N , Kjk = 〈Kζk , χj〉L2(Γ)(3.2)

is returned by call of

K = buildK(coordinates,elements [,eta]);

see Section 5.2. The discrete hypersingular integral operator matrix

W ∈ RN×N
sym , Wjk = 〈Wζk , ζj〉L2(Γ)(3.3)

is returned by call of

W = buildW(coordinates,elements [,eta]);

see Section 6.2. As above, the optional parameter eta in both functions determines whether
all matrix entries are computed analytically via anti-derivatives from [22] or whether certain
entries are computed by numerical quadrature [24].

Examples with non-homogeneous volume force f 6= 0 additionally involve the discrete Newton
potential matrix

N ∈ RN×n, Njk = 〈NχTk
, χj〉L2(Γ),(3.4)

where χj is the characteristic function of Ej ∈ Eℓ = {E1, . . . , EN}, whereas χTk
is the char-

acteristic function of the triangle Tk ∈ Tℓ = {T1, . . . , Tn}. This matrix is returned by call
of

N = buildN(coordinates,elements,vertices,triangles [,eta]);

see Section 8.2.
Finally, the jump conditions of the double-layer potential K and its adjoint K ′ give rise to

the mass-type matrix

M ∈ RN×N , Mjk = 〈ζk , χj〉L2(Γ)(3.5)

This sparse matrix is provided by

M = buildM(coordinates,elements);

see Section 5.3.

3.4.3. Numerical Solution of Dirichlet Problem. The Laplace problem with Dirichlet
boundary condition (1.6) is equivalently recast in Symm’s integral equation

V φ = (K + 1/2)g

with g being the known Dirichlet data and φ being the unknown Neumann data. We refer to
Section 5 for details. In the Galerkin formulation, we replace the Dirichlet data g by its nodal
interpolant or its L2-projection Gℓ in S1(Eℓ)

By approximation of g, we introduce an additional error which is controlled by the so-called
Dirichlet data oscillations

osc2D,ℓ =
∑

E∈Eℓ

oscD,ℓ(E)2 with oscℓ(E)2 = length(E)‖(g −Gℓ)
′‖2L2(E),(3.6)

cf. [6] and [21]. The function call

[oscD,gh] = computeOscDirichlet(coordinates,elements,g);

returns a column vector with oscD(j) = oscD,ℓ(Ej)
2 as well as the nodal vector gh of g, see

Section 5.1.1. To discretize g by the L2-projection, one uses the function call

[oscD,gh] = computeOscDirichletL2(coordinates,elements,g);
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where gh contains the nodal values of Gℓ, see Section 5.1.2.
The right-hand side vector of the Galerkin scheme then takes the form

b ∈ RN with bj = 〈(K + 1/2)Gℓ , χj〉L2(Γ)(3.7)

and is computed by

b = buildSymmRHS(coordinates,elements,gh);

where gh is the nodal vector of g (or an arbitrary nodal vector of another approximation Gℓ of
g), see Section 5.4.

In academic experiments, the exact solution φ ∈ L2(Γ) is known, and

err2N,ℓ + osc2D,ℓ =
∑

E∈Eℓ

(
errN,ℓ(E)2 + oscD,ℓ(E)2

)
(3.8)

with errN,ℓ(E)2 = length(E)‖φ−Φℓ‖2L2(E) is an upper bound for the Galerkin error |||φ−Φℓ|||2V
with respect to the energy norm ||| · |||V . The function call

err = computeErrNeumann(coordinates,elements,x,phi);

returns a column vector with err(j) = errℓ(Ej)
2. Here, phi is a function handle for the

known exact solution and x is the coefficient vector of the Galerkin solution Φℓ =
∑N

j=1 xjχj.
We refer to Section 5.5 for details.

For a posteriori error estimation and to steer an adaptive mesh-refinement, HILBERT includes

four (h− h/2)-based error estimators from [18, 15], discussed in Section 5.6 in detail: With Φ̂ℓ

a more accurate Galerkin solution with respect to a uniformly refined mesh Êℓ, the a posteriori
error estimators

ηℓ = |||Φ̂ℓ − Φℓ|||V and µ2ℓ =
∑

E∈Eℓ

µℓ(E)2 with µℓ(E)2 = length(E) ‖Φ̂ℓ − Φℓ‖2L2(E)(3.9)

can be computed by

eta = computeEstSlpEta(father2son,V fine,x fine,x coarse);

and

mu = computeEstSlpMu(coordinates,elements,father2son,x fine,x coarse);

respectively. Here, V fine is the Galerkin matrix for the uniformly refined mesh Êℓ, and x
and x fine are the coefficient vectors for Φℓ and Φ̂ℓ, respectively. Then, eta = η2ℓ is a scalar
and mu is a column vector with mu(j) = µℓ(Ej)

2. The additional field father2son describes

how to obtain Êℓ from the given mesh Eℓ, cf. Section 4.3. An adaptive algorithm based on µℓ is
realized in the Matlab script adaptiveSymmMu found in the subdirectory demos/laplace/.

The computation of Φℓ can be avoided by taking the L2-projection onto P0(Eℓ). This leads
to a posteriori error estimators

η̃ℓ = |||(1−Πℓ)Φ̂ℓ|||V and µ̃ 2
ℓ =

∑

E∈Eℓ

µ̃ℓ(E)2 with µ̃ℓ(E)2 = length(E) ‖(1 −Πℓ)Φ̂ℓ‖2L2(E)

(3.10)

which are computed by

eta tilde = computeEstSlpEtaTilde(father2son,V fine,x fine);

and

mu tilde = computeEstSlpMuTilde(coordinates,elements,father2son,x fine);

Then, eta tilde = η̃ 2
ℓ and mu tilde is a column vector with mu tilde(j) = µ̃ℓ(Ej)

2.
An adaptive algorithm based on µ̃ℓ is realized in theMatlab script adaptiveSymmMuTilde

found in the subdirectory demos/laplace/. Details are given in Section 5.7.1.
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Another estimator which is based on the h − h/2 structure ist the two-level error estimator
τℓ from [27] which is called by

tau = computeEstSlpTau(father2son, V fine, b fine, x);

Here, V fine is the Galerkin matrix for the uniformly refined mesh Êℓ, and the vector b fine is
the corresponding right-hand side vector returned by the function buildSymmRHS. For the de-
tailed definition of τℓ, we refer to Section 9.4. The example file adaptiveSymmHierarchical
implements an adaptive algorithm steered by τℓ.

A completely different error estimation approach is implemented by the weighted-residual
error estimator ρℓ from [8], which is called by

ind = computeEstSlpResidual(coordinates,elements,x,gh);

where x is the coefficient vector of Φℓ and gh is the discretized data returned by computeOscDirichlet
or computeOscDirichletL2. The function can also be used to compute the estimator for
the indirect formulation of Symm’s integral equation and it can handle extra volume forces. For
details, we refer to Section 9.7. The example files adaptiveSymmResidual and
adaptiveSymmResidualIndirect implement adaptive algorithms steered by ρℓ.

3.4.4. Numerical Solution of Neumann Problem. The Laplace problem with Neumann
boundary condition (1.7) is equivalently recast in the hypersingular integral equation

Wg = (1/2 −K ′)φ

with g being the unknown Dirichlet data and φ being the known Neumann data. We refer to
Section 6 for details.

In the Galerkin formulation, we replace the Neumann data φ by its L2-projection Φℓ. Sim-
ilar to above, the additional approximation error is controlled by the so-called Neumann data
oscillations

osc2N,ℓ =
∑

E∈Eℓ

oscN,ℓ(E)2 with oscN,ℓ(E)2 = length(E)‖φ − Φℓ‖2L2(E)(3.11)

introduced in [6]. The function call

[oscN,phih] = computeOscNeumann(coordinates,elements,phi);

returns a column vector with oscN(j) = oscN,ℓ(Ej)
2 as well as the elementwise values phih

of Φℓ, cf. Section 6.1.
The right-hand side vector of the Galerkin scheme then takes the form

b ∈ RN with bj = 〈(1/2 −K ′)Φℓ , ζj〉L2(Γ)(3.12)

and is computed by

b = buildHypsingRHS(coordinates,elements,phih);

where the column vector phih provides the elementwise values of the L2-projection Φℓ (or
another piecewise constant approximation of φ), see Section 6.4.

Since the hypersingular integral operator W is only semi-elliptic with kernel being the con-
stant functions, we use the Galerkin matrix

W+ S ∈ RN×N
sym with Sjk =

( ∫

Γ
ζj dΓ

)( ∫

Γ
ζk dΓ

)
.

The stabilization matrix S is provided by

S = buildHypsingStabilization(coordinates,elements);

cf. Section 6.3.
In academic experiments, the exact solution g ∈ H1(Γ) is known, and

err2D,ℓ + osc2N,ℓ =
∑

E∈Eℓ

errD,ℓ(E)2 + oscN,ℓ(E)2(3.13)
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with errD,ℓ(E)2 = length(E)‖(g − Gℓ)
′‖2L2(E) is an upper bound for the Galerkin error |||g −

Gℓ|||2W+S with respect to the energy norm ||| · |||W+S. The function call

errD = computeErrDirichlet(coordinates,elements,x,g);

returns a column vector with errD(j) = errD,ℓ(Ej)
2. Here, g is a function handle for the

known exact solution and x is the nodal vector of the Galerkin solution Gℓ =
∑N

j=1 xjζj. We
refer to Section 6.5 for details.

For a posteriori error estimation and to steer an adaptive mesh-refinement, HILBERT includes
four (h− h/2)-based error estimators from [16], discussed in Section 6.6 in detail: These read

ηℓ = |||Ĝℓ −Gℓ|||W+S and µ2ℓ =
∑

E∈Eℓ

µℓ(E)2 with µℓ(E)2 = length(E) ‖(Ĝℓ −Gℓ)
′‖2L2(E)

η̃ℓ = |||(1 − Iℓ)Ĝℓ|||W+S and µ̃ 2
ℓ =

∑

E∈Eℓ

µ̃ℓ(E)2 with µ̃ℓ(E)2 = length(E) ‖((1 − Iℓ)Ĝℓ)
′‖2L2(E)

with Iℓ the nodal interpolation onto S1(Tℓ). These are computed by

eta = computeEstHypEta(elem fine,elements,father2son,WS fine,x fine,x);

eta tilde = computeEstHypEtaTilde(elem fine,elements,father2son,WS fine,x fine);

and

mu = computeEstHypMu(elem fine,elements,father2son,x fine,x);

mu tilde = computeEstHypMuTilde(elem fine,elements,father2son,x fine);

Then, eta = η2ℓ as well as eta tilde = η̃ 2
ℓ are scalars, whereas and muas well as mu tilde

are column vectors with mu(j) = µℓ(Ej)
2 and mu tilde(j) = µ̃ℓ(Ej)

2, respectively. As

input, these functions take elements and elem fine which describe Eℓ and Êℓ, respectively,
as well as the link between both meshes given by father2son . WSfine is the Galerkin matrix

for Êℓ. The vectors x and x fine are the nodal vectors of the Galerkin solutions Gℓ and Ĝℓ,
respectively.

Adaptive algorithms based on µℓ and µ̃ℓ are implemented in theMatlab scripts adaptiveHypMu
and adaptiveHypMuTilde in the subdirectory demos/laplace/, cf. Section 6.7.1.

Similar to Symm’s integral equation, we implement the two-level estimator τℓ from [26, 23]
in

tau = computeEstHypTau(elements fine,elements,father2son,W fine,b fine,x);

For the detailed definition of τℓ, we refer to Section 9.5. The vector b fine is the right-hand
side vector returned by the function buildHypsingRHS. The example file
adaptiveHypHierarchical implements an adaptive algorithm steered by τℓ. The weighted-
residual error estimator ρℓ from [8] for the hypersingular integral equation is called by

ind = computeEstHypResidual(coordinates,elements,gh,phih)

where gh describes the solution Gℓ of (6.7) and phih is the discretized data returned by
computeOscNeumann. The function can also be used to compute the estimator for the
indirect formulation of the hypersingular integral equation and it can handle extra volume
forces. For details, we refer to Section 9.8. The example files adaptiveHypResidual and
adaptiveHypResidualIndirect implement an adaptive algorithms steered by ρℓ.

3.4.5. Numerical Solution of Mixed Boundary Value Problem. The Laplace problem
with mixed boundary condition (1.8) is equivalently recast in an integral equation which involves
the Calderón projector, see Section 7. Our implementation is based on the functions provided
for the Dirichlet and Neumann problem. Note that Eℓ is now given in terms of coordinates ,
dirichlet , and neumann.

In the problem formulation, the Dirichlet data g are only known on ΓD. For the Galerkin
formulation, one has to fix some extension g to Γ and to replace g by its nodal interpolation
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Gℓ. Since g is only implicitly built on the initial mesh E0, we need, however, to guarantee
that Gℓ|ΓN

= g|ΓN
. Moreover, the Neumann data φ are only known on ΓN , and we extend φ

implicitly by zero to a function φ on the entire boundary Γ. For the Galerkin scheme, φ is then
replaced by its L2-projection Φℓ onto the piecewise constants.

By replacing (g, φ) by some approximation (Gℓ,Φℓ), we introduce an additional error which
is controlled by the Dirichlet and Neumann data oscillations

osc2D,ℓ =
∑

E∈Eℓ

oscD,ℓ(E)2 with osc2D,ℓ = length(E) ‖(g −Gℓ)
′‖2L2(E),(3.14)

osc2N,ℓ =
∑

E∈Eℓ

oscN,ℓ(E)2 with osc2N,ℓ = length(E) ‖φ − Φℓ‖2L2(E),(3.15)

see [6]. Our particular choice of Gℓ and Φℓ leads to oscD,ℓ(E) = 0 for E ⊆ ΓN and oscN,ℓ(E) = 0

for E ⊆ ΓD, respectively. The function call

[oscD,oscN,gh,phih] = computeOscMixed(coordinates,neumann,dirichlet,g,phi);

returns the column vectors with the (squared) data oscillations on ΓD and ΓN as well as vectors
gh and phih which provide the nodal vector ofGℓ and the elementwise values of Φℓ, respectively.

As has been pointed out before, this function call must not be used if the mesh Eℓ is obtained
by refinement of Eℓ−1, since otherwise the chosen prolongation g is changed. Instead, one may
use the function call

[oscD,oscN,gh,phih] = computeOscMixed(coordinates,neumann,dirichlet, ...

father2neumann,neumann old,gh old,g,phi);

where the relation between Eℓ−1 and Eℓ is given by neumann old and father2neumann
and where gh old provides the nodal vector of g with respect to Eℓ−1. Details are given in
Section 7.1.

To re-use the functions implemented for the hypersingular integral equation from the previous
section, we have to guarantee that the first NN nodes of Kℓ belong to ΓN . This possibly needs
some reordering of coordinates as well as some corresponding update of dirichlet and
neumann. This is done by

[coordinates,neumann,dirichlet] = buildSortedMesh(coordinates,neumann,dirichlet);

We stress that the ordering of dirichlet and neumann, i.e., the numbering of the elements
Eℓ = {E1, . . . , EN} is not affected. Details are found in Section 4.2.

The right-hand side vector b for the Galerkin formulation, split into contributions on ΓN and
contributions on ΓD, is computed by

[bN,bD] = buildMixedRHS(coordinates,dirichlet,neumann,V,K,W,gh,phih);

Here, gh is the nodal vector of the extended Dirichlet data, and phih provides the nodal values
of the known Neumann data Φℓ. The matrices V, K, and Ware the discrete integral operators
associated with Eℓ.

Adaptive algorithms from [6] based on the µℓ and µ̃ℓ-estimators from the previous sections are
provided by adaptiveMixedMuand adaptiveMixedMuTilde in the folder demos/laplace/.

Again, we provide the two-level estimator τℓ in

ind = computeEstMixTau(father2dirichlet, father2neumann,neumann, ...

neumann fine, V fine, K fine, W fine, bD fine, bN fine, x, ...

free neumann,free neumann fine);

For the detailed definition of τℓ, we refer to Section 9.6. The vectors bD fine and bN fine
are the right-hand side vectors returned by the function buildMixedRHS corresponding to

the fine mesh Êℓ. The vectors free neumann and free neumann fine indicate the degrees
of freedom on the Neumann boundary. For details on this vectors, consider Section 9.6. The
example file adaptiveMixedHierarchical implements an adaptive algorithm steered by
τℓ.
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The weighted-residual error estimator ρℓ for the mixed problem is

[indSLP,indHYP] = computeEstMixResidual(coordinates,dirichlet,neumann, ...

uNh,phiDh,uDh,phiNh);

where the discretized data uDh, phiNh is returned by computeOscMixed and uNh, phiDh
represents the solution vectors (see Section 9.9 for details). The function can also be used in
case of non-homogeneous volume forces. For details, we refer to Section 9.8. The example file
adaptiveMixedResidual implements an adaptive algorithm steered by ρℓ.

3.5. Non-Homogeneous Volume Force. Compared with the the homogeneous case f = 0,
the non-homogeneous case

−∆u = f in Ω(3.16)

only leads to additional contributions on the right-hand side of the integral equations. Through-
out, we replace f by its L2-projection Fℓ ∈ P0(Tℓ), where Tℓ is a triangulation of Ω. The
additional approximation error is controlled by the volume data oscillations

osc2Ω,ℓ =
∑

T∈Tℓ

oscΩ,ℓ(T )
2 with osc2Ω,ℓ = area(T ) ‖f − Fℓ‖2L2(T ),(3.17)

cf. [6]. The function call

[oscV,fh] = computeOscVolume(vertices,triangles,f)

returns a column vector oscV(j) = oscΩ,ℓ(Tj)
2 as well as the vector fh of elementwise values

of Fℓ. Details are found in Section 8.3.
For the Dirichlet problem, the right-hand side for the Galerkin scheme is then returned by

b = buildSymmVolRHS(coordinates,elements,gh,vertices,triangles,fh);

see Section 8.1 and Section 8.4.
For the Neumann problem, the right-hand side formally includes the computation of the

normal derivative N1f of the Newton potential Ñf . This can, however, be avoided by using
an additional weakly-singular integral equation, see Section 8.7. The right-hand side vector for
the Galerkin scheme is returned by

[b,lambda] = buildHypsingVolRHS(coordinates,elements,gh,vertices,triangles,fh);

where the additional return value lambda provides an approximation of some λ with −N1f =
(1/2 −K ′)λ, cf. Section 8.8.

For the mixed boundary value problem with Dirichlet-Neumann boundary conditions, the
right-hand side is built by

[bN,bD,lambda] = buildMixedVolRHS(coordinates,dirichlet,neumann,V,K,W,gh,phih, ...

vertices,triangles,fh);

where the additional return value lambda arises for the same reason as for the hypersingular
integral equation with non-homogeneous volume force. Details are found in Section 8.11 and
Section 8.12.

The two-level error estimators τℓ as well as the weighted residual error estimators ρℓ are
also available for Symm’s integral equation, the hypersingular integral equation, as well as
the mixed problem with non-homogeneous volume forces. For the correct function calls, please
consider Sections 9.4–9.6 for the two-level estimators and 9.7–9.9 for the weighted-residual error
estimators.

The folder demos/poisson/ contains various demo files based on different a posteriori error
estimators for a model problem with non-homogeneous volume force, see also Section 3.7.

3.6. Visualization of Discrete Solutions. Provided that Γ is connected, the function

plotArclengthP0(coordinates,elements,phih [,phi] [,figure])
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plots a discrete solution Φℓ ∈ P0(Eℓ) over the arclength. The elementwise values of Φℓ are
provided by the column vector phih . With the optional function handle phi the exact solution
φ can be plotted into the same plot for comparison. With the function

plotArclengthS1(coordinates,elements,gh [,g] [,figure])

one can plot a discrete solution Gℓ ∈ S1(Eℓ) over the arclength. The nodal values of Gℓ are
provided by the column vector gh. With the optional function handle g the exact solution g
can be plotted into the same plot for comparison.

For both functions, the optional parameter figure prescribes the figure number for the plot.

3.7. Numerical Examples. HILBERT contains two different examples and different demo
files. For the first example, contained in demos/laplace/, the exact solution u of

−∆u = 0 in Ω(3.18)

is prescribed in polar coordinates as

u(r, ϕ) = r2/3 cos(2ϕ/3),(3.19)

and Ω is a rotated L-shaped domain with diam(Ω) < 1 and reentrant corner with angle 3π/2.
The rotation is done in a way that the Dirichlet data g = u|Γ are smooth, whereas the Neumann
data φ = ∂nu have a generic singularity at the reentrant corner. Based on this setting, the
folder demos/laplace/ contains different demo files to solve the associated integral equations
by adaptive algorithms, which basically differ in the a-posteriori error estimator which is used.
For Symm’s integral equation (cf. Section 3.4.3), there are 5 different demo files:

• adaptiveSymmHierarchical uses the 2-level error estimator τ from Section 9.4,
• adaptiveSymmMu uses the h− h/2 error estimator µ from Section 5.6.3,
• adaptiveSymmMuTilde uses the h− h/2 error estimator µ̃ from Section 5.6.4,
• adaptiveSymmResidualuses the weighted-residual error estimator ρ from Section 9.7.

Additionally, the file

• adaptiveSymmResidualIndirect

uses the weighted-residual error estimator to solve Symm’s integral equation V φ = g on
the screen [−1, 1] with g(x) = −x, where the exact exact solution is known to be φ(x) =

−2x/
√

(1− x2.
For the hypersingular integral equation (cf. Section 3.4.4), there are also 5 different demo

files:

• adaptiveHypHierarchical uses the 2-level error estimator τ from Section 9.5,
• adaptiveHypMu uses the h− h/2 error estimator µ from Section 6.6.3,
• adaptiveHypMuTilde uses the h− h/2 error estimator µ̃ from Section 6.6.4,
• adaptiveHypResidual uses the weighted-residual error estimator ρ from Section 9.8.

Additionally, the file

• adaptiveHypResidualIndirect

uses the weighted-residual error estimator to solve the hypersingular integral equation Wg = φ
on the screen [−1, 1] with φ(x) = 1, where the exact exact solution is known to be g(x) =

2
√

(1− x2.

For the mixed boundary value problem (cf. Section 3.4.5), there are 4 different demo files:

• adaptiveMixedHierarchical uses the 2-level error estimator τ from Section 9.6,
• adaptiveMixedMu uses the h− h/2 error estimator µ from Section 7.6,
• adaptiveMixedMuTilde uses the h− h/2 error estimator µ̃ from Section 7.6,
• adaptiveMixedResidual uses the weighted-residual error estimator ρ from Sec-
tion 9.9.
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The folder demos/poisson/ features the model problem

−∆u = f in Ω,

where we prescribe the exact solution in polar coordinates by

u(r, ϕ) = |(r, ϕ) − z|1.8 + r2/3 cos(2ϕ/3),

with z = (0.14, 0.14). Again, Ω is a rotated and scaled L-shape. Adaptive algorithms based
on different a posteriori error estimators demonstrate the use of HILBERT in this case. The
provided files are

• adaptiveHypVolMuTilde
• adaptiveHypVolResidual
• adaptiveMixedVolMuTilde
• adaptiveMixedVolResidual
• adaptiveSymmVolHierarchical
• adaptiveSymmVolMu
• adaptiveSymmVolMuTilde
• adaptiveSymmVolResidual

The names again indicate which a posteriori error estimators are used for the adaptive algo-
rithms.

4. Mesh-Refinement

Listing 1. Dörfler Marking for Local Mesh-Refinement
1 function varargout = markElements(theta, varargin )

2 %*** check whether optional parameter rho is given or not

3 if nargin == nargout +1

4 rho = 0;

5 else

6 rho = varargin {1};

7 varargin = varargin (2: end);

8 end

9

10 %*** enforce input parameters to be column vectors and count thei r length

11 nE = zeros (1, nargout +1);

12 for j = 1: nargout

13 nE(j+1) = length ( varargin {j });

14 varargin {j } = reshape ( varargin {j },nE(j+1),1);

15 end

16

17 %*** generate set of all indicators

18 indicators = cat(1, varargin {: });

19 nE = cumsum(nE);

20

21 %*** realization of Doerfler marking

22 [indicators,idx] = sort (indicators, 'descend' );

23 sum indicators = cumsum(indicators);

24 ell = max(ceil(rho * nE( end )), find (sum indicators >=sum indicators( end ) * theta,1));

25 marked = idx(1:ell);

26

27 %*** split subset marked into subsets with respect to input vecto rs

28 for j = 1: nargout

29 varargout {j } = marked( marked >nE(j) & marked <=nE(j+1) ) − nE(j);

30 end
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4.1. Dörfler Marking (5.34) for Local Mesh-Refinement (Listing 1). We realize the
marking criterion proposed by Dörfler [13] in a generalized form which is suitable even for

mixed boundary value problems or the FEM-BEM coupling. Suppose that E(1)
ℓ , . . . , E(n)

ℓ are

pairwise disjoint meshes which provide indicators ̺
(k)
ℓ (E) for all E ∈ E(k)

ℓ . We formally define

Eℓ :=
⋃n

j=1 E
(j)
ℓ and ̺ℓ(E) := ̺

(k)
ℓ (E) for all E ∈ E(k)

ℓ and k = 1, . . . , n. For given 0 < θ < 1, we
then aim to find the minimal set Mℓ ⊆ Eℓ such that

θ
∑

E∈Eℓ

̺ℓ(E) ≤
∑

E∈Mℓ

̺ℓ(E).(4.1)

Finally, we define and return M(k)
ℓ := Mℓ ∩ E(k)

ℓ for all k = 1, . . . , n.
A second generalization is concerned with the minimal cardinality of Mℓ. For analytical

convergence results, the minimal set Mℓ with (4.1) is sufficient. However, small sets Mℓ lead to
many iterations in the adaptive loop and may thus lead to a large runtime. With an additional
parameter 0 < ρ < 1, one remedy for this drawback can be to determine the minimal superset
Mℓ ⊆ Mℓ ⊆ Eℓ with

#Mℓ

#Eℓ
≥ ρ and ̺ℓ(E) ≥ ̺ℓ(E

′) for all E ∈ Mℓ and E
′ ∈ Eℓ\Mℓ.(4.2)

From an analytical point of view, any superset Mℓ of Mℓ also leads to a convergent adaptive
algorithm. Our definition of Mℓ guarantees that at least a fixed percentage of elements is
refined and that these elements have the largest associated refinement indicators. Note that the
parameter ρ gives a lower bound for the percentage of elements which are refined.

Our implementation of the marking criterion includes (optionally) the generalizations (4.1)–
(4.2) of the original strategy from [13]:

• In the simplest case, the function markElements is called by

marked = markElements(theta,indicator)

where indicator is a column vector, where indicator(j) corresponds to some element
Ej ∈ Eℓ. The function markElements then returns the indices corresponding to the
minimal set Mℓ.• Alternatively, the function can be called by

marked = markElements(theta,rho,indicator)

and returns the indices corresponding to the minimal set Mℓ ⊇ Mℓ with (4.2).• For the general formulation described above, the function is called by

[marked1,marked2, . . .] = markElements(theta [,rho], ind1,ind2, . . .)

where, e.g., ind1 is the vector of indicators ̺ℓ(E
(1)
j ) for all E

(1)
j ∈ E(1)

ℓ = {E(1)
1 , . . . , E

(1)

N(1)}.
The function returns the indices corresponding to the sets M(k)

ℓ ⊆ E(k)
ℓ (or M(k)

ℓ if ρ is
given).• First, we check whether the parameter ρ is given. If not, it is set to 0 (Line 3–8).• The given indicator vectors are reshaped into column vectors, and their length is stored in
the vector nE (Line 11–15).• We build the vector of all indicators ̺ℓ(Ej) (Line 18) which corresponds to the ordered
set Eℓ = {E1, . . . , EN}. Moreover, nE becomes a vector of pointers so that nE( j) +1 and

nE( j + 1) give the start and the end of E(j)
ℓ with respect to indicators (Line 19).• To determine the minimal set Mℓ we sort the vector indicators (Line 22). Mathe-

matically, this corresponds to finding a permutation π such that ̺ℓ(Eπ(j)) ≥ ̺ℓ(Eπ(j+1)).

We then compute the vector sum indicators of sums
∑k

j=1 ̺ℓ(Eπ(j)) (Line 23). Note

that sum indicators( end) contains
∑N

j=1 ̺ℓ(Eπ(j)) =
∑N

j=1 ̺ℓ(Ej). Finding the min-

imal set Mℓ is thus equivalent to finding the minimal index k with θ
∑N

j=1 ̺ℓ(Eπ(j)) ≤
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∑k
j=1 ̺ℓ(Eπ(j)), and there holds Mℓ = {Eπ(1), . . . , Eπ(k)}. If ρ is specified, we choose the

minimal index k ≥ k with k ≥ ρN . Altogether, Line 24–25 thus determines the indices of
elements in Mℓ and Mℓ, respectively.• Finally, we use the pointer vector nE to determine the indices of M(k)

ℓ with respect to

E(k)
ℓ = {E(k)

1 , ..., E
(k)

N(k)} (Line 28–30).

Listing 2. Sorting Routine for Various Meshes
1 function [ varargout ] = buildSortedMesh( varargin )

2 %*** CASE 2 is covered by recursion to CASE 3, i.e., bdry mesh is gen erated

3 if nargin == 2

4 %*** only volume mesh is given

5 vertices = varargin {1};

6 triangles = varargin {2};

7

8 %*** create list of edges and sort node numbers per edge

9 edges = [triangles(:,[1 2]); triangles(:,[2 3]); triangle s(:,[3 1])];

10 edges sorted = sort (edges,2);

11

12 %*** an edge is a boundary edge iff it appears once in edges sorted

13 [foo,sort2unique,unique2sort] = unique (edges sorted, 'rows' );

14 idx = sort2unique( accumarray (unique2sort,1) == 1);

15 elements = edges(idx,:);

16

17 %*** recursive call of buildSortedMesh, elements is now bdry par t

18 if nargout == 3

19 %*** return value = [vertices,triangles,elements]

20 [ varargout {1}, varargout {2}, varargout {3}] ...

21 = buildSortedMesh(vertices,triangles,elements);

22 elseif nargout == 4

23 %*** return value = [vertices,triangles,coordinates,element s]

24 [ varargout {1}, varargout {2}, varargout {3}, varargout {4}] ...

25 = buildSortedMesh(vertices,triangles,elements);

26 end

27

28 return ;

29 end

30

31 %

32 %*** from now on, only CASE 1 and CASE 3 have to be considered

33 %

34

35 %*** second input parameter is volume mesh

36 if size ( varargin {2},2) == 3

37 input offset = 3;

38 else

39 input offset = 2;

40 end

41

42 %*** user wants coordinates of bdry parts

43 if nargout == nargin + 1

44 output offset = 1;

45 else

46 output offset = 0;

47 end

48
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49 %*** all nodes which belong to the volume and boundary mesh

50 nodes = varargin {1};

51 nN = size (nodes,1);

52

53 %*** build list of all boundary nodes after appearance

54 list nodes = [];

55 for i = input offset: nargin

56 current nodes = unique ( varargin {i });

57 list nodes = [ list nodes ; setdiff (current nodes,list nodes) ];

58 end

59

60 %*** number of boundary nodes

61 nC = size (list nodes,1);

62

63 %*** add to list the remaining nodes which are not on the boundary

64 list nodes = [list nodes; setdiff (1:nN,list nodes)'];

65

66 %*** build permutation such that vertices are sorted according t o boundary parts

67 [foo,permutation] = sort (list nodes);

68

69 %*** permute indices of nodes such that boundary nodes are first

70 nodes(permutation',:) = nodes;

71 varargout {1} = nodes;

72

73 %*** if coordinates of bdry nodes are wanted, return varargout {3} = coordinates

74 if output offset == 1

75 varargout {3} = nodes(1:nC,:);

76 end

77

78 %*** if a volume mesh was given, return varargout {2} = triangles

79 if input offset == 3

80 varargout {2} = permutation( varargin {2});

81 end

82

83 %*** update and return boundary parts

84 for i = input offset: nargin

85 varargout {i + output offset } = permutation( varargin {i });

86 end

4.2. Sorting Routine for Various Meshes (Listing 2). In some cases, HILBERT implicitly
assumes that the mesh is ordered in a special way. These cases are:

• Solving a mixed problem. In this case, we want to re-use functions which were developed
for the hypersingular integral equation. Therefore, the mesh needs to be ordered such that
the nodes on the Neumann boundary appear first in the vector coordinates .• Solving a problem with a non-homogeneous volume force. There, we only want
to provide the coarsest mesh in terms of vertices and triangles . It is necessary to
extract the boundary mesh and enforce an ordering of the vertices such that the nodes on
the boundary appear first.

The routine buildSortedMesh of listing 2 provides such functionality. Let us give some
particular examples for various input/output parameters.

1. Suppose that a volume mesh is given by vertices and volumes . Then,

[vertices,triangles,elements] = buildSortedMesh(vertices,triangles)

sorts the array vertices such that the nodes on the boundary appear first, and triangles
are updated as well. The array elements contains all edges on the boundary. The call of
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[vertices,triangles,coordinates,elements] = buildSortedMesh(vertices,triangles)

additionally yields the array coordinates which contains all nodes on the boundary.
Note that coordinates(1:nG,:) = vertices(1:nG,:) , when nG is the number of
nodes on the boundary.

2. Suppose that a volume mesh is given by vertices and volumes . Additionally, we have
two boundary parts given by the arrays dirichlet and neumann. Then, the call of

[vertices,triangles,neumann,dirichlet] . . .

= buildSortedMesh(vertices,triangles,neumann,dirichlet)

sorts the array vertices such that the nodes on neumann appear first, the nodes of
dirichlet appear second, and the inner nodes appear last. The arrays triangles ,
neumann and dirichlet are updated as well. Additionally, one could ask for coordinates
as output parameter.

3. Suppose that a boundary mesh is given by coordinates and the arrays neumann and
dirichlet . Then, the call of

[coordinates,neumann,dirichlet] = buildSortedMesh(coordinates,neumann,dirichlet)

sorts the array coordinates such that the nodes in neumann appear first. The arrays
neumann and dirichlet are updated as well.• We point out that in the cases 2. and 3. two boundary parts neumann and dirichlet
were given for ease of presentation. The function buildSortedMesh can deal with any
finite number of boundary parts bdry 1, . . . , bdry n.

Let us discuss the implementation of Listing 2:

• If two input parameters are given, then we have to deal with Case 1. First, input parameters
are loaded (Line 5–6). Then, we determine the array elements , which contains the array
of boundary edges (Line 9–15). Finally, we choose the output parameters (Line 18 and
22), and make a recursive call of buildSortedMesh, where we now take elements as
boundary part (Line 21 and 25).• After Line 36, we deal with the Case 2 and Case 3. We check whether a volume mesh is
given (Line 36–40) and whether we have to return coordinates (Line 43–47).• All nodes are collected (Line 50).• We build an array list nodes , which contains all nodes of the given boundary parts
bdry 1, . . . , bdry n, such that the nodes appear in the order which is implied by the
ordering of the boundary parts, i.e, the nodes on bdry 1 appear first, the nodes of bdry 2
appear second and so on. Note that we use the setdiff command because the boundary
parts bdry i and bdry i+1 may share (at most) 2 nodes (Line 54–58).• We add to the array list nodes all inner nodes (Line 64).• In Line 67, we sort list nodes and obtain the important vector permutation such that

list nodes(permutation(i)) = i

and permute the array nodes . Note that, at this point, nodes could be coordinates or
vertices . The array nodes is permuted such that the ith entry in node, node(i,:) ,
then is shifted to the permutation(i) th position (Line 70–71).• If the user asks for boundary coordinates, return the first nC entries in nodes (Line 74–76).
If the function was given a volume triangulation, then we have to permute the volume trian-
gulation according to permutation (Line 79–81). Finally, return the updated boundary
parts (Line 84–86).

Listing 3. Local Refinement of Boundary Element Mesh
1 function [coordinates, varargout ] = refineBoundaryMesh(coordinates, varargin )

2 %*** fix the blow −up factor for the K −mesh constant,

3 %*** where we assume C(Mesh 0) = 1, i.e., the initial mesh is uniform
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4 kappa = 2;

5

6 %*** count number of boundary parts from input

7 %*** nB will hold this number

8 nB = 0;

9

10 for iter = 1 : ( nargin − 1)

11

12 if size ( varargin {iter },2) == 2

13 nB = nB + 1;

14 nE boundary(iter) = size ( varargin {iter },1);

15 else

16 break ;

17 end

18

19 end

20

21 %*** check the correct number of input parameters

22 if ∼( ( nargin == (nB+1)) | | ( nargin == (2 * nB+1)) )

23 error( 'refineBoundaryMesh: Wrong number of input arguments!' );

24 end

25

26 %*** check the correct number of output parameters

27 if ∼( ( nargout == (nB+1)) | | ( nargout == (2 * nB+1)) )

28 error( 'refineBoundaryMesh: Wrong number of output arguments!' );

29 end

30

31 %*** check, if user asks for father2son fields in output

32 if nargout == (2 * nB+1)

33 output father2son = true;

34 else

35 output father2son = false;

36 end

37

38 %*** obtain set of all elements of the boundary partition

39 elements = cat(1, varargin {1 : nB });

40

41 %*** indices of a boundary part w.r.t. entire field elements

42 ptr boundary = cumsum([0,nE boundary]);

43

44 %*** 1. determine whether uniform or adaptive mesh −refinement

45 %*** 2. in case of adaptive mesh −refinement compute vector marked

46 %*** of marked elements w.r.t. entire field elements

47 if (nB+1) == nargin

48 refinement = 'uniform' ;

49 else

50 refinement = 'adaptive' ;

51 marked = zeros (0,1); % marked elements w.r.t. entire field elements

52

53 for iter = 1 : nB

54 marked = [marked; varargin {iter + nB } + ptr boundary(iter)];

55 end

56

57 end

58

59 nC = size (coordinates,1); % number of coordinates

60 nE = size (elements,1); % number of elements
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61

62 if strcmp(refinement, 'adaptive' )

63

64 %*** if element Ej is marked and if its neighbour Ek satisfies

65 %*** hk >= kappa * hj, we (recursively) mark Ek for refinement as well

66

67 %*** marked elements Ej will be refined, i.e., flag(j) = 1

68 flag = zeros (nE,1);

69 flag(marked) = 1;

70

71 %*** determine neighbouring elements

72 node2element = zeros (nC,2);

73 node2element(elements(:,1),2) = (1:nE)';

74 node2element(elements(:,2),1) = (1:nE)';

75 element2neighbour = [ node2element(elements(:,1),1), ...

76 node2element(elements(:,2),2) ];

77

78 %*** compute (squared) local mesh −size

79 h = sum((coordinates(elements(:,1),:) −coordinates(elements(:,2),:)).ˆ2,2)';

80

81 %*** the formal recursion is avoided by sorting elements by mesh −size

82 [tmp,sorted elements] = sort (h);

83 for j = sorted elements

84 if flag(j)

85 neighbours = element2neighbour(j,:);

86 neighbours = neighbours( find (neighbours) );

87 flag( neighbours(h(neighbours) >= kappa * h(j)) ) = 1;

88 end

89 end

90

91 %*** obtain vector of marked elements

92 marked = find (flag);

93 nM = length (marked);

94

95 %*** compute and add new nodes

96 coordinates = [coordinates; zeros (nM,2)];

97 coordinates((1:nM)+nC,:) = ( coordinates(elements(mark ed,1),:) ...

98 + coordinates(elements(marked,2),:) ) * 0.5;

99

100 %*** refinement of mesh iterates over each boundary part

101 for iter = 1:nB

102

103 %*** determine which marked elements belong to boundary part

104 idx = find ( (ptr boundary(iter) < marked) ...

105 & (marked <= ptr boundary(iter+1)) );

106 nM boundary = length (idx);

107

108 %*** allocate new elements

109 new elements = [ varargin {iter }; zeros (nM boundary,2)];

110

111 %*** generate new elements

112 new elements((1:nM boundary)+nE boundary(iter),:) ...

113 = [ nC + idx, elements(marked(idx),2) ];

114 new elements( marked(idx) − ptr boundary(iter),2 ) = nC + idx;

115

116 %*** add new elements and father2son to output

117 varargout {iter } = new elements;
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118

119 %*** compute father2son only if desired

120 if output father2son == true

121

122 %*** generate father2son

123 father2son = repmat ((1:nE boundary(iter))',1,2);

124 father2son( marked(idx) − ptr boundary(iter),2 ) ...

125 = (1:nM boundary)' + nE boundary(iter);

126

127 %*** add new elements and father2son to output

128 varargout {nB+iter } = father2son;

129 end

130

131 end

132

133 elseif strcmp(refinement, 'uniform' )

134

135 %*** compute and add new nodes

136 coordinates = [coordinates; zeros (nE,2)];

137 coordinates((nC+1): end ,:) = ( coordinates(elements(:,1),:) ...

138 + coordinates(elements(:,2),:) ) * 0.5;

139

140 %*** uniform refinement of mesh iterates over each boundary part

141 for iter = 1:nB

142

143 %*** generate new elements

144 idx = (ptr boundary(iter)+1):ptr boundary(iter+1);

145 varargout {iter } = [ varargin {iter }(:,1),nC + idx' ; ...

146 nC + idx', varargin {iter }(:,2) ];

147

148 %*** compute father2son only if desired

149 if output father2son == true

150

151 %*** build father2son

152 varargout {nB+iter } ...

153 = [(1:nE boundary(iter))', ...

154 (1:nE boundary(iter))' + nE boundary(iter)];

155 end

156

157 end

158 end

4.3. Local Refinement of Boundary Element Mesh (Listing 3). In many cases, one is
not interested in computing only one approximation U with respect to a fixed given boundary el-
ement mesh E , but in computing a sequence of more and more accurate approximations Uℓ corre-
sponding to a sequence Eℓ of boundary element meshes with decreasing mesh-sizes. To that end,
our software package HILBERT provides an efficient mesh-refinement refineBoundaryMesh
for boundary element meshes, which covers the following tasks:

• uniform refinement of a given mesh• refinement of certain marked elements, specified by the user• linkage between elements of the input mesh with elements of the refined mesh• handling of meshes that are split into finitely many distinct parts, e.g., Γ = ΓD ∪ ΓN• guaranteed boundedness of the K-mesh constant

Throughout, refinement of an element means that Ei is bisected into two elements ej , ek of half
length. We now discuss certain aspects of our implementation from Listing 3, where the data
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structure of coordinates , elements , dirichlet , and neumann is described in Section 3.3
above. The main focus is, however, on the practical use of the function.

• Input/Output Parameters: To allow a partition of Γ into finitely many parts (e.g., a
Dirichlet and a Neumann boundary), the formal signature reads

[coordinates, varargout ] = refineBoundaryMesh(coordinates, varargin )

To explain the variable input/output parameters, we consider certain examples.• Suppose that Eℓ = {E1, . . . , EN} is described by coordinates and elements . Then,

[coordinates fine,elements fine,father2son] ...

= refineBoundaryMesh(coordinates,elements)

provides the uniformly refined mesh Êℓ = {e1, . . . , e2N}, where each element Ei ∈ Eℓ is

bisected in certain sons ej , ek ∈ Êℓ. The (N × 2)-matrix father2son provides a link
between the element indices in the sense that

father2son (i, :) = [ j, k ] for Ei = ej ∪ ek.
The output parameter father2son is optional and can be omitted.• Suppose that Mℓ ⊆ Eℓ is a set of elements which are marked for refinement. Let marked
be an (M × 1)-column vector containing the indices of the elements in Mℓ. Then,

[coordinates fine,elements fine,father2son] . . .

= refineBoundaryMesh(coordinates,elements,marked)

provides a mesh Eℓ+1 which is only refined locally in the sense that all elements of Mℓ are
refined. If an element Ei ∈ Eℓ is not refined, there holds Ei = ej ∈ Eℓ+1, where the link
between these indices is given by

father2son (i, :) = [ j, j ] for Ei = ej .
Again, the output parameter father2son is optional and can be omitted.• Suppose that Γ is split into a Dirichlet boundary ΓD and a Neumann boundary ΓN . In this
case, the mesh Eℓ = {E1, . . . , EN} is described in terms of coordinates , dirichlet ,
and neumann, cf. Section 3.3. Then,

[coordinates fine,dirichlet fine,neumann fine,dir2son,neu2son] . . .

= refineBoundaryMesh(coordinates,dirichlet,neumann)

provides the uniformly refined mesh Êℓ. As father2son in the previous cases with a single
boundary part, now the arrays dir2son and neu2son provide the link between the coarse
mesh parts and the refined ones, e.g., dirichlet and dirichlet fine . For instance,

suppose that Eℓ|ΓD
= {ED

1 , . . . , E
D
ND

} and Êℓ|ΓD
= {eD1 , . . . , eD2ND

}. Then, there holds

dir2son (i, :) = [ j, k ] for ED
i = eDj ∪ eDk .

Finally, the fields dir2son and neu2son are optional in the sense that they can either
both be asked for or both be omitted.• Suppose that MD

ℓ ⊆ Eℓ|ΓD
and MN

ℓ ⊆ Eℓ|ΓN
are sets of marked elements. Let

marked dirichlet and marked neumann be (MD × 1)- and (MN × 1)-column vectors
containing the indices of the elements in MD

ℓ and MN
ℓ , respectively. Then,

[coordinates fine,dirichlet fine,neumann fine,dir2son,neu2son] . . .

= refineBoundaryMesh(coordinates,dirichlet,neumann, . . .

marked dirichlet,marked neumann)

provides a mesh Eℓ+1 which is only refined locally in the sense that all elements ofMD
ℓ ∪MN

ℓ
are refined. We stress that the optional input marked dirichlet and marked neumann
can either both be given or both be omitted. The optional output has already been described
before.• If Γ is split into more than two boundary parts, described by, e.g., dirichlet , neumann,
and robin , the function refineBoundaryMesh can be used accordingly.
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• Refinement of an Element: Suppose that element Ei = [a, b] ∈ Eℓ is bisected into two

sons ej , ek ∈ Eℓ+1 (or Êℓ). Then, there holds ej = [a,m] and ek = [m, b], wherem = (a+b)/2
denotes the midpoint of Ei. Note that elements(i,:) returns the indices of the nodes
a, b ∈ Kℓ. Clearly, Kℓ ⊆ Kℓ+1 and, e.g., the index of a = zp ∈ Kℓ+1 is obtained by
p = elements fine(father2son( i, 1), 1) .• Boundedness of K-Mesh Constant: Many estimates in numerical analysis depend on
local quantities of the mesh, e.g., on an upper bound of the K-mesh constant

κ(Eℓ) := sup
{
length(Ej)/length(Ek) : Ej, Ek ∈ Eℓ with Ej ∩ Ek 6= ∅

}
≥ 1(4.3)

which is the maximal ratio of the element widths of neighbouring elements. Let E0 be a
given initial mesh. Let Eℓ be inductively obtained by refinement of arbitrary sets of marked
elements Mj ⊆ Ej with 0 ≤ j ≤ ℓ− 1. To avoid the blow-up of the K-mesh constant, one
thus aims for a refinement rule which guarantees supℓ∈N κ(Eℓ) < ∞. Our refinement rule,
proposed and analyzed in [5, Section 2.2], guarantees

sup
ℓ∈N

κ(Eℓ) ≤ 2κ(E0)(4.4)

by refinement of all elements in a certain superset Mℓ ⊇ Mℓ. Moreover, one can prove that
our refinement rule guarantees

#Eℓ −#E0 .
ℓ−1∑

j=0

#Mj ,(4.5)

i.e. the set Mj is generically of the same size as Mj , cf. [5, Theorem 2.5]. The constant
hidden in the symbol . only depends on the initial mesh E0.

Finally, we give a rough overview on the code.

• We assume that the initial mesh is uniform, i.e. κ(T0) = 1 (Line 4).• Variable input-/output parameters are treated in Line 8–60.• The case of adaptive refinement is treated in Line 62–131.• In order to ensure the boundedness of the K-mesh constant, the refinement algorithm
checks the mesh-size ratio of neighbouring elements: If Ei ∈ Eℓ is marked for refinement,
any neighbour Ej with

hℓ|Ej/hℓ|Ei ≥ 2

is recursively marked for refinement as well (Line 68–92). This guarantees κ(Eℓ) ≤ 2κ(E0)
for all generated meshes Eℓ.• For all refined elements the coordinates of the midpoints of these elements are computed
as new nodes for the refined mesh (Line 96–98).• We loop over each boundary part (Line 101–131), generate new elements as result of bi-
secting the respective coarse mesh elements (Line 109–114) and build the linkage arrays in
Line 123–125.• The case of uniform refinement (Line 133–158) is a straight forward implementation.

Listing 4. Local Refinement of Volume Triangulation
1 function [vertices,new volumes, varargout ] = ...
2 refineMesh(vertices,volumes, varargin )

3

4 %*** count number of boundary parts from input

5 %*** nB will hold this number

6 %*** nB elts will hold the number of elements of each boundary part

7 nB = 0;

8

9 for iter = 1 : ( nargin − 2)

10 if size ( varargin {iter },2) == 2
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11 nB = nB + 1;

12 nB elts(iter) = size ( varargin {iter },1);

13 else

14 break ;

15 end

16 end

17

18 %*** check if there is at least one boundary part

19 if nB == 0

20 error( 'refineMesh: There has to be at least one boundary part!' );

21 end

22

23 %*** check the correct number of input parameters

24 if ∼( ( nargin == (nB+2)) | | ( nargin == (2 * nB+3)) )

25 error( 'refineMesh: Wrong number of input arguments!' );

26 end

27

28 %*** check the correct number of output parameters

29 if ∼( ( nargout == (nB+2)) | | ( nargout == (2 * nB+3)) )

30 error( 'refineMesh: Wrong number of output arguments!' );

31 end

32

33 %*** check, if user asks for father2son fields in output

34 if nargout == (2 * nB+3)

35 output father2son = true;

36 else

37 output father2son = false;

38 end

39

40 %*** check, if user asks for adaptive refinement

41 if nargin == (2 * nB+3)

42 adaptive = true;

43 else

44 adaptive = false;

45 end

46

47 %*** number of volumes

48 nVols = size (volumes,1);

49

50 %*** Obtain geometric information on edges

51 %*** Node vectors of all edges (interior edges appear twice)

52 I = volumes(:);

53 J = reshape (volumes(:,[2,3,1]),3 * nVols,1);

54

55 %*** obtain set of all boundary elements of the boundary partitio n

56 bdry elts = cat(1, varargin {1 : nB });

57

58 %*** indices of boundary parts w.r.t. entire boundary elements

59 %*** and w.r.t. entire edges

60 ptr bdry elts = cumsum([0,nB elts]);

61 ptr bdry edges = ptr bdry elts + 3 * nVols;

62

63 %*** Node vectors of all edges (all edges appear twice)

64 I = [I;bdry elts(:,2)];

65 J = [J;bdry elts(:,1)];

66

67 %*** Create numbering of edges
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68 idx IJ = find (I < J);

69 edge number = zeros ( length (I),1);

70 edge number(idx IJ) = 1: length (idx IJ);

71 idx JI = find (I > J);

72 nodes2edges = sparse (I(idx IJ),J(idx IJ),1: length (idx IJ));

73 [foo {1:2 },numbering IJ] = find (nodes2edges);

74 [foo {1:2 },idx JI2IJ] = find ( sparse (J(idx JI),I(idx JI),idx JI));

75 edge number(idx JI2IJ) = numbering IJ;

76

77 %*** Provide bdry edges

78 for j = 1:nB

79 bdry edges {j } = edge number(ptr bdry edges(j)+1:ptr bdry edges(j+1));

80 end

81

82 %*** Provide volumes2edges and edge2nodes

83 volumes2edges = reshape (edge number(1:3 * nVols),nVols,3);

84 edge2nodes = [I(idx IJ),J(idx IJ)];

85

86 %*** 1. determine whether uniform or adaptive mesh −refinement

87 %*** 2. in case of adaptive mesh −refinement compute vector

88 %*** of marked volumes and vector of marked boundary edges.

89 %*** The latter will be computed w.r.t. entire boundary edges

90 marked bdry elts = zeros (0,1);

91 if adaptive

92 for iter = 1 : nB

93 marked bdry elts = [marked bdry elts; varargin {iter + nB + 1 } + ...

94 ptr bdry elts(iter)];

95 end

96 %*** one bisection per marked triangle

97 marked vols = varargin {nB + 1};

98 refine vols = 1;

99 else

100 %*** each triangle is refined by three bisections

101 marked vols = [1:nVols]';

102 refine vols = [1,2,3];

103 end

104

105 %*** compute index vectors for marking of boundary edges

106 bdry nodes min = min(bdry elts,[],2);

107 bdry nodes max = max(bdry elts,[],2);

108

109 %*** Mark edges for refinement

110 edge2new node = zeros ( length (edge2nodes),1);

111 edge2new node( nodes2edges( sub2ind( size (nodes2edges), ...

112 bdry nodes min(marked bdry elts),bdry nodes max(marked bdry elts)))) = 1;

113 edge2new node(volumes2edges(marked vols,refine vols)) = 1;

114 swap = 1;

115 while ∼ isempty (swap)

116 marked edges = edge2new node(volumes2edges);

117 swap = find ( ∼marked edges(:,1) & (marked edges(:,2) | marked edges(:,3)) );

118 edge2new node(volumes2edges(swap,1)) = 1;

119 end

120

121 %*** Generate new nodes

122 idx = find (edge2new node);

123 edge2new node(idx) = size (vertices,1) + (1: nnz (edge2new node));

124 vertices(edge2new node(idx),:) = ...
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125 0.5 * (vertices(edge2nodes(idx,1),:)+vertices(edge2nodes( idx,2),:));

126

127 %*** Refine boundary edges and build father2boundaries if asked for

128 for j = 1:nB

129 bdry = bdry elts(ptr bdry elts(j)+1:ptr bdry elts(j+1),:);

130 new nodes = edge2new node(bdry edges {j });

131 marked edges = find (new nodes);

132 nMkd edgs = length (marked edges);

133 non marked edges = find (∼new nodes);

134 nNon mkd edgs = length (non marked edges);

135 if ∼ isempty (marked edges)

136 bdry = [bdry(non marked edges,:); ...

137 bdry(marked edges,1),new nodes(marked edges); ...

138 new nodes(marked edges),bdry(marked edges,2)];

139 end

140 varargout {j } = bdry;

141 if output father2son

142 father2son = zeros (nB elts(j),2);

143 father2son([non marked edges;marked edges],:) = ...

144 [ repmat ([1:nNon mkd edgs]',1,2); ...

145 [(nNon mkd edgs+1):(nNon mkd edgs+nMkd edgs)]', ...

146 [(nNon mkd edgs+nMkd edgs+1):(nNon mkd edgs+2 * nMkd edgs)]' ];

147 varargout {nB+j+1 } = father2son;

148 end

149 end

150

151 %*** Provide new nodes for refinement of volumes

152 new nodes = edge2new node(volumes2edges);

153

154 %*** Determine type of refinement for each volume

155 marked edges = (new nodes ∼= 0);

156 none = ∼marked edges(:,1);

157 bisec1 = ( marked edges(:,1) & ∼marked edges(:,2) & ∼marked edges(:,3) );

158 bisec12 = ( marked edges(:,1) & marked edges(:,2) & ∼marked edges(:,3) );

159 bisec13 = ( marked edges(:,1) & ∼marked edges(:,2) & marked edges(:,3) );

160 bisec123 = ( marked edges(:,1) & marked edges(:,2) & marked edges(:,3) );

161

162 %*** Generate volume numbering for refined mesh

163 idx = ones (nVols,1);

164 idx(bisec1) = 2; %*** bisec(1): newest vertex bisection of 1st edge

165 idx(bisec12) = 3; %*** bisec(2): newest vertex bisection of 1st and 2nd edge

166 idx(bisec13) = 3; %*** bisec(2): newest vertex bisection of 1st and 3rd edge

167 idx(bisec123) = 4; %*** bisec(3): newest vertex bisection of all edges

168 idx = [1;1+ cumsum(idx)];

169

170 %*** Generate new elements

171 new volumes = zeros (idx( end) −1,3);

172 new volumes(idx(none),:) = volumes(none,:);

173 new volumes([idx(bisec1),1+idx(bisec1)],:) = ...

174 [volumes(bisec1,3),volumes(bisec1,1),new nodes(bisec1,1); ...

175 volumes(bisec1,2),volumes(bisec1,3),new nodes(bisec1,1)];

176 new volumes([idx(bisec12),1+idx(bisec12),2+idx(bisec12) ],:) = ...

177 [volumes(bisec12,3),volumes(bisec12,1),new nodes(bisec12,1); ...

178 new nodes(bisec12,1),volumes(bisec12,2),new nodes(bisec12,2); ...

179 volumes(bisec12,3),new nodes(bisec12,1),new nodes(bisec12,2)];

180 new volumes([idx(bisec13),1+idx(bisec13),2+idx(bisec13) ],:) = ...

181 [new nodes(bisec13,1),volumes(bisec13,3),new nodes(bisec13,3); ...
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182 volumes(bisec13,1),new nodes(bisec13,1),new nodes(bisec13,3); ...

183 volumes(bisec13,2),volumes(bisec13,3),new nodes(bisec13,1)];

184 new volumes([idx(bisec123),1+idx(bisec123),2+idx(bisec1 23), ...

185 3+idx(bisec123)],:) = ...

186 [new nodes(bisec123,1),volumes(bisec123,3),new nodes(bisec123,3); ...

187 volumes(bisec123,1),new nodes(bisec123,1),new nodes(bisec123,3); ...

188 new nodes(bisec123,1),volumes(bisec123,2),new nodes(bisec123,2); ...

189 volumes(bisec123,3),new nodes(bisec123,1),new nodes(bisec123,2)];

190

191 %*** build father2volumes

192 if output father2son

193 father2son = zeros (nVols,4);

194 father2son(none,:) = repmat (idx(none),1,4);

195 father2son(bisec1,:) = [ repmat (idx(bisec1),1,2), repmat (idx(bisec1)+1,1,2)];

196 father2son(bisec12,:) = ...

197 [ repmat (idx(bisec12),1,2),idx(bisec12)+1,idx(bisec12)+2];

198 father2son(bisec13,:) = ...

199 [idx(bisec13),idx(bisec13)+1, repmat (idx(bisec13)+2,1,2)];

200 father2son(bisec123,:) = ...

201 [idx(bisec123),idx(bisec123)+1,idx(bisec123)+2,idx( bisec123)+3];

202 varargout {nB+1} = father2son;

203 end

204

205 %*** sorting vertices such that boundary nodes appear first

206 bdry nodes = zeros (0,1);

207 for j = 1:nB

208 bdry nodes = [bdry nodes; setdiff ( unique ( varargout {j }),bdry nodes)];

209 end

210

211 %*** number of boundary nodes and number of vertices

212 nBdry nodes = length (bdry nodes);

213 nVerts = size (vertices,1);

214

215 %*** renumbering of vertices

216 idx = [bdry nodes; setdiff ([1:nVerts]',bdry nodes)]; % sort nodes first

217 verts2new verts(idx) = ...

218 [ [1:nBdry nodes],[(nBdry nodes+1):nVerts] ]; % sort first

219

220 %*** reorder vertices

221 vertices = vertices(idx,:);

222

223 %*** assign new vertex indices to new volumes and to all boundary parts

224 new volumes=verts2new verts(new volumes);

225 for j = 1:nB

226 varargout {j } = verts2new verts( varargout {j });

227 end

4.4. Local Mesh Refinement of Volume Triangulation (Listing 4). In case of non-
homogeneous volume data f 6= 0, HILBERT involves a regular triangulation Tℓ of Ω into non-
degenerate triangles, i.e.

• Tℓ = {T1, . . . , Tn} is a finite overlapping Ω =
⋃n

j=1 Tj ,• each element Tj ∈ Tℓ is a compact triangle with positive area |Tj | > 0,• the intersection Tj ∩ Tk for Tj , Tk ∈ Tℓ with j 6= k is either empty or a vertex of both Tj
and Tk or an edge of both Tj and Tk (so-called regularity)
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Figure 1. For each triangle T ∈ T , there is one fixed reference edge, indicated
by the double line (left, top). Refinement of T is done by bisecting the reference
edge, where its midpoint becomes a new node. The reference edges of the son
triangles are opposite to this newest vertex (left, bottom). To avoid hanging
nodes, one proceeds as follows: We assume that certain edges of T , but at least
the reference edge, are marked for refinement (top). Using iterated newest vertex
bisection, the element is then split into 2, 3, or 4 son triangles (bottom).

Figure 2. Refinement by newest vertex bisection only leads to finitely many
interior angles for the family of all possible triangulations. To see this, we start
from a macro element (left), where the bottom edge is the reference edge. Using
iterated newest vertex bisection, one observes that only four similarity classes
of triangles occur, which are indicated by the coloring. After three levels of
bisection (right), no additional similarity class appears.

Moreover, for stability reasons (see Section 8 below), we only consider the case that the boundary
partition Eℓ := Tℓ|Γ is the restriction of Tℓ to the boundary Γ := ∂Ω. For the refinement of
marked triangles (or marked boundary edges), we use newest vertex bisection, cf. Figure 1 and
Figure 2. In particular, refinement of a boundary element Ei ∈ Eℓ means, that Ei is bisected
into two elements ej , ek of half length.

Note that refinement of a boundary edge Ei ∈ Eℓ necessarily leads to a refinement of at
least one triangle. Moreover, refinement of a triangle Tj ∈ Tℓ may lead to refinement of further
triangles to ensure the regularity of the refined triangulation Tℓ+1.

For storing the reference edge resp. the newest vertex of a triangle Tp ∈ Tℓ, we make the
following assumption to avoid the storage of further data: For the triangle Tp stored as

triangles(p,:) = [ i, j, k]

the vertex zk is the newest vertex, and conv{zi, zj} is the reference edge.
Our implementation in Listing 4 covers the following tasks:

• uniform refinement of a given triangulation Tℓ• refinement of certain marked triangles and/or boundary elements, specified by the user• linkage between elements of the input mesh with elements of the refined mesh• handling of boundaries which are split into finitely many distinct parts, e.g. Γ = ΓD ∪ ΓN .

Finally, we stress that newest vertex bisection only leads to finitely many similarity classes of
triangles, i.e. there occur only finitely many angles in all possible triangulations, cf. Figure 2.
Consequently, the resulting meshes are uniformly shape-regular

sup
ℓ∈N

σ(Tℓ) <∞ with σ(Tℓ) := max
Tj∈Tℓ

diam(Tj)
2

|Tj |
.(4.6)

By elementary geometry, this implies that all edges of a triangle Tj ∈ Tℓ have, up to the
uniformly bounded constant σ(Tℓ), the same length. In particular, this implies that the K-mesh
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constant of Eℓ = Tℓ|Γ is uniformly bounded

sup
ℓ∈N

κ(Eℓ) <∞(4.7)

as well. We now discuss certain aspects of our implementation from Listing 4, where the data
structure of vertices , triangles , and elements (as well as dirichlet and neumann) is
discussed in Section 3.3 above. Note that the nodes on the boundary are contained in vertices
so that the boundary partition elements now links to vertices instead of coordinates .

• Input/Output Parameters: To allow a partition of Γ into finitely many parts (e.g., a
Dirichlet and a Neumann boundary), the formal signature reads

[vertices fine,triangles fine, varargout ] ...

= refineMesh(vertices,triangles, varargin )

where the refined mesh is stored by the arrays vertices fine and triangles fine .
To explain the variable input/output parameters, we consider certain examples.• Suppose that Tℓ is a triangulation described by vertices and triangles and that Eℓ is
a boundary mesh described by elements . Then,

[vertices fine,triangles fine,elements fine,father2triangles,father2son] ...

= refineMesh(vertices,triangles,elements)

provides the uniformly refined mesh where each boundary element E ∈ Eℓ is split and where
each triangle T ∈ Tℓ is refined by three bisections, see Figure 1.

The (N×2)-matrix father2son provides a link between the initial boundary mesh and
the refined boundary mesh and is discussed in great detail in Section 4.3. The (n×)4-matrix
father2triangles that provides a link between the initial mesh and the refined mesh.

For Ti ∈ Tℓ, father2triangles(i,:) contains the indices of its four sons tj ∈ T̂ℓ.• Second, suppose that Γ is split into a Dirichlet boundary ΓD and a Neumann boundary
ΓN . In this case the boundary mesh is described in terms of dirichlet and neumann.
Then,

[vertices fine,triangles fine,dirichlet fine,neumann fine, ...

father2triangles,father2dirichlet,father2neumann] ...

= refineMesh(vertices,triangles,dirichlet,neumann)

provides the uniformly refined mesh, i.e. each boundary element is halved and each triangle
is refined by three bisections. We stress that the function may deal with a partition of Γ
into finitely many boundary conditions.• Third, suppose that Mℓ ⊆ Tℓ∪Eℓ is a set of elements and triangles which are marked for re-
finement. Let marked triangles and marked elements be column vectors containing
the indices of the boundary elements and the triangles which have to be refined. Then,

[vertices fine,triangles fine,elements fine,father2triangles,father2son] ...

= refineMesh(vertices,triangles,elements,marked triangles,marked elements)

returns a refined meshes Tℓ+1 and Eℓ+1 = Tℓ+1|Γ such that all marked elements Ei ∈ Mℓ∩Eℓ
have been halved and all marked triangles Tj ∈ Mℓ ∩Tℓ have been refined by (at least) one
bisection. Recall that, by assumption, the first edge of Ti is the reference edge. Moreover,
if Ti is refined, at least the reference edge is refined by definition of newest vertex bisection.

In this case, (n× 4)-matrix father2triangles contains the following entries for Ti ∈
Tℓ:
• If Ti is not refined, all entries of father2triangles(i,:) coincide and give the

index of Ti = tj ∈ Tℓ+1.
• If only the reference edge (first edge) of Ti is refined, father2triangles(i,:)

contains the indices of its two sons, each of which appears twice, and the first and
second entry of the array are the same, as well as the third and forth entry.

• If the first and the second edge of Ti is refined, father2triangles(i,:) contains
the indices of its three sons and the first two entries of the vector are equal.
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• If the first and the third edge of Ti is refined, father2triangles(i,:) contains
the indices of its three sons and the last two entries of the vector are equal.

• If Ti has been refined by three bisections, father2triangles(i,:) contains the
indices of its four sons.• Finally, we stress that local refinement also works if Γ is split into finitely many parts, e.g.

a Dirichlet boundary ΓD and and Neumann boundary ΓN . Here, the according function
call reads

[vertices fine,triangles fine,dirichlet fine,neumann fine, ...

father2triangles,father2dirichlet,father2neumann] ...

= refineMesh(vertices,triangles,dirichlet,neumann, ...

marked triangles,marked dirichlet,marked neumann)

As before, all marked boundary elements are halved and all marked triangles are refined by
(at least) one bisection.• We conclude the list of examples with some remarks on restrictions concerning the usage
of this function. First, one may omit all marked vectors or none of them. For example, it
is not allowed to provide a vector for the adaptive refinement of the triangulation but none
for the boundary meshes. However, these vectors may be empty. Secondly, one may omit
all father2 * vectors or none of them.

Finally, we give a rough overview on the code:

• In Line 9–45, we process the input arguments and determine if we use adaptive or uniform
mesh refinement and if the user wants to retrieve a link between the initial mesh and the
refined mesh using the father2 * vectors.• In Line 52–84, we generate a numbering of all edges and, in particular, a numbering of the
boundary edges.• In Line 92–119, we translate all marked boundary edges and all marked triangles into
marked edges of triangles. The closure step in Line 116–118, guarantees that at least the
reference edge of a triangle Tj is marked, if some edge of Tj is marked. This is part of the
newest vertex bisection algorithm and guarantees that the resulting mesh Tℓ+1 is regular.• In Line 122–125, we generate the new vertices which are precisely the midpoints of the
marked edges.• In Line 129–149, we refine the marked boundary edges. We also compute the father2son
vectors if we are asked for.• In Line 152–189, we refine the triangles. In Line 157–160, we determine the different types
of refinement. In, Line 163–168, we prepare the new numbering of the triangulation Tℓ+1.
We ensure that refined triangles appear right after each other in the new volumes array.
Then, we actually refine the triangles (Line 171–189).• In Line 192–203, we compute the link between the input triangulation Tℓ and the refined
mesh Tℓ+1, if the user requests the array father2son .• In Line 206–227, we finally reorder the numbering of the elements and ensure that the
vertices on the boundary appear first in the array vertices .

5. Symm’s Integral Equation

Continuous Model Problem. In the entire section, we consider Symm’s integral equation

V φ = (K + 1/2)g on Γ(5.1)

with V the simple-layer potential and K the double-layer potential, where Γ = ∂Ω is the
piecewise-affine boundary of a polygonal Lipschitz domain Ω ⊂ R2. This integral equation is
an equivalent formulation of the Dirichlet problem

−∆u = 0 in Ω with u = g on Γ.(5.2)
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Formally, the Dirichlet data satisfy g ∈ H1/2(Γ). We will, however, assume additional regularity

g ∈ H1(Γ) ⊂ H1/2(Γ) so that g is, in particular, continuous. The exact solution φ ∈ H−1/2(Γ)
of (5.1) is the normal derivative φ = ∂nu of the solution u ∈ H1(Ω) of (5.2).

Note that (5.1) can equivalently be written in variational form

〈V φ , ψ〉Γ = 〈(K + 1/2)g , ψ〉Γ for all ψ ∈ H−1/2(Γ),(5.3)

where 〈· , ·〉Γ denotes the extended L2(Γ)-scalar product, i.e. 〈φ , ψ〉Γ =
∫
Γ φψ dΓ for φ,ψ ∈

L2(Γ) and with
∫
Γ dΓ integration along the boundary. Provided that diam(Ω) < 1, one can

show that the left-hand side

〈〈φ ,ψ〉〉V := 〈V φ , ψ〉Γ for φ,ψ ∈ H−1/2(Γ)(5.4)

of (5.3) defines a scalar product on H−1/2(Γ), and the induced norm |||φ|||V := 〈〈φ , φ〉〉1/2V is an

equivalent norm on H−1/2(Γ). In particular, the variational form (5.3) has a unique solution
φ ∈ H−1/2(Γ) which depends continuously on the data g with respect to the H1/2(Γ)-norm.

Galerkin Discretization. Let {ζ1, . . . , ζN} denote the set of canonical basis functions of
S1(Eℓ). To discretize (5.3), we first replace the continuous Dirichlet data g ∈ H1(Γ) either by
its nodal interpolant

Gℓ :=

N∑

j=1

g(zj)ζj ∈ S1(Eℓ) ⊂ H1(Γ)(5.5)

or by its L2-projection onto S1(Eℓ), i.e. Gℓ ∈ S1(Eℓ) is the (unique) solution of
∫

Γ
Gℓζk dΓ =

∫

Γ
g ζk dΓ for all k = 1, . . . , N.(5.6)

Second, we replace the entire function space H−1/2(Γ) in (5.3) by the finite-dimensional space

P0(Eℓ). Since the discrete space P0(Eℓ) is a subspace of H−1/2(Γ), 〈〈· , ·〉〉V from (5.4) is also a
scalar product on P0(Eℓ). Consequently, there is a unique Galerkin solution Φℓ ∈ P0(Eℓ) of

〈V Φℓ , Ψℓ〉Γ = 〈(K + 1/2)Gℓ , Ψℓ〉Γ for all Ψℓ ∈ P0(Eℓ).(5.7)

According to Linear Algebra, (5.7) holds for all Ψℓ ∈ P0(Eℓ) if and only if it holds for all
(canonical) basis functions χk ∈ Bℓ = {χ1, . . . , χN} of P0(Eℓ). With the coefficient vector
x ∈ RN of the ansatz

Φℓ =
N∑

j=1

xjχj(5.8)

and the vector g ∈ RN from

Gℓ =

N∑

j=1

gjζj,(5.9)

the Galerkin formulation (5.7) is thus equivalent to

N∑

j=1

xj〈V χj , χk〉Γ = 〈V Φℓ , χk〉Γ = 〈(K + 1/2)Gℓ , χk〉Γ =
N∑

j=1

gj〈(K + 1/2)ζj , χk〉Γ

for all k = 1, . . . , N . If we define matrices V,K,M ∈ RN×N by

Vkj = 〈V χj , χk〉Γ, Kkj = 〈Kζj , χk〉Γ, Mkj = 〈ζj , χk〉Γ for all j, k = 1, . . . , N,(5.10)

the last equation becomes

(Vx)k =
N∑

j=1

xjVkj =
N∑

j=1

gj

(
Kkj +

1

2
Mkj

)
=
(
Kg +

1

2
Mg

)
k

for all k = 1, . . . , N.
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Altogether, the Galerkin formulation (5.7) is thus equivalent to the linear system

Vx = Kg +
1

2
Mg.(5.11)

We stress that V is symmetric and positive definite since it stems from a scalar product. In
particular, the linear system (5.11) has a unique solution x ∈ RN .

5.1. Discretization of Dirichlet Data and Computation of Corresponding Dirichlet
Data Oscillations. Instead of solving the correct variational form (5.3), we solve

〈V φℓ , ψ〉Γ = 〈(K + 1/2)Gℓ , ψ〉Γ for all ψ ∈ H−1/2(Γ)(5.12)

with perturbed right-hand side, where we use the approximation Gℓ ≈ g. For nodal interpola-
tion (5.5), it is an analytical observation that the error between the exact solution φ ∈ H−1/2(Γ)

of (5.3) and the exact solution φℓ ∈ H−1/2(Γ) of the perturbed formulation (5.12) is controlled
by

|||φ− φℓ|||V . ‖h1/2ℓ (g −Gℓ)
′‖L2(Γ) =: oscD,ℓ,(5.13)

where (·)′ denotes the arclength-derivative, cf. [5]. Since the proof of [5] only requires that
g − Gℓ has certain zeros (on each elements resp. on each patch), the same estimate also holds
in case of the L2-projection of (5.6).

Listing 5. Computation of Data Oscillations for nodal interpolation of Dirichlet Data
1 function [osc,uDh] = computeOscDirichlet(coordinates,elements,uD)

2 %*** compute midpoints of all elements

3 midpoints = 0.5 * ( coordinates(elements(:,1),:) + coordinates(elements( :,2),:) );

4

5 %*** evaluate Dirichlet data at element midpoints

6 uD midpoints = uD(midpoints);

7

8 %*** evaluate Dirichlet data at all Dirichlet nodes

9 uDh = zeros ( size (coordinates(:,1),1),1);

10 idx = unique (elements);

11 uDh(idx) = uD(coordinates(idx,:));

12

13 %*** compute oscillations of Dirichlet data via adapted Newton −Cotes formula

14 osc = 4/3 * ( uDh(elements(:,1))+uDh(elements(:,2)) −2* uD midpoints ).ˆ2;

5.1.1. Nodal interpolation of Dirichlet data (Listing 5). In this subsection, we aim for
a numerical approximation of the local contributions

oscD,ℓ(Ej) = ‖h1/2ℓ (g −Gℓ)
′‖L2(Ej) = length(Ej)

1/2‖(g −Gℓ)
′‖L2(Ej) for all Ej ∈ Eℓ

of the oscillations defined in (5.13) in case of nodal interpolation. For Ej = [aj , bj ] ∈ Eℓ and
h := length(Ej) = |bj−aj|, let γj : [−1, 1] → Ej denote the reference parametrization from (2.1).
Recall that |γ′j | = h/2. With the definition of a boundary integral from Section 2.2 and the
definition of the arclength derivative from Section 2.3, we obtain

‖v′‖2L2(Ej)
=

∫

Ej

(v′)2 dΓ
Def
=

h

2

∫ 1

−1

(
(v′ ◦ γj)(s)

)2
ds

Def
=

2

h

∫ 1

−1

(
(v ◦ γj)′(s)

)2
ds.(5.14)

We now approximate w := v ◦ γj : [−1, 1] → R by some polynomial pj ∈ P2[−1, 1] with

pj(−1) = w(−1) = v(aj), pj(0) = w(0) = v(mj), pj(1) = w(1) = v(bj),
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where mj = (aj + bj)/2 denotes the midpoint of Ej. Note that p′j ∈ P1[−1, 1] and (p′j)
2 ∈

P2[−1, 1] so that

‖v′‖2L2(Ej)
=

2

h

∫ 1

−1

(
(v ◦ γj)′(s)

)2
ds ≈ 2

h

∫ 1

−1
(p′j)

2 ds =
2

h
quad2

(
(p′j)

2
)
,

where quad2(·) is a quadrature rule on [−1, 1] which is exact on P2[−1, 1]. We use a 3-point
Newton-Côtes formula with nodes s1 = −1, s2 = 0, and s3 = 1, which is exact on P3[−1, 1]. It
thus remains to evaluate p′j(sk) by use of pj(−1), pj(0), and pj(1). To that end, we write pj in
terms of the Lagrangian basis

pj = v(aj)L1 + v(mj)L2 + v(bj)L3, whence p′j = v(aj)L
′
1 + v(mj)L

′
2 + v(bj)L

′
3.

The Lagrange polynomials Lk associated with sk = −1, 0, 1 read

L1(s) = s(s− 1)/2, L2(s) = 1− s2, L3(s) = s(s+ 1)/2,

and their derivatives are

L′
1(s) = (2s− 1)/2, L′

2(s) = −2s, L′
3(s) = (2s + 1)/2.

With the matrix (L′
ℓ(sk))

3
k,ℓ=1, p

′
j(sk) is thus obtained from a matrix-vector multiplication



p′j(−1)

p′j(0)

p′j(+1)


 =



L′
1(−1) L′

2(−1) L′
3(−1)

L′
1(0) L′

2(0) L′
3(0)

L′
1(+1) L′

2(+1) L′
3(+1)





v(aj)
v(mj)
v(bj)


 =



−3/2 +2 −1/2
−1/2 0 +1/2
+1/2 −2 +3/2





v(aj)
v(mj)
v(bj)


 .

For the computation of the local Dirichlet data oscillations

oscD,ℓ(Ej)
2 = h ‖(g −Gℓ)

′‖2L2(Ej)
= 2

∫ 1

−1

(
(g −Gℓ) ◦ γj)′(s)

)2
ds,

we have v = g −Gℓ. This results in (g −Gℓ)(aj) = 0 = (g −Gℓ)(bj) by definition of the nodal
interpolant Gℓ. Consequently, everything simplifies to


p′j(−1)

p′j(0)

p′j(+1)


 =




2 v(mj)
0

−2 v(mj)


 =

(
g(mj)−

g(aj) + g(bj)

2

)


+2
0
−2


 =

(
g(aj) + g(bj)− 2 g(mj)

)


−1
0
+1


 .

Note that the weights of the Newton-Côtes formula read

ωk =

∫ 1

−1
Lk(t) dt, whence ω1 = 1/3, ω2 = 4/3, ω3 = 1/3.

Therefore,

oscD,ℓ(Ej)
2 ≈ õscD,ℓ(Ej)

2 := 2 quad2
(
(p′j)

2
)
= 2

3∑

k=1

ωk

(
p′j(sk)

)2

=
4

3

(
g(aj) + g(bj)− 2 g(mj)

)2
.

(5.15)

Altogether, the documentation of Listing 5 now reads as follows:

• The function takes the mesh Eℓ in terms of coordinates and elements as well as a
function handle uD for the Dirichlet data g. Besides the local data oscillations, it returns
the column vector g = uDh of the nodal values of the Dirichlet data g (Line 1).• We first compute all element midpoints (Line 3) and evaluate the Dirichlet data g at all
midpoints (Line 6) and all nodes (Line 9–11). In case that elements describes a partition
of the entire boundary, the latter could simply be performed by

uDh = uD(coordinates);
However, we aim to reuse this code in case of mixed boundary value problems, where
elements provides only a partition of the Dirichlet boundary. Our implementation avoids
to evaluate the Dirichlet data uD in Neumann nodes.• Finally, Formula (5.15) is realized (Line 14) simultaneously for all elements Ej ∈ Eℓ.
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• The function returns the column vector of elementwise Dirichlet data oscillations

v :=
(
õscD,ℓ(E1)

2, . . . , õscD,ℓ(EN )2
)
∈ RN

so that oscD,ℓ ≈
(∑N

j=1 vj

)1/2
.

Remark 5.1. For smooth Dirichlet data g and uniform meshes with mesh-size h, there holds

oscD,ℓ = O(h3/2) and
∣∣∣oscD,ℓ −

( N∑

j=1

vj

)1/2∣∣∣ = O(h5/2).

Therefore, the quadrature error is of higher order when compared to the discretization order.

Listing 6. Computation of Data Oscillations for L2-projection of Dirichlet Data
1 function [osc,uDh] = computeOscDirichletL2(coordinates,elements,uD, varargin )

2 %*** gauss(3) quadrature

3 quad nodes = sqrt (3/5) * [ −1;0;1];

4 quad weights = [5,8,5]/9;

5

6 %*** general constants

7 nC = size (coordinates,1);

8 nE = size (elements,1);

9 nQ = size (quad nodes,1);

10

11 %*** compute mesh −size

12 a = coordinates(elements(:,1),:);

13 b = coordinates(elements(:,2),:);

14 h = sqrt ( sum((a −b).ˆ2,2));

15

16 %*** build L2 mass matrix with respect to S1

17 I = elements(:,[1 1 2 2]);

18 J = elements(:,[1 2 1 2]);

19 M = sparse (I,J,h * [2 1 1 2]/6);

20

21 %*** perform all necessary evaluations of Dirichlet data uD

22 sx = reshape (a,2 * nE,1) * (1 −quad nodes') + reshape (b,2 * nE,1) * (1+quad nodes');

23 sx = 0.5 * reshape (sx',nQ * nE,2);

24 uD sx = reshape (uD(sx, varargin {: }),nQ,nE);

25

26 %*** build right −hand side vector for L2 projection onto S1

27 c = 0.25 * [h;h] . * [ quad weights * (uD sx. * repmat (1 −quad nodes,1,nE)), ...

28 quad weights * (uD sx. * repmat (1+quad nodes,1,nE)) ]';

29 c = accumarray (elements(:),c);

30

31 %*** compute (nodal vector of) L2 projection uDh of uD onto S1

32 uDh = M\c;

33

34 %*** evaluate uDh at quadrature nodes

35 uDh sx = 0.5 * ( (1 −quad nodes) * uDh(elements(:,1))' ...

36 + (1+quad nodes) * uDh(elements(:,2))' );

37

38 %*** compute oscillations of Dirichlet data via gauss(3) formul a

39 D = 0.5 * sqrt (5/3) * [ −3 −4 −1 ; −1 0 1 ; 1 4 3];

40 osc = 2 * (quad weights * ( D* (uD sx − uDh sx) ).ˆ2)';

36



5.1.2. L2-projection of Dirichlet data (Listing 6). With the ansatz Gℓ =
∑N

j=1 gjζj ∈
S1(Eℓ) and an unknown coefficient vector g ∈ RN , Equation (5.6) is equivalent to the matrix
equation

M̃g = c, where M̃jk =

∫

Γ
ζkζj dΓ and ck =

∫

Γ
g ζk dΓ.(5.16)

Clearly, M̃ is positive definite and symmetric. This implies that g ∈ RN is uniquely existing,
and hence the function Gℓ ∈ S1(Eℓ) in (5.6) is uniquely defined.

To compute Gℓ in practice, we have to assemble the matrix M̃ ∈ RN×N
sym as well as the

right-hand side vector c ∈ RN . The assembly of the mass matrix M̃ could be done as follows:

nC = size (coordinates,1);

nE = size (elements,1);

M = sparse (nC,nC);

for j = 1:nE

nodes = elements(j,:);

h = norm(coordinates(nodes(2),:) −coordinates(nodes(1),:));

M(nodes,nodes) = M(nodes,nodes) + [2 1;1 2]/6 * h;

end

The entries ck of the right-hand side vector c ∈ RN are computed by numerical quadrature.
We use the 3-point Gaussian quadrature of order 5 on [−1, 1]: For an element Ej = [aj , bj ] with
h = length(Ej) and corresponding reference parametrization γj : E → Ej, it holds

∫

Ej

uζk dΓ =
h

2

∫ 1

−1
g ◦ γj(s) ζk ◦ γj(s) ds ≈

h

4





0 if zk 6∈ {aj , bj},
gauss3

(
(1− s)g ◦ γj

)
for zk = aj,

gauss3
(
(1 + s)g ◦ γj

)
for zk = bj,

since

ζk ◦ γj(s) =





0 if zk 6∈ {aj , bj},
1−s
2 for zk = aj ,

1+s
2 for zk = bj .

For the numerical approximation of the local contributions

oscD,ℓ(Ej) = ‖h1/2ℓ (g −Gℓ)
′‖L2(Ej) = length(Ej)

1/2‖(g −Gℓ)
′‖L2(Ej) for all Ej ∈ Eℓ

of the oscillations defined in (5.13), we proceed as for the nodal interpolation in Section 5.1.1.
However, to reuse the function evaluations of u, we use the 3-point Gaussian quadrature instead
of the 3-point Newton-Côtes formula: The nodes of the 3-point Gauss quadrature read

s1 = −
√

3/5, s2 = 0, s3 =
√

3/5,

with corresponding weights

ω1 = 5/9 = ω3 and ω2 = 8/9.

Direct calculation for the corresponding Lagrange polynomials shows

L1(s) =
5

6
s(s−

√
3/5), L′

1(s) =
5

6
(2s −

√
3/5),

L2(s) =
5

3
s2 − 1, L′

2(s) =
10

3
s,

L3(s) =
5

6
s(s+

√
3/5), L′

3(s) =
5

6
(2s+

√
3/5).
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We approximate v := (g−Gℓ)◦γj by the polynomial pj ∈ P2[−1, 1] with pj(sk) = v ◦γj(sk). To
evaluate p′j(sk), we use the representation p′j(s) =

∑3
ℓ=1 pj(sℓ)L

′
ℓ(s). This leads to the matrix

(
L′
ℓ(sk)

)3
k,ℓ=1



−5/2

√
3/5 −10/3

√
3/5 −5/6

√
3/5

−5/6
√

3/5 0 5/6
√

3/5

5/6
√

3/5 10/3
√

3/5 5/2
√

3/5


 =

1

2

√
5/3



−3 −4 −1
−1 0 1
1 4 3




to compute
(
p′j(s1), p

′
j(s2), p

′
j(s3)

)
from

(
pj(s1), pj(s2), pj(s3)

)
.

Arguing as in the previous section, we see

length(Ej)‖v′‖2L2(Ej)
= 2

∫ 1

−1

(
v ◦ γj)′(s)

)2
ds ≈ 2

∫ 1

−1

(
p′j(s)

)2
ds = 2gauss2

(
(p′j)

2
)
.

Our implementation then returns

õscD,ℓ(Ej)
2 := 2 gauss2

(
(p′j)

2
)
≈ oscD,ℓ(Ej)

2 for all j = 1, . . . , N.(5.17)

Altogether, the documentation of Listing 6 now reads as follows:

• The function takes the mesh in terms of coordinates and elements as well as a function
handle uD for the Dirichlet data g. Besides the local data oscillations, it returns the column
vector g = uDh of the nodal values of the L2-projection Gℓ of the Dirichlet data g (Line 1).• All occuring integrals are transformed to [−1, 1] and computed by the 3-point Gauss-
Legendre quadrature on [−1, 1] which is exact for polynomials of degree 5 (Line 3–4).• The local mesh-width is computed (Line 12–14), i.e. h is a column vector with h(j) =
length(Ej).

• The mass matrix M̃ from (5.16) is built (Line 17–19).• To avoid functions calls of uD, all necessary evaluations of uD are done simultaneously and
stored in an nQ× nE array uD sx , i.e. the j-th column uD s(:, j) contains the evaluations
of uD in the quadrature nodes related to Ej (Line 22–24).• The right-hand side vector c from (5.16) is build (Line 27–29) by use of elementwise quad-
rature, and the nodal values of Gℓ are computed and stored in uDh (Line 32).• For s ∈ [−1, 1], it holds that Gℓ ◦γj(s) = 1

2

(
(1− s)Gℓ(aj)+ (1+ s)Gℓ(bj)

)
, since Gℓ is affine

on Ej = [aj, bj ]. Therefore, the nQ× nE array uDh sx contains the evaluation of Gℓ in all
quadrature nodes analogously to the array uD sx (Line 35).• Finally, formula (5.17) is realized for all elements Ej ∈ Eℓ, and the function returns a column
vector

v =
(
õscD,ℓ(E1)

2, . . . , õscD,ℓ(EN )2
)

of approximate elementwise Dirichlet data oscillations.

Remark 5.2. For smooth Dirichlet data g and uniform meshes with mesh-size h, there holds

oscD,ℓ = O(h3/2) and

∣∣∣oscD,ℓ −
( N∑

j=1

vj

)1/2∣∣∣ = O(h5/2).

Therefore, the quadrature error is of higher order when compared to the discretization order.

5.2. Computation of Discrete Integral Operators V and K. The matrices V,K ∈ RN×N

defined in (5.10) are implemented in the programming language C via the Matlab-Mex-
Interface. The simple-layer potential matrix V is returned by call of

V = buildV(coordinates,elements [,eta]);

In general, all matrix entries of V can be computed analytically by use of anti-derivatives found
in [22]. However, analytic integration leads to cancellation effects if the integration domain is

small, i.e.
∫ b
a · dx with a ≈ b. In this case, the (continuous) integrand is generically of one sign

so that Gaussian quadrature (with positive weights) appears to be more stable.
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Let η ≥ 0 be given. Recall that

Vkj = − 1

2π

∫

Ek

∫

Ej

log |x− y| dΓ(y) dΓ(x).

A pair of elements (Ej , Ek) is called admissible provided that

min{length(Ej), length(Ek)} ≤ η dist(Ej , Ek)(5.18)

with dist(·, ·) the distance of Ej and Ek. Otherwise, the pair (Ej , Ek) is called inadmissible.
Note that for Vkj , the Fubini theorem applies and proves that one can assume w.l.o.g. that
length(Ek) ≤ length(Ej). Note that the cancellation effects from the outer integration are thus
generically higher than those of the inner integration. For fixed x ∈ Ek, the inner integral∫

Ej

log |x− y| dΓ(y)

is computed analytically [22]. If the pair (Ej , Ek) is admissible, we parametrize Ek and approx-
imate ∫

Ek

∫

Ej

log |x− y| dΓ(y) dΓ(x) =
∫ 1

−1

∫

Ej

log |γk(s)− y| dΓ(y) ds

≈
p∑

m=1

ωm

∫

Ej

log |γk(sm)− y| dΓ(y)

with a Gaussian quadrature on [−1, 1] of length p.
For fixed η > 0, the described procedure leads to some approximate matrix Vp ≈ V. It is

proven in [24, Satz 3.13] that Vp converges exponentially to V with respect to the Frobenius
norm (and hence the ℓ2-operator norm) as p→ ∞.

In HILBERT, we choose η = 1/2, if the optional parameter eta is not specified. If eta is given
by the user, we set η = eta . Note that for given eta ≤ 0 all entries of V are inadmissible and
thus computed analytically. For eta > 0 or non-specified, certain entries are computed semi-
analytically as described before, where we use a Gaussian quadrature of length p = 16. Different
values of p can be chosen by modification of the file source/geometry.h and by re-building the
integral operators, see Section 3.2.

The double-layer potential matrix K is obtained by call of

K = buildK(coordinates,elements [,eta]);

Note that the entries of K read

Kkj = − 1

2π

∫

Ek

∫

supp(ζj)

(y − x) · ny

|x− y|2 ζj(y) dΓ(y) dΓ(x),

where supp(ζj) denotes the support of ζj and where ny ∈ R2 denotes the (constant) outer
normal vector on y ∈ Γ. For a mesh on a closed boundary Γ, supp(ζj) is the union of precisely
two elements Ei ∈ Eℓ. Therefore, the computation of Kkj needs the computation of double
integrals of the type

∫

Ek

∫

Ei

(y − x) · nj

|x− y|2 ζj(y) dΓ(y) dΓ(x).

These can be computed analytically by use of anti-derivatives from [22]. For admissible pairs
(Ei, Ek), we may proceed as described for V. More precisely, we change the order of integration
so that the smaller element corresponds to the outer integration, and we use numerical quad-
rature to compute the outer integral. As for V, this provides an approximation Kp ≈ K which
converges exponentially to K as p→ ∞.

Listing 7. Build Mass Matrix
1 function M = buildM(coordinates,elements)
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2

3 nE = size (elements,1);

4

5 %*** build vector of local mesh −size

6 h = sqrt ( sum((coordinates(elements(:,1),:) −coordinates(elements(:,2),:)).ˆ2,2));

7

8 %*** build coordinate format of sparse matrix M

9 I = reshape ( repmat (1:nE,2,1),2 * nE,1);

10 J = reshape (elements',2 * nE,1);

11 A = reshape ( repmat (0.5 * h,1,2)',2 * nE,1);

12

13 %*** build sparse matrix from coordinate format

14 M = sparse (I,J,A);

5.3. Building of the Mass Matrix M (Listing 7). Let N ∈ N be the number of nodes zj
in Eℓ and M ∈ N the number of elements Ej in Eℓ. Note that e.g. for open boundaries, there
holds N 6=M . The mass matrix M ∈ RM×N is defined by

Mkj = 〈ζj , χk〉Γ for all j = 1, . . . , N, k = 1, . . . ,M.

Note that the entry Mkj = 〈ζj , χk〉Γ =
∫
Ek
ζj ds satisfies

Mkj =

{
0 if zj 6∈ {zm, zn},
length(Ek)/2 if zj ∈ {zm, zn},

where Ek = [zm, zn] ∈ Eℓ. We thus may assemble the matrix M in the following way:

nE = size (elements,1);

M = sparse (nE,nE);

for k = 1:nE

a = coordinates(elements(k,1),:);

b = coordinates(elements(k,2),:);

h = norm(b −a);

M(k,elements(k,:)) = h/2;

end

We stress, however, that this implementation will lead to more than quadratic runtime with
respect to the number M of elements. The reason for this is the internal storage of sparse
matrices in Matlab by use of the CCS format. This requires to sort the corresponding memory
with every update of the sparse matrix and thus leads to a complexity O(k log k) for O(k) non-
zero entries. Since this is done for k = 1, . . . ,M , one consequently expects a computational
complexity of order O(M2 logM) which can be observed experimentally, cf. [19].
Building sparse matrices in Matlab is efficiently done via the built-in function sparse which
takes the coordinate format I, J,A ∈ R2M , where Mij =

∑r
s=1Aks for i = Iks and j = Jks ,

s = 1, . . . , r. Altogether, the documentation of Listing 7 reads as follows:

• The function takes the mesh Eℓ described in terms of coordinates and elements .• The column vector h ∈ RN contains hj = length(Ej) (Line 6). We stress that the Euclidean
length h = norm(b −a) can also be computed via h = sqrt ( sum((b −a).ˆ2,2)) if
a, b ∈ R2 are row-vectors. Then, the vectors I, J,A ∈ R2M of the coordinate format of M
are computed (Line 9–11), and the matrix M is built (Line 14).

Listing 8. Build RHS for Symm’s Integral Equation
1 function b = buildSymmRHS(coordinates,elements,uDh)

2 %*** compute DLP−matrix for P0 x S1

3 K = buildK(coordinates,elements);

4

5 %*** compute mass −type matrix for P0 x S1
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6 M = buildM(coordinates,elements);

7

8 %*** build right −hand side vector

9 b = K* uDh + M* uDh* 0.5;

5.4. Building of Right-Hand Side Vector (Listing 8). In this section, we aim at com-
puting the vector

b := Kg +
1

2
Mg ∈ RN(5.19)

from (5.11). The documentation of Listing 8 reads as follows:

• The function takes the mesh Eℓ described in terms of coordinates and elements as
well as column vector g = uDh which contains the nodal values for the discrete Dirichlet
data Gℓ ≈ g.• We call the functions for the matrices M (Line 6) and K (Line 3).• We assemble the right-hand side vector b (Line 9).

Listing 9. Reliable Error Bound for |||φ− φℓ|||V
1 function err = computeErrNeumann(coordinates,elements,p,phi)

2 %*** arbitrary quadrature on [ −1,1] with exactness n >= 2, e.g., gauss(2)

3 quad nodes = [ −1 1]/ sqrt (3);

4 quad weights = [1;1];

5

6 %*** the remaining code is independent of the chosen quadrature r ule

7 nE = size (elements,1);

8 nQ = length (quad nodes);

9

10 %*** build vector of evaluations points as (nQ * nE x 2) −matrix

11 a = coordinates(elements(:,1),:);

12 b = coordinates(elements(:,2),:);

13 sx = reshape (a,2 * nE,1) * (1 −quad nodes) + reshape (b,2 * nE,1) * (1+quad nodes);

14 sx = 0.5 * reshape (sx',nQ * nE,2);

15

16 %*** phi(sx) usually depends on the normal vector, whence phi tak es sx and the

17 %*** nodes of the respective element to compute the normal

18 a sx = reshape ( repmat ( reshape (a,2 * nE,1),1,nQ)',nE * nQ,2);

19 b sx = reshape ( repmat ( reshape (b,2 * nE,1),1,nQ)',nE * nQ,2);

20

21 %*** perform all necessary evaluations of phi as (nE x nQ) −matrix

22 phi sx = reshape (phi(sx,a sx,b sx),nQ,nE)';

23

24 %*** compute vector of (squared) element −widths

25 h = sum((a −b).ˆ2,2);

26

27 %*** compute Neumann error simultaneously for all elements

28 err sx = (phi sx − repmat ( reshape (p,nE,1),1,nQ)).ˆ2;

29 err = 0.5 * h. * (err sx * quad weights);

5.5. Computation of Reliable Error Bound for |||φ− Φℓ|||V|||φ− Φℓ|||V|||φ− Φℓ|||V (Listing 9). We assume
that the exact Neumann data satisfy φ ∈ L2(Γ). Let Φ∗

ℓ ∈ P0(Eℓ) be the (only theoretically
computed) Galerkin solution with respect to the non-perturbed right-hand side (K + 1/2)g
instead of (K + 1/2)Gℓ. Let Πℓ denote the L2-orthogonal projection onto P0(Eℓ). With the
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technique from [18, 5], we obtain

|||φ− Φ∗
ℓ |||V ≤ |||φ−Πℓφ|||V . ‖h1/2ℓ (φ−Πℓφ)‖L2(Γ)

as well as

|||Φ∗
ℓ − Φℓ|||V . oscD,ℓ,

where oscD,ℓ denote the Dirichlet data oscillations from Section 5.1.1. Note that Πℓ is even the
Eℓ-elementwise best approximation operator. With the triangle inequality, we therefore obtain

|||φ− Φℓ|||V . ‖h1/2ℓ (φ− Φℓ)‖L2(Γ) + oscD,ℓ =: errN,ℓ + oscD,ℓ.

In this section, we aim to numerically compute

errN,ℓ =
( N∑

j=1

errN,ℓ(Ej)
2
)1/2

, where errN,ℓ(Ej)
2 = length(Ej) ‖φ− Φℓ‖2L2(Ej)

.

With x ∈ RN the coefficient vector of

Φℓ =

N∑

j=1

xjχj,

there holds

errN,ℓ(Ej)
2 = length(Ej)

∫

Ej

|φ− xj|2 dΓ =
length(Ej)

2

2

∫ 1

−1
|φ ◦ γj(s)− xj |2 ds

≈ length(Ej)
2

2
quadn

(
(φ ◦ γj − xj)

2
)
=: ẽrrN,ℓ(Ej)

2,(5.20)

where quadn(·) denotes a quadrature rule on [−1, 1] which is exact for polynomials of degree n,

i.e. quadn(p) =
∫ 1
−1 p ds for all p ∈ Pn[−1, 1]. With the definition ẽrrN,ℓ :=

(∑N
j=1 ẽrrN,ℓ(Ej)

2
)1/2

,
one can then prove that

|errN,ℓ − ẽrrN,ℓ| = O(hn/2+1).

For smooth φ, there holds errN,ℓ = O(h3/2). For our implementation, we thus choose the Gauss
quadrature with two nodes, which is exact for polynomials of degree n = 3. As for the Dirichlet
data oscillations, this choice then leads to

|errN,ℓ − ẽrrN,ℓ| = O(h5/2), whereas at most errN,ℓ = O(h3/2),

i.e. our implementation is accurate up to higher-order terms. The documentation of Listing 9
now simply reads as follows:

• The function takes the given mesh Eℓ in form of the arrays coordinates and elements ,
the coefficient vector p = x as well as a function handle phi for the Neumann data. The
function phi is called by

y = phi(x,a,b)
with (n × 2)-arrays x , a, and b. The j-th rows x(j, :), a(j, :), and b(j, :) correspond to a
point xj ∈ [aj , bj ] ⊂ R2. The entry y(j) of the column vector y then contains φ(xj).• As stated above, we use the Gauss quadrature with two nodes (Line 3–4).• If sk ∈ [−1, 1] is a quadrature node and Ej = [aj , bj ] ∈ Eℓ = {E1, . . . , EN} is an element,
the function φ has to be evaluated at

γj(sk) =
1

2

(
aj + bj + sk(bj − aj)

)
=

1

2

(
aj(1− sk) + bj(1 + sk)

)
.

In Line 11–14, we build the (2N × 2)-array sx which contains all necessary evaluation
points. Note that the two evaluation points at Ej are stored in sx (2j − 1, :) and sx (2j, :).• In Line 18–19, we compute the (2N×2)-arrays a sx and b sx such that, e.g., a sx (2j−1, :)
and a sx (2j, :) contain the first node aj ∈ R2 of the boundary element Ej = [aj , bj ].
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• We then evaluate the Neumann data φ simultaneously in all evaluation points and we
reshape this (2N × 1)-array into a (N × 2)-array phi sx such that phi sx (j, :) contains
all φ-values related to Ej (Line 22).

• We realize Equation (5.20). We first derive the necessary evaluations of (φ − xj)
2 in

Line 28. Multiplication with the quadrature weights and coefficient-wise weighting with
length(Ej)

2/2 provides the (N×1)-array err such that err (j) ≈ length(Ej)‖φ−Φℓ‖2L2(Ej)
.

More precisely, there holds err2N,ℓ ≈
∑N

j=1 err (j) = ẽrr2N,ℓ.

Remark 5.3. In academic experiments, the exact solution φ is usually known and has certain

regularity φ ∈ L2(Γ) which only depends on the geometry of Γ. As explained before, there holds

|||φ− Φℓ|||V . errN,ℓ + oscD,ℓ

so that we can control the error reliably. Moreover, the convergence errN,ℓ → 0 as ℓ→ ∞ might

indicate that there are no major bugs in the implementation — since we compare the Galerkin

solution with the exact solution. �

5.6. Computation of (h− h/2)(h− h/2)(h− h/2)-Based A Posteriori Error Estimators. In this section,
we discuss the implementation of four error estimators introduced and analyzed in [18]. Let

Êℓ = {e1, . . . , e2N} be the uniform refinement of the mesh Eℓ = {E1, . . . , EN}. Let Φℓ ∈ P0(Eℓ)
and Φ̂ℓ ∈ P0(Êℓ) be the Galerkin solutions (5.7) with respect to Eℓ and Êℓ and the same
approximate Dirichlet data Gℓ, i.e., there holds

〈V Φℓ , Ψℓ〉V = 〈(K + 1/2)Gℓ , Ψℓ〉Γ for all Ψℓ ∈ P0(Eℓ)(5.21)

as well as

〈V Φ̂ℓ , Ψ̂ℓ〉V = 〈(K + 1/2)Gℓ , Ψ̂ℓ〉Γ for all Ψ̂ℓ ∈ P0(Êℓ).(5.22)

With φℓ ∈ H−1/2(Γ) the exact solution of (5.12), one can expect

|||φℓ − Φℓ|||V ≈ |||Φ̂ℓ −Φℓ|||V =: ηℓ,(5.23)

which results in

|||φ− Φℓ|||V ≤ |||φ− φℓ|||V + |||φℓ − Φℓ|||V . oscD,ℓ + ηℓ(5.24)

according to the triangle inequality and (5.13).

Clearly, the Galerkin solution Φ̂ℓ with respect to the uniformly refined mesh Êℓ is more

accurate than Φℓ. Consequently, any algorithm will return Φ̂ℓ instead of Φℓ if Φ̂ℓ has been
computed. From this point of view, Φℓ then becomes a side result and leads to unnecessary
computational effort. One can prove that one may replace Φℓ by a cheap (but appropriate)

postprocessing ΠℓΦ̂ℓ of Φ̂ℓ. This leads to some error estimator

ηℓ ∼ |||Φ̂ℓ −ΠℓΦ̂ℓ|||V =: η̃ℓ(5.25)

which always stays proportional to ηℓ, indicated by ηℓ ∼ η̃ℓ. To be more precise, Πℓ denotes the
L2-orthogonal projection onto P0(Eℓ), which simply reads

(ΠℓΦ̂ℓ)|Ei =
1

length(Ei)

∫

Ei

Φ̂ℓ dΓ for all Ei ∈ Eℓ(5.26)

in case of the lowest-order discretization, i.e. piecewise constant ansatz and test functions.
However, one essential drawback of the error estimators ηℓ and η̃ℓ is that they do not provide

an additional information on the local errors, i.e., the error |||φ−Φℓ|||V related to some element
Ei ∈ Eℓ. This is different for the error estimators µℓ and µ̃ℓ discussed in the following. For
instance, one can prove that

ηℓ ∼ µℓ := ‖h1/2ℓ (Φ̂ℓ − Φℓ)‖L2(Γ) =
( N∑

i=1

length(Ei)‖Φ̂ℓ − Φℓ‖2L2(Ei)

)1/2
.(5.27)
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Then, the local contributions

µℓ(Ei) := length(Ei)
1/2‖Φ̂ℓ − Φℓ‖L2(Ei) for all Ei ∈ Eℓ(5.28)

give some measure for the error on Ei.
As the computation of the error estimator ηℓ, the computation of µℓ needs the computation

of two Galerkin solutions Φℓ and Φ̂ℓ. As before, the computation of the coarse-mesh solution

Φℓ can be avoided by use of the projected fine mesh solution ΠℓΦ̂ℓ. One can mathematically
prove that

ηℓ ∼ µ̃ℓ := ‖h1/2ℓ (Φ̂ℓ −ΠℓΦ̂ℓ)‖L2(Γ).(5.29)

In the following subsections, we first discuss the computation of the global error estimators ηℓ
and η̃ℓ from (5.23) and (5.25). Then, we give an implementation of the local error estimators µℓ
and µ̃ℓ from (5.27) and (5.29), where our functions return the local contributions, see e.g. (5.28),
to steer an adaptive mesh-refinement.

Remark 5.4. If we plot the error estimators ηℓ, η̃ℓ, µℓ and µ̃ℓ over the number of elements, one

can mathematically predict that the corresponding curves, for a sequence of arbitrarily refined

meshes, are parallel. In mathematical terms, this reads

ηℓ ≤ η̃ℓ . µ̃ℓ ≤ µℓ . ηℓ,(5.30)

cf. [15, 18]. Empirically, one observes a very good coincidence of ηℓ and η̃ℓ in the sense that the

corresponding curves almost coincide. The same is observed for the curves of µℓ and µ̃ℓ. �

Remark 5.5. Mathematically, the error estimate (5.24) involves the so-called saturation as-

sumption: Assume that we could compute the Galerkin solutions Φ∗
ℓ and Φ̂∗

ℓ with respect to

Eℓ and Êℓ for the non-perturbed variational formulation (5.3), i.e., we formally use the exact

Dirichlet data g instead of the interpolated data Gℓ — although the right-hand side is, in fact,

non-computable because of Kg. Then, the saturation assumption states that

|||φ− Φ̂∗
ℓ |||V ≤ q |||φ− Φ∗

ℓ |||V(5.31)

with some uniform and ℓ-independent constant q ∈ (0, 1). —Put differently, uniform mesh-

refinement leads to a uniform improvement of the discretization error.— Provided (5.31), one
can prove that

ηℓ ≤ |||φℓ − Φℓ|||V ≤ (1− q2)−1/2 ηℓ(5.32)

which is the mathematical basis of (5.23), cf. [18].
We stress that this assumption is somewhat natural and can, for instance, be proven for

the finite element method [14], see also [17, Section 2.3]. For the boundary element method,

however, (5.31) still remains open.

Finally, one can prove that (5.31) is sufficient and in some sense even necessary to guaran-

tee (5.24). �

Remark 5.6. In academic experiments, the exact solution φ is usually known and has cer-

tain regularity φ ∈ L2(Γ) which only depends on the geometry of Γ. In this case, one can

experimentally verify the saturation assumption as follows: In Section 5.5, we derived

|||φ− Φℓ|||V . errN,ℓ + oscD,ℓ.

If the right-hand side has the same convergence behaviour as the error estimator ηℓ + oscD,ℓ,

this proves empirically

|||φ− Φℓ|||V . ηℓ + oscD,ℓ

and confirms the saturation assumption. �

Listing 10. Computation of Estimator ηℓ
1 function est = computeEstSlpEta(father2son,V fine,x fine,x coarse)

44



2 %*** compute coefficient vector of (phi fine − phi coarse) w.r.t. to fine mesh

3 x fine(father2son(:,1)) = x fine(father2son(:,1)) − x coarse;

4 x fine(father2son(:,2)) = x fine(father2son(:,2)) − x coarse;

5

6 %*** compute energy | | | phi fine − phi coarse | | | ˆ 2

7 est = x fine' * (V fine * x fine);

5.6.1. Computation of Error Estimator ηℓηℓηℓ (Listing 10). In this section, we aim to

compute the error estimator ηℓ = |||Φ̂ℓ − Φℓ|||V from (5.23). Let χ̂j denote the characteristic

function associated with some fine-mesh element ej ∈ Êℓ. Let x ∈ RN and x̂ ∈ R2N be the

coefficient vectors of Φℓ and Φ̂ℓ with respect to the canonical bases of P0(Eℓ) and P0(Êℓ), i.e.

Φℓ =

N∑

j=1

xjχj and Φ̂ℓ =

2N∑

j=1

x̂jχ̂j.

Because of P0(Eℓ) ⊂ P0(Êℓ), there is a unique vector ŷ ∈ R2N such that

Φℓ =
2N∑

j=1

ŷjχ̂j.

With the vectors x̂, ŷ ∈ R2N , there holds

η2ℓ = |||Φ̂ℓ − Φℓ|||2V = 〈〈Φ̂ℓ − Φℓ , Φ̂ℓ − Φℓ〉〉V =
2N∑

j,k=1

(x̂j − ŷj)(x̂k − ŷk)〈〈χ̂j , χ̂k〉〉V

= (x̂− ŷ) · V̂(x̂− ŷ),

where V̂ is the matrix for the simple-layer potential (5.10) with respect to the fine mesh Êℓ.
With these observations, the documentation of Listing 10 reads as follows:

• The function takes the coefficient vectors x ∈ RN and x̂ ∈ R2N of the Galerkin solutions
Φℓ and Φ̂ℓ as well as the simple-layer potential matrix V̂ for the fine mesh Êℓ. Besides this,
the (N × 2)-array father2son links the indices of elements Ei ∈ Eℓ with the indices of

the sons ej, ek ∈ Êℓ in the sense that father2son( i,:) = [ j, k] for Ei = ej ∪ ek and
consequently ŷj = ŷk = xi.• We overwrite the vector x̂ by the coefficient vector x̂− ŷ of Φ̂ℓ − Φℓ (Line 3–4).

• Finally, the function returns η2ℓ = |||Φ̂ℓ − Φℓ|||2V (Line 7).

Listing 11. Computation of Estimator η̃ℓ
1 function est = computeEstSlpEtaTilde(father2son,V fine,x fine)

2 %*** compute L2 −projection Pi coarse * phi fine onto coarse mesh

3 pi x fine = 0.5 * ( x fine(father2son(:,1)) + x fine(father2son(:,2)) );

4

5 %*** compute coefficient vector of (1 −Pi coarse) * phi fine

6 x fine(father2son(:,1)) = x fine(father2son(:,1)) − pi x fine;

7 x fine(father2son(:,2)) = x fine(father2son(:,2)) − pi x fine;

8

9 %*** compute energy | | | (1 −Pi coarse) * phi fine | | | ˆ 2

10 est = x fine' * (V fine * x fine);
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5.6.2. Computation of Error Estimator η̃ℓ̃ηℓ̃ηℓ (Listing 11). We adopt the notation of
Section 5.6.1 for the computation of ηℓ, namely x̂ ∈ R2N with

Φ̂ℓ =

2N∑

j=1

x̂jχ̂j.

Let ej , ek ∈ Êℓ be the sons of Ei ∈ Eℓ, i.e. Ei = ej ∪ ek. Then,
∫

Ei

Φ̂ℓ dΓ =

∫

ej

Φ̂ℓ dΓ +

∫

ek

Φ̂ℓ dΓ = length(ej) x̂j + length(ek) x̂k = length(Ei)
x̂j + x̂k

2
.

Put differently, there holds

(ΠℓΦ̂ℓ)|Ei =
x̂j + x̂k

2
for all Ei ∈ Eℓ with Ei = ej ∪ ek and ej, ek ∈ Êℓ

for the L2-projection Πℓ defined in (5.26). Representing ΠℓΦ̂ℓ ∈ P0(Eℓ) with respect to the

fine-mesh Êℓ, we obtain

ΠℓΦ̂ℓ =

2N∑

n=1

ẑnχ̂n,

where the vector ẑ ∈ R2N satisfies ẑj = ẑk =
x̂j+x̂k

2 provided that ej, ek ∈ Êℓ are the sons of
some element Ei ∈ Eℓ. As in Section 5.6.1, there holds

η̃ 2
ℓ = |||Φ̂ℓ −ΠℓΦ̂ℓ|||2V = (x̂− ẑ) · V̂(x̂− ẑ).

Therefore, the documentation of Listing 11 reads as follows:

• The function takes the simple-layer potential matrix V̂ for the fine mesh Êℓ and the coeffi-

cient vector x̂ ∈ R2N of Φ̂ℓ. Moreover, the link between Eℓ and Êℓ is provided by means of
father2son .• We first compute the coefficient vector of ΠℓΦ̂ℓ with respect to the coarse mesh Eℓ (Line 3).• We then overwrite x̂ by the coefficient vector x̂− ẑ ∈ R2N of Φ̂ℓ −ΠℓΦ̂ℓ (Line 6–7).

• Finally, the function returns η̃ 2
ℓ = |||Φ̂ℓ −ΠℓΦ̂ℓ|||2V (Line 10).

Listing 12. Computation of Estimator µℓ
1 function ind = computeEstSlpMu(coordinates,elements,father2son,x fine,x coarse)

2 %*** compute (squared) local mesh −size

3 h = sum((coordinates(elements(:,1),:) − coordinates(elements(:,2),:)).ˆ2,2);

4

5 %*** compute coefficient vector of (phi fine − phi coarse) w.r.t. to fine mesh

6 x fine(father2son(:,1)) = x fine(father2son(:,1)) − x coarse;

7 x fine(father2son(:,2)) = x fine(father2son(:,2)) − x coarse;

8

9 %*** compute ind(j) = diam(Ej ) * | | phi fine − phi coarse | | {L2(Ej) }ˆ2

10 ind = 0.5 * h. * ( x fine(father2son(:,1)).ˆ2 + x fine(father2son(:,2)).ˆ2 );

5.6.3. Computation of Error Estimator µℓµℓµℓ (Listing 12). In this section, we discuss the
implementation of

µ2ℓ =
N∑

i=1

µℓ(Ei)
2, where µℓ(Ei)

2 = length(Ei) ‖Φ̂ℓ − Φℓ‖2L2(Ei)
.
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We adopt the notation of Section 5.6.1, namely x̂, ŷ ∈ R2N with

Φ̂ℓ =
2N∑

j=1

x̂jχ̂j and Φℓ =
2N∑

j=1

ŷjχ̂j.

For fixed Ei ∈ Eℓ and sons ej , ek ∈ Êℓ with Ei = ej ∪ ek, we obtain

‖Φ̂ℓ − Φℓ‖2L2(Ei)
=

∫

ej

(Φ̂ℓ − Φℓ)
2 dΓ +

∫

ek

(Φ̂ℓ − Φℓ)
2 dΓ =

length(Ei)

2

(
(x̂j − ŷj)

2 + (x̂k − ŷk)
2
)
.

This implies

µℓ(Ei)
2 =

length(Ei)
2

2

(
(x̂j − ŷj)

2 + (x̂k − ŷk)
2
)
.(5.33)

Altogether, the documentation of Listing 12 reads as follows:

• As input arguments, the function takes the mesh Eℓ, the link between Eℓ and Êℓ, and the

coefficient vectors x ∈ RN and x̂ ∈ R2N of the Galerkin solutions Φℓ and Φ̂ℓ (Line 1).• We compute the vector of all squared element-sizes (Line 3).

• We overwrite the coefficient vector x̂ of Φ̂ℓ by the coefficient vector x̂ − ŷ of Φ̂ℓ − Φℓ

(Line 6–7).• Finally (Line 10), the function realizes (5.33) and returns the vector

v := (µℓ(E1)
2, . . . , µℓ(EN )2) ∈ RN

so that µℓ =
(∑N

i=1 vi

)1/2
.

Listing 13. Computation of Estimator µ̃ℓ
1 function ind = computeEstSlpMuTilde(coordinates,elements,father2son,x fine)

2 %*** compute (squared) local mesh −size

3 h = sum((coordinates(elements(:,1),:) − coordinates(elements(:,2),:)).ˆ2,2);

4

5 %*** compute L2 −projection Pi coarse * phi fine onto coarse mesh

6 pi x fine = 0.5 * ( x fine(father2son(:,1)) + x fine(father2son(:,2)) );

7

8 %*** compute coefficient vector of (1 −Pi coarse) * phi fine

9 x fine(father2son(:,1)) = x fine(father2son(:,1)) − pi x fine;

10 x fine(father2son(:,2)) = x fine(father2son(:,2)) − pi x fine;

11

12 %*** compute ind(j) = diam(Ej ) * | | (1 −Pi coarse) * phi fine | | {L2(Ej) }ˆ2

13 ind = 0.5 * h. * ( x fine(father2son(:,1)).ˆ2 + x fine(father2son(:,2)).ˆ2 );

5.6.4. Computation of Error Estimator µ̃ℓµ̃ℓµ̃ℓ (Listing 13). In this section, we finally aim
to compute

µ̃ 2
ℓ =

N∑

i=1

µ̃ℓ(Ei)
2, where µ̃ℓ(Ei)

2 = length(Ei) ‖Φ̂ℓ −ΠℓΦ̂ℓ‖2L2(Ei)
.

We adopt the notation of the preceding Sections 5.6.1–5.6.3, namely x̂, ẑ ∈ R2N with

Φ̂ℓ =
2N∑

j=1

x̂jχ̂j and ΠℓΦ̂ℓ =
2N∑

j=1

ẑjχ̂j.

Based on this, the abbreviate documentation of Listing 13 reads as follows:

• The function takes the mesh Eℓ, the link between Eℓ and Êℓ, and the coefficient vectors

x̂ ∈ R2N of Φ̂ℓ (Line 1). It overwrites x̂ by the coefficient vector x̂− ẑ of Φ̂ℓ −ΠℓΦ̂ℓ (Line
6–10).
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• Finally (Line 13), the function returns the vector

v := (µ̃ℓ(E1)
2, . . . , µ̃ℓ(EN )2) ∈ RN .

In particular, there holds µ̃ℓ =
(∑N

i=1 vi

)1/2
.

5.7. Adaptive Mesh-Refinement. Usually computing time and memory requirements are
limiting quantities for numerical simulations. Therefore, one aims to choose the mesh such that
it is coarse, where the (unknown) solution is smooth, and fine, where the (unknown) solution is
singular. Based on a local error estimator, e.g. µ̃ℓ, such meshes are constructed in an iterative
way. In each step, one refines the mesh only locally, i.e. one refines elements Ej , where the
error appears to be large, namely, where the local contributions µ̃ℓ(Ej) are large. For the error
estimator µ̃ℓ from Section 5.6.4, a possible adaptive algorithm reads as follows:

Input: Initial mesh E0, Dirichlet data g, adaptivity parameter 0 < θ < 1, maximal number
Nmax ∈ N of elements, and counter ℓ = 0.

(i) Build uniformly refined mesh Êℓ.
(ii) Compute Galerkin solution Φ̂ℓ ∈ P0(Êℓ).
(iii) Compute refinement indicators µ̃ℓ(E)2 and oscillation terms oscD,ℓ(E)2 for all E ∈ Eℓ.
(iv) Find minimal set Mℓ ⊆ Eℓ such that

θ (µ̃2ℓ + osc2D,ℓ) = θ
∑

E∈Eℓ

µ̃ℓ(E)2 + oscD,ℓ(E)2 ≤
∑

E∈Mℓ

µ̃ℓ(E)2 + oscD,ℓ(E)2.(5.34)

(v) Refine at least marked elements E ∈ Mℓ and obtain mesh Eℓ+1 with κ(Eℓ+1) ≤ 2κ(E0).
(vi) Stop provided that #Eℓ+1 ≥ Nmax; otherwise, increase counter ℓ 7→ ℓ+ 1 and go to (i).

Output: Adaptively generated mesh Êℓ and corresponding discrete solution Φ̂ℓ ∈ P0(Êℓ).

The marking criterion (5.34) has been proposed in the context of adaptive finite element
methods [13]. Let formally Nmax = ∞ so that the adaptive algorithm computes a sequence of

discrete solutions Φ̂ℓ (or even Φℓ, although this is not computed). In [17, Section 3], we prove

that the saturation assumption (5.31) implies convergence of Φ̂ℓ and Φℓ to φ, provided that the
right-hand side g is not disturbed, i.e., g = Gℓ. The same result also holds for µ̃ℓ replaced by
µℓ.

In [4], we changed the notion of convergence and proved that for certain error estimators —
amongst them are µ̃ℓ and µℓ— the adaptive algorithm guarantees limℓ µ̃ℓ = 0. This concept is
followed in [5] to prove that the adaptive algorithm stated above, yields limℓ(µ

2
ℓ+osc2D,ℓ) = 0. If

the saturation assumption (5.31) holds (at least in infinitely many steps), we obtain convergence
of Φℓ to φ due to |||φ− Φℓ|||2V . µ2ℓ + osc2D,ℓ.

For adaptive finite element schemes, it could recently be proven that adaptive algorithms of
this type even lead to quasi-optimal meshes [10]. For adaptive BEM, such a result is completely
open although numerical experiments give evidence for such an optimality result.

Listing 14. Implementation of Adaptive Algorithm
1 % adaptiveSymm provides the implementation of an adaptive m esh−refining
2 % algorithm for Symm's integral equation.

3 %*** maximal number of elements

4 nEmax = 200;

5

6 %*** adaptivity parameter

7 theta = 0.25;

8 rho = 0.25;

9

10 %*** adaptive mesh −refining algorithm

11 while 1
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12

13 fprintf( 'number of elements: N = %d \r' , size (elements,1))

14

15 %*** build uniformly refined mesh

16 [coordinates fine,elements fine,father2son] ...

17 = refineBoundaryMesh(coordinates,elements);

18

19 %*** discretize Dirichlet data and compute data oscillations

20 [osc fine,uDh fine] = computeOscDirichlet(coordinates fine,elements fine,@g);

21 osc = osc fine(father2son(:,1)) + osc fine(father2son(:,2));

22

23 %*** compute fine −mesh solution

24 V fine = buildV(coordinates fine,elements fine);

25 b fine = buildSymmRHS(coordinates fine,elements fine,uDh fine);

26 x fine = V fine \b fine;

27

28 %*** compute (h −h/2) −error estimator tilde −mu

29 mu tilde = computeEstSlpMuTilde(coordinates,elements,father2son, ...

30 x fine);

31

32 %*** mark elements for refinement

33 marked = markElements(theta,rho,mu tilde + osc);

34

35 %*** generate new mesh

36 [coordinates,elements] = refineBoundaryMesh(coordinates,elements,marked);

37

38 if size (elements,1) > nEmax

39 break ;

40 end

41 end

42

43 %*** visualize exact and adaptively computed solution

44 plotArclengthP0(coordinates fine,elements fine,x fine,@phi,1);

5.7.1. Implementation of Adaptive Algorithm (Listing 14). The Matlab script of
Listing 14 realizes the adaptive algorithm from the beginning of this section.

• We use the adaptivity parameter θ = 1/4 in (5.34) and mark at least the 25% of elements
with the largest indicators (Line 7–8).• Recall that the function computeEstSlpMuTilde as well as computeOscDirichlet
return vectors of quadratic terms µ̃ℓ(E)2 and oscℓ(E)2, respectively. Note that (5.34) cor-
responds to the choice ̺ℓ(E) := µ̃ℓ(E)2 + oscℓ(E)2 in (4.1). Therefore, the marking crite-
rion (4.1) is provided by means of the function markElements (Line 33).

6. Hypersingular Integral Equation

Continuous Model Problem. In the entire section, we consider the hypersingular integral
equation

Wu = (1/2−K ′)φ on Γ(6.1)

with W the hypersingular integral operator and K ′ the adjoint double-layer potential, where
Γ = ∂Ω is the piecewise-affine boundary of a polygonal Lipschitz domain Ω ⊂ R2. For technical
reasons, we have to assume that Γ is connected, i.e. Ω is simply-connected. This integral
equation is an equivalent formulation of the Neumann problem

−∆u = 0 in Ω with ∂nu = φ on Γ.(6.2)
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Note that due to the Gauss Divergence Theorem there holds
∫

Γ
φdΓ =

∫

∂Ω
∂nu dΓ =

∫

Ω
∆u dx = 0.

Formally, the Neumann data satisfy φ ∈ H
−1/2
∗ (Γ), where the subscript abbreviates the con-

straint 〈φ , 1〉Γ = 0. We will, however, assume additional regularity φ ∈ C(Eℓ) ⊂ L2(Γ) ⊂
H−1/2(Γ). The exact solution u ∈ H1/2(Γ) of the integral formulation (6.1) is just the Dirichlet
data u|Γ of the solution u ∈ H1(Ω) of (6.2).

Due to the fact that there holdsWc = 0 for all constant functions c ∈ R, the solutions of (6.1)
and (6.2) are only unique up to additive constants. To fix the additive constant, one usually
assumes integral mean zero for the respective solutions. In this sense, (6.1) can equivalently be

formulated in variational form: Find u∗ ∈ H
1/2
∗ (Γ) :=

{
v ∈ H1/2(Γ) :

∫
Γ v dΓ = 0

}
such that

〈Wu∗ , v∗〉Γ = 〈(1/2 −K ′)φ , v∗〉Γ for all v∗ ∈ H
1/2
∗ (Γ).(6.3)

One can prove that this formulation has a unique solution, since the left-hand side defines a

scalar product on H
1/2
∗ (Γ) even with equivalent norms. (We stress that here our assumption

enters that Γ is connected. Otherwise, the kernel of W strictly contains the constant functions,

and W is thus not elliptic on H
1/2
∗ (Γ).)

From another point of view, one can consider the bilinear form

〈〈u , v〉〉W+S := 〈Wu , v〉Γ +
(∫

Γ
u dΓ

)(∫

Γ
v dΓ

)
for all u, v ∈ H1/2(Γ),(6.4)

which leads to the following modified variational form: Find u ∈ H1/2(Γ) such that

〈〈u , v〉〉W+S = 〈(1/2 −K ′)φ , v〉Γ for all v ∈ H1/2(Γ).(6.5)

One can prove that 〈〈· , ·〉〉W+S from (6.4) defines a scalar product such that the induced norm

|||u|||W+S := 〈〈u , u〉〉1/2W+S is an equivalent norm on H1/2(Γ). Consequently, (6.5) has a unique
solution u which depends continuously on the Neumann data φ. Moreover, one can prove that

〈(1/2 −K ′)ψ , 1〉Γ =
1

2
〈ψ , 1〉Γ − 〈ψ , K1〉Γ = 〈ψ , 1〉Γ = 0 for all ψ ∈ H

−1/2
∗ (Γ).

If we plug in v = 1 in (6.5), we thus obtain
(∫

Γ
u dΓ

)
length(Γ) = 〈Wu , 1〉Γ +

(∫

Γ
u dΓ

)(∫

Γ
1 dΓ

)

= 〈〈u , 1〉〉W+S = 〈(1/2 −K ′)φ , 1〉Γ = 0

according to the fact that the kernel of the hypersingular integral operator W consists of con-

stant functions. This implies u ∈ H
1/2
∗ (Γ). For a test function v∗ ∈ H

1/2
∗ (Γ), the variational

formulation (6.5) thus becomes

〈Wu , v∗〉Γ = 〈〈u , v∗〉〉W+S = 〈(1/2 −K ′)φ , v∗〉Γ,
i.e. (6.5) reduces to (6.3). Altogether we obtain that the unique solution u of (6.5) is also the
unique solution of (6.3), i.e., (6.5) is an equivalent formulation of (6.3).

Galerkin Discretization. To discretize (6.5), we first replace the Neumann data φ ∈ H
−1/2
∗ (Γ)∩

L2(Γ) by its L2-projection Φℓ ∈ P0(Eℓ),

Φℓ|Ej =
1

length(Ej)

∫

Ej

φdΓ =: pj for all Ej ∈ Eℓ.(6.6)

According to this definition, there holds
∫

Γ
Φℓ dΓ =

∑

E∈Eℓ

∫

E
Φℓ dΓ =

∑

E∈Eℓ

∫

E
φdΓ =

∫

Γ
φdΓ = 0,
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i.e. there holds Φℓ ∈ H
−1/2
∗ (Γ), too. Second, we replace the function space H1/2(Γ) in (6.5) by

the finite-dimensional space S1(Eℓ). Since S1(Eℓ) is a subspace of H1/2(Γ), 〈〈· , ·〉〉W+S from (6.4)
is also a scalar product on S1(Eℓ). Consequently, there exists a unique Galerkin solution Uℓ ∈
S1(Eℓ) of the discretized problem

〈〈Uℓ , Vℓ〉〉W+S = 〈(1/2 −K ′)Φℓ , Vℓ〉Γ for all Vℓ ∈ S1(Eℓ).(6.7)

As in the continuous case, the discrete solution Uℓ automatically satisfies
∫
Γ Uℓ dΓ = 0 which

follows from 1 =
∑N

j=1 ζj ∈ S1(Eℓ), which allows us to plug in Vℓ = 1 in (6.7). Indeed,
( ∫

Γ
Uℓ dΓ

)
length(Γ) = 〈WUℓ , 1〉Γ +

( ∫

Γ
Uℓ dΓ

)( ∫

Γ
1 dΓ

)

= 〈〈Uℓ , 1〉〉W+S = 〈(1/2 −K ′)Φℓ , 1〉Γ = 0.

According to Linear Algebra, (6.7) holds for all Vℓ ∈ S1(Eℓ) if and only if it holds for all
basis functions ζk ∈ {ζ1, . . . , ζN} of S1(Eℓ). With p ∈ RN from (6.6) and the coefficient vector
x ∈ RN of the ansatz

Uℓ =

N∑

j=1

xjζj,(6.8)

the Galerkin formulation (6.7) is thus equivalent to

N∑

j=1

xj〈〈ζj , ζk〉〉W+S = 〈〈Uℓ , ζk〉〉W+S = 〈(1/2 −K ′)Φℓ , ζk〉Γ =
N∑

j=1

pj〈(1/2 −K ′)χj , ζk〉Γ(6.9)

for all k = 1, . . . , N . In the context of Symm’s integral equation of Section 5, we have already
defined the matrices K,M ∈ RN×N by

Kjk = 〈Kζk , χj〉Γ and Mjk = 〈ζk , χj〉Γ,
cf. (5.10). The right-hand side of the last equation thus reads

N∑

j=1

pj〈(1/2 −K ′)χj , ζk〉Γ =
1

2

N∑

j=1

pj〈χj , ζk〉Γ −
N∑

j=1

pj〈χj , Kζk〉Γ =
1

2
(MTp)k − (KTp)k.

To compute the left-hand side of (6.9), we define matrices W,S ∈ RN×N by

Wkj = 〈Wζj , ζk〉Γ, Skj =
( ∫

Γ
ζj dΓ

)(∫

Γ
ζk dΓ

)
for all j, k = 1, . . . , N.(6.10)

Then there holds

(
(W + S)x

)
k
=

N∑

j=1

xj(Wkj + Skj) = 〈WUℓ , ζk〉Γ +
( ∫

Γ
Uℓ dΓ

)( ∫

Γ
ζk dΓ

)
= 〈〈Uℓ , ζk〉〉W+S .

Altogether, the Galerkin system (6.7) is equivalently stated by

(W + S)x =
1

2
MTp−KTp.(6.11)

Note that the matrix S has rank 1 since it can be written in the form

S = ccT with the column vector c ∈ RN with cj :=

∫

Γ
ζj dΓ.(6.12)

Finally, we stress that the matrix W + S from (6.11) is symmetric and positive definite since
it stems from a scalar product. Consequently, the linear system (6.11) has a unique solution
x ∈ RN .

Listing 15. Computation of Data Oscillations for Neumann Data
1 function [osc,phih] = computeOscNeumann(coordinates,elements,phi)
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2 %*** arbitrary quadrature on [ −1,1] with exactness n >= 2, e.g., gauss(2)

3 quad nodes = [ −1 1]/ sqrt (3);

4 quad weights = [1;1];

5

6 %*** the remaining code is independent of the chosen quadrature r ule

7 nE = size (elements,1);

8 nQ = length (quad nodes);

9

10 %*** build vector of evaluations points as (nQ * nE x 2) −matrix

11 a = coordinates(elements(:,1),:);

12 b = coordinates(elements(:,2),:);

13 sx = reshape (a,2 * nE,1) * (1 −quad nodes) + reshape (b,2 * nE,1) * (1+quad nodes);

14 sx = 0.5 * reshape (sx',nQ * nE,2);

15

16 %*** phi(sx) usually depends on the normal vector, whence phi tak es sx and the

17 %*** nodes of the respective element to compute the normal

18 a sx = reshape ( repmat ( reshape (a,2 * nE,1),1,nQ)',nE * nQ,2);

19 b sx = reshape ( repmat ( reshape (b,2 * nE,1),1,nQ)',nE * nQ,2);

20

21 %*** perform all necessary evaluations of phi as (nE x nQ) −matrix

22 phi sx = reshape (phi(sx,a sx,b sx),nQ,nE)';

23

24 %*** compute elementwise integral mean of phi

25 phih = phi sx * quad weights * 0.5;

26

27 %*** compute vector of (squared) element −widths

28 h = sum((a −b).ˆ2,2);

29

30 %*** compute oscillation terms

31 osc sx = (phi sx − repmat (phih,1,nQ)).ˆ2;

32 osc = 0.5 * h. * (osc sx * quad weights);

6.1. Discretization of Neumann Data and Computation of Corresponding Neumann
Data Oscillations (Listing 15). Instead of solving the correct variational form (6.5), we
solve

〈〈uℓ , v〉〉W+S = 〈(1/2 −K ′)Φℓ , v〉Γ for all v ∈ H1/2(Γ)(6.13)

with perturbed right-hand side, where we use the approximation Φℓ ≈ φ. Analytically, the error
between the exact solution u ∈ H1/2(Γ) of (6.5) and the exact solution uℓ ∈ H1/2(Γ) of the
perturbed formulation (6.13) is controlled by

|||u− uℓ|||W+S . ‖h1/2ℓ (φ− Φℓ)‖L2(Γ) =: oscN,ℓ,(6.14)

see [5]. We now aim for a numerical approximation of the local contributions

oscN,ℓ(Ej) := ‖h1/2ℓ (φ− Φℓ)‖L2(Ej) = length(Ej)
1/2 ‖φ− pj‖L2(Ej) for all Ej ∈ Eℓ,

where —as for the computation of the right-hand side vector b in Section 6.4— pj abbreviates
the integral mean

pj :=
1

length(Ej)

∫

Ej

φdΓ =
1

2

∫ 1

−1
φ ◦ γj ds ≈

1

2
quadn(φ ◦ γj) =: p̃j.(6.15)

Here, we use the parametrization γj : [−1, 1] → Ej from (2.1). Moreover, quadn(·) denotes the
same quadrature rule as for the computation of the right-hand side vector b which is exact of

order n ∈ N, i.e., quadn(p) =
∫ 1
−1 p ds for all p ∈ Pn[−1, 1]. With this quadrature rule, the local
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Neumann oscillations are approximated by

oscN,ℓ(Ej)
2 = length(Ej)

∫

Ej

|φ− pj |2 dΓ =
length(Ej)

2

2

∫ 1

−1
|φ ◦ γj(s)− pj |2 ds

≈ length(Ej)
2

2
quadn

(
(φ ◦ γj − p̃j)

2
)
=: õscN,ℓ(Ej)

2.(6.16)

With the definition õscN,ℓ :=
(∑N

j=1 õscN,ℓ(Ej)
2
)1/2

, one can then prove that

|oscN,ℓ − õscN,ℓ| = O(hn/2+1).

Since oscN,ℓ = O(h3/2), we should thus choose n ≥ 2. For our implementation, we use the
Gauss quadrature rule with two nodes, which is exact for polynomials of degree n = 3. As for
the Dirichlet data oscillations, this choice leads to

|oscN,ℓ − õscN,ℓ| = O(h5/2), whereas oscN,ℓ = O(h3/2).

The documentation of Listing 15 reads as follows:

• The function takes the given mesh Eℓ in form of the arrays coordinates and elements
as well as a function handle phi for the Neumann data. A call of the function phi is done
by

y = phi(x,a,b)
with (n × 2)-arrays x , a, and b. The j-th rows x(j, :), a(j, :), and b(j, :) correspond to a
point xj ∈ [aj , bj ] ⊂ R2. The entry y(j) of the column vector y then contains φ(xj).• As stated above, we use the Gauss quadrature with two nodes (Line 3–4).• If sk ∈ [−1, 1] is a quadrature node and Ej = [aj , bj ] ∈ Eℓ = {E1, . . . , EN} is an element,
the function φ has to be evaluated at

γj(sk) =
1

2

(
aj + bj + sk(bj − aj)

)
=

1

2

(
aj(1− sk) + bj(1 + sk)

)
.

In Line 11–14, we build the (2N × 2)-array sx which contains all necessary evaluation
points. Note that the two evaluation points at Ej are stored in sx (2j − 1, :) and sx (2j, :).• In Line 18–19, we compute the (2N × 2)-arrays a sx and b sx such that, e.g.,
a sx (2j − 1, :) and a sx (2j, :) contain the first node aj ∈ R2 of the boundary element
Ej = [aj , bj ].• We then evaluate the Neumann data φ simultaneously in all evaluation points and we
reshape this (2N × 1)-array into an (N × 2)-array phi sx such that phi sx (j, :) contains
all φ-values related to Ej (Line 22).• As a next step, we compute the (N × 1)-array phih of all integral means along the lines
of (6.15), namely phih (j) = quadn(φ ◦ γj)/2 (Line 25).• We realize Equation (6.16). Since we are using the same quadrature rule as for the com-
putation of the integral mean, all necessary evaluations of φ have already been computed.
Therefore, we derive the necessary evaluations of (φ − p̃j)

2 in Line 31. Multiplication
with the quadrature weights and coefficient-wise weighting with length(Ej)

2/2 provides the
(N × 1)-array osc such that osc (j) ≈ length(Ej)‖φ − Φℓ‖2L2(Ej)

. More precisely, there

holds osc2N,ℓ ≈ õsc2N,ℓ =
∑N

j=1 osc (j).

6.2. Computation of Discrete Integral Operator W. The matrix W ∈ RN×N
sym defined

in (6.10) is implemented in the programming language C via the Matlab-Mex-Interface. It is
returned by call of

W = buildW(coordinates,elements [,eta]);

The entries of the matrix W are computed with the help of Nédélec’s formula which is presented
in the following identity

〈Wu , v〉Γ = 〈V u′ , v′〉Γ for all u, v ∈ H1(Γ).(6.17)
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Since ζ ′j ∈ P0(Eℓ), this gives a direct link between the matrices W and V, namely, each entry
of W is the weighted sum of four entries of V. The optional parameter eta decides whether all
entries of W are computed analytically or if certain double integrals are computed by numerical
quadrature. We refer to Section 5.2 for details.

Listing 16. Compute Stabilization for Hypersingular Integral Equation
1 function S = buildHypsingStabilization(coordinates,elements)

2 nE = size (elements,1);

3

4 %*** compute local mesh −size

5 h = sqrt ( sum((coordinates(elements(:,1),:) −coordinates(elements(:,2),:)).ˆ2,2));

6

7 %*** build vector with entries c(j) = int Gamma hatfunction(j) ds

8 c = 0.5 * accumarray ( reshape (elements,2 * nE,1),[h;h]);

9

10 %*** build stabilization matrix

11 S = c* c';

6.3. Compute Stabilization for Hypersingular Integral Equation (Listing 16). The
kernel of the hypersingular integral operator W is the space of constant functions. Since

1 =
∑N

j=1 ζj ∈ S1(Eℓ), the corresponding matrix W defined by Wkj = 〈Wζj , ζk〉Γ for all

j, k ∈ {1, . . . , N} cannot be regular. One can prove, however, that it is semi-positive definite.
As we have figured out in the introduction, one remedy is to consider the extended bilinear
form 〈〈· , ·〉〉W+S from (6.4). It thus remains to assemble the rank-1-matrix S = ccT ∈ RN×N

from (6.12). For building the vector c with

ck :=

∫

Γ
ζk dΓ =

N∑

i=1

∫

Ei

ζk dΓ,

note that the support of ζk consists precisely of the elements Ei ∈ Eℓ which include zk ∈ Kℓ as
a node. The vector c can be assembled Eℓ-elementwise, and for each element Ei two entries of
c are updated. Moreover, there holds

∫

Ei

ζk dΓ =

{
0, if zk 6∈ Ei,

length(Ei)/2, else.

Consequently, the assembly of the vector c can be done as follows, where h(j) contains the
element-width length(Ej).

1 nE = size (elements,1);

2 h = sqrt ( sum((coordinates(elements(:,1),:) −coordinates(elements(:,2),:)).ˆ2,2));

3 c = zeros (nE,1);

4 for j = 1:nE

5 nodes = elements(j,:);

6 c(nodes) = c(nodes) + 0.5 * h(j);

7 end

For the final implementation of buildHypsingStabilization in Listing 16, the for -loop
is eliminated by use of accumarray :

• The function takes the mesh Eℓ described by the arrays coordinates and elements .• We compute the vector of all element-widths (Line 5).• The former for -loop is written in compact form (Line 8).• Finally, the function builds and returns the stabilization matrix S (Line 11).

Listing 17. Build Right-Hand Side for Hypersingular Integral Equation

54



1 function b = buildHypsingRHS(coordinates,elements,phih)

2 %*** compute DLP−matrix for P0 x S1

3 K = buildK(coordinates,elements);

4

5 %*** compute mass −type matrix for P0 x S1

6 M = buildM(coordinates,elements);

7

8 %*** build right −hand side vector

9 b = (phih' * M* 0.5 − phih' * K)';

6.4. Build Right-Hand Side for Hypersingular Integral Equation (Listing 17). With
the representation

Φℓ =
N∑

j=1

pjχj

and the transposed matrices of K and M, the right-hand side vector for (6.11) reads

b :=
1

2
MTp−KTp =

(1
2
pTM− pTK

)T
,(6.18)

where we identify the vector p ∈ RN with a matrix p ∈ RN×1.
The documentation of Listing 17 reads as follows:

• The function takes as input the given mesh Eℓ in form of the arrays coordinates and
elements as well as a columnvector p = phih with the Tℓ-elementwise values of Φℓ.• We build K (Line 3) and M (Line 6), cf. Section 5.3 above.• Finally (Line 9), the function computes and returns the vector b as described in (6.18).

Listing 18. Reliable Error Bound for |||u− uℓ|||W+S

1 function err = computeErrDirichlet(coordinates,elements,g,uD)

2 %*** compute midpoints of all elements

3 midpoints = 0.5 * ( coordinates(elements(:,1),:) + coordinates(elements( :,2),:) );

4

5 %*** compute p = (uD − uDh) at element midpoints

6 p midpoints = uD(midpoints) − 0.5 * sum(g(elements),2);

7

8 %*** compute p = (uD − uDh) at all nodes

9 p nodes = uD(coordinates) − g;

10

11 %*** evaluate derivative p' at all elements (left,midpoint,rig ht)

12 p prime = [p nodes(elements) p midpoints] * [ −3 −1 1 ; −1 1 3 ; 4 0 −4] * 0.5;

13

14 %*** compute Dirichlet error simultaneously for all elements

15 err = 2 * p prime.ˆ2 * [1;4;1]/3;

6.5. Computation of Reliable Error Bound for |||u−Uℓ|||W+S (Listing 18). We assume
that the exact Dirichlet data satisfy additional regularity u ∈ H1(Γ). Let U∗

ℓ ∈ S1(Eℓ) be the
(only theoretically computed) Galerkin solution with respect to the non-perturbed right-hand
side (1/2 − K ′)φ instead of (1/2 − K ′)Φℓ. Moreover, let Iℓ denote the nodal interpolation
operator onto S1(Eℓ). With the technique from [16, 5], we obtain

|||u− U∗
ℓ |||W+S ≤ |||u− Iℓu|||W+S . ‖h1/2ℓ (u− Iℓu)

′‖L2(Γ) ≤ ‖h1/2ℓ (u− Uℓ)
′‖L2(Γ)

as well as

|||U∗
ℓ − Uℓ|||W+S . oscN,ℓ,
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where oscN,ℓ denotes the Neumann data oscillations from Section 6.1. We therefore obtain

|||u− Uℓ|||W+S ≤ |||u− U∗
ℓ |||W+S + |||U∗

ℓ − Uℓ|||W+S

. ‖h1/2ℓ (u− Uℓ)
′‖L2(Γ) + oscN,ℓ =: errD,ℓ + oscN,ℓ.

For the numerical realization of

errD,ℓ =
( N∑

j=1

errD,ℓ(Ej)
2
)1/2

, where errD,ℓ(Ej)
2 = length(Ej) ‖(u− Uℓ)

′‖2L2(Ej)
,

we use the same ideas as for the Dirichlet data oscillations in Section 5.1.1, where

errD,ℓ(Ej)
2 = 2

∫ 1

−1

(
(u− Uℓ) ◦ γj

)′
(s)2 ds ≈ quad2

(
(p′j)

2
)
=: ẽrrD,ℓ(Ej).(6.19)

Here, pj ∈ P2[−1, 1] is the unique polynomial with pj(−1) = v(aj), pj(1) = v(bj), and pj(0) =
v(mj), where v = u− Uℓ as well as Ej = [aj , bj ] and mj = (aj + bj)/2. Recall that



p′j(−1)

p′j(0)

p′j(+1)


 =



−3/2 +2 −1/2
−1/2 0 +1/2
+1/2 −2 +3/2





v(aj)
v(mj)
v(bj)


 =



−3/2 −1/2 +2
−1/2 +1/2 0
+1/2 +3/2 −2





v(aj)
v(bj)
v(mj)


 .

As we are at last targeted on vectorization, we write the linear system row-wise as

(
p′j(−1), p′j(0), p

′
j(+1)

)
=
(
v(aj), v(bj), v(mj)

)


−3/2 −1/2 +1/2
−1/2 +1/2 +3/2
+2 0 −2


 .(6.20)

For the numerical quadrature, we use a Newton-Côtes formula with three nodes sk ∈ {−1, 0,+1}
and corresponding weights ωk = {1/3, 4/3, 1/3}. The documentation of Listing 18 now reads
as follows:

• The function takes the mesh Eℓ in terms of coordinates and elements as well as the
nodal vector g ∈ RN of Uℓ =

∑N
j=1 gjζj and the function handle uD for the exact solution

u (Line 1).• We first compute all element midpoints (Line 3) and evaluate the solution u − Uℓ at all
midpoints (Line 6) and all nodes (Line 9).• Using (6.20), we provide all necessary evaluations of p′j(sk) in form of the (N × 3)-array

p prime (Line 12).• Finally, Line 15 realizes (6.19), and the function returns the column vector err , where

err (j) = ẽrrD,ℓ(Ej)
2. In particular, there holds errD,ℓ ≈ ẽrrD,ℓ :=

(∑N
j=1 err (j)

)1/2
.

Remark 6.1. In academic experiments, the exact solution u is usually known and has certain

regularity u ∈ H1(Γ) which only depends on the geometry of Γ. As explained before, there holds

|||u− Uℓ|||W+S . errD,ℓ + oscN,ℓ,

so that we can control the error reliably. Moreover, the convergence errD,ℓ → 0 as ℓ→ ∞ might

indicate that there are no major bugs in the implementation — since we compare the Galerkin

solution with the exact solution. �

6.6. Computation of (h− h/2)(h− h/2)(h− h/2)-Based A Posteriori Error Estimators. In this section,
we discuss the implementation of four error estimators which are introduced and analyzed

in [16]. Let Êℓ = {e1, . . . , e2N} be the uniform refinement of the mesh Eℓ. Let Uℓ ∈ S1(Eℓ)
and Ûℓ ∈ S1(Êℓ) be the Galerkin solutions of (6.7) with respect to Eℓ and Êℓ and the same
approximate Neumann data Φℓ, i.e. there holds

〈〈Uℓ , Vℓ〉〉W+S = 〈(1/2 −K ′)Φℓ , Vℓ〉Γ for all Vℓ ∈ S1(Eℓ)(6.21)
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and

〈〈Ûℓ , V̂ℓ〉〉W+S = 〈(1/2 −K ′)Φℓ , V̂ℓ〉Γ for all V̂ℓ ∈ S1(Êℓ).(6.22)

As for Symm’s integral equation, one can expect

|||uℓ − Uℓ|||W+S ≈ |||Ûℓ − Uℓ|||W+S = |||Ûℓ − Uℓ|||W =: ηℓ,(6.23)

where uℓ ∈ H1/2(Γ) denotes the exact solution of

〈〈uℓ , v〉〉W+S = 〈(1/2 −K ′)Φℓ , v〉Γ for all v ∈ H1/2(Γ).(6.24)

According to (6.14), (6.23), and the triangle inequality, there holds

|||u− Uℓ|||W+S ≤ |||u− uℓ|||W+S + |||uℓ − Uℓ|||W+S . oscN,ℓ + ηℓ.(6.25)

Clearly, the Galerkin solution Ûℓ with respect to S1(Êℓ) is more accurate than Uℓ. Consequently,

any algorithm will return Ûℓ instead of Uℓ if Ûℓ has been computed. From this point of view
Uℓ becomes a side result and leads to unnecessary computational effort. Similar to Section 5,

one can prove that one may replace Uℓ by a cheap (but appropriate) postprocessing IℓÛℓ of Ûℓ.
This leads to some error estimator

ηℓ ∼ |||Ûℓ − IℓÛℓ|||W+S =: η̃ℓ(6.26)

which always stays proportional to ηℓ, indicated by ηℓ ∼ η̃ℓ, cf. [16]. To be more precise, Iℓ
denotes the nodal interpolation operator on S1(Eℓ), which is given by

IℓUℓ :=
∑

z∈Kℓ

Uℓ(z)ζz,

where Kℓ denotes the set of all nodes of Eℓ and where ζz denotes the hat-function associated
with some node z ∈ Kℓ.

As a matter of fact, the error estimators ηℓ and η̃ℓ do not provide any information about the
local errors, i.e., the error |||uℓ − Uℓ|||W+S related to some element Ei ∈ Eℓ. This is different for
the error estimators µℓ and µ̃ℓ discussed in the following. For instance, one can prove that

ηℓ ∼ µℓ := ‖h1/2ℓ (Ûℓ − Uℓ)
′‖L2(Γ) =

( N∑

i=1

length(Ei)‖(Ûℓ − Uℓ)
′‖2L2(Ei)

)1/2
.(6.27)

The local contributions

µℓ(Ei) := length(Ei)
1/2‖(Ûℓ − Uℓ)

′‖L2(Ei) for all Ei ∈ Eℓ(6.28)

give some measure for the error on Ei.
As the computation of the error estimator ηℓ, the computation of µℓ requires two Galerkin

solutions Uℓ and Ûℓ. As before, the computation of the coarse-mesh solution Uℓ can be avoided

by use of the nodal interpolant IℓÛℓ. One can mathematically prove that

ηℓ ∼ µ̃ℓ := ‖h1/2ℓ (Ûℓ − IℓÛℓ)
′‖L2(Γ).(6.29)

In the following subsections, we first discuss the computation of the global error estimators ηℓ
and η̃ℓ from (6.23) and (6.26). Then, we give an implementation of the local error estimators µℓ
and µ̃ℓ from (6.27) and (6.29), where our functions return the local contributions, see e.g. (6.28),
to steer an adaptive mesh-refinement.

Remark 6.2. If we plot the error estimators ηℓ, η̃ℓ, µℓ and µ̃ℓ over the number of elements, one

can mathematically predict that the corresponding curves, for a sequence of arbitrarily refined

meshes, are parallel. In mathematical terms, this reads

ηℓ ≤ η̃ℓ . µ̃ℓ ≤ µℓ . ηℓ,(6.30)

cf. [16]. Empirically, one observes a very good coincidence of ηℓ and η̃ℓ in the sense that the

corresponding curves almost coincide. The same is observed for the curves of µℓ and µ̃ℓ. �
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Remark 6.3. Mathematically, the error estimate (6.23) respectively (6.25) involves the so-

called saturation assumption: Assume that we could compute the Galerkin solutions U∗
ℓ and Û∗

ℓ

with respect to Eℓ and Êℓ for the non-perturbed variational formulation (6.5), i.e., we formally

use the exact Neumann data φ instead of the interpolated data Φℓ — although the right-hand

side is, in practice, non-computable because of K ′φ. Then, the saturation assumption states

that

|||u− Û∗
ℓ |||W+S ≤ q |||u− U∗

ℓ |||W+S(6.31)

with some uniform and ℓ-independent constant q ∈ (0, 1). Put differently, uniform mesh-

refinement leads to a uniform improvement of the discretization error. Provided (6.31), one

can prove that

ηℓ ≤ |||uℓ − Uℓ|||W+S ≤ (1− q2)−1/2 ηℓ.(6.32)

We stress that this assumption is somewhat natural and can, for instance, be proven for the

finite element method [14, 17]. For the boundary element method, however, (6.31) still remains

open.

Finally, one can prove that (6.31) is sufficient and in some sense even necessary to guaran-

tee (6.25). �

Remark 6.4. In academic experiments, the exact solution u of the hypersingular integral equa-

tion is usually known and has certain regularity u ∈ H1(Γ) which only depends on the geometry

of Γ. In this case, one can experimentally verify the saturation assumption as follows: In

Section 6.5, we derived

|||u− Uℓ|||W . errD,ℓ + oscN,ℓ.

If the right-hand side has the same convergence behaviour as the error estimator ηℓ + oscN,ℓ,

this proves empirically

|||u− Uℓ|||W . ηℓ + oscN,ℓ

and confirms the saturation assumption. �

Listing 19. Computation of Estimator ηℓ
1 function est = computeEstHypEta(elements fine,elements coarse,father2son, ...
2 Wfine,x fine,x coarse)

3 nC = length (x coarse);

4

5 %*** build index field k = idx(j) such that j −th node of coarse mesh coincides

6 %*** with k −th node of fine mesh

7 idx = zeros (nC,1);

8 idx(elements coarse) = [ elements fine(father2son(:,1),1), ...

9 elements fine(father2son(:,2),2) ];

10

11 %*** build index field k = mid(j) such that midpoint of j −th element of coarse

12 %*** mesh is k −th node of fine mesh

13 mid = elements fine(father2son(:,1),2);

14

15 %*** compute coefficient vector of (u fine − u coarse) w.r.t. fine mesh

16 x fine(idx) = x fine(idx) − x coarse;

17 x fine(mid) = x fine(mid) − 0.5 * sum(x coarse(elements coarse),2);

18

19 %*** compute energy | | | u fine − u coarse | | | ˆ 2

20 est = x fine' * (W fine * x fine);
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6.6.1. Computation of Error Estimator ηℓηℓηℓ (Listing 19). In this section, we aim to

compute the error estimator ηℓ = |||Ûℓ − Uℓ|||W+S from (6.23). Let ζ̂j denote the hat-function

associated with some fine-mesh node zj ∈ K̂ℓ. Let x ∈ RN and x̂ ∈ R2N be the coefficient

vectors of Uℓ and Ûℓ with respect to the canonical bases of S1(Eℓ) and S1(Êℓ), i.e.

Uℓ =

N∑

j=1

xjζj and Ûℓ =

2N∑

j=1

x̂j ζ̂j .

Similar to Section 5.6.1, there holds S1(Eℓ) ⊂ S1(Êℓ) which provides a unique vector ŷ ∈ R2N

such that

Uℓ =
2N∑

j=1

ŷj ζ̂j.

With the vectors x̂, ŷ ∈ R2N , there holds

η2ℓ = |||Ûℓ − Uℓ|||2W+S = 〈〈Ûℓ − Uℓ , Ûℓ − Uℓ〉〉W+S =

2N∑

j,k=1

(x̂j − ŷj)(x̂k − ŷk)〈〈ζ̂j , ζ̂k〉〉W+S

= (x̂− ŷ) · (Ŵ + Ŝ)(x̂− ŷ),

where Ŵ denotes the matrix of the hypersingular integral operator and Ŝ the matrix of the
stabilization term contributions (6.10) with respect to the fine mesh, cf. Section 6. The docu-
mentation of Listing 19 now reads as follows:

• The function takes the coefficient vectors x ∈ RN and x̂ ∈ R2N of the Galerkin solutions
Uℓ and Ûℓ as well as the sum Ŵ + Ŝ of the hypersingular operator matrix Ŵ and the

stabilization term matrix Ŝ for the fine mesh Êℓ stored in Wfine . Besides this, the function
takes the coarse mesh described by the (N×2)-array elements coarse and the fine mesh
described by the (2N×2)-array elements fine . Finally, the (N×2)-array father2son
links the indices of elements Ei ∈ Eℓ with the indices of its sons ej , ek ∈ Êℓ in the sense that
father2son( i,:) = [ j, k] for Ei = ej ∪ ek.• We build an array k = idx(i) such that the i-th node of the coarse mesh coincides with
the k-th node of the fine mesh (Line 7–9).• Furthermore, we build an array k = mid(j) such that the midpoint of the j-th element
of the coarse mesh is the k-th node of the fine mesh (Line 13).

• Then we overwrite successively the vector x̂ by the coefficient vector x̂− ŷ of Ûℓ − Uℓ. We
first calculate this difference for any node belonging to Kℓ (Line 16) and in a next step for

any node occurring in K̂ℓ\Kℓ by interpolating the coarse vector (Line 17).

• Finally, the function returns η2ℓ = |||Ûℓ − Uℓ|||2W+S (Line 20).

Listing 20. Computation of Estimator η̃ℓ
1 function est = computeEstHypEtaTilde(elements fine,elements coarse, ...
2 father2son,W fine,x fine)

3 nC = max(elements coarse(:));

4

5 %*** build index field k = idx(j) such that j −th node of coarse mesh coincides

6 %*** with k −th node of fine mesh

7 idx = zeros (nC,1);

8 idx(elements coarse) = [ elements fine(father2son(:,1),1), ...

9 elements fine(father2son(:,2),2) ];

10

11 %*** build index field k = mid(j) such that midpoint of j −th element of coarse

12 %*** mesh is k −th node of fine mesh

13 mid = elements fine(father2son(:,1),2);
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14

15 %*** build index field [i j] = e2n(k) such that fine −mesh nodes zi and zj are

16 %*** the nodes of the coarse −mesh element Ek

17 e2n = [ elements fine(father2son(:,1),1) elements fine(father2son(:,2),2) ];

18

19 %*** compute coefficient vector of (1 − I coarse) * u fine w.r.t. fine mesh

20 x fine(mid) = x fine(mid) − 0.5 * sum(x fine(e2n),2);

21 x fine(idx) = 0;

22

23 %*** compute energy | | | (1 − I coarse) * u fine | | | ˆ 2

24 est = x fine' * (W fine * x fine);

6.6.2. Computation of Error Estimator η̃ℓ̃ηℓ̃ηℓ (Listing 20). In this section, we aim to
compute the error estimator η̃ℓ which is defined by

η̃ℓ := |||Ûℓ − IℓÛℓ|||W+S .

We adopt the notation of Section 6.6.1 for the computation of ηℓ, namely x̂ ∈ R2N with

Ûℓ =
2N∑

j=1

x̂j ζ̂j.

Let zi ∈ K̂ℓ\Kℓ. Then, there are two elements ej , ek ∈ Êℓ being the sons of Ei ∈ Eℓ, i.e.

Ei = ej∪ek, which share zi as a common node. Since IℓÛℓ restricted to some element Ei = ej∪ek
is affine, there holds

IℓÛℓ(zi) =
1

2

(
IℓÛℓ(zj) + IℓÛℓ(zk)

)
=

1

2

(
Ûℓ(zj) + Ûℓ(zk)

)
,(6.33)

where zj, zk ∈ Kℓ denote the outer nodes of the elements ej , ek. On the other hand, there holds

IℓÛℓ(zi) = Ûℓ(zi) provided that zi ∈ Kℓ. Altogether, representing IℓÛℓ ∈ S1(Eℓ) with respect to

the fine-mesh Êℓ, we obtain

IℓÛℓ =

2N∑

n=1

ẑnζ̂n,(6.34)

where ẑ ∈ R2N denotes the coefficient vector. As in Section 6.6.1, there holds

η̃ 2
ℓ = |||Ûℓ − IℓÛℓ|||2W+S = (x̂− ẑ) · (Ŵ + Ŝ)(x̂ − ẑ).

Therefore, the documentation of Listing 20 reads as follows:

• The function takes the coefficient vector x̂ ∈ R2N of the Galerkin solutions Ûℓ as well as

the sum Ŵ+ Ŝ of the hypersingular operator matrix Ŵ and the stabilization term matrix

Ŝ for the fine mesh Êℓ stored in Wfine . Besides this, the function takes the coarse mesh
described by the (N × 2)-array elements coarse and the fine mesh described by the

(2N × 2)-array elements fine . Moreover, the link between Eℓ and Êℓ is provided by
means of father2son .• We first build an array k = idx(i) such that the i-th node of the coarse mesh coincides
with the k-th node of the fine mesh (Line 7–9).• Furthermore, we build an array k = mid(j) such that the midpoint of the j-th element
of the coarse mesh is the k-th node of the fine mesh (Line 13).• Next we build an array [i j] = e2n(k) such that the fine-mesh nodes zi and zj are the
nodes of the coarse mesh elements Ek (Line 17).

• We successively overwrite x̂ by the coefficient vector x̂− ẑ ∈ R2N of Ûℓ− IℓÛℓ (Line 20–21).• Finally, the function returns η̃2ℓ = |||Ûℓ − IℓÛℓ|||2W+S (Line 24).
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Listing 21. Computation of Estimator µℓ
1 function ind = computeEstHypMu(elements fine,elements coarse,father2son, ...
2 x fine,x coarse)

3 nC = length (x coarse);

4

5 %*** build index field k = idx(j) such that j −th node of coarse mesh coincides

6 %*** with k −th node of fine mesh

7 idx = zeros (nC,1);

8 idx(elements coarse) = [ elements fine(father2son(:,1),1), ...

9 elements fine(father2son(:,2),2) ];

10

11 %*** build index field k = mid(j) such that midpoint of j −th element of coarse

12 %*** mesh is k −th node of fine mesh

13 mid = elements fine(father2son(:,1),2);

14

15 %*** compute coefficient vector of (u fine − u coarse) w.r.t. fine mesh

16 x fine(idx) = x fine(idx) − x coarse;

17 x fine(mid) = x fine(mid) − 0.5 * sum(x coarse(elements coarse),2);

18

19 %*** compute hˆ2 * |(u fine − u coarse) ' |ˆ2 for all fine −mesh elements

20 %*** where h denotes the diameters of the fine −mesh elements

21 grad = (x fine(elements fine) * [ −1;1]).ˆ2;

22

23 %*** compute (squared) indicators w.r.t. coarse mesh as describ ed above

24 ind = 2 * ( grad(father2son(:,1)) + grad(father2son(:,2)) );

6.6.3. Computation of Error Estimator µℓµℓµℓ (Listing 21). In this section, we discuss the
implementation of

µ2ℓ :=
N∑

i=0

µℓ(Ei)
2, where µℓ(Ei)

2 := length(Ei)‖(Ûℓ − Uℓ)
′‖2L2(Ei)

.

Actually we calculate the squared entries µℓ(Ei)
2 for all Ei ∈ Eℓ.

We adopt the notation of Section 6.6.1, namely x̂, ŷ ∈ R2N with

Ûℓ =
2N∑

j=1

x̂j ζ̂j and Uℓ =
2N∑

j=1

ŷj ζ̂j .

For fixed Ei ∈ Eℓ and sons ej , ek ∈ Êℓ with Ei = ej ∪ ek, we obtain

‖(Ûℓ − Uℓ)
′‖2L2(Ei)

=

∫

Ei

∣∣∣(Ûℓ − Uℓ)
′
∣∣∣
2
dΓ =

∫

ej

∣∣∣(Ûℓ − Uℓ)
′
∣∣∣
2
dΓ +

∫

ek

∣∣∣(Ûℓ − Uℓ)
′
∣∣∣
2
dΓ.

As (Ûℓ−Uℓ) ∈ S1(Êℓ) is piecewise affine, its arc-length derivative (Ûℓ−Uℓ)
′ ∈ P0(Êℓ) is piecewise

constant. Consequently, the above formula reduces to

‖(Ûℓ − Uℓ)
′‖2L2(Ei)

= length(ej)
∣∣∣(Ûℓ − Uℓ)

′|ej
∣∣∣
2
+ length(ek)

∣∣∣(Ûℓ − Uℓ)
′|ek
∣∣∣
2

=
length(Ei)

2

( ∣∣∣(Ûℓ − Uℓ)
′|ej
∣∣∣
2
+
∣∣∣(Ûℓ − Uℓ)

′|ek
∣∣∣
2 )
.

With ej = [zj1 , zj2 ] ∈ Êℓ, we obtain

∣∣∣(Ûℓ − Uℓ)
′|ej
∣∣∣
2
=

∣∣∣(Ûℓ − Uℓ)(zj2)− (Ûℓ − Uℓ)(zj1)
∣∣∣
2

length(ej)2
.

61



This implies

µℓ(Ei)
2 = 2

( ∣∣∣(Ûℓ − Uℓ)(zj2)− (Ûℓ − Uℓ)(zj1)
∣∣∣
2
+
∣∣∣(Ûℓ − Uℓ)(zk2)− (Ûℓ − Uℓ)(zk1)

∣∣∣
2 )

(6.35)

Altogether, the documentation of Listing 21 reads as follows:

• As input arguments, the function takes the mesh Eℓ represented by the (N × 2)-array

elements coarse , the mesh Êℓ represented by the (2N × 2)-array elements fine , the

link between Eℓ and Êℓ, and the coefficient vectors x ∈ RN and x̂ ∈ R2N of the Galerkin

solutions Uℓ and Ûℓ (Line 1–2).

• We overwrite the vector x̂ by coefficient vector x̂− ŷ of Ûℓ −Uℓ in exactly the same way as
we did in Section 6.6.1 for the error estimator ηℓ (Line 7–17).• Next (Line 21), we compute the coefficient vector of the squared arc-length derivative of

Ûℓ−Uℓ multiplied by the diameter of the fine-mesh elements to avoid needless computations.• Finally (Line 24), the function realizes (6.35) and returns the vector

v := (µℓ(E1)
2, . . . , µℓ(EN )2) ∈ RN

so that µℓ =
(∑N

i=1 vi

)1/2
.

Listing 22. Computation of Estimator µ̃ℓ
1 function ind = computeEstHypMuTilde(elements fine,elements coarse, ...
2 father2son,x fine)

3 nC = max(elements coarse(:));

4

5 %*** build index field k = idx(j) such that j −th node of coarse mesh coincides

6 %*** with k −th node of fine mesh

7 idx = zeros (nC,1);

8 idx(elements coarse) = [ elements fine(father2son(:,1),1), ...

9 elements fine(father2son(:,2),2) ];

10

11 %*** build index field k = mid(j) such that midpoint of j −th element of coarse

12 %*** mesh is k −th node of fine mesh

13 mid = elements fine(father2son(:,1),2);

14

15 %*** build index field [i j] = e2n(k) such that fine −mesh nodes zi and zj are

16 %*** the nodes of the coarse −mesh element Ek

17 e2n = [ elements fine(father2son(:,1),1) elements fine(father2son(:,2),2) ];

18

19 %*** compute coefficient vector of (1 − I coarse) * u fine w.r.t. fine mesh

20 x fine(mid) = x fine(mid) − 0.5 * sum(x fine(e2n),2);

21 x fine(idx) = 0;

22

23 %*** compute hˆ2 * | ((1 − I coarse) * u fine)' |ˆ2 for all fine −mesh elements

24 %*** where h denotes the diameters of the fine −mesh elements

25 grad = (x fine(elements fine) * [ −1;1]).ˆ2;

26

27 %*** compute (squared) indicators w.r.t. coarse mesh as describ ed above

28 ind = 2 * ( grad(father2son(:,1)) + grad(father2son(:,2)) );

6.6.4. Computation of Error Estimator µ̃ℓµ̃ℓµ̃ℓ (Listing 22). In this section, we finally aim
to compute

µ̃2ℓ :=
N∑

i=0

µ̃ℓ(Ei)
2, where µ̃ℓ(Ei)

2 := length(Ei)‖(Ûℓ − IℓÛℓ)
′‖2L2(Ei)

.
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We adopt the notation of Section 6.6.1, namely x̂ ∈ R2N with

Ûℓ =

2N∑

j=1

x̂j ζ̂j.

Based on the same ideas as for the realization of the local contributions from the preceding
Sections 6.6.2 and 6.6.3, a concise documentation of Listing 22 reads as follows:

• The function takes the meshes Eℓ and Êℓ, the link between Eℓ and Êℓ, and the coefficient

vector x̂ ∈ R2N of Ûℓ (Line 1–2).

• Adopting the ideas of Section 6.6.2, we compute the coefficient vector of Ûℓ− IℓÛℓ (Line 7–
21).

• According to Section 6.6.3, we compute the local contributions length(ej)
2|(Ûℓ − IℓÛℓ)

′|2
for all elements ej ∈ Êℓ (Line 25).• Finally (Line 28), the function returns the vector

v := (µ̃ℓ(E1)
2, . . . , µ̃ℓ(EN )2) ∈ RN .

In particular, there holds µ̃ℓ =
(∑N

i=1 vi

)1/2
.

6.7. Adaptive Mesh-Refinement for Hypersingular Integral Equation.
Usually computing time and memory requirements are limiting quantities for numerical simu-
lations. Therefore, one aims to choose the mesh such that it is coarse, where the (unknown)
solution is smooth, and fine, where the (unknown) solution is singular. Based on a local error
estimator, e.g. µ̃ℓ, such meshes are constructed in an iterative way. In each step, one refines
the mesh only locally, i.e. one refines elements Ej, where the error appears to be large, namely,
where the local contributions µ̃ℓ(Ej) are large. For the error estimator µ̃ℓ from Section 6.6.4, a
possible adaptive algorithm reads as follows:

Input: Initial mesh E0, Neumann data φ, adaptivity parameter 0 < θ < 1, maximal number
Nmax ∈ N of elements, and counter ℓ = 0.

(i) Build uniformly refined mesh Êℓ.
(ii) Compute Galerkin solution Ûℓ ∈ S1(Êℓ).
(iii) Compute refinement indicators µ̃ℓ(E)2 and oscillation terms oscN,ℓ(E)2 for all E ∈ Eℓ.
(iv) Find minimal set Mℓ ⊆ Eℓ such that

θ (µ̃2ℓ + osc2N,ℓ) = θ
∑

E∈Eℓ

(
µ̃ℓ(E)2 + oscN,ℓ(E)2

)
≤
∑

E∈Mℓ

(
µ̃ℓ(E)2 + oscN,ℓ(E)2

)
.(6.36)

(v) Refine at least marked elements E ∈ Mℓ and obtain mesh Eℓ+1 with κ(Eℓ+1) ≤ 2κ(E0).
(vi) Stop provided that #Eℓ+1 ≥ Nmax; otherwise, increase counter ℓ 7→ ℓ+ 1 and go to (i).

Output: Adaptively generated mesh Êℓ and corresponding discrete solution Ûℓ ∈ S1(Êℓ).

The marking criterion (6.36) has been proposed in the context of adaptive finite element
methods [13]. Let formally Nmax = ∞ so that the adaptive algorithm computes a sequence of

discrete solutions Ûℓ (or even Uℓ, although this is not computed). With the same techniques as

in [17], one can prove that the saturation assumption (6.31) implies convergence of Ûℓ and Uℓ

to u, provided that the right-hand side φ is not disturbed, i.e., φ = Φℓ. The same result also
holds for µ̃ℓ replaced by µℓ.

In [4], we changed the notion of convergence and proved that for certain error estimators —
amongst them are µ̃ℓ and µℓ for Symm’s integral equation — the adaptive algorithm guarantees
limℓ µ̃ℓ = 0. This concept is followed in [5] to prove that the adaptive algorithm for Symm’s
integral equation stated above, yields limℓ(µ̃

2
ℓ+osc2D,ℓ) = 0. The same ideas are applicable to the

hypersingular integral equation. Therefore, if the saturation assumption (6.31) holds (at least
in infinitely many steps), we obtain convergence of Uℓ to u due to |||u− Uℓ|||2W+S . µ̃2ℓ + osc2N,ℓ.
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Listing 23. Implementation of Adaptive Algorithm
1 % adaptiveHypsing provides the implementation of an adapti ve mesh−refining
2 % algorithm for the hypersingular integral equation.

3

4 %*** maximal number of elements

5 nEmax = 200;

6

7 %*** adaptivity parameter

8 theta = 0.25;

9 rho = 0.25;

10

11 %*** adaptive mesh −refining algorithm

12 while 1

13

14 fprintf( 'number of elements: N = %d \r' , size (elements,1))

15

16 %*** build uniformly refined mesh

17 [coordinates fine,elements fine,father2son] ...

18 = refineBoundaryMesh(coordinates,elements);

19

20 %*** discretize Neumann data and compute data oscillations

21 [osc fine,phih fine] ...

22 = computeOscNeumann(coordinates fine,elements fine,@phi);

23 osc = osc fine(father2son(:,1)) + osc fine(father2son(:,2));

24

25 %*** compute fine −mesh solution

26 Wfine = buildW(coordinates fine,elements fine) ...

27 + buildHypsingStabilization(coordinates fine,elements fine);

28 b fine = buildHypsingRHS(coordinates fine,elements fine,phih fine);

29 x fine = W fine \b fine;

30

31 %*** compute (h −h/2) −error estimator tilde −mu

32 mu tilde = computeEstHypMuTilde(elements fine,elements,father2son, ...

33 x fine);

34

35 %*** mark elements for refinement

36 marked = markElements(theta,rho,mu tilde + osc);

37

38 %*** generate new mesh

39 [coordinates,elements] = refineBoundaryMesh(coordinates,elements,marked);

40

41 if size (elements,1) > nEmax

42 break ;

43 end

44 end

45

46 %*** visualize exact and adaptively computed solution

47 plotArclengthS1(coordinates fine,elements fine,x fine,@g);

6.7.1. Implementation of Adaptive Algorithm (Listing 23). The Matlab script of
Listing 23 realizes the adaptive Algorithm from the beginning of this section.

• We use the adaptivity parameter θ = 1/4 in (6.36) and mark at least the 25% of elements
with the largest indicators (Line 8–9). The marking criterion is explained in Section 4.1.
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7. Mixed Problem

Continuous Model Problem. Let Γ = ∂Ω be the piecewise affine boundary of a polygonal
Lipschitz domain Ω ⊂ R2. We assume that Γ is split into two disjoint and relatively open sets
ΓD and ΓN with Γ = ΓN ∪ΓD. Moreover, we assume positive surface measure |ΓD| > 0 to avoid
treating the pure Neumann problem from Section 6, and we assume that ΓN is not closed. This
is satisfied if, for instance, Ω is simply connected. For given Dirichlet data uD ∈ H1/2(ΓD) and

Neumann data φN ∈ H−1/2(ΓN ), we consider the mixed boundary value problem

−∆u = 0 in Ω,
u = uD on ΓD,

∂nu = φN on ΓN .
(7.1)

For the equivalent integral formulation of (7.1), we choose (and fix) arbitrary extensions
uD ∈ H1/2(Γ) and φN ∈ H−1/2(Γ) of the given data from ΓD resp. ΓN to the entire boundary
Γ. The missing boundary data, which have to be computed, are

uN := u− uD and φD := ∂nu− φN .(7.2)

One can show that this definition yields uN ∈ H̃1/2(ΓN ) and φD ∈ H̃−1/2(ΓD).
Let V denote the simple-layer potential, K the double-layer potential with adjoint K ′, and

W the hypersingular integral operator. With the so-called Calderón projector

A =

(
−K V
W K ′

)
,(7.3)

which is an operator matrix, the unknown data uN and φD satisfy the following system of
integral equations

A

(
uN
φD

)
= (1/2 −A)

(
uD
φN

)
=: F on ΓD × ΓN .(7.4)

One can prove that (7.4) is, in fact, an equivalent formulation of the mixed boundary value
problem (7.1). With the spaces

H := H̃1/2(ΓN )× H̃−1/2(ΓD) and H∗ := H1/2(ΓD)×H−1/2(ΓN ),(7.5)

one can show that A : H → H∗ is a linear and continuous mapping. Moreover, H∗ is the dual
space of H with duality understood via the formula

〈(vD, ψN ) , (vN , ψD)〉H∗×H := 〈ψN , vN 〉ΓN
+ 〈ψD , vD〉ΓD

(7.6)

for all (vN , ψD) ∈ H and (vD, ψN ) ∈ H∗, where the duality brackets 〈· , ·〉ΓN
and 〈· , ·〉ΓD

on
the right-hand side denote the extended L2-scalar products. Now, the operator A induces a
continuous bilinear form on H via

〈〈(uN , φD) , (vN , ψD)〉〉A : = 〈A(uN , φD) , (vN , ψD)〉H∗×H

= 〈WuN +K ′φD , vN 〉ΓN
+ 〈−KuN + V φD , ψD〉ΓD

.
(7.7)

Note that this bilinear form is non-symmetric because of the entries −K and K ′ on the right-
hand side. Nevertheless, the definition

|||(uN , φD)|||2A := 〈〈(uN , φD) , (uN , φD)〉〉A = 〈WuN , uN 〉ΓN
+ 〈V φD , φD〉ΓD

(7.8)

provides a norm on H which is equivalent to the usual product norm. Therefore, the bilinear
form 〈〈· , ·〉〉A is uniformly elliptic, and we are in the framework of the Lax-Milgram lemma.
Consequently, the variational form of (7.4)

〈〈(uN , φD) , (vN , ψD)〉〉A = 〈F , (vN , ψD)〉H∗×H for all (vN , ψD) ∈ H(7.9)

has a unique solution (uN , φD) ∈ H. To abbreviate notation, we will now use the vector-valued
unknown u := (uN , φD) ∈ H.
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Mesh Restriction and Discrete Spaces. Let Eℓ be a mesh of Γ. By definition, Eℓ then
resolves ΓD and ΓN , cf. Section 1.1. Consequently,

Eℓ|ΓD
:=
{
E ∈ Eℓ : E ⊆ ΓD

}
and Eℓ|ΓN

:=
{
E ∈ Eℓ : E ⊆ ΓN

}

define meshes of ΓD and ΓN , respectively. By now, we have thus defined the discrete spaces
P0(Eℓ), P0(Eℓ|ΓD

), P0(Eℓ|ΓN
), S1(Eℓ), S1(Eℓ|ΓD

), and S1(Eℓ|ΓN
). In addition, we now define the

discrete space

S1
0 (Eℓ|ΓN

) :=
{
Vℓ|ΓN

: Vℓ ∈ S1(Eℓ) with Vℓ|ΓD
= 0
}
,

i.e., Vℓ ∈ S1
0 (Eℓ|ΓN

) is a continuous and piecewise affine function which vanishes at the tips of

ΓN . One can then show, that S1
0 (Eℓ|ΓN

) is a discrete subspace of H̃1/2(ΓN ), whereas P0(Eℓ|ΓD
)

is a subspace of H̃−1/2(ΓD).

Extension of the Given Dirichlet and Neumann Data. By Definition (7.2), the solution
u = (uN , φD) of (7.9) depends on the chosen extensions uD of uD and φN of φN . We assume
additional regularity

uD ∈ H1(ΓD) ⊂ H1/2(ΓD) and φN ∈ L2(ΓN ) ⊂ H−1/2(ΓN ).(7.10)

Let E0 be the initial mesh for our numerical computation. We then define φN ∈ L2(Γ) by

φN |ΓN
= φN and φN |ΓD

= 0(7.11)

as well as uD ∈ H1(Γ) by

uD|ΓD
= uD and uD|ΓN

∈ S1(E0|ΓN
) with uD(z) = 0 for all z ∈ K0 ∩ ΓN .(7.12)

As a consequence of the inclusion H1(Γ) ⊂ C(Γ), this extension is unique.

Galerkin Discretization. Let Eℓ = {E1, . . . , EN} be a mesh of Γ obtained by certain re-
finements of the initial mesh E0. To discretize (7.9), we replace the continuous Dirichlet data
uD ∈ H1(Γ) ⊂ C(Γ) by the nodal interpolant

UD,ℓ :=

N∑

j=1

uD(zj)ζj ∈ S1(Eℓ) ⊂ H1(Γ)(7.13)

and the Neumann data by its L2-projection

ΦN,ℓ ∈ P0(Eℓ), ΦN,ℓ|Ei :=
1

length(Ei)

∫

Ei

φN dΓ =: pi.(7.14)

With the vector gi := uD(zi), this leads to the representations

UD,ℓ =

N∑

i=1

giζi and ΦN,ℓ =

N∑

i=1

piχi =

N∑

j=1
Ej⊆ΓN

pjχj.(7.15)

Here, the representation for ΦN,ℓ shrinks to a sum over all elements on the Neumann boundary
by definition (7.11) of the extended Neumann data. The representation of UD,ℓ, however, takes
into account all nodes. This is due to the fact that the extension uD of uD has to be continuous.
This leads to supp(uD) ∩ ΓN 6= ∅ in general. Restricting the sum for UD,ℓ to Dirichlet nodes,
would thus correspond to a change of the extension uD, whence the first component uN of the
solution u ∈ H in every step ℓ!

We now consider the lowest-order Galerkin scheme and replace H by the discrete space

Xℓ := S1
0 (Eℓ|ΓN

)× P0(Eℓ|ΓD
) ⊂ H.(7.16)

Altogether, this leads to the following discrete version of the integral equation (7.4): Find
Uℓ ∈ Xℓ with

〈〈Uℓ ,Vℓ〉〉A = 〈Fℓ , Vℓ〉H∗×H for all Vℓ ∈ Xℓ,(7.17)
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where the approximated right-hand side is given by

Fℓ := (1/2 −A)

(
UD,ℓ

ΦN,ℓ

)
.(7.18)

We use (7.18) here because the right hand side of (7.4) can hardly be evaluated numerically. In
order to write (7.17) as a linear system of equations

Ax = b,(7.19)

we have to fix a basis of the discrete space Xℓ:

• Let Eℓ = {E1, . . . , EN} and assume that ΓD =
⋃d

j=1Ej . Then, {χ1, . . . , χN} is a basis of

P0(Eℓ) and {χ1, . . . , χd} is a basis of P0(Eℓ|ΓD
).• Let Kℓ = {z1, . . . , zN} and assume that {z1, . . . , zn} = Kℓ ∩ ΓN . Then, {ζ1, . . . , ζN} is a

basis of S1(Eℓ) and {ζ1, . . . , ζn} is a basis of S1
0 (Eℓ|ΓN

).• In particular, {(ζ1, 0), . . . , (ζn, 0), (0, χ1), . . . , (0, χd)} is a basis of Xℓ, and we fix this order-
ing for the implementation.

With this basis, the assembly of the the Galerkin data A ∈ R(n+d)×(n+d) and b ∈ Rn+d

from (7.19) reads as follows: According to Linear Algebra, the Galerkin system (7.17) holds for
all Vℓ ∈ Xℓ if it holds for all basis functions (ζj, 0) and (0, χk) of Xℓ. Consequently, we need to
compute the vector

b ∈ Rn+d, where bj := 〈Fℓ , (ζj , 0)〉H∗×H, bn+k := 〈Fℓ , (0, χk)〉H∗×H,(7.20)

for all j = 1, . . . , n and k = 1, . . . , d. Recall the matrices M,K ∈ RN×N defined in (5.10) and
the matrix W ∈ RN×N from (6.10). With the data representation (7.15), there holds

bj = 〈−WUD,ℓ + (1/2 −K ′)ΦN,ℓ , ζj〉Γ

=
1

2
〈ΦN,ℓ , ζj〉Γ − 〈ΦN,ℓ , Kζj〉Γ − 〈WUD,ℓ , ζj〉Γ

=
1

2

N∑

i=1

pi〈χi , ζj〉Γ −
N∑

i=1

pi〈χi , Kζj〉Γ −
N∑

i=1

gi〈Wζi , ζj〉Γ

=
(1
2
MTp−KTp−Wg

)
j

=
(1
2
MTp−KTp−WTg

)
j
,

where we have finally used the symmetry of W. Now, also recall the matrix V ∈ RN×N

from (5.10). The same type of arguments leads to

bn+k = 〈(1/2 +K)UD,ℓ − V ΦN,ℓ , χk〉Γ

=
1

2
〈UD,ℓ , χk〉Γ + 〈KUD,ℓ , χk〉Γ − 〈V ΦN,ℓ , χk〉Γ

=
1

2

N∑

i=1

gi〈ζi , χk〉Γ +

N∑

i=1

gi〈Kζi , χk〉Γ −
N∑

i=1

pi〈V χi , χk〉Γ

=
(1
2
Mg +Kg −Vp

)
k
.

For the right-hand side vector b, we thus obtain the short-hand notation

b =

((
1
2 p

TM− pTK− gTW
)T |ΓN(

1
2 Mg +Kg −Vp

)
|ΓD

)
.(7.21)

67



To compute the entries of the Galerkin matrix A, we proceed in the same way. With the
coefficient vector x ∈ Rn+d of the ansatz

Uℓ = (UN,ℓ,ΦD,ℓ) ∈ Xℓ, UN,ℓ =

n∑

i=1

xiζi, ΦD,ℓ =

d∑

i=1

xn+iχi,

it is easily seen that the entries of A read

Aij = 〈〈(ζj , 0) , (ζi, 0)〉〉A, Ai,n+k = 〈〈(0, χk) , (ζi, 0)〉〉A,
An+k,i = 〈〈(ζi, 0) , (0, χk)〉〉A, An+k,n+m = 〈〈(0, χm) , (0, χk)〉〉A,

for all i, j = 1, . . . , n and k,m = 1, . . . , d. Now, a direct computation leads to

Aij = 〈〈(ζj , 0) , (ζi, 0)〉〉A = 〈A(ζj , 0) , (ζi, 0)〉 = 〈(−Kζj,Wζj) , (ζi, 0)〉
= 〈Wζj , ζi〉

Ai,n+k = 〈〈(0, χk) , (ζi, 0)〉〉A = 〈A(0, χk) , (ζi, 0)〉 = 〈(V χk,K
′χk) , (ζi, 0)〉

= 〈K ′χk , ζi〉
An+k,i = 〈〈(ζi, 0) , (0, χk)〉〉A = 〈A(ζi, 0) , (0, χk)〉 = 〈(−Kζi,Wζi) , (0, χk)〉

= −〈Kζi , χk〉
An+k,n+m = 〈〈(0, χm) , (0, χk)〉〉A = 〈A(0, χm) , (0, χk)〉 = 〈(V χm,K

′χk) , (0, χk)〉
= 〈V χm , χk〉.

Altogether, we obtain the short-hand notation
(
W|ΓN×ΓN

KT |ΓN×ΓD

−K|ΓD×ΓN
V|ΓD×ΓD

)
x =

((
1
2 p

TM− pTK− gTW
)T |ΓN(

1
2 Mg +Kg −Vp

)
|ΓD

)
(7.22)

for the linear system (7.19)

Listing 24. Compute Oscillations and Discrete Date for Mixed Problem
1 function [oscD,oscN,uDh,phiNh] = computeOscMixed(coordinates,dirichlet, ...
2 neumann, varargin )

3 uDh = zeros ( size (coordinates,1),1);

4 if nargin == 5

5 %*** if current mesh is the initial mesh

6 [uD,phiN] = varargin {: };

7 else

8 %*** if current mesh is obtained by refinement

9 [father2neumann,neumann old,uDh old,uD,phiN] = varargin {: };

10

11 %*** prolongation of uDh old to uDh on Neumann boundary GammaN

12 uDh(neumann(father2neumann(:,1),2)) = 0.5 * sum(uDh old(neumann old),2);

13 uDh(neumann(father2neumann(:,1),1)) = uDh old(neumann old(:,1));

14 uDh(neumann(father2neumann(:,2),2)) = uDh old(neumann old(:,2));

15 end

16

17 %*** discretize Dirichlet data and compute data oscillations on GammaD

18 [oscD,uDh dirichlet] = computeOscDirichlet(coordinates,dirichlet,uD);

19

20 %*** update uDh on Dirichlet boundary GammaD

21 idx = unique (dirichlet);

22 uDh(idx) = uDh dirichlet(idx);

23

24 %*** discretize Neumann data and compute data oscillations on Ga mmaN

25 [oscN,phiNh] = computeOscNeumann(coordinates,neumann,phiN);

26
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27 %*** prolongate coefficient vector from GammaN to entire bounda ry Gamma

28 phiNh = [ zeros ( size (dirichlet,1),1) ; phiNh];

7.1. Discretization of Boundary Data and Computation of Corresponding Data
Oscillations (Listing 24). Instead of the correct variational form (7.9), i.e.

〈〈u ,v〉〉A = 〈F , v〉H∗×H for all v ∈ H
with solution u = (uN , φD) ∈ H and test functions v = (vN , ψD) ∈ H, we solve the perturbed
formulation

〈〈uℓ ,v〉〉A = 〈Fℓ , v〉H∗×H for all v ∈ H.(7.23)

In [6], we prove that the error between the continuous solutions u,uℓ ∈ H is controlled by

|||u− uℓ|||A . ‖uD − IℓuD‖H1/2(Γ) + ‖φN −ΠℓφN‖H−1/2(Γ)

. ‖h1/2ℓ (uD − IℓuD)
′‖L2(Γ) + ‖h1/2ℓ (φN −ΠℓφN )‖L2(Γ)

= ‖h1/2ℓ (uD − IℓuD)
′‖L2(ΓD) + ‖h1/2ℓ (φN −ΠℓφN )‖L2(ΓN )

= ‖h1/2ℓ (uD − IℓuD)
′‖L2(ΓD) + ‖h1/2ℓ (φN −ΠℓφN )‖L2(ΓN )

=: oscD,ℓ + oscN,ℓ,

where we have used the definition of the chosen extensions φN and uD. Since the Dörfler
marking below uses Hilbert space structure for the indicators, we rewrite the latter estimate in
the form

|||u− uℓ|||2A . osc2D,ℓ + osc2N,ℓ =: osc2ℓ .(7.24)

Note that the right-hand side is computable. The implementation of oscD,ℓ and oscN,ℓ has, in
principle, already been discussed in Section 5.1.1 and Section 6.1. We stress, however, that the
numerical solution of the mixed boundary value problem includes the appropriate prolongation
of the given discrete data since the solution uN depends on the chosen extension uD ∈ H1(Γ).

We start with a coarse mesh E0 and choose the extended Dirichlet data uD to satisfy uD|ΓN
∈

S1(E0|ΓN
) with uD(zi) = 0 for all nodes zi ∈ Kℓ∩ΓN . We stress that for all subsequent meshes,

which arise by mesh refinement, this extension must not be changed! This is realized in the
following way: The data UD,ℓ is the point evaluation of uD on the Dirichlet boundary ΓD,
whereas on the Neumann boundary ΓN it is just the prolongation of UD,ℓ−1 to the mesh Eℓ, i.e.
UD,ℓ−1|ΓN

= UD,ℓ|ΓN
. This prolongation is part of function computeOscMixed:

• On the initial mesh E0, the function is called by

[oscD,oscN,uDh,phiNh] = computeOscMixed(coordinates,dirichlet,neumann,uD,phiN);

Here, the mesh E0 is described in terms of the arrays coordinates , dirichlet , and
neumann. The function handles uD and phiN allow the pointwise evaluation of the given
data uD and φN .• If the mesh Eℓ is obtained by refinement of some mesh Eℓ+1, the function is called by

[oscD,oscN,uDh,phiNh] = computeOscMixed(coordinates,dirichlet,neumann, ...

father2neumann,neumann old,uDh old, ...

uD,phiN);

In addition to the prior call, one additionally provides the mesh Eℓ−1|ΓN
by neumann old

as well as the link between Eℓ|ΓN
and Eℓ−1|ΓN

in terms of the array father2neumann .
Finally, uDh old is the nodal vector of UD,ℓ−1.• We initialize the nodal vector uDh of UD,ℓ by zero (Line 3).• In the prolongation step, we have to guarantee UD,ℓ|ΓN

= UD,ℓ−1|ΓN
on the Neumann

boundary. To that end, we proceed as follows: If a node zi of the mesh Eℓ is a new node,
i.e. zi ∈ Kℓ\Kℓ−1, it is thus the midpoint of some element E = [zj , zk] of Eℓ−1. Then,
UD,ℓ(zi) = (UD,ℓ−1(zj) + UD,ℓ−1(zk))/2 (Line 12). If a node zi of the mesh Eℓ was also a
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node of Eℓ−1, i.e. zi ∈ Kℓ−1 ∩ Kℓ, there holds UD,ℓ(zi) = UD,ℓ−1(zi) (Line 13–14). Now,
uDh(j) = UD,ℓ(zj) for zj ∈ Kℓ∩ΓN is correct, and it remains to define uDh(j) = UD,ℓ(zj) =

uD(zj) for zj ∈ Kℓ ∩ ΓD.• The Dirichlet data oscillations as well as the nodal values of UD,ℓ on ΓD are returned by
call of computeOscDirichlet (Line 18). These values are used to update uDh so that
uDh provides the nodal values of UD,ℓ ∈ S1(Tℓ) (Line 21–22).• The Neumann data oscillations as well as the elementweise values of ΦN,ℓ|Ej for Ej ∈ Eℓ|ΓN

are returned by call of computeOscNeumann (Line 25). Note that we have assumed the
numbering Eℓ = {E1, . . . , EN} as well as Eℓ|ΓN

= {Ed+1, ..., EN}, where d is the number
of elements on the Dirichlet boundary. Therefore, phiNh provides the coefficient vector of
ΦN,ℓ ∈ P0(Eℓ) (Line 28).

Listing 25. Build RHS for Mixed Problem
1 function [b nodes,b elements] = buildMixedRHS(coordinates,dirichlet,neumann, ...
2 V,K,W,uDh,phiNh)

3 elements = [dirichlet;neumann];

4 nE = size (elements,1);

5

6 %*** compute mass −type matrix for P0 x S1

7 M = buildM(coordinates,elements);

8

9 %*** compute full right −hand side

10 b nodes = (0.5 * phiNh' * M − phiNh' * K − uDh' * W)';

11 b elements = M * uDh* 0.5 + K * uDh − V* phiNh;

7.2. Build Right-Hand Side Vector (Listing 25). To compute the vector b from (7.19),
we first recall the representation of b in (7.22),

(
b1

b2

)
:=

( (
1
2p

TM− gTW − pTK
)T |ΓN(

1
2Mg +Kg −Vp

)
|ΓD

)
,(7.25)

where b1 stems from testing with nodal basis functions ζj ∈ S1(Tℓ), whereas b2 stems from
testing with characteristic functions χk ∈ P0(Tℓ).

The documentation of Listing 25 reads as follows:

• As input, the function takes the mesh Eℓ described in terms of coordinates , dirichlet
and neumann. The vector uDh contains the nodal vector of UD,ℓ ∈ S1(Tℓ), i.e. uDh =
g, whereas phiNh provides the elementwise values of ΦN,ℓ ∈ P0(Tℓ), i.e. phiNh = p.
The matrices V, K, and Ware the matrices for the simple-layer potential, the double-layer
potential, and the hypersingular integral operator for the mesh Eℓ.• The return vector b nodes provides the nodal contributions of b for all nodes, i.e. the vector
b1 corresponds to a certain subvector of b nodes . The return vector b elements provides
the element contributions of b, i.e. b2 corresponds to a certain subvector of b elements .• First (Line 7), the mass-type matrix M is computed, cf. Section 5.3 for details.• Line 10 computes the nodal contributions b nodes as (12 p

TM− gTW − pTK)T ∈ RN .

• Line 11 computes the element contributions b elements as 1
2 Mg +Kg −Vp ∈ RN .

7.3. Sort Mesh for Mixed Problem. As described above, for implementation we choose

B := {(ζ1, 0), . . . , (ζn, 0), (0, χ1), . . . , (0, χd)}
as basis forXℓ. Here, {ζ1, . . . , ζn} is a basis of S1

0 (Eℓ|ΓN
) and {χ1, . . . , χd} is a basis of P0(Eℓ|ΓD

).

For S1
0 (Eℓ|ΓN

) ⊂ H̃1/2(ΓN ) we aim to benefit from the functions already written for the
hypersingular integral equation. To do so, we have to embed S1

0 (Eℓ|ΓN
) into S1(Eℓ|ΓN

). We thus
enforce an ordering of the nodes such that {z1, . . . , zm} = Kℓ ∩ ΓN = Kℓ\ΓD, i.e., {ζ1, . . . , ζm}
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is a basis of S1(Eℓ|ΓN
) and, in particular, n < m. Note that for ΓN connected, there holds

m = n+ 2.
The described ordering of the nodes enforces to do some reordering of the array coordinates

and to adapt the indices in dirichlet and neumann. Both subjects are done by the function
buildSortedMesh, see section 4.2. The right function call in this case is

[coordinates,neumann,dirichlet]= ...
buildSortedMesh(coordinates,neumann,dirichlet) .

Listing 26. Transfer of father2son relations
1 function [f2s] = generateFather2Son(old2new,old2fine,new2fine)

3 %*** determine the number of elements of T old fine

4 f2s = zeros ( size ( unique (old2fine),1),2);

5

6 %*** mark old elements which are not refined, or refined

7 not refined = old2new(:,1) == old2new(:,2);

8 refined = not(not refined);

9

10 %*** transport the father2son arrays for the refined elements

11 f2s(old2fine(refined,1),:) = new2fine(old2new(refined ,1),:);

12 f2s(old2fine(refined,2),:) = new2fine(old2new(refined ,2),:);

13

14 %*** transport the father2son arrays for the elements which are n ot refined

15 f2s(old2fine(not refined,1),:) = [ new2fine(old2new(not refined,1),1) ...

16 new2fine(old2new(not refined,1),1)];

17 f2s(old2fine(not refined,2),:) = [ new2fine(old2new(not refined,1),2) ...

18 new2fine(old2new(not refined,1),2)];

7.4. Transfer of father2son relations (Listing 26). Although we use the h−h/2-strategy
for error estimation, we note that it is sufficient to compute only Ûℓ, i.e., there is no need
to compute the coarse mesh solution Uℓ (see section 7.6). It follows that in the ℓth step,

the data φN and uD just need to be approximated on the uniform refined mesh Êℓ. Suppose

that the discrete Dirichlet data ÛD,ℓ is available in the ℓth step. In the ℓ + 1th step, we

need to compute ÛD,ℓ+1. On ΓN , this is done by prolongation from Êℓ to Êℓ+1 by the function
computeOscMixed. To that end, the last function needs the father2son relation f2s between

Êℓ and Êℓ+1. However, only the father2son relations old2fine from Eℓ to Êℓ, new2fine from

Eℓ+1 to Êℓ+1 as well as old2new from Eℓ to Eℓ+1 are available from the refinement routines. The
function generateFather2Son determines f2s from old2new , old2fine and new2fine .

The documentation of listing 26 reads as follows:

• As input, the function takes the father2son relations from a mesh Eℓ to a refined mesh Eℓ+1,
which are given by the array old2new . Further input parameters are the father2son rela-

tions between Eℓ and Êℓ, which are given by the array old2fine , as well as the father2son

relations between Eℓ+1 and Êℓ+1, which are given by the array new2fine . Note that these
arrays can also describe parts of a boundary mesh. The output is the array f2s , which

describes the father2son relation between Êℓ and Êℓ+1.• First, we provide memory for f2s (Line 4).• We determine arrays not refined and refined . Here, refined(i) = 1
and not refined(i) = 0 if the element Ei ∈ Eℓ is refined, and vice versa (Lines 7 - 8).

• If an element Ei ∈ Eℓ is refined, then its uniform sons Êi1 , Êi2 ∈ Êℓ are also refined from Êℓ
to Êℓ+1 (Lines 11-12).

• If an element Ei ∈ Eℓ is not refined, i.e., Ei = Ej ∈ Eℓ+1, then Eis uniform sons Êi1 ,

Êi2 ∈ Êℓ, are not refined from Êℓ to Êℓ+1 (Lines 15-18).
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7.5. Computation of Reliable Error Bound for |||u−Uℓ|||A|||u−Uℓ|||A|||u−Uℓ|||A. We assume that the exact
solution has additional regularity u = (uN , φD) ∈ H1(ΓN ) × L2(ΓD). Let U⋆

ℓ ∈ Xℓ be the
(unknown, but existing) Galerkin solution with respect to the exact right-hand side F instead
of Fℓ. As in the previous section, one can prove that

|||U⋆
ℓ −Uℓ|||A . oscℓ.

Moreover, the exact Galerkin solution is quasi-optimal. Therefore,

|||u−U⋆
ℓ |||A . |||uN − IℓuN |||W (ΓN ) + |||φD −ΠℓφD|||V (ΓD)

. ‖h1/2ℓ (uN − IℓuN )′‖L2(ΓN ) + ‖h1/2ℓ (φD −ΠℓφD)‖L2(ΓD)

=: errN,ℓ + errD,ℓ.

Altogether, we obtain

|||u−Uℓ|||2A . err2ℓ + osc2ℓ with err2ℓ = err2D,ℓ + err2N,ℓ.

Note that the computation of errN,ℓ and errD,ℓ has already been discussed in Section 5.5 and
Section 6.5.

7.6. Computation of (h− h/2)(h− h/2)(h− h/2)-Based A Posteriori Error Estimators. Note that the en-
ergy norm |||·|||A induced by the Calderón projector A can be written in terms of the energy norms

||| · |||V (ΓD) and ||| · |||W (ΓN ) induced by the simple-layer potential V ∈ L(H̃−1/2(ΓD);H
1/2(ΓD))

and the hypersingular integral operator W ∈ L(H̃1/2(ΓN );H−1/2(ΓN )). According to (7.8),
there holds

|||(uN , φD)|||2A = |||uN |||2W (ΓN ) + |||φD|||2V (ΓD).

For a posteriori error estimation, we may therefore use the estimators introduced above. Suppose
that

Uℓ = (UN,ℓ,ΦD,ℓ) ∈ Xℓ and Ûℓ = (ÛN,ℓ, Φ̂D,ℓ) ∈ X̂ℓ

are Galerkin solutions with respect to the mesh Eℓ and its uniform refinement Êℓ, computed
with the same right-hand side Fℓ, i.e. there holds

〈〈Uℓ ,Vℓ〉〉A = 〈Fℓ , Vℓ〉H∗×H for all Vℓ ∈ Xℓ(7.26)

as well as

〈〈Ûℓ , V̂ℓ〉〉A = 〈Fℓ , V̂ℓ〉H∗×H for all V̂ℓ ∈ X̂ℓ.(7.27)

As in Section 5.6, we define the following four error estimators for the part of the simple-layer
potential:

ηD,ℓ := |||Φ̂D,ℓ − ΦD,ℓ|||V (ΓD), η̃D,ℓ := |||Φ̂D,ℓ −ΠℓΦ̂D,ℓ|||V (ΓD),

µD,ℓ := ‖h1/2ℓ (Φ̂D,ℓ − ΦD,ℓ)‖L2(ΓD), µ̃D,ℓ := ‖h1/2ℓ (Φ̂D,ℓ −ΠℓΦ̂D,ℓ)‖L2(ΓD).

In analogy to Section 6.6, we define the following four error estimators for the contribution of
the hypersingular integral operator:

ηN,ℓ := |||ÛN,ℓ − UN,ℓ|||W (ΓN ), η̃N,ℓ := |||ÛN,ℓ − IℓÛN,ℓ|||W (ΓN ),

µN,ℓ := ‖h1/2ℓ (ÛN,ℓ − UN,ℓ)
′‖L2(ΓN ), µ̃N,ℓ := ‖h1/2ℓ (ÛN,ℓ − IℓÛN,ℓ)

′‖L2(ΓN ).

Consequently, we obtain (at least) four a posteriori error estimators for the mixed problem:

η2ℓ := η2D,ℓ + η2N,ℓ, η̃ 2
ℓ := η̃ 2

D,ℓ + η̃ 2
N,ℓ,

µ2ℓ := µ2D,ℓ + µ2N,ℓ, µ̃ℓ
2 := µ̃ 2

D,ℓ + µ̃ 2
N,ℓ.

We remark that the implementation of these error estimators has already been discussed above.
With the analytical techniques from [18, 15] and [16], we prove in [6] that there holds equivalence

ηℓ . η̃ℓ . µ̃ℓ ≤ µℓ . ηℓ.
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Moreover, there holds efficiency in the form

ηℓ . |||u−Uℓ|||A + oscℓ.

The constants hidden in the symbol . depend only on Γ and κ(Eℓ). Under a saturation as-
sumption for the non-perturbed problem, there holds also reliability

|||u−Uℓ|||A . ηℓ + oscℓ.(7.28)

To steer an adaptive mesh-refining algorithm, it is therefore natural to use one of the combined
error estimators

̺2ℓ := µ2ℓ + osc2ℓ = (µ2D,ℓ + osc2D,ℓ) + (µ2N,ℓ + osc2N,ℓ),

˜̺2ℓ := µ̃ 2
ℓ + osc2ℓ = (µ̃ 2

D,ℓ + osc2D,ℓ) + (µ̃ 2
N,ℓ + osc2N,ℓ).

For the same reasons as above, the usual choice is ˜̺ℓ since it avoids the computation of the

coarse-mesh Galerkin solution Uℓ ∈ Xℓ, but only relies on local postprocessing of Ûℓ.

7.7. Adaptive Mesh-Refinement. For Ej ∈ Eℓ = {E1, . . . , EN}, we consider the refinement
indicators

˜̺ℓ(Ej)
2 :=

{
µ̃D,ℓ(Ej)

2 + oscD,ℓ(Ej)
2 if Ej ⊆ ΓD,

µ̃N,ℓ(Ej)
2 + oscN,ℓ(Ej)

2 if Ej ⊆ ΓN .
(7.29)

Note that there holds

˜̺2ℓ =

N∑

j=1

˜̺ℓ(Ej)
2.(7.30)

With this notation, the adaptive algorithm takes the same form as before:

Input: Initial mesh E0, Dirichlet data uD, Neumann data φN , adaptivity parameter 0 < θ < 1,
maximal number Nmax ∈ N of elements, and counter ℓ = 0.

(i) Build uniformly refined mesh Êℓ.
(ii) Compute Galerkin solution Ûℓ ∈ X̂ℓ.
(iii) Compute refinement indicators ˜̺ℓ(E)2 for all E ∈ Eℓ.
(iv) Find minimal set Mℓ ⊆ Eℓ such that

θ ˜̺2ℓ = θ
∑

E∈Eℓ

˜̺ℓ(E)2 ≤
∑

E∈Mℓ

˜̺ℓ(E)2.(7.31)

(v) Refine (at least) marked elements E ∈ Mℓ and obtain mesh Eℓ+1 with κ(Eℓ+1) ≤ 2κ(E0).
(vi) Stop provided that #Eℓ+1 ≥ Nmax; otherwise, increase counter ℓ 7→ ℓ+ 1 and go to (i).

Output: Adaptively generated mesh Êℓ and corresponding discrete solution Ûℓ ∈ X̂ℓ.

The marking criterion (7.31) has been proposed in the context of adaptive finite element
methods [13]. Let formally Nmax = ∞ so that the adaptive algorithm computes a sequence of

discrete solutions Ûℓ (or even Uℓ, although this is not computed). Based on (7.28), which holds
under a saturation assumption for the non-perturbed problem, we can show with techniques

introduced in [17] the convergence of Ûℓ andUℓ to u, provided that the right hand side (uD, φN )
is not disturbed, i.e., (uD, φN ) = (UD,ℓ,ΦN,ℓ).

In [4], we changed the notion of convergence and proved that for certain error estimators —
amongst them are µ̃ℓ and µℓ for Symm’s integral equation — the adaptive algorithm guarantees
convergence limℓ µ̃ℓ = 0. This concept is followed in [6] to prove that the adaptive algorithm
for the mixed problem stated above, yields limℓ ˜̺ℓ = 0. Therefore, if the saturation assumption
holds (at least in infinitely many steps), we obtain convergence ofUℓ to u due to |||u−Uℓ|||2A . ̺2ℓ .
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Listing 27. Adaptive Algorithm for Mixed BVP
1 % adaptiveMixed provides the implementation of an adaptive mesh−refining
2 % algorithm for the symmetric integral formulation of a mixe d boundary value
3 % problem.

4 %*** adaptivity parameter

5 theta = 0.25;

6 rho = 0.25;

7

8 %*** rearrange indices such that Neumann nodes are first

9 [coordinates,neumann,dirichlet] = ...

10 buildSortedMesh(coordinates,neumann,dirichlet);

11

12 %*** initialize Dirichlet data

13 uDh = zeros ( size (coordinates,1),1);

14 uDh( unique (dirichlet)) = g(coordinates( unique (dirichlet),:));

15

16 %*** Perform uniform refinement before starting the loop

17 %*** refine mesh uniformly

18 [coordinates fine,dirichlet fine,neumann fine, ...

19 father2dirichlet fine,father2neumann fine] ...

20 = refineBoundaryMesh(coordinates,dirichlet,neumann);

21

22 %*** rearrange indices such that Neumann nodes are first

23 [coordinates fine,neumann fine,dirichlet fine] = ...

24 buildSortedMesh(coordinates fine,neumann fine,dirichlet fine);

25

26 %*** discretize data and compute corresponding data oscillatio ns for fine mesh

27 [oscD fine,oscN fine,uDh fine,phiNh fine] ...

28 = computeOscMixed(coordinates fine,dirichlet fine,neumann fine, ...

29 father2neumann fine,neumann,uDh,@g,@phi);

30

31 oscD = sum(oscD fine(father2dirichlet fine),2);

32 oscN = sum(oscN fine(father2neumann fine),2);

33

34 %*** adaptive mesh −refining algorithm

35 while 1

36

37 fprintf( 'number of elements: N = %d \r' , size (neumann,1)+ size (dirichlet,1))

38

39 %*** compute integral operators for fine mesh

40 elements fine = [dirichlet fine;neumann fine];

41 V fine = buildV(coordinates fine,elements fine);

42 K fine = buildK(coordinates fine,elements fine);

43 Wfine = buildW(coordinates fine,elements fine);

44

45 %*** compute right −hand side for fine mesh

46 [b nodes fine,b elements fine] ...

47 = buildMixedRHS(coordinates fine,dirichlet fine, ...

48 neumann fine,V fine,K fine,W fine,uDh fine,phiNh fine);

49

50 %*** compute degrees of freedom for fine mesh

51 nC fine = size (coordinates fine,1);

52 nD fine = size (dirichlet fine,1);

53 freeNeumann fine = setdiff (1:nC fine, unique (dirichlet fine));

54 freeDirichlet fine = 1:nD fine;

55 nN fine = length (freeNeumann fine);

56
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57 %*** shrink integral operators and right −hand side

58 Wfine = W fine(freeNeumann fine,freeNeumann fine);

59 K fine = K fine(freeDirichlet fine,freeNeumann fine);

60 V fine = V fine(freeDirichlet fine,freeDirichlet fine);

61 b nodes fine = b nodes fine(freeNeumann fine);

62 b elements fine = b elements fine(freeDirichlet fine);

63

64 %*** compute Galerkin solution for fine mesh

65 x = [W fine K fine' ; −K fine V fine] \ [b nodes fine ; b elements fine];

66

67 %*** compute coefficient vectors w.r.t. S1(GammaN) and P0(Gamm aD)

68 xN fine = zeros (nC fine,1);

69 xN fine(freeNeumann fine) = x(1:nN fine); %** dof on Neumann boundary

70 xD fine = x((1:nD fine) + nN fine); %** dof on Dirichlet boundary

71

72 %*** stopping criterion

73 if ( size (neumann,1) + size (dirichlet,1) > nEmax )

74 break ;

75 end

76

77 %*** compute (h −h/2) −error estimator tilde −mu on the associated boundaries

78 muDtilde = computeEstSlpMuTilde(coordinates,dirichlet, ...

79 father2dirichlet fine,xD fine);

80 muNtilde = computeEstHypMuTilde(neumann fine,neumann, ...

81 father2neumann fine,xN fine);

82

83 %*** mark elements for refinement

84 [marked dirichlet,marked neumann] ...

85 = markElements(theta,rho,muD tilde + oscD,muN tilde + oscN);

86

87 %*** generate new mesh

88 [coordinates,dirichlet,neumann,father2dirichlet adap,father2neumann adap] ...

89 = refineBoundaryMesh(coordinates,dirichlet,neumann, ...

90 marked dirichlet,marked neumann);

91

92 %*** rearrange indices such that Neumann nodes are first

93 [coordinates,neumann,dirichlet] = ...

94 buildSortedMesh(coordinates,neumann,dirichlet);

95

96 neumann coarse = neumann fine;

97 father2neumann coarse = father2neumann fine;

98 [coordinates fine,dirichlet fine,neumann fine,father2dirichlet fine, ...

99 father2neumann fine]= refineBoundaryMesh(coordinates,dirichlet,neumann);

100

101 %*** build coarse2fine array

102 coarse2fine = generateFather2Son(father2neumann adap, ...

103 father2neumann coarse, ...

104 father2neumann fine);

105

106 %*** rearrange indices such that Neumann nodes are first

107 [coordinates fine,neumann fine,dirichlet fine] = ...

108 buildSortedMesh(coordinates fine,neumann fine,dirichlet fine);

109

110 %*** discretize data and compute corresponding data oscillatio ns for

111 %*** fine mesh

112 [oscD fine,oscN fine,uDh fine,phiNh fine] ...

113 = computeOscMixed(coordinates fine,dirichlet fine,neumann fine, ...
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114 coarse2fine,neumann coarse,uDh fine,@g,@phi);

115 oscD = sum(oscD fine(father2dirichlet fine),2);

116 oscN = sum(oscN fine(father2neumann fine),2);

117 end

118

119 %*** xN fine = dof on Neumann boundary, i.e. update for Dirichlet dat a

120 %*** to obtain approximation uh of trace of PDE solution u

121 uh = xN fine+uDh fine;

122

123 %*** plot approximate vs exact trace

124 plotArclengthS1(coordinates fine,[dirichlet fine;neumann fine],uh,@g,2)

125

126 %*** xD fine = dof on Dirichlet boundary, i.e. update for Neumann dat a

127 %*** to obtain approximation phih of normal derivative of PDE sol ution u

128 phih = [xD fine ; phiNh fine(nD fine+1: end )];

129

130 %*** plot approximate vs exact normal derivative

131 plotArclengthP0(coordinates fine,[dirichlet fine;neumann fine],phih,@phi,1)

7.7.1. Implementation of Adaptive Algorithm (Listing 27). The Matlab script of
Listing 27 realizes the adaptive algorithm from the beginning of this section.

• We use the adaptivity parameter θ = 1/4 in (7.31) and mark at least 25% of elements with
the largest indicators (Line 5–6).

• We order the nodes such that nodes on ΓN are first (Line 9–10) and compute the nodal
vector of UD,0 (Line 13–14).

The remainder of the code consists of the adaptive loop, where Eℓ is a given mesh with associated
discrete Dirichlet data UD,ℓ.

• We generate the mesh Ê0 (Line 18–20). Then, we discretize the given data on Ê0 and com-

pute the corresponding data oscillations (Line 27–29). The Ê0-piecewise data oscillations
are linked to the coarse mesh E0 (Line 31–32).

• We build the discrete integral operators related to Êℓ (Line 41–43) and the corresponding
right-hand side (Line 46–48). Note that the latter is built with respect to the improved

data (ÛD,ℓ, Φ̂N,ℓ) instead of (UD,ℓ,ΦN,ℓ).• By definition, the degrees of freedom are the elements on the Dirichlet boundary, which

are the first ND elements (Line 54), as well as the nodes K̂ℓ\ΓD, which lie inside of ΓN

(Line 53).• To lower the storage, we restrict the discrete operators and the right-hand side to the
degrees of freedom (Line 58–62). For instance, V is only needed for elements on ΓD, and
W is only needed for nodes zℓ ∈ Kℓ\ΓD.• Finally (Line 65), we compute the coefficient vector x̂ of Ûℓ by solving (7.22).• Next, we aim to obtain the basis vectors x̂N and x̂D of UN,ℓ and ΦD,ℓ, respectively. To use
the functions from Section 6, we have to represent UN,ℓ in the nodal basis of S1(Eℓ|ΓN

).

This is done in Line 68–69. The coefficients of ΦD,ℓ with respect to P0(Eℓ|ΓD
) are obtained

in Line 70.• We compute the local contributions of the error estimator µ̃ 2
ℓ = µ̃2D,ℓ + µ̃2N,ℓ (Line 78–81).

• In Line 84–85, the Dörfler marking (7.31) is realized.• In the next step, the new mesh Eℓ+1 is created (Line 88–90) and ordered (Line 93–94).• In Line 96–97, we save neumann fine and father2neumann fine , as we need it in Line

102, where we generate the father2son relation from Êℓ to Êℓ+1.• The mesh Êℓ+1 is created (Line 98–99) and the nodes are ordered (Line 107–108).

• Finally, we compute the data oscillations on Êℓ+1 (Line 112–116).
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8. Integral Equations with Non-Homogeneous Volume Force

So far, we have only considered the Laplace equation −∆u = f with homogeneous volume force
f = 0. In this section, we discuss the generalization for f 6= 0. Doing so, we have to deal
with two integral operators which have not been considered, yet, namely the trace N0 and the

normal derivative N1 = ∂nÑ of the Newtonian potential Ñ from (1.3).

Discretization of Volume Force. For the later implementation and to compute the New-

tonian potential analytically, we will replace the volume force f ∈ H̃−1(Ω) by some discrete
function. In addition to the boundary element mesh Eℓ, we therefore have to deal with an
additional partition Tℓ = {T1, . . . , TM} of the domain Ω. Throughout, we will assume that Tℓ
is a regular triangulation of Ω into triangles, i.e.,

• all elements Tj ∈ Tℓ are compact non-degenerate triangles, i.e., Tj = conv{z1, z2, z3} ⊂
R2 with certain vertices zk ∈ R2 and Tj has positive area |Tj | > 0,

• Ω is the union of the volume elements Ω =
⋃M

j=1 Tj,
• the intersection of Tj , Tk ∈ Tℓ, for j 6= k, is either disjoint or a common vertex or a
common edge.

We extend the definition of the mesh-size function hℓ which is —from now on— defined as
hℓ : Ω → R with

hℓ(x) =

{
diam(Ej) provided that x ∈ interior(Ej) for some boundary element Ej ∈ Eℓ,
diam(Tj) provided that x ∈ interior(Tj) for some volume element Tj ∈ Tℓ.

Note that hℓ is pointwise defined almost everywhere with respect to both Ω and Γ and provides
functions hℓ ∈ L∞(Γ) as well as hℓ ∈ L∞(Ω). Throughout, we will assume (and algorithmically
guarantee) that the generated volume meshes Tℓ are uniformly shape regular, i.e.

sup
ℓ∈N

σ(Tℓ) <∞, where σ(Tℓ) := max
Tj∈Tℓ

diam(Tj)
2

|Tj |
<∞.(8.1)

This is for instance guaranteed by use of any mesh-refinement based on newest vertex bisection
(NVB), cf. [32].

By P0(Tℓ), we denote the space of all Tℓ-piecewise constant functions. Since there are no
ambiguities between L2(Γ) and L2(Ω), we will denote the L2-orthogonal projections onto P0(Eℓ)
and P0(Tℓ) by Πℓ : L

2 → P0 in either case.

To discretize the non-homogeneous volume force f ∈ H̃−1(Ω), we assume additional regularity
f ∈ L2(Ω), and replace f by its L2-projection Fℓ := Πℓf ∈ P0(Tℓ). Note that there holds

Fℓ|Tj =
1

|Tj |

∫

Tj

f dx =: fj ,(8.2)

where |Tj | denote the area of Tj . With the characteristic functions χTj corresponding to Tj ∈ Tℓ,
there holds

Fℓ =

M∑

j=1

fjχTj ,(8.3)

and we will use this representation to build the Galerkin data.

8.1. Symm’s Integral Equation with Volume Forces. As first model problem, we consider
the Dirichlet problem

−∆u = f in Ω with u = g on Γ = ∂Ω.(8.4)

With the trace N0f of the Newton potential Ñf , this problem is equivalently stated in the
integral formulation

V φ = (K + 1/2)g −N0f on Γ.(8.5)
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With the notation of Section 5, the data perturbed Galerkin formulation reads as follows: Find
Φℓ ∈ P0(Tℓ) such that

〈V Φℓ , Ψℓ〉Γ = 〈(K + 1/2)Gℓ , Ψℓ〉Γ − 〈N0Fℓ , Ψℓ〉Γ for all Ψℓ ∈ P0(Tℓ),(8.6)

where Gℓ ∈ S1(Eℓ) approximates the given Dirichlet data g, cf. Section 5. We proceed as above
and define the matrix N ∈ RN×M by

Nkj = 〈NχTj , χEk
〉Γ for all Tj ∈ Tℓ and Ek ∈ Eℓ,(8.7)

where χEk
, k = 1, . . . ,M and χTj , j = 1, . . . , N denote the characteristic functions of Ek and

Tj . Then, the Galerkin formulation (8.6) is equivalent to the linear system

Vx =
(
K+

1

2
M
)
g −Nf ,(8.8)

where f is the coefficient vector of Fℓ from (8.3) and where g ∈ RN is the nodal vector of Gℓ

from (5.5). In comparison to Section 5, only the right-hand side of (8.8) is modified by the
additional vector −Nf .

8.2. Computation of Discrete Newton Potential N. The matrix N ∈ RN×M for the
Newton potential which is defined in (8.7), is implemented in the programming language C via
the Matlab-Mex-Interface. The Newton potential matrix N is returned by call of

N = buildN(coordinates,elements,vertices,triangles [,eta]);

Here, the boundary mesh Eℓ is given in terms of the arrays coordinates and elements ,
whereas the volume mesh Tℓ is described in terms of vertices and triangles .

In general, the matrix entries of N can be computed almost analytically, i.e. up to quadrature
of a smooth arctan, see [2]. However, analytic integration leads to cancellation effects if the
integration domain is small. Recall that

Nkj = − 1

2π

∫

Ek

∫

Tj

log |x− y| dx dΓ(y),

so that the integration domain here means either the boundary element Ek or the volume
element Tj. For fixed η > 0, a pair of elements (Ek, Tj) ∈ Eℓ × Tℓ is called admissible provided
that

length(Ek) ≤ η dist(Ek, Tj).

Otherwise, the pair is called inadmissible.
For an inadmissible pair (Ek, Tj), the matrix entry Nkj is computed analytically. For an

admissible pair, the outer integration is done by Gaussian quadrature, i.e.,
∫

Ek

∫

Tj

log |x− y| dx dΓ(y) = length(hk)

2

∫ 1

−1

∫

Tj

log |x− γk(s)| dx ds

≈ length(hk)

2

p∑

m=1

ωm

∫

Tj

log |x− γk(sm)| dx,

whereas the remaining integral is computed analytically. For more information on the standard
choices of p and η in HILBERT and how to change them, we refer to Section 5.2.

Remark 8.1. We found empirically that, due to cancellation effects, the matrix N became

instable in case that there are boundary elements E ∈ Eℓ and triangles T ∈ Tℓ with E ⊂ ∂T
and length(E) ≪ diam(T ). One remedy to cure this instability is to consider coupled meshes,

i.e., the boundary mesh Eℓ = Tℓ|Γ is the restriction of the volume mesh Tℓ to the boundary.

Although one might think that this might lead to inefficiencies, we empirically observed optimal

convergence behaviour. Therefore, this concept is followed in all our implementations. We refer

to the function buildSortedMesh from Section 4.2 which returns Tℓ|Γ.
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Listing 28. Computation of Data Oscillations for Volume Data
1 function [osc,fh] = computeOscVolume(vertices,triangles,f)

2 %*** quadrature rule on reference triangle Tref = conv {(0,0),(1,0),(0,1) }

3 tmp pos = [6 −sqrt (15) ; 9+2 * sqrt (15) ; 6+ sqrt (15) ; 9 −2* sqrt (15) ; 7]/21;

4 quad vertices = tmp pos([1 1 ; 2 1 ; 1 2 ; 3 4 ; 3 3 ; 4 3 ; 5 5]);

5 tmp wts = [155 −sqrt (15) 155+ sqrt (15) 270]/2400;

6 quad weights = tmp wts([1 1 1 2 2 2 3]);

7

8 %*** the remaining code is independent of the chosen quadrature r ule

9 nT = size (triangles,1);

10 nQ = size (quad vertices,1);

11

12 %*** first vertices of triangles and corresponding edge vectors

13 v1 = vertices(triangles(:,1),:);

14 d21 = vertices(triangles(:,2),:) − v1;

15 d31 = vertices(triangles(:,3),:) − v1;

16

17 %*** compute vector of triangle areas 2 * area(T)

18 area2 = d21(:,1). * d31(:,2) −d21(:,2). * d31(:,1);

19

20 %*** build matrix of quadrature vertices by use of affine transfo rmation of Tref

21 jacobian1 = reshape ( repmat ([d21(:,1);d31(:,1)],1,nQ)',nT * nQ,2);

22 jacobian2 = reshape ( repmat ([d21(:,2);d31(:,2)],1,nQ)',nT * nQ,2);

23 zref = repmat (quad vertices,nT,1);

24 z = [ sum(zref. * jacobian1,2) sum(zref. * jacobian2,2) ] ...

25 + reshape ( repmat (v1(:),1,nQ)',nT * nQ,2);

26

27 %*** evaluate volume force f at all quadrature vertices z

28 fz = reshape (f(z),nQ,nT);

29

30 %*** compute integral mean

31 f mean = 2* quad weights * fz;

32

33 %*** return OSC(j) = area(Tj) * | | f − f mean | | {L2(Tj) }ˆ2

34 osc = 0.5 * area2.ˆ2 . * (quad weights * (fz − repmat (f mean,nQ,1)).ˆ2)';

35

36 %*** return column vector

37 fh = f mean';

8.3. Discretization of Volume Data and Computation of Corresponding Volume
Data Oscillations (Listing 28). In analogy to the techniques from [11], one can prove that
the definition

oscΩ,ℓ :=
( M∑

j=1

oscΩ,ℓ(Tj)
2
)1/2

with oscΩ,ℓ(Tj)
2 = |Tj | ‖f − Fℓ‖2L2(Tj)

(8.9)

guarantees

‖f − Fℓ‖H̃−1(Ω)
. ‖hℓ(f − Fℓ)‖L2(Ω) . oscΩ,ℓ,(8.10)

where we have used the uniform shape regularity (8.1) in the final estimate. As above, we stress

that our numerical scheme aims to approximate the solution φℓ ∈ H−1/2(Γ) of the perturbed
formulation

V φℓ = (K + 1/2)Gℓ −N0Fℓ on Γ(8.11)

instead of (8.5). One can, however, prove that

|||φ− φℓ|||V . oscD,ℓ + oscΩ,ℓ,(8.12)
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see [6].
For the computation of the local contributions oscΩ,ℓ(Tj), we use an affine transformation Ξj

from the reference element T ref = conv{(0, 0), (0, 1), (1, 0)} to Tj ∈ Tℓ. Let Tj = conv{z1, z2, z3}.
We then define

Ξjx
ref :=Mjx

ref + z1 with Mj =
(
z2 − z1 , z3 − z1

)
∈ R2×2.(8.13)

It is easily seen that Ξj : T ref → Tj is an affine bijection and that the functional determinant

satisfies |detDΞj(x
ref) = |detMj | = 2 |Tj |. Consequently, the transformation theorem proves

2|Tj |
∫

T ref

(f ◦ Ξj)(x
ref) dxref =

∫

T ref

(f ◦ Ξj)(x
ref) |DΞj(x

ref)| dxref =
∫

Tj

f dx

for any integrable f ∈ L1(Tj). Suppose that there are given quadrature nodes xref1 , . . . , xrefp ∈
T ref and corresponding weights ω1, . . . , ωp such that

∫

T ref

(f ◦ Ξj)(x
ref) dxref ≈

p∑

k=1

ωk(f ◦ Ξj)(x
ref
k ).

First, we use this quadrature formula to approximate the integral mean

Fℓ|Tj =
1

|Tj |

∫

Tj

f dx = 2

∫

T ref

(f ◦ Ξj)(x
ref) dxref ≈ 2

p∑

k=1

ωk(f ◦ Ξj)(x
ref
k ) =: f̃j .(8.14)

Second, we use the same quadrature formula to approximate the integral

oscΩ,ℓ(Tj)
2 ≈ |Tj |

∫

Tj

|f − f̃j|2 dx ≈ 2|Tj |2
p∑

k=1

ωk |f ◦ Ξj(x
ref
k )− f̃j|2 =: õscΩ,ℓ(Tj)

2.(8.15)

For the implementation, we use a 7-point quadrature rule from [33] which is exact on P5(Tj),
i.e., for polynomials in R2 with maximal degree 5. Consequently, our implementation satisfies
oscΩ,ℓ(Tj) = õscΩ,ℓ(Tj) for f ∈ P2(Tj). The Bramble-Hilbert lemma thus proves, for smooth
volume forces f

|oscΩ,ℓ(Tj)− õscΩ,ℓ(Tj)| . |Tj |1/2h3 ≃ h4,

whence

|oscΩ,ℓ − õscΩ,ℓ| . (Nh8)1/2 = O(h3),

whereas only oscΩ,ℓ = O(h2) for smooth f .

The vector v ∈ RM with vj := õscΩ,ℓ(Tj)
2 is computed by the function computeOscVolume

from Listing 28.

• We provide a symmetric 7-point quadrature on T ref (Lines 2–6), and the remaining code is
independent of the chosen quadrature rule.• The vector v1 contains all first nodes of the triangles. The vectors d21 and d31 contain the
corresponding directional vectors which then determine the triangles Tj ∈ Tℓ (Line 13–15).

• In Line 18, we compute the column vector area2 containing |detDΞj(x
ref)| = 2 |Tj |.• For each element Tj and each quadrature node xrefk , we have to evaluate f
(
Ξj(x

ref
k )
)
. In

a first step, we simultaneously compute all evaluation nodes z(j−1)Q+k = Ξj(x
ref
k ) ∈ R2

for j = 1, . . . ,M and Q = 7 the order of the quadrature. This leads to some (MQ × 2)-
matrix z (Lines 21–25). All evaluations of f are performed simultaneously (Line 28), where
we assume that the corresponding Matlab function takes the matrix z and returns the
(MQ× 1)-column vector fz of the corresponding function values. This vector is reshaped
into an (Q×M)-matrix such that the j-th column contains the evaluations corresponding
to Tj , i.e., fz (k, j) = f

(
Ξj(x

ref
k )
)
.• In Line 31, we compute the (1 × M)-row vector f of the approximate integral means,

cf. (8.14).
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• Finally, the function returns the column vector v ∈ RM with vj = õscΩ,ℓ(Tj)
2, cf. (8.15),

which is computed in Line 34, as well as the (M×1) column vector f = fh of the elementwise
integral means (Line 37).

Listing 29. Build RHS for Symm’s IE with Non-Homogeneous Volume Force
1 function b = buildSymmVolRHS(coordinates,elements,uDh,vertices,triangles,fh)

2 %*** compute RHS vector for homogeneous volume force

3 b = buildSymmRHS(coordinates,elements,uDh);

4

5 %*** compute N−matrix for P0(Gamma) x P0(Omega)

6 N = buildN(coordinates,elements,vertices,triangles);

7

8 %*** return RHS vector for non −homogeneous volume force

9 b = b − N* fh;

8.4. Building of Right-Hand Side Vector for Symm’s IE (Listing 29). Equation (8.8)
states that the right-hand side of Symm’s equation with non-homogeneous volume force is given
by

b =
(
K+

1

2
M
)
g −Nf .(8.16)

The algorithm of Listing 29 computes the vector b. In view of Section 5.4, it essentially remains
to compute the contribution −Nf and add it to the right-hand side for Symm’s integral equation
with homogeneous volume force. A description of the function buildSymmVolRHS thus is the
following.

• The function buildSymmVolRHS takes as input the boundary mesh Eℓ in form of the arrays
coordinates and elements as well as the volume mesh Tℓ in terms of vertices and
triangles . The column vector f =fh contains the Tℓ-elementwise values of Fℓ.• First, the right-hand side of Symm’s integral equation with homogeneous volume force is
computed (Line 3).• The Newton potential matrix N is built in Line 6.• Finally, we realize Equation (8.16) in Line 9 and return the vector b.

8.5. A Posteriori Error Estimate for Symm’s IE. It is shown in [6] that the error can,
for instance, be estimated by

|||φ− Φℓ|||V ≈ ηV,ℓ + oscD,ℓ + oscΩ,ℓ ∼ (η2V,ℓ + osc2D,ℓ + osc2Ω,ℓ)
1/2 =: ̺ℓ,(8.17)

where ηV,ℓ can be replaced by any other error estimator for Symm’s integral equation, e.g.,
by the local error estimator µ̃V,ℓ, see Section 5.6. We stress that the upper bound for |||φ −
Φℓ|||V in (8.17) is mathematically only guaranteed under a saturation assumption for the non-
perturbed problem, whereas a lower bound of the type

̺ℓ . |||φ− Φℓ|||V + oscD,ℓ + oscΩ,ℓ(8.18)

holds in general.

Listing 30. Adaptive Algorithm for Symm’s IE with Non-Homogeneous Volume Force
1 % adaptiveSymmVol provides the implementation of an adapti ve mesh−refining
2 % algorithm for Symm's integral equation with volume force.

3 addpath( '../../lib' );

4

5 %*** use lshape2 for demonstration purposes

6 addpath( 'lshape2/' );

7
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8 vertices = load( 'coordinates.dat' )/4;

9 triangles = load( 'triangles.dat' );

10

11 %*** rotate domain Omega so that exact solution is symmetric

12 alpha = 3 * pi/4;

13 vertices = vertices * [cos(alpha) −sin(alpha);sin(alpha) cos(alpha)]';

14

15 %*** maximal number of elements

16 nEmax = 200;

17

18 %*** adaptivity parameter

19 theta = 0.25;

20 rho = 0.25;

21

22 %*** extract boundary mesh

23 [vertices,triangles,coordinates,elements] = ...

24 buildSortedMesh(vertices,triangles);

25

26 %*** adaptive mesh −refining algorithm

27 while 1

28

29 fprintf( 'number of elements: N = %d (Gamma), %d (Omega) \r' , ...

30 size (elements,1), size (triangles,1));

31

32 %*** build uniformly refined mesh

33 [coordinates fine,elements fine,father2son] ...

34 = refineBoundaryMesh(coordinates,elements);

35

36 %*** discretize Dirichlet and volume data and compute data oscil lations

37 [osc fine,uDh fine] = computeOscDirichlet(coordinates fine,elements fine,@g);

38 [oscV,fh] = computeOscVolume(vertices,triangles,@f);

39 osc = osc fine(father2son(:,1)) + osc fine(father2son(:,2));

40

41 %*** compute fine −mesh solution

42 V fine = buildV(coordinates fine,elements fine);

43 b fine = buildSymmVolRHS(coordinates fine,elements fine,uDh fine, ...

44 vertices,triangles,fh);

45 x fine = V fine \b fine;

46

47 %*** stopping criterion

48 if ( size (elements,1) + size (triangles,1)) > nEmax

49 break ;

50 end

51

52 %*** compute (h −h/2) −error estimator tilde −mu

53 mu tilde = computeEstSlpMuTilde(coordinates,elements,father2son,x fine);

54

55 %*** mark elements for refinement

56 [marked elements,marked triangles] = markElements(theta,rho, ...

57 mu tilde + osc,oscV);

58

59 %*** generate new mesh

60 [vertices,triangles,elements] ...

61 = refineMesh(vertices,triangles,elements,marked triangles,marked elements);

62 coordinates = vertices( unique (elements),:);

63 end

64
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65 %*** visualize exact and adaptively computed solution

66 plotArclengthP0(coordinates fine,elements fine,x fine,@phi,1);

67

68 %*** visualize exact and approximated Dirichlet data

69 plotArclengthS1(coordinates fine,elements fine,uDh fine,@g,2);

8.6. Adaptive Mesh-Refinement for Symm’s IE. For the presentation, we restrict to the
error estimator µ̃ℓ from Section 5.6.4. For τ ∈ Eℓ ∪ Tℓ, we define

˜̺ℓ(τ)2 :=

{
µ̃V,ℓ(τ)

2 + oscD,ℓ(τ)
2 for τ = E ∈ Eℓ,

oscΩ,ℓ(τ)
2 for τ = T ∈ Tℓ.

(8.19)

Note that there holds

˜̺2ℓ = µ̃ 2
V,ℓ + osc2D,ℓ + osc2Ω,ℓ =

∑

τ∈Eℓ∪Tℓ

˜̺ℓ(τ)2.(8.20)

As stated before, we found it essential for stability of N to ensure Eℓ = Tℓ|Γ. Then, the usual
adaptive algorithm takes the following form:

Input: Initial volume mesh T0, Dirichlet data g, volume force f , adaptivity parameter 0 < θ <
1, maximal number Mmax ∈ N of volume elements, and counter ℓ = 0.

(i) Build boundary mesh Eℓ := Tℓ|Γ and uniform refinement Êℓ.
(ii) Compute Galerkin solution Φ̂ℓ ∈ P0(Êℓ).
(iii) Compute refinement indicators ˜̺ℓ(τ)2 from (8.19) for all τ ∈ Eℓ ∪ Tℓ.
(iv) Find minimal set Mℓ ⊆ Eℓ ∪ Tℓ such that

θ ˜̺2ℓ = θ
∑

τ∈Eℓ∪Tℓ

˜̺ℓ(τ)2 ≤
∑

τ∈Mℓ

˜̺ℓ(τ)2.(8.21)

(v) For each marked boundary element E ∈ Mℓ ∩ Eℓ, mark the corresponding edge of the
unique triangle T ∈ Tℓ with E ⊂ ∂T .

(vi) For each marked triangle T ∈ Mℓ ∩ Tℓ, mark its reference edge.
(vii) Use newest vertex bisection to halve at least all marked edges and to generate a new

volume mesh Tℓ+1

(viii) Stop provided that #Tℓ+1 ≥Mmax; otherwise, increase counter ℓ 7→ ℓ+ 1 and go to (i).

Output: Adaptively generated boundary mesh Êℓ and volume mesh Tℓ and corresponding

discrete solution Φ̂ℓ ∈ P0(Êℓ).

The Matlab script of Listing 30 realizes this adaptive algorithm. We refer to section 5.7.1
for further details.

8.7. Hypersingular Integral Equation with Volume Forces. Next, we consider the
Neumann problem

−∆u = f in Ω with ∂nu = φ on Γ = ∂Ω,(8.22)

where the given data now have to satisfy the compatibility condition
∫

Ω
f dx+

∫

Γ
φdΓ = 0(8.23)

according to the Gauss divergence theorem. With the normal derivative N1 := ∂nÑ of the
Newtonian potential, the differential equation (8.22) is equivalently stated by

Wu = (1/2 −K ′)φ−N1f on Γ.(8.24)

83



We now adopt the notation of Section 6. Then, this integral equation is equivalently stated in
variational form as

〈〈u , v〉〉W+S = 〈(1/2 −K ′)φ , v〉Γ − 〈N1f , v〉Γ for all v ∈ H1/2(Γ),(8.25)

and the unique solution u ∈ H1/2(Γ) of which automatically satisfies
∫
Γ u dΓ = 0, i.e., u ∈

H
1/2
∗ (Γ). Moreover, it is a consequence of the Calderón system that N1 satisfies the operator

equation

N1 = (−1/2 +K ′)V −1N0(8.26)

with the trace N0 of the Newtonian potential, see e.g. [31, Lemma 6.20]. We can therefore split

the variational formulation (8.25) into two steps: First, we compute λ = V −1N0f ∈ H−1/2(Γ)
by solving the (equivalent) variational form

〈V λ , ψ〉Γ = 〈N0f , ψ〉Γ for all ψ ∈ H−1/2(Γ).(8.27)

In particular, there holds −N1f = (1/2 −K ′)λ. Second, we compute the solution u ∈ H
1/2
∗ (Γ)

of (8.25) by solving the variational form

〈〈u , v〉〉W+S = 〈(1/2 −K ′)(φ+ λ) , v〉Γ for all v ∈ H1/2(Γ).(8.28)

To solve (8.25) numerically, we now discretize (8.27)–(8.28): First, we replace f by Fℓ ∈ P0(Tℓ)
and seek the unique Galerkin solution Λℓ ∈ P0(Eℓ) of

〈V Λℓ , Ψℓ〉Γ = 〈N0Fℓ , Ψℓ〉Γ for all Ψℓ ∈ P0(Eℓ).(8.29)

Second, we seek the unique Galerkin solution Uℓ ∈ S1(Eℓ) of
〈〈Uℓ , Vℓ〉〉W+S = 〈(1/2 −K ′)(Φℓ + Λℓ) , Vℓ〉Γ for all Vℓ ∈ S1(Eℓ),(8.30)

where Φℓ = Πℓφ ∈ P0(Eℓ) denotes the L2-projected Neumann data, cf. Section 6. We stress
that this procedure avoids to implement the matrix corresponding to N1. Moreover, in [28] it is
even empirically observed that this approach is more effective with respect to the computational
time. Note that (8.29) is equivalent to the linear system

Vy = Nf ,(8.31)

where f ∈ RM is the coefficient vector of Fℓ from (8.3) and where the unique solution y ∈ RN

is the coefficient vector of

Λℓ =

N∑

j=1

yjχEj .(8.32)

Moreover, (8.30) is equivalent to the linear system

(W + S)x =
(1
2
MT −KT

)
(p+ y),(8.33)

cf. (6.11) in case of f = 0. In comparison with Section 6, the right-hand side in (8.33) has an
additional term +y, and we have to solve for y in a preprocessing step.

Listing 31. Build RHS for Hypersingular IE with Non-Homogeneous Volume Force
1 function [b,lambdah] = buildHypsingVolRHS(coordinates,elements,phih, ...
2 vertices,triangles,fh)

3 %*** compute N−matrix for P0(Gamma) x P0(Omega)

4 N = buildN(coordinates,elements,vertices,triangles);

5

6 %*** compute N * fh and free unnecessary memory

7 Nfh = N * fh;

8 clear N;

9

10 %*** compute SLP matrix
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11 V = buildV(coordinates,elements);

12

13 %*** solve Symm's IE for the computation of N 1* f

14 lambdah = V \Nfh;

15 clear V;

16

17 %*** compute DLP matrix for P0 x S1

18 K = buildK(coordinates,elements);

19

20 %*** compute mass −type matrix for P0 x S1

21 M = buildM(coordinates,elements);

22

23 %*** build right −hand side vector

24 phih = phih + lambdah;

25 b = (phih' * M* 0.5 − phih' * K)';

8.8. Building of Right-Hand Side Vector for Hypersingular IE (Listing 31). Equa-
tion (8.33) states that the right-hand side of the hypersingular integral equation with non-
homogeneous volume force is given by

b =
(1
2
MT −KT

)
(p+ y) =

((
p+ y)T

(1
2
M−K

))T
.(8.34)

Here, p is the coefficient vector of the L2-projection Φℓ ∈ P0(Eℓ) of the Neumann data φ ∈
H

−1/2
∗ (Γ), see (6.6), and the vector y is the coefficient vector of the solution Λℓ ∈ P0(Eℓ)

of (8.31). A description of the function buildHypsingVolRHS reads as follows:

• The function buildHypsingVolRHS takes as input the boundary mesh Eℓ in terms of
coordinates and elements as well as the volume mesh Tℓ in terms of vertices and
triangles . The (N × 1)-column vector p = phih provides the elementwise values of
Φℓ ∈ P0(Eℓ), the (M × 1)-column vector f = fh provides the elementwise values of Fℓ ∈
P0(Tℓ).• We first build the Newton potential matrix N (Line 4) and compute the right-hand side
vector Nf to compute Λℓ, cf. (8.29) (Line 7). This is the only use of N, and the memory
can be set free (Line 8);• Next, we build the simple-layer potential matrix V (Line 11) and compute the coefficient
vector y = lambdah of Φℓ (Line 14). This is the only use of V, and the memory can be
set free (Line 15).• We build the double-layer potential matrix K (Line 18) and the mass-type matrix M (Line
21), cf. Section 5.3.• Finally, we overwrite p by p+ y (Line 24) and thus realize Equation (8.34) in Line 25.

Contrary to our implementation of buildSymmVolRHS in Listing 29, the implementation of
buildHypsingVolRHS avoids the use of buildHypsingRHS. The reason for this is simply
that otherwise the matrices K and M would have been computed twice.

8.9. A Posteriori Error Estimate for Hypersingular IE. It is shown in [5] resp. [6] that
the error in λ can, for instance, be estimated by

|||λ− Λℓ|||V ≈ ηV,ℓ + oscΩ,ℓ,(8.35)

where the error estimator ηV,ℓ = |||λ̂ℓ−λℓ|||V from Section 5.6.1 measures the discretization error
for λ. Moreover, we show in [6] that the error in u can be estimated by

|||u− Uℓ|||W ≈ ηW,ℓ + oscN,ℓ + |||λ− Λℓ|||V ,(8.36)
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where the error estimator ηW,ℓ = |||Ûℓ − Uℓ|||W from Section 6.6.1 measures the discretization
error for u. Finally, this leads to the overall error estimate

|||u− Uℓ|||W + |||λ− Λℓ|||V ≈ ηW,ℓ + ηV,ℓ + oscN,ℓ + oscΩ,ℓ.(8.37)

As above, the error estimator ηV,ℓ can be replaced by any other error estimator for Symm’s
integral equation, and ηW,ℓ can be replaced by any other error estimator for the hypersingular
integral equation, see Section 5.6 and Section 6.6, respectively. We stress that the upper bound
in the error estimate (8.37) depends on a saturation assumption for both u and λ, whereas the
lower bound

̺ℓ :=
(
η2W,ℓ + η2V,ℓ + osc2N,ℓ + osc2Ω,ℓ

)1/2

. |||u− Uℓ|||W + |||λ− Λℓ|||V + oscN,ℓ + oscΩ,ℓ

(8.38)

holds in general.

Listing 32. Adaptive Algorithm for Hypersingular IE with Non-Homogeneous Volume Force
1 % adaptiveHypsingVol provides the implementation of an ada ptive mesh −refining
2 % algorithm for the hypersingular integral equation with vo lume force.

3

4 %*** use lshape2 for demonstration purposes

5 addpath( 'lshape2/' );

6

7 vertices = load( 'coordinates.dat' )/4;

8 triangles = load( 'triangles.dat' );

9

10 %*** rotate domain Omega so that exact solution is symmetric

11 alpha = 3 * pi/4;

12 vertices = vertices * [cos(alpha) −sin(alpha);sin(alpha) cos(alpha)]';

13

14 %*** extract boundary mesh

15 [vertices,triangles,coordinates,elements] = buildSortedMesh(vertices,triangles);

16

17 %*** maximal number of elements

18 nEmax = 200;

19

20 %*** adaptivity parameter

21 theta = 0.25;

22 rho = 0.25;

23

24 %*** adaptive mesh −refining algorithm

25 while 1

26

27 fprintf( 'number of elements: N = %d (Gamma), %d (Omega) \r' , ...

28 size (elements,1), size (triangles,1));

29

30 %*** build uniformly refined mesh

31 [coordinates fine,elements fine,father2son] ...

32 = refineBoundaryMesh(coordinates,elements);

33

34 %*** discretize Neumann and volume data and compute data oscilla tions

35 [osc fine,phih fine] ...

36 = computeOscNeumann(coordinates fine,elements fine,@phi);

37 [oscV,fh] = computeOscVolume(vertices,triangles,@f);

38 oscN = osc fine(father2son(:,1)) + osc fine(father2son(:,2));

39

40 %*** compute fine −mesh solution
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41 Wfine = buildW(coordinates fine,elements fine) ...

42 + buildHypsingStabilization(coordinates fine,elements fine);

43 [b fine,y fine] = buildHypsingVolRHS(coordinates fine,elements fine, ...

44 phih fine,vertices,triangles,fh);

45 x fine = W fine \b fine;

46

47 %*** stopping criterion

48 if ( size (elements,1) + size (triangles,1) ) > nEmax

49 break ;

50 end

51

52 %*** compute (h −h/2) −error estimator tilde −mu

53 mu tilde = computeEstHypMuTilde(elements fine,elements,father2son, ...

54 x fine);

55

56 %*** compute (h −h/2) −error estimator tilde −mu for Symm's equation to

57 %*** measure error induced within buildHypsingVolRHS

58 mu V tilde = computeEstSlpMuTilde(coordinates,elements,father2son,y fine);

59

60 %*** mark elements for refinement

61 [marked elements,marked triangles] ...

62 = markElements(theta,mu tilde +mu V tilde +oscN,oscV);

63

64 %*** generate new mesh

65 [vertices,triangles,elements] ...

66 = refineMesh(vertices,triangles,elements,marked triangles,marked elements);

67 coordinates = vertices( unique (elements),:);

68 end

69

70 %*** visualize exact and adaptively computed solution

71 plotArclengthS1(coordinates fine,elements fine,x fine,@g,1);

72

73 %*** visualize exact and approximated Neumann data

74 plotArclengthP0(coordinates fine,elements fine,phih fine,@phi,2);

8.10. Adaptive Mesh-Refinement for Hypersingular IE. We now give an adaptive
algorithm for the hypersingular equation with non-homogeneous volume force. We use the
error estimator

µ̃V,ℓ = ‖h1/2ℓ (Λ̂ℓ −ΠℓΛℓ)‖L2(Γ)(8.39)

to control the discretization of the auxiliary problem (8.27) and

µ̃W,ℓ = ‖h1/2ℓ (Ûℓ − IℓÛℓ)
′‖L2(Γ)(8.40)

to control the discretization of the hypsingular integral equation (8.28). For τ ∈ Eℓ ∪ Tℓ, we
define

˜̺ℓ(τ)2 :=
{
µ̃W,ℓ(τ)

2 + µ̃V,ℓ(τ)
2 + oscN,ℓ(τ)

2 for τ = E ∈ Eℓ
oscΩ,ℓ(τ)

2 for τ = T ∈ Tℓ.
(8.41)

There holds

˜̺2ℓ = µ̃ 2
V,ℓ + µ̃ 2

W,ℓ + osc2N,ℓ + osc2Ω,ℓ =
∑

τ∈Eℓ∪Tℓ

˜̺ℓ(T )2.(8.42)

Then, the adaptive algorithm takes the following form:

Input: Initial volume mesh T0, Neumann data φ, volume force f , adaptivity parameter 0 <
θ < 1, maximal number Mmax ∈ N of volume elements, and counter ℓ = 0.
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(i) Build boundary mesh Eℓ = Tℓ|Γ and uniform refinement Êℓ.
(ii) Compute Galerkin solution Λ̂ℓ ∈ P0(Êℓ) of (8.29)
(iii) Compute Galerkin solution Ûℓ ∈ S1(Êℓ).
(iv) Compute refinement indicators ˜̺ℓ(τ) from (8.41) for all τ ∈ Eℓ ∪ Tℓ.
(v) Find minimal set Mℓ ⊆ Eℓ ∪ Tℓ such that

θ ˜̺2ℓ = θ
∑

τ∈Eℓ∪Tℓ

˜̺ℓ(τ)2 ≤
∑

τ∈Mℓ

˜̺ℓ(τ)2.(8.43)

(vi) For each marked boundary element E ∈ Mℓ ∩ Eℓ, mark the corresponding edge of the
unique triangle T ∈ Tℓ with E ⊂ ∂T .

(vii) For each marked triangle T ∈ Mℓ ∩ Tℓ, mark its reference edge.
(viii) Use newest vertex bisection to halve at least all marked edges and to generate a new

volume mesh Tℓ+1

(ix) Stop provided that #Tℓ+1 ≥Mmax; otherwise, increase counter ℓ 7→ ℓ+ 1 and go to (i).

Output: Adaptively generated boundary mesh Êℓ and volume mesh Tℓ and corresponding

discrete solution Ûℓ ∈ S1(Êℓ).

TheMatlab script of Listing 32 realizes this adaptive algorithm. We refer to section 6.7.1 for
further details, since the algorithms are similar. Nevertheless, let us comment on the additional

error estimate for Λ̂ℓ:

• The function buildHypsingVolRHS returns the right hand side vector b fine as well as
the vector y fine , which is the discrete solution of the equation (8.31).• The vector y fine is needed for the computation of the error estimate (8.39) (Line 59).
The resulting error estimate mu V tilde is added to the error indicator for the boundary
mesh (Line 63).

8.11. Mixed Problem. Now we consider a mixed problem with non-vanishing volume force

−∆u = f in Ω,
u = uD on ΓD,
u = φN on ΓN .

(8.44)

With the definitions of Section 7, the integral formulation of this problem is

A

(
uN
φD

)
= (1/2 −A)

(
uD
φN

)
−
(
N0f
N1f

)
=: F on ΓD × ΓN .(8.45)

Here, we have chosen arbitrary but fixed extensions of the data uD ∈ H1/2(Γ) and φN ∈
H−1/2(Γ) see Section 7. However, the difference to the integral formulation (7.4) of Section 7
is that the right hand side involves the additional term

−
(
N0f
N1f

)
,

where N0f and N1f are the trace and the normal derivative of the Newton potential (1.3).
For the computation of the perturbed Galerkin formulation, we first replace N0f by N0Fℓ. To
compute an approximation of N1f , we use the well known identity

N1 = (−1/2 +K ′)V −1N0,

see [25, 31, 30]. The discrete scheme now reads as follows: first, we solve Symm’s equation

〈V Λℓ , Ψℓ〉=〈N0Fℓ , Ψℓ〉 for all Ψℓ ∈ P0(Eℓ)
to obtain an approximation of Λℓ ≈ N1f . In the next step, we solve the mixed problem

〈〈Uℓ ,Vℓ〉〉A = 〈Fℓ , Vℓ〉H⋆×H for all Vℓ ∈ Xℓ,(8.46)
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where

Fℓ := (1/2 −A)

(
IℓuD
ΦℓφN

)
−
(

N0Fℓ

(−1/2 +K ′)Λℓ.

)

The algorithm for solving a mixed problem with volume force thus takes the following form:

• Input: volume mesh Tℓ, boundary mesh Eℓ = Tℓ|Γ.
• Compute g = UD,ℓ = IℓuD, p = ΦN,ℓ = ΠℓφN and f = Fℓ = Πℓf .
• Solve the linear system

Vy = Nf .(8.47)

• Solve the linear system
(
W|ΓN×ΓN

KT |ΓN×ΓD

−K|ΓD×ΓN
V|ΓD×ΓD

)
x =

((
1
2 p

TM− pTK− gTW
)T − (12 M

T −KT )y|ΓN(
1
2 Mg +Kg −Vp−Nf

)
|ΓD

)
.(8.48)

Listing 33. Build RHS Vector for Mixed Problem with Non-Homogeneous Volume Force
1 function [b nodes,b elements,lambdah] ...
2 = buildMixedVolRHS(coordinates,dirichlet,neumann,uDh,phiNh, ...

3 elements = [dirichlet;neumann];

4

5 %*** compute N−matrix for P0(Gamma) x P0(Omega)

6 N = buildN(coordinates,elements,vertices,triangles);

7

8 %*** compute N * fh and free unnecessary memory

9 Nfh = N * fh;

10 clear N;

11

12 %*** solve Symm's IE for the computation of N 1* f

13 lambdah = V \Nfh;

14

15 %*** compute mass −type matrix for P0 x S1

16 M = buildM(coordinates,elements);

17

18 %*** compute full right −hand side

19 b elements = M * uDh* 0.5 + K * uDh − V* phiNh −Nfh;

20 phiNh = phiNh + lambdah;

21 b nodes = (0.5 * phiNh' * M − phiNh' * K − uDh' * W)';

8.12. Building of Right-Hand Side Vector for Mixed Problem (Listing 33). Equation
(8.48) states that the right-hand side of the integral formulation of the mixed boundary value
problem is given by

((
1
2 p

TM− pTK− gTW
)T − (12 M

T −KT )y|ΓN(
1
2 Mg +Kg −Vp−Nf

)
|ΓD

)
=

((
1
2 p

TM− pTK− gTW
)T |ΓN(

1
2 Mg +Kg −Vp

)
|ΓD

)
−
(
(12 M

T −KT )y|ΓN

Nf)|ΓD

)
.

(8.49)

The first term on the right-hand side is returned by call of buildMixedRHS, see Section 7.2.
However, we do not use this function here because M would be built twice. The implementation
of buildMixedVolRHS reads as follows:

• First, the discrete Newton potential N is built and multiplied with the discrete volume data
(Lines 6 and 9).• The equation (8.47) is solved in order to obtain y =lambdah (Line 13).• The mass-type matrix M is built (Line 16).• We compute the second line of the right-hand side of (8.48) (Line 19).
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• (Line 20-21) The first line of the right-hand side of (8.48) is computed.

8.13. A Posteriori Error Estimate for Mixed Problem. In [6], we propose to extend the
error estimators of Section 7.6 in order to include the discretization error introduced by solving
(8.47). To that end, we define

µ2V,ℓ = ‖h1/2ℓ (1−Πℓ)N̂ℓ‖2L2(Γ).

In principle, one can define µ̃V,ℓ, ηV,ℓ, η̃V,ℓ in the same fashion, but for ease of presentation we
stick to µV,ℓ at this place. Then, we obtain at least sixteen different a posteriori error estimators
for the mixed problem with non-homogeneous volume force. Just considering µV,ℓ, they read

η2ℓ := η2D,ℓ + η2N,ℓ + µ2V,ℓ, η̃ 2
ℓ := η̃ 2

D,ℓ + η̃ 2
N,ℓ + µ2V,ℓ,

µ2ℓ := µ2D,ℓ + µ2N,ℓ + µ2V,ℓ, µ̃ℓ
2 := µ̃ 2

D,ℓ + µ̃ 2
N,ℓ + µ2V,ℓ.

See also Section 7.6 to recall the definitions of the error estimators. In [6], we prove that under
a saturation assumption ρ2ℓ := µ̃2ℓ + osc2ℓ + osc2Ω,ℓ is an upper bound of the error, i.e.,

|||u−Uℓ|||A . ρℓ.

Here, oscℓ from (7.24) are boundary data oscillations and oscΩ,ℓ from (8.9) are volume data
oscillations.

8.14. Adaptive Mesh-Refinement for Mixed Problem.

Listing 34. Adaptive Algorithm for Mixed Problem with Non-homogeneous Volume Force
1 % adaptiveMixedVol provides the implementation of an adapt ive mesh −refining
2 % algorithm for the symmetric integral formulation of a mixe d boundary value
3 % problem with volume force.

4 %*** use lshape2 for demonstration purposes

5 addpath( 'lshape2/' );

6

7 vertices = load( 'coordinates.dat' )/4;

8 triangles = load( 'triangles.dat' );

9

10 %*** rotate domain Omega so that exact solution is symmetric

11 alpha = 3 * pi/4;

12 vertices = vertices * [cos(alpha) −sin(alpha);sin(alpha) cos(alpha)]';

13

14 %*** split Gamma into Dirichlet and Neumann boundary

15 dirichlet = [1 2;2 3;3 6;6 5];

16 neumann = [5 8;8 7;7 4;4 1];

17

18 %*** maximal number of elements

19 nEmax = 200;

20

21 %*** adaptivity parameter

22 theta = 0.25;

23 rho = 0.25;

24

25 %*** extract boundary mesh

26 [vertices,triangles,coordinates,neumann,dirichlet] = ...

27 buildSortedMesh(vertices,triangles,neumann,dirichlet);

28

29 %*** initialize Dirichlet data

30 uDh = zeros ( size (coordinates,1),1);

31 uDh( unique (dirichlet)) = g(coordinates( unique (dirichlet),:));

32
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33 %*** Perform uniform refinement before starting the loop

34 %*** refine mesh uniformly

35 [coordinates fine,dirichlet fine,neumann fine, ...

36 father2dirichlet fine,father2neumann fine] ...

37 = refineBoundaryMesh(coordinates,dirichlet,neumann);

38

39 %*** rearrange indices such that Neumann nodes are first

40 [coordinates fine,neumann fine,dirichlet fine] = ...

41 buildSortedMesh(coordinates fine,neumann fine,dirichlet fine);

42

43 %*** discretize data and compute corresponding data oscillatio ns for fine mesh

44 [oscD fine,oscN fine,uDh fine,phiNh fine] ...

45 = computeOscMixed(coordinates fine,dirichlet fine,neumann fine, ...

46 father2neumann fine,neumann,uDh,@g,@phi);

47 [oscV,fh] = computeOscVolume(vertices,triangles,@f);

48 oscD = sum(oscD fine(father2dirichlet fine),2);

49 oscN = sum(oscN fine(father2neumann fine),2);

50

51 %*** adaptive mesh −refining algorithm

52 while 1

53

54 fprintf( 'number of elements: N = %d (Gamma), %d (Omega) \r' , ...

55 size (neumann,1)+ size (dirichlet,1), size (triangles,1));

56

57 %*** compute integral operators for fine mesh

58 elements fine = [dirichlet fine;neumann fine];

59 V fine = buildV(coordinates fine,elements fine);

60 K fine = buildK(coordinates fine,elements fine);

61 Wfine = buildW(coordinates fine,elements fine);

62

63 %*** compute right −hand side for fine mesh

64 [b nodes fine,b elements fine,Nell fine] = buildMixedVolRHS( ...

65 coordinates fine,dirichlet fine,neumann fine,uDh fine,phiNh fine, ...

66 vertices,triangles,fh,V fine,K fine,W fine);

67

68 %*** compute degrees of freedom for fine mesh

69 nC fine = size (coordinates fine,1);

70 nD fine = size (dirichlet fine,1);

71 freeNeumann fine = setdiff (1:nC fine, unique (dirichlet fine));

72 freeDirichlet fine = 1:nD fine;

73 nN fine = length (freeNeumann fine);

74

75 %*** shrink integral operators and right −hand side

76 Wfine = W fine(freeNeumann fine,freeNeumann fine);

77 K fine = K fine(freeDirichlet fine,freeNeumann fine);

78 V fine = V fine(freeDirichlet fine,freeDirichlet fine);

79 b nodes fine = b nodes fine(freeNeumann fine);

80 b elements fine = b elements fine(freeDirichlet fine);

81

82 %*** compute Galerkin solution for fine mesh

83 x = [ W fine K fine' ; −K fine V fine ] \ [ b nodes fine ; b elements fine ];

84

85 %*** compute coefficient vectors w.r.t. S1(GammaN) and P0(Gamm aD)

86 xN fine = zeros (nC fine,1);

87 xN fine(freeNeumann fine) = x(1:nN fine); %** dof on Neumann boundary

88 xD fine = x((1:nD fine) + nN fine); %** dof on Dirichlet boundary

89
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90 %*** stopping criterion + size(triangles,1)

91 if ( size (neumann,1) + size (dirichlet,1) + size (triangles,1) > nEmax )

92 break ;

93 end

94

95 %*** compute error estimates

96 muDtilde = computeEstSlpMuTilde(coordinates,dirichlet,father2dirichlet fine, ...

97 xD fine);

98 muNtilde = computeEstHypMuTilde(neumann fine,neumann,father2neumann fine, ...

99 xN fine);

100 mu1 tilde D = computeEstSlpMuTilde(coordinates,dirichlet, ...

101 father2dirichlet fine,Nell fine(1:nD fine));

102 mu1 tilde N = computeEstSlpMuTilde(coordinates,neumann, ...

103 father2neumann fine,Nell fine(nD fine+1: end));

104

105 %*** mark elements for refinement

106 [marked dirichlet,marked neumann,marked triangles] ...

107 = markElements(theta,muD tilde + oscD + mu1 tilde D, ...

108 muNtilde + oscN + mu1 tilde N,oscV);

109

110 %*** generate new mesh

111 [vertices,triangles,dirichlet,neumann,father2triang les, ...

112 father2dirichlet,father2neumann adap] ...

113 = refineMesh(vertices,triangles,dirichlet,neumann,marked triangles, ...

114 marked dirichlet,marked neumann);

115

116 %*** rearrange indices such that Neumann nodes are first

117 [vertices,triangles,coordinates,neumann,dirichlet] = ...

118 buildSortedMesh(vertices,triangles,neumann,dirichlet);

119

120 %*** generate fine mesh

121 neumann coarse = neumann fine;

122 father2neumann coarse = father2neumann fine;

123 [coordinates fine,dirichlet fine,neumann fine,father2dirichlet fine, ...

124 father2neumann fine] = refineBoundaryMesh(coordinates, ...

125 dirichlet,neumann);

126

127 %*** rearrange indices such that Neumann nodes are first

128 [coordinates fine,neumann fine,dirichlet fine] = ...

129 buildSortedMesh(coordinates fine,neumann fine,dirichlet fine);

130

131 %*** build coarse2fine array

132 coarse2fine = generateFather2Son(father2neumann adap, ...

133 father2neumann coarse, ...

134 father2neumann fine);

135

136 %*** discretize data and compute corresponding data oscillatio ns for

137 %*** fine mesh

138 [oscD fine,oscN fine,uDh fine,phiNh fine] ...

139 = computeOscMixed(coordinates fine,dirichlet fine,neumann fine, ...

140 coarse2fine,neumann coarse,uDh fine,@g,@phi);

141 [oscV,fh] = computeOscVolume(vertices,triangles,@f);

142 oscD = sum(oscD fine(father2dirichlet fine),2);

143 oscN = sum(oscN fine(father2neumann fine),2);

144 end

145

146 %*** xN fine = dof on Neumann boundary, i.e. update for Dirichlet dat a
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147 %*** to obtain approximation uh of trace of PDE solution u

148 uh = xN fine+uDh fine;

149

150 %*** plot approximate vs exact trace

151 plotArclengthS1(coordinates fine,[dirichlet fine;neumann fine],uh,@g,2)

152

153 %*** xD fine = dof on Dirichlet boundary, i.e. update for Neumann dat a

154 %*** to obtain approximation phih of normal derivative of PDE sol ution u

155 phih = [xD fine ; phiNh fine(nD fine+1: end )];

156

157 %*** plot approximate vs exact normal derivative

158 plotArclengthP0(coordinates fine,[dirichlet fine;neumann fine],phih,@phi,1)

8.14.1. Implementation of Adaptive Algorithm (Listing 34). The Matlab script of
Listing 34 realizes the adaptive algorithm from the beginning of this section. We refer to section
7.7.1 for further details.

9. New Features in HILBERT (Release 3)

9.1. Evaluation of Simple-Layer and Double-Layer Potential. Evaluation of the simple-

layer potential Ṽ and the double-layer potential K̃, c.f. (1.3), for lowest-order functions, i.e.,

piecewise constant functions in case of Ṽ and piecewise affine, globally continuous functions in

case of K̃, and abritary evaluation points in R2 is provided by the following MEX-functions:

• Vphi x = evaluateV(coordinates, elements, phih, x [, eta]);
• Kg x = evaluateK(coordinates, elements, gh, x [, eta]);

As usual, coordinates and elements describe a boundary mesh Eℓ with nodes Kℓ. The
|Eℓ|×1 matrix phih and the |Kℓ|×1 matrix gh describe functions Φℓ ∈ P0(Eℓ) and Gℓ ∈ S1(Eℓ)
respectively, containing their coefficients with respect to the canonical bases of P0(Eℓ) and

S1(Eℓ), i.e., Φℓ =
∑|Eℓ|

i=1 phih( i) χi and Gℓ =
∑|Kℓ|

i=1 gh( i) ζi. The M × 2 matrix x contains
a total of M evaluation points, one per row. Both functions return an M × 1 vector. The

j-th entry contains the value of the potential Ṽ Φℓ, or K̃Gℓ, respectively, evaluated at the j-th
evaluation point xj = x( j,:) .

For our implementation, we write the respective integrals over Γ as sum of integrals over
the individual boundary elements of the triangulation Eℓ. To increase numerical stability, we
employ the same techniques as for the integral operator matrices V and K. Let η ≥ 0 be fixed.
We adapt the admissibility criterion (5.18) and call an evaluation point xj and a boundary
element Ek admissible if

diam(Ek) < dist(xj , Ek),(9.1)

where dist(xj , Ek) denotes the distance between xj and Ek. If an element and an evaluation
point are admissible, we compute the corresponding integral using Gaussian quadrature, other-
wise we use analytical formulas.

In case the optional parameter eta is specified, we set η = eta , otherwise we choose η = 1/2.
For η = 0, all integrals are computed analytically. The default value for η can be changed by
recompiling evaluateV.c and evaluateK.c with different values for the preprocessor constant
DEFAULT ETA. For Gaussian quadrature, we use a 16-point rule by default. This can be changed
by recompiling evaluateV.c and evaluateK.c with different values for the preprocessor con-
stant GAUSS ORDER. Possible values include 2, 4, 8, 16 and 32.

9.2. Evaluation of Adjoint Double-Layer Potential and Hypersingular Integral Op-
erator. Evaluation of the adjoint double-layer potential K ′ and the hypersingular integral
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operatorW for lowest-order functions, i.e., piecewise constant functions in case of K ′ and piece-
wise affine, globally continuous functions in case ofW , and evaluation points almost everywhere
on the boundary Γ, is provided by the following MEX-functions:

• Kaphi x = evaluateKadj(coordinates, elements, gh, x, n x [,eta])
• Wgx = evaluateW(coordinates, elements gh, x, n x [,eta])

As usual, coordinates and elements describe a boundary mesh Eℓ with nodes Kℓ. The
|Eℓ|×1 matrix phih and the |Kℓ|×1 matrix gh describe functions Φℓ ∈ P0(Eℓ) and Gℓ ∈ S1(Eℓ)
respectively, containing their coefficients with respect to the canonical bases of P0(Eℓ) and

S1(Eℓ), i.e. Φℓ =
∑|Eℓ|

i=1 phih( i) χi and Gℓ =
∑|Kℓ|

i=1 gh( i) ζi. The M × 2 matrix x contains a
total ofM evaluation points, one per row. The hypersingular integral operator can be evaluated
on Γ\Kℓ, the adjoint double-layer potential everywhere on Γ except for the corner points of Γ.
The M × 2 vector n x contains a list of normal vectors. The j-th row of n x contains the outer
normal vector at the evaluation point x( j,:) . Both functions return an M × 1 vector. The
j-th entry contains the value of K ′Φℓ, or WGℓ, respectively, evaluated at the j-th evaluation
point xj = x( j,:) .

The hypersingular integral operator, which is defined as the negative normal derivative of the
double-layer potential, formally reads

Wg(x) = − 1

2π
lim
ε→0

∫

Γ,|y−x|≥ε

(
nx · ny
|x− y|2 − 2

(x− y) · nx (x− y) · ny
|x− y|4

)
g(y) dΓ.

Cauchy’s principal value does not exist for the integral above, but if g is continuous, we may
employ regularization techniques as described in [31, Section 6.5] for the case that Γ is closed. We
use similar techniques in case that Γ is open. For our implementation, we write the regularized
integral over Γ as sum of integrals over the individual boundary elements E ∈ Eℓ. For the
evaluation of integrals over an element E with x ∈ E = [zj , zk], it is essential that x is in the
interior of E, i.e. x 6= zj and x 6= zk.

To increase numerical stability, we employ the same techniques as for the evaluation of the

simple-layer potential Ṽ and the double-layer potential K̃, c.f. Section 9.1. Recall that an
evaluation point xj and a boundary element Ek are admissible if

diam(Ek) < dist(xj , Ek),(9.2)

where dist(xj , Ek) denotes the distance between xj and Ek. If an element and an evaluation
point are admissible, we compute the corresponding integral using Gaussian quadrature, other-
wise we use analytical formulas.

In case the optional parameter eta is specified, we set η = eta , otherwise we choose η = 1/2.
For η = 0, all integrals are computed analytically. The default value for η can be changed
by recompiling evaluateKadj.c and evaluateW.c with different values for the preprocessor
constant DEFAULT ETA. For Gaussian quadrature, we use a 16-point rule by default. This can
be changed by recompiling evaluateKadj.c and evaluateW.c with different values for the
preprocessor constant GAUSS ORDER. Possible values include 2, 4, 8, 16 and 32.

9.3. Evaluation of the Newton Potential and its Normal Derivative. In this section, we
consider the MEX-function evaluateN and the Matlab-function evaluateN1 . The first one
evaluates the Newtonian potential Ñ , defined in Equation (1.3) for piecewise constant functions
and arbitrary evaluation points in R2. The latter one evaluates the normal derivative of the

Newtonian potential N1 = γ1Ñ for piecewise affine, globally continuous functions and arbitrary
evaluation points on the boundary Γ.

The respective signatures are given by

• Nf x = evaluateN(vertices, volumes, fh, x);
• N1f x = evaluateN1(coordinates, elements, lamh, x, p2e [,eta]) ;

First, we discuss evaluateN . As usual, vertices and volumes describe a triangulation
Tℓ of the domain Ω. The N × 1 vector fh describes a function Fℓ ∈ P0(Ω), i.e., there holds
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Fℓ =
∑N

i=k fh( k) χk, where N denotes the number of volumes in Tℓ(Ω) and χk denotes the
characteristic function on the k-th element of Tℓ(Ω). The M × 2 matrix x contains a list of
M evaluation points, one per row. evaluateN returns an M × 1 vector, where the j-th entry
contains the value of NFℓ, evaluated at xj = x(j,:) .

In evaluateN1 , coordinates and elements describe a boundary mesh Eℓ with nodes
Kℓ, as usual. Like for evaluateN the M × 2 matrix x contains a list of M evaluation points.
The M × 1 vector p2e maps the evaluation points to the elements they are contained in,
i.e., p2e( j) = k if xj ∈ Ek ∈ Eℓ. The function evaluateN1 is implemented by use of the
well-known identity

(N1f)(x) =

((
K ′ − 1

2

)
V −1(Nf)

)
(x),

c.f. [31, Lemma 6.20]. Arguing as in Section 8.7, λ = V −1(Nf) can be computed by solving an
equivalent variational form, c.f. (8.27). The |Eℓ| × 1 vector lamh denotes the solution Λℓ of the
discretized variational form (8.29), i.e. lamh = V−1(Nfh ), where V and N denote the integral
operator matrices of the simple-layer and the Newtonian potential.

Listing 35. Two-level estimator τℓ for Symm’s IE
1 function ind = computeEstSlpTau(father2son,V fine,b fine,x coarse)

2 nE = size (x coarse,1);

3

4 %*** build index vector son2father to link fine mesh with coarse m esh

5 son2father = zeros (2 * nE,1);

6 son2father(father2son) = repmat ((1:nE)',1,2);

7

8 %*** compute energy | | | psi Ej | | | ˆ 2 of two −level basis function

9 energy = 2 * ( V fine(father2son(:,1) + 2 * nE* (father2son(:,1) − 1)) ...

10 − V fine(father2son(:,1) + 2 * nE* (father2son(:,2) − 1)) );

11

12 %*** compute residual of x coarse w.r.t. fine mesh

13 residual = b fine − V fine * x coarse(son2father);

14

15 %*** compute vector of (squared) indicators w.r.t. coarse mesh

16 ind = ( residual(father2son(:,1)) − residual(father2son(:,2)) ).ˆ2./energy;

9.4. Computation of Error Estimator τℓτℓτℓ for Symm’s Integral Equation (Listing 35). This
section deals with the implementation of the (h−h/2)-based two-level error estimator from [27],
defined by

τℓ :=
( N∑

i=1

τℓ(Ei)
2
)1/2

.(9.3)

To define the local contributions τℓ(Ei), let Êℓ denote the uniform refinement of Eℓ = {E1, . . . , EN}.
Given Ei ∈ Eℓ, let ej , ek ∈ Êℓ denote the sons, i.e., Ei = ej ∪ ek. With the associated basis

functions χ̂j, χ̂k ∈ P0(Êℓ), we define the two-level basis function

ψEi = −χ̂j + χ̂k.

The contribution τℓ(Ei) now formally reads

τℓ(Ei) = |||GEi(Φ̂ℓ − Φℓ)|||V ,
where GEi denotes the Galerkin projection onto the one-dimensional space span{ψEi

}. Here,

Φℓ ∈ P0(Eℓ) and Φ̂ℓ ∈ P0(Êℓ) denote the solutions of (5.21) and (5.22), respectively. In [15], we
prove that τℓ is equivalent to the (h− h/2)-based error estimator ηℓ, i.e., τℓ ≃ ηℓ.
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Recall that Linear Algebra predicts a representation of GEi in terms of the basis function
ψEi , namely

GEiψ =
〈〈ψ ,ψEi〉〉V
|||ψEi |||2V

ψEi for all ψ ∈ H−1/2(Γ).

If we plug-in ψ = Φ̂ℓ−Φℓ and use that ψEi ∈ P0(Êℓ), the Galerkin formulation (5.22) for P0(Êℓ)
yields

GEi(Φ̂ℓ − Φℓ) =
〈(K + 1/2)Gℓ , ψEi〉Γ − 〈〈Φℓ , ψEi〉〉V

|||ψEi |||2V
ψEi .

To discuss the implementation of τℓ(Ei), let x ∈ RN and ŷ ∈ R2N be the coefficient vectors of

Φℓ with respect to the canonical bases of P0(Eℓ) and P0(Êℓ), i.e.,

Φℓ =

N∑

j=1

xjχj =

2N∑

j=1

ŷjχ̂j .

We define the algebraic residual

r̂ := b̂− V̂ŷ,

where V̂ ∈ R2N×2N and b̂ ∈ R2N are the Galerkin data with respect to Êℓ. Together with
ψEi = −χ̂j + χ̂k, we consequently obtain

τℓ(Ei)
2 =

|〈(K + 1/2)Gℓ , ψEi〉Γ − 〈〈Φℓ , ψEi〉〉V |2
|||ψEi |||2V

=

∣∣− b̂j + b̂k −
(
− (V̂ŷ)j + (V̂ŷ)k

)∣∣2

||| − χ̂j + χ̂k|||2V
=

| − r̂j + r̂k|2
|||χ̂j |||2V − 2 〈〈χ̂j , χ̂k〉〉V + |||χ̂k|||2V

=
| − r̂j + r̂k|2

2(|||χ̂j |||2V − 〈〈χ̂j , χ̂k〉〉V )
Altogether, the documentation of Listing 35 now reads as follows:

• The function takes the coefficient vector x ∈ RN of the Galerkin solution Φℓ with respect

to Eℓ as well as the Galerkin data V̂ and b̂ with respect to the uniformly refined mesh

Êℓ. Besides this, the (N × 2)-array father2son links the indices of elements Ei ∈ Eℓ
with the indices of the sons ej , ek ∈ Êℓ in the sense that father2son( i,:) = [ j, k] for
Ei = ej ∪ ek and consequently ŷj = ŷk = xi.• We construct the inverse relation to father2son by building a vector such that i =

son2father (j) returns the coarse-mesh father Ei ∈ Eℓ of element ej ∈ Êℓ (Line 5–6).• Then, we compute the vector of energies

|||ψEi |||2V = 2(|||χ̂j |||2V − 〈〈χ̂j , χ̂k〉〉V ),

where ej , ek ∈ Êℓ are the sons of Ei ∈ Eℓ (Line 9–10). For vectorization, we use linear

indexing of the matrix V̂ with the knowledge that Matlab stores matrices in columnwise
order like Fortran.• Next, we compute the residual r̂ (Line 13), using that the coefficient vector ŷ is now given
in terms of the coarse-mesh coefficient vector x and the index field son2father .• Finally (Line 16), the function computes and returns the vector

v := (τℓ(E1)
2, . . . , τℓ(EN )2) ∈ RN .

In particular, there holds τℓ =
(∑N

i=1 vi

)1/2
.
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Remark 9.1. The two-level error estimator was one of the first estimators available to steer

an h-adaptive mesh-refinement for boundary element methods [27]. Compared to the other

(h − h/2)-based error estimators η̃ℓ and µ̃ℓ, the advantage of τℓ is that only the coarse-mesh

solution Φℓ is needed. However, the implementation still needs the fine-mesh data which is

the most time-consuming part of a boundary element implementation: Having assembled the

Galerkin data with respect to Êℓ, the computational time for the computation of Φ̂ℓ is empir-

ically negligible. Moreover, our program package HILBERT restricts to the canonical bases and

direct solution of the Galerkin system. Therefore, both Galerkin matrices V and V̂ have to

be built to compute τℓ. Alternatively, one could either build V̂ with respect to the hierarchical

basis {χ1, . . . , χN , ψE1 , . . . , ψEN
} so that the V-matrix is a subblock of V̂, or one could use an

iterative solver. In the latter case, the matrix-vector multiplication with V can be realized via

prolongation, matrix-vector multiplication with V̂, and restriction [18]. In both cases, one could

thus avoid the explicit assembly of V, but only build V̂. �

Listing 36. Two-level estimator τℓ for hypersingular IE
1 function ind = computeEstHypTau(elements fine,elements coarse, ...
2 father2son,W fine,b fine,x coarse)

3 nC = length (x coarse);

4

5 %*** build index field k = idx(j) such that j −th node of coarse mesh coincides

6 %*** with k −th node of fine mesh

7 idx = zeros (nC,1);

8 idx(elements coarse) = [ elements fine(father2son(:,1),1), ...

9 elements fine(father2son(:,2),2) ];

10

11 %*** build index field k = mid(j) such that midpoint of j −th element of coarse

12 %*** mesh is k −th node of fine mesh

13 mid = elements fine(father2son(:,1),2);

14

15 %*** compute coefficient vector of u coarse w.r.t. fine mesh

16 x = zeros ( length (b fine),1);

17 x(mid) = 0.5 * sum(x coarse(elements coarse),2);

18 x(idx) = x coarse;

19

20 %*** obtain energies | | | phi j | | | ˆ 2 from matrix W fine where phi j denotes the

21 %*** hatfunction corresponding to j −th node of the uniformly refined coarse mesh

22 energy = diag(W fine);

23

24 %*** compute residual of x coarse w.r.t. fine mesh

25 residual = b fine − Wfine * x;

26

27 %*** compute vector of (squared) indicators w.r.t. coarse mesh

28 %*** as described above

29 ind = residual(mid).ˆ2 ./ energy(mid);

9.5. Computation of Error Estimator τℓ for the Hypersingular Integral Equation
(Listing 36). This section deals with the implementation of the (h − h/2)-based two-level
error estimator from [23, 26], defined by

τℓ :=
( N∑

i=1

τℓ(Ei)
2
)1/2

.(9.4)
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The contribution τℓ(Ei) formally reads

τℓ(Ei) = |||GEi(Ûℓ − Uℓ)|||W+S ,

where GEi denotes the Galerkin projection onto the one-dimensional space span{ζEi
}. Here, Uℓ

and Ûℓ denote the solutions of (6.21) and (6.22). The two-level basis function ζEi ∈ S1(Êℓ) is
just the fine-mesh basis function associated with the midpoint of the coarse-mesh element Ei.
In [16], we prove that τℓ is equivalent to the (h−h/2)-based error estimator ηℓ from Section 6.6,
i.e., τℓ ≃ ηℓ.

Recall that Linear Algebra predicts a representation of GEi in terms of the basis function
ζEi , namely

GEiζ =
〈〈ζ , ζEi〉〉W+S

|||ζEi |||2W+S

ζEi for all ζ ∈ H1/2(Γ).

If we plug-in ζ = Ûℓ −Uℓ and use that ζEi ∈ S1(Êℓ), the Galerkin formulation (6.22) for S1(Êℓ)
yields

GEi(Ûℓ − Uℓ) =
〈(1/2 −K ′)Φℓ , ζEi〉Γ − 〈〈Uℓ , ζEi〉〉W+S

|||ζEi |||2W+S

ζEi .

To discuss the implementation of τℓ(Ei), let x ∈ RN and ŷ ∈ R2N be the coefficient vectors of

Uℓ with respect to the basis of S1(Eℓ) and S1(Êℓ), i.e.,

Uℓ =

N∑

j=1

xjζj =

2N∑

j=1

ŷj ζ̂j.

We define the algebraic residual

r̂ := b̂− (Ŵ + Ŝ)ŷ,

where Ŵ+Ŝ ∈ R2N×2N and b̂ ∈ R2N are the Galerkin data with respect to Êℓ. We consequently
obtain

τℓ(Ei)
2 =

|〈(1/2 −K ′)Φℓ , ζEi〉Γ − 〈〈Uℓ , ζEi〉〉W+S|2
|||ζEi |||2W+S

=

∣∣b̂mid(i) −
(
(Ŵ + Ŝ)ŷ

)
mid(i)

∣∣2

|||ζEi |||2W+S

(9.5)

=
|̂rmid(i)|2

(Ŵ + Ŝ)mid(i),mid(i)

,(9.6)

where mid(i) provides the index of the degree of freedom which corresponds to the midpoint

node of the fine mesh Êℓ of Ei. Altogether, the documentation of Listing 36 now reads as follows:

• The function takes the coefficient vector x ∈ RN of the Galerkin solution Uℓ with respect

to Eℓ, the Galerkin data b̂ as well as the sum Ŵ + Ŝ of the hypersingular matrix Ŵ

and the stabilization term matrix Ŝ for the fine mesh Êℓ stored in Wfine . Besides this,
the (N × 2)-array father2son links the indices of elements Ei ∈ Eℓ with the indices

of the sons ej, ek ∈ Êℓ in the sense that father2son( i,:) = [ j, k] for Ei = ej ∪ ek.
Furthermore we need the array elements coarse describing the coarse triangulation Eℓ
and elements fine describing the uniformly refined mesh Êℓ.• We construct an index field k =idx( j) such that the j-th node of the coarse mesh coincides
with the k-th node of the fine mesh (Line 7–9).• Similar to our first step, we construct an index field k =mid( j) such that the midpoint of
the j-th element of the coarse mesh coincides with the k-th node of the fine mesh (Line 13).• Next, we compute the coefficient vector of Uℓ with respect to the fine mesh (Line 16–18).

• Then, we compute the vector of energies |||ζEi |||2W+S from the matrix Ŵ + Ŝ where we use
the fact that ζEi denotes the hatfunction corresponding to the i-th node of the uniformly

refined coarse mesh Êℓ as seen in the last term of (9.5) (Line 22).• Next, we compute the residual r̂ (Line 25).
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• Finally (Line 29), the function computes and returns the vector

v := (τℓ(E1)
2, . . . , τℓ(EN )2) ∈ RN .

In particular, there holds τℓ =
(∑N

i=1 vi

)1/2
.

Listing 37. Two-level estimator τℓ for mixed BVP
1 function ind = computeEstMixTau(father2dirichlet, father2neumann,neumann coarse, ...
2 neumann fine, V fine, K fine, W fine, bD fine, bN fine, x coarse, ...
3 free neumann,free neumann fine)

4 nD coarse = size (father2dirichlet,1);

5 dof fine = 2 * nD coarse+ size (K fine,2);

6 Ndof fine = length (free neumann fine);

7 Ndof = length (free neumann);

8

9 %*** build index vector son2father to link fine mesh with coarse m esh

10 dirichlet2father = zeros (2 * nD coarse,1);

11 dirichlet2father(father2dirichlet) = repmat ((1:nD coarse)',1,2);

12

13 %*** build index field k = idx(j) such that j −th node of coarse mesh coincides

14 %*** with k −th node of fine mesh

15 idx = zeros (2,1);

16 idx(neumann coarse) = [ neumann fine(father2neumann(:,1),1), ...

17 neumann fine(father2neumann(:,2),2) ];

18 idx=idx(free neumann);

19

20 %*** build index field k = mid(j) such that midpoint of j −th element of coarse

21 %*** mesh is k −th node of fine mesh

22 mid = neumann fine(father2neumann(:,1),2);

23

24 %*** compute coefficient vector of u coarse w.r.t. fine mesh

25 x = zeros (dof fine,1);

26 x coarse tmp= zeros (2,1);

27 x coarse tmp(free neumann)=x coarse(1:Ndof);

28 x(mid) = 0.5 * sum(x coarse tmp(neumann coarse),2);

29 x(idx) = x coarse(1:Ndof);

30 x=x(free neumann fine);

31 x(Ndof fine+(1:2 * nD coarse))=x coarse(Ndof+dirichlet2father);

32

33 %*** map dirichlet coordinates onto degrees of freedom on the dir ichlet

34 %*** boundary

35 idxFN= zeros (2,1);

36 idxFN(free neumann fine)=1:Ndof fine;

37

38 %*** compute residual w.r.t. the coarse mesh solution

39 A=[W fine,K fine'; −K fine,V fine];

40 res = A * x−[bN fine;bD fine];

41

42 %*** compute engergy

43 energy = [diag(W fine);V fine(father2dirichlet(:,1) ...

44 + 2* nD coarse * (father2dirichlet(:,1) − 1)) ...

45 − V fine(father2dirichlet(:,1) ...

46 + 2* nD coarse * (father2dirichlet(:,2) − 1))];

47

48 %*** compute estimator

49 ind=[res(idxFN(mid)).ˆ2./energy(idxFN(mid)); ...

50 (res(father2dirichlet(:,1)+Ndof fine) ...
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51 −res(father2dirichlet(:,2)+Ndof fine)).ˆ2 ...

52 ./(2 * energy(Ndof fine+1: end ))];

9.6. Computation of Error Estimator τℓ for the mixed problem (Listing 37). This
section deals with the implementation of the (h − h/2)-based two-level error estimator for the
mixed problem described in Section 7 resp. Section 8.11 in case of nonhomogeneous volume
forces. The estimator is defined by

τℓ :=
( N∑

i=1

τℓ(Ei)
2
)1/2

.(9.7)

As for the preceding cases, the contribution τℓ(Ei) formally reads

τℓ(Ei) = |||GEi(Ûℓ −Uℓ)|||A,
where GEi denotes the Galerkin projection onto the one-dimensional space span{(ζEi

, 0)} for
Ei ⊂ ΓN or span{(0, ψEi

)} for Ei ⊂ ΓD. For the definitions of the two-level functions ζEi and

ψEi , we refer to Sections 9.4 and 9.5. Here, Uℓ and Ûℓ denote the solutions of (7.26) and (7.27).
To compute GEi we distinguish two cases: First, let Ei ⊂ ΓD. Then, it holds

|||GEi(Ûℓ −Uℓ)|||A =

∣∣〈〈Ûℓ −Uℓ , (0, ψEi)〉〉A
∣∣

|||(0, ψEi)|||A

=

∣∣〈Fℓ , (0, ψEi)〉H⋆×H − 〈−KUℓ + V Φℓ , ψEi〉ΓD

∣∣
|||ψEi |||V

.

For Ei ⊂ ΓN , it holds

|||GEi(Ûℓ −Uℓ)|||A =

∣∣〈〈Ûℓ −Uℓ , (ζEi , 0)〉〉A
∣∣

|||(ζEi , 0)|||A

=

∣∣〈Fℓ , (ζEi , 0)〉H⋆×H − 〈WUℓ +K ′Φℓ , ζEi〉ΓN

∣∣
|||ζEi |||W+S

.

In both cases, we exploited the Galerkin formulation (7.17) as well as the fact that (ζEi , 0), (0, φEi ) ∈
X̂ℓ.

To discuss the implementation of τℓ(Ei), let x ∈ RN denote the solution vector of (7.19)
or (8.48), i.e., the representation of Uℓ w.r.t. the basis of Xℓ. Let additionally ŷ ∈ R2N denote

the representation of Uℓ w.r.t. the basis of X̂ℓ. The algebraic residual reads

r̂ := b̂−
(

Ŵ K̂T

−K̂ V̂

)
ŷ,

where Ŵ, K̂, V̂ and b̂ ∈ R2N are the Galerkin data with respect to Êℓ. We consequently obtain

τℓ(Ei)
2 =

{
|̂ri|/|||ψEi |||V for Ei ⊂ ΓD,

|̂ri|/|||ζEi |||W+S for Ei ⊂ ΓN .

The right way call the function computeEstMixTau is

ind = computeEstMixTau(father2dirichlet, father2neumann, neumann coarse, ...

neumann fine, V fine, K fine, W fine, bD fine, bN fine, x coarse, ...

free neumann,free neumann fine);

The arrays father2dirichlet and father2neumann link the coarse mesh with the fine
mesh. The Neumann part of the meshes is described via neumann coarse and neumann fine .
The integral operators V fine , K fine , and Wfine must be provided in the shrinked form,
i.e., the same form which is used to solve for the mixed solution vector x in (7.19) or (8.48).
x coarse represents the solution vector x on the coarse mesh Eℓ and free neumann as well as
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free neumann fine indicate the indices of the degrees of freedom on the Neumann boundary
for the coarse mesh and the fine mesh, respectively.

For the documentation, we refer to Section 9.4 and Section 9.5. The only part which is new
is the prolongation of the coarse mesh solution vector x.

• Lines 25–27 provide a vector which contains the nodal values of Uℓ on ΓN and is zero
elsewhere.• This vector is prolonged to S1(Êℓ) in Line 28–30 and restricted to the degrees of freedom
on the Neumann boundary ΓN .• Finally, the element values of Φℓ are prolongated and added to x in Line 31. The vector x
represents the restriction of ŷ onto the degrees of freedom.• Lines 35–36 provide a link between the numbers of the degrees of freedom on the Neumann

boundary ΓN of the fine mesh and the corresponding nodes of Êℓ, i.e., j=idxFN(k) means
that the k-th node on the Neumann boundary corresponds to the j-th degree of freedom
on the fine mesh.
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Listing 38. Weighted-residual error estimator ρℓ for Symm’s IE
1 function ind = computeEstSlpResidual( varargin )

2 if nargin == 6

3 [vertices,volumes,elements,phih,gh,fh] = varargin {: };

4 coordinates = vertices( unique (elements),:);

5 elseif nargin == 5

6 [coordinates,elements,phih,gh dir,gh] = varargin {: };

7 elseif nargin == 4

8 [coordinates,elements,phih,gh] = varargin {: };

9 end

10

11 %*** Gaussian quadrature on [ −1,1] with 2 nodes and exactness 3

12 quad nodes = [ −1 1]/ sqrt (3);

13 quad weights = [1;1];

14

15 %*** elementwise interpolation is done in (gauss left,gauss right,midpoint)

16 quad nodes(3) = 0;

17 nE = size (elements,1);

18 nQ = length (quad nodes);

19

20 %*** build vector of evaluations points as (nQ * nE x 2) −matrix

21 a = coordinates(elements(:,1),:);

22 b = coordinates(elements(:,2),:);

23 sx = reshape (a,2 * nE,1) * (1 −quad nodes) + reshape (b,2 * nE,1) * (1+quad nodes);

24 sx = 0.5 * reshape (sx',nQ * nE,2);

25

26 %*** evaluate gh elementwise at (left, right, midpoint)

27 if ∼ isempty (gh)

28 gh left = gh(elements(:,1));

29 gh right = gh(elements(:,2));

30 gh sx = gh left * (1 −quad nodes) + gh right * (1+quad nodes);

31 gh sx = 0.5 * reshape (gh sx',nQ * nE,1);

32 end

33

34 %*** evaluate V * phih in all interpolation nodes sx

35 p = evaluateV(coordinates,elements,phih,sx);

36

37 %*** distinguish between different cases

38 if ( nargin == 6)

39 if ∼ isempty (gh)

40 p = p − evaluateK(coordinates,elements,gh,sx) ...

41 − 0.5 * gh sx ...

42 + evaluateN(vertices,volumes,fh,sx);

43 else

44 p = p + evaluateN(vertices,volumes,fh,sx);

45 end

46 elseif ( nargin == 5) && isempty (gh dir)

47 p = p − gh sx;

48 elseif nargin == 4

49 p = p − evaluateK(coordinates,elements,gh,sx) ...

50 − 0.5 * gh sx;

51 end

52

53 %*** evaluate arclength −derivative p' elementwise at (left,right)

54 p prime = reshape (p,nQ,nE)' * [ −3 1 ; −1 3 ; 4 −4] * sqrt (0.75);

55

56 %*** return ind(j) = diam(Ej) * | | [ V * phi − (K+1/2) * gh ]' | | {L2(Ej) }ˆ2
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57 ind = 2 * p prime.ˆ2 * quad weights;

9.7. Computation of Weighted-Residual Error Estimator ρℓ for Symm’s Integral
Equation (Listing 38). Due to the fact that the simple-layer potential V : H−1/2(Γ) →
H1/2(Γ) is an isomorphism, we may consider the residual of Symm’s integral equation (5.1) on
the mesh Eℓ:

‖V Φℓ − (1/2 +K)Gℓ‖H1/2(Γ) ≃ |||φℓ − Φℓ|||V for all ℓ ∈ N,(9.8)

where Φℓ ∈ P0(Eℓ) denotes the discrete solution of (5.7). Thus, the left-hand side of the above
equation provides an efficient and reliable error estimator for the right-hand side. Unfortunately,
the H1/2-norm doesn’t provide local information on where to refine the mesh. Therefore, the
following localization was firstly proposed in [8] for 2D and later extended to 3D in [9]:

‖V Φℓ − (1/2 +K)Gℓ‖2H1/2(Γ)

.
∑

Ei∈Eℓ

length(Ei)‖(V Φℓ − (1/2 +K)Gℓ)
′‖2L2(Ei)

=:
∑

Ei∈Eℓ

ρℓ(Ei)
2.(9.9)

Now, the global estimator can be written as ρℓ = ‖h1/2ℓ (V Φℓ− (1/2+K)Gℓ)
′‖L2(Γ). The hidden

constant in estimate (9.9) depends only on Γ and an upper bound for the local mesh-ratio κ(Eℓ).
Inclusion of Volume Forces: In an analogous way, one may derive a weighted-residual error
estimator for Symm’s integral equation with volume forces. To that end, let Φℓ ∈ P0(Eℓ) denote
the solution of (8.6). The estimator now reads

ρℓ := ‖h1/2ℓ (V Φℓ − (1/2 +K)Gℓ +N0Fℓ)
′‖L2(Γ).(9.10)

Error Estimator for Indirect Formulation: For a given function g ∈ H1/2(Γ), where

Γ ⊆ ∂Ω, the indirect formulation of Symm’s integral equation is to find φ ∈ H̃−1/2(Γ) with

〈〈φ ,ψ〉〉V = 〈g , ψ〉Γ for all ψ ∈ H̃−1/2(Γ).(9.11)

The space H̃−1/2(Γ) consists of all continuous linear functionals on H1/2(Γ). Hence, if Γ ( ∂Ω,

and φ ∈ H̃−1/2(Γ) has additonal regularity φ ∈ L2(Γ), this corresponds to extending φ by
0 on ∂Ω. As in the case of the Dirichlet problem, we approximate g by a discrete function
Gℓ ∈ S1(Eℓ) and solve the corresponding Galerkin formulation

〈〈Φℓ ,Ψℓ〉〉V = 〈Gℓ , Ψℓ〉Γ for all Ψℓ ∈ P0(Eℓ).(9.12)

In a similar way, we can derive the weighted-residual estimator

ρℓ := ‖h1/2ℓ (V Φℓ −Gℓ)
′‖L2(Γ).(9.13)

Error Estimator for an Auxiliary Problem: Solving the hypersingular integral equation
with non-vanishing volume forces needs the Galerkin solution Λℓ of the auxiliary problem (8.29).
Instead of employing (8.35), we could estimate the introduced error by

|||λ− Λℓ|||V ≈ ρℓ + oscΩ,ℓ,

with ρℓ beeing the weighted-residual error estimator

ρℓ := ‖h1/2ℓ (V Λℓ −N0Fℓ)
′ ‖L2(Γ).(9.14)

Note that this is a special case of a weighted-residual error estimator for Symm’s integral
fomulation with volume force, where Gℓ = 0 and the sign of N0fℓ changed.
Implementation: For the numerical implementation, we use the same approach as for the
computation of the Dirichlet data oscillations in Section 5.1. Let Rℓ denote the residual in
either of the cases introduced above. For Ej = [aj , bj ] ∈ Eℓ and h := |bj − aj|, let γj : [−1, 1] →
Ej denote the reference parametrization (2.1). Recall that |γ′j | = h/2. With the definition
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of a boundary integral from Section 2.2 and the definition of the arclength derivative from
Section 2.3, we obtain

‖R′
ℓ‖2L2(Ej)

=

∫

Ej

(
R′

ℓ

)2
dΓ =

h

2

∫ 1

−1

(
(R′

ℓ ◦ γj)(s)
)2
ds =

2

h

∫ 1

−1

(
(Rℓ ◦ γj)′(s)

)2
ds.(9.15)

We now approximate Rℓ◦γj : [−1, 1] → R by a polynomial pj ∈ P2 [−1, 1]. Using the quadrature
points from a 2-point Gauss rule on [−1, 1],

x1 = −
√
3

3
, and x2 =

√
3

3
,

as well as the midpoint mj = (aj + bj)/2 of Ej , we define

pj(x1) = Rℓ ◦ γj(x1), pj(0) = Rℓ(mj), pj(x2) = Rℓ ◦ γj(x2).

Note that p′j ∈ P1[−1, 1] and
(
p′j

)2
∈ P2[−1, 1] so that

‖R′
ℓ‖2L2(Ej)

=
2

h

∫ 1

−1

(
(Rℓ ◦ γj)′(s)

)
ds ≈ 2

h

∫ 2

−1

(
p′j
)2
ds =

2

h
quad2

((
p′j
)2)

,

where quad2 is a quadrature rule on [−1, 1] which is exact on P2[−1, 1]. In fact, wee use the
2-point Gauss rule with quadrature points x1 and x2. To evaluate p′j(x1) and p

′
j(x2), we proceed

as for the Dirichlet data oscillations in Section 5.1. With L1, L2, and L3 denoting the Lagrange
polynomials w.r.t. x1, 0, and x2 on [−1, 1],

L1(s) =
1

2
s(3s −

√
3), L2(s) = 1− 3s2, L3(s) =

1

2
s(3s+

√
3),

L′
1(s) = 3s−

√
3

2
, L′

2(s) = −6s, L′
3(s) = 3s +

√
3

2
,

we obtain
(
p′j(x1)

p′j(x2)

)
=

(
L′
1(x1) L′

2(x1) L′
3(x1)

L′
1(x2) L′

2(x2) L′
3(x2)

)

Rℓ ◦ γj(x1)
Rℓ(mj)

Rℓ ◦ γj(x2)




=

√
3

4

(
−3 4 −1
1 −4 3

)

Rℓ ◦ γj(x1)
Rℓ(mj)

Rℓ ◦ γj(x2)


 .

(9.16)

Remark 9.2. To obtain a reliable error estimator for |||φ−Φℓ|||V , again one has to incorporate

the Dirichlet data oscillations oscD,ℓ for the cases (9.9) and (9.13), i.e.,

|||φ− Φℓ|||V . ρℓ + oscD,ℓ for all ℓ ∈ N

and additionally the volume oscillations oscΩ,ℓ for the case (9.10), i.e.,

|||φ− Φℓ|||V . ρℓ + oscD,ℓ + oscΩ,ℓ for all ℓ ∈ N.

The hidden constants in the last two estimates depend only on Γ and an upper bound for κ(Tℓ).
The implementation computeEstSlpResidual of the estimator ρℓ covers the four

cases (9.9), (9.10), (9.13), and (9.14) and is found in Listing 38. We first describe the four
different sets of parameters for the call of computeEstSlpResidual:

• To compute (9.9), the function must be called in the form

ind = computeEstSlpResidual(coordinates,elements,phih,gh)

The function takes the mesh Eℓ in terms of coordinates and elements . The parameter
phih is the coefficient vector x of the Galerkin solution Φℓ of (5.7), whereas the parameter
gh is the coefficient vector g of the discrete Dirichlet data Gℓ which can be computed
either by nodal interpolation with computeOscDirichlet or by the L2-projection with
computeOscDirichletL2.
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• To compute (9.10), the function must be called in the form

ind = computeEstSlpResidual(vertices,triangles,elements,phih,gh,fh)

The input parameters vertices and triangles describe the triangulation Tℓ of Ω as
explained in Section 3.3. The parameter elements describes the boundary mesh. The
implementation computeEstSlpResidual assumes that the nodes on the boundary ap-
pear at the beginning of the vector vertices . This can be assured by reordering the mesh
with the help of the function buildSortedMesh, see Section 4.2. The parameter phih
represents the coefficient vector x of the Galerkin solution Φℓ of (8.6). The parameters
gh and fh describe the discrete Dirichlet data Gℓ and discrete volume data Fℓ of (8.6).
Again, Gℓ can be computed either by nodal interpolation with computeOscDirichlet
or by the L2-projection with computeOscDirichletL2, whereas Fℓ can be computed by
computeOscVolume. In case of gh= 0, the function can be called via

ind = computeEstSlpResidual(vertices,triangles,elements,phih,[],fh)

where the call of evaluateK is avoided.• To compute (9.13), the function must be called in the form

ind = computeEstSlpResidual(coordinates,elements,phih,[],gh)

Here, gh is the coefficient vector u of the discrete data Gℓ and can be computed as in the
other two cases. We stress that the fourth parameter has to be an empty vector.• To compute (9.14), the function must be called in the form

ind = computeEstSlpResidual(vertices,triangles,elements,lambdah,[], −fh)

The input parameters vertices and triangles describe the triangulation Tℓ of Ω as
explained in section 3.3. The parameter elements describes the boundary mesh. The
implementation computeEstSlpResidual assumes that the nodes on the boundary ap-
pear at the beginning of the vector vertices . This can be assured by reordering the
mesh with the help of the function buildSortedMesh, see Section 4.2. The parameter
lambdah represents the coefficient vector x of the Galerkin solution Λℓ of (8.29). Since we
set gh=[] and use −fh as last input parameter, we ensure that (9.14) is computed.

In either case, the output ind is a vector of the squared local contributions of ρℓ. The different
cases are distinguished by the different number of arguments that are provided as input parame-
ters, Line 2–21. We now describe the rest of the implementation of computeEstSlpResidual.

• To compute the arc-length derivative of the residual, we take the approach discussed above.
At first, we prepare the quadrature nodes and weights of the gauss2 rule in Lines 24 and 25.
As interpolation nodes, we take the quadrature nodes and the midpoint in Lines 28–30.• The transformation onto the elements is done in Line 33–36. The vector sx contains
interpolation nodes for each element Ei ∈ Eℓ.• In Lines 39–44, we evaluate the discrete data Gℓ, which is represented by gh, in all interpo-
lation nodes. Note, however, that this is done only if gh is not empty, as is the case when we
invoke computeEstSlpResidual to estimate the error of the auxiliary problem (9.14).• Now, the vector p is used to add up all the residual contributions for the different cases in
Lines 50–63.• In Line 66, we use the evaluations of pj to compute their derivatives in the quadrature
points as stated in (9.16).• Line 69 applies the quadrature rule and returns the squared elementwise error estimator in
the vector ind .

Listing 39. Weighted-residual error estimator ρℓ for the hypersingular IE
1 function ind = computeEstHypResidual( varargin )

2 if nargin == 5

3 [coordinates,elements,gh,phih dir,phih ind] = varargin {: };
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4 elseif nargin == 4

5 [coordinates,elements,gh,phih dir] = varargin {: };

6 end

7

8 %*** Gaussian quadrature on [ −1,1] with 2 nodes and exactness 3

9 quad nodes = [ −1 1]/ sqrt (3);

10 quad weights = [1;1];

11

12 %*** define constants

13 nE = size (elements,1);

14 nQ = length (quad nodes);

15

16 %*** build vector of all quadrature nodes as (nQ * nE x 2) −matrix

17 a = coordinates(elements(:,1),:);

18 b = coordinates(elements(:,2),:);

19 sx = reshape (a,2 * nE,1) * (1 −quad nodes) ...

20 + reshape (b,2 * nE,1) * (1+quad nodes);

21 sx = 0.5 * reshape (sx',nQ * nE,2);

22

23 %*** sx2element(j) returns the element number k such that sx(j,: ) lies on Ek

24 sx2element = reshape ( repmat ((1:nE),nQ,1),nQ * nE,1);

25

26 %*** compute vector of (squared) element −widths

27 h = sum((a −b).ˆ2,2);

28

29 %*** compute outer normal vector

30 normal = b −a;

31 normal = [normal(:,2), −normal(:,1)]./ repmat ( sqrt (h),1,2);

32

33 %*** evaluate the the associated terms

34 if ( nargin == 5) && isempty (phih dir)

35 p = evaluateW(coordinates,elements,gh,sx,normal(sx2el ement,:)) − phih ind(sx2element);

36 else

37 p = evaluateW(coordinates,elements,gh,sx,normal(sx2el ement,:)) ...

38 − 0.5 * phih dir(sx2element) ...

39 + evaluateKadj(coordinates,elements,phih dir,sx,normal(sx2element,:));

40 if nargin == 5

41 p = p + evaluateKadj(coordinates,elements,phih ind,sx,normal(sx2element,:)) ...

42 − 0.5 * phih ind(sx2element);

43 end

44 end

45

46 p = reshape (p,nQ,nE)';

47 ind = 0.5 * h. * ((p.ˆ2) * quad weights);

9.8. Computation of Weighted-Residual Error Estimator ρℓ for Hypersingular Inte-
gral Equation (Listing 39). The hypersingular integral operator W is an isomorphism from

H
1/2
⋆ (Γ) to H

−1/2
⋆ (Γ). Here, the lower index (·)⋆ denotes, in case of Γ = ∂Ω, that functions v of

this space have vanishing integral mean, i.e.,
∫
Γ v dΓ = 0. We may thus consider the residual of

the hypersingular integral equation (6.1) on the mesh Eℓ:

‖WUℓ − (1/2−K ′)Φℓ‖H−1/2(Γ) ≃ |||u− Uℓ|||W for all ℓ ∈ N,

where Uℓ ∈ S1(Γ) denotes the discrete solution of (6.7). As in the case of Symm’s integral
equation, we deal with the non-local H−1/2(Γ)-norm on the left hand side. The following
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localization was firstly analyzed in [8]:

‖WUℓ − (1/2 −K ′)Φℓ‖2H−1/2(Γ)

.
∑

Ei∈Eℓ

length(Ei)‖WUℓ − (1/2 −K ′)Φℓ‖2L2(Ei)
=:

∑

Ei∈Eℓ

ρℓ(Ei)
2.(9.17)

Again, the constants in this estimate depend solely on Γ and an upper bound for the local
mesh-ratio κ(Eℓ).
Inclusion of Volume Forces: In an analogous way, one may derive a weighted-residual error
estimator for the hypersingular integral equation with non-vanishing volume force. To that end,
let Uℓ ∈ S1(Eℓ) denote the Galerkin solution of the hypersingular integral equation with volume
force (8.30) and define the estimator by

ρℓ := ‖h1/2ℓ

(
WUℓ − (1/2 −K ′)(Φℓ + Λℓ)

)
‖L2(Γ),(9.18)

where Λℓ ∈ P0(Eℓ) denotes the solution of (8.29).

Error Estimator for Indirect Formulation: For a given function φ ∈ H
−1/2
⋆ (Γ), where

Γ ⊆ ∂Ω, the indirect formulation of the hypersingular integral equation is to find u ∈ H̃
1/2
∗ (Γ)

such that

〈〈u , v〉〉W = 〈φ , v〉Γ for all v ∈ H1/2
∗ (Γ).

The space H̃
1/2
∗ (Γ) is either the space H

1/2
∗ (Γ) in case of Γ = ∂Ω, or the space H̃1/2(Γ) if

Γ ( ∂Ω, which is the space of restrictions of all functions v ∈ H1/2(∂Ω) which have support in
Γ. As in the case of the Neumann problem, we approximate φ by a discrete function Φℓ ∈ P0(Eℓ)
and solve the corresponding Galerkin formulation

〈〈Uℓ , Vℓ〉〉W = 〈Φℓ , Vℓ〉Γ(9.19)

and can derive the weighted-residual error estimator in a similar way as before to obtain

ρℓ := ‖h1/2ℓ (WUℓ − Φℓ) ‖L2(Γ)(9.20)

Implementation: We will not comment on any implementational details here, as they are
essentially the same as for the Neumann Data oscillations in Section 6.1. Nevertheless, we
comment on the parameters needed to call the function computeEstHypResidual for the
desired case.

• To compute (9.17), the function must be called in the form

ind = computeEstHypResidual(coordinates,elements,gh,phih)

Here, coordinates and elements describe the mesh Eℓ. The parameter gh is the
coefficient vector x of the Galerkin solution Uℓ ∈ S1(Eℓ) of (6.7), whereas the parameter
phih is the coefficient vector p of the discrete Neumann data Φℓ which can be computed
by the function computeOscNeumann.• To compute (9.18), the function must be called in the form

ind = computeEstHypResidual(coordinates,elements,gh,phih,lambdah)

The parameter gh represents the coefficient vector x of the Galerkin solution (8.30), whereas
the parameter phih is the coefficient vector p of the discrete Neumann data Φℓ which can
be computed by the function computeOscNeumann. The last parameter, lambdah , is the
coefficient vector of the Galerkin solution Λℓ ∈ P0(Eℓ) of (8.29).• To compute (9.20), the function must be called in the form

ind = computeEstHypResidual(coordinates,elements,gh,[],phih)

The parameter gh represents the coefficient vector x of the Galerkin solution (9.19), whereas
phih denotes the coefficient vector of the right hand side Φℓ of (9.19).
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Listing 40. Weighted-residual error estimator ρℓ for mixed BVP
1 function [indSLP,indHYP] = computeEstMixResidual( varargin )

2 if nargin == 11

3 [vertices,coordinates,volumes,dirichlet,neumann,uNh , ...

4 phiDh,uDh,phiNh,fh,lambdah] = varargin {: };

5 elements=[dirichlet;neumann];

6 elseif nargin == 7

7 [coordinates,dirichlet,neumann,uNh,phiDh,uDh,phiNh] = varargin {: };

8 elements=[dirichlet;neumann];

9 end

10 %*** compute first equation estimate

11 %*** Gaussian quadrature on [ −1,1] with 2 nodes and exactness 3

12 quad nodes = [ −1 1]/ sqrt (3);

13 quad weights = [1;1];

14

15 %*** elementwise interpolation is done in (gauss left,gauss right,midpoint)

16 quad nodes(3) = 0;

17 nE = size (elements,1);

18 nQ = length (quad nodes);

19

20 %*** build vector of evaluations points as (nQ * nE x 2) −matrix

21 a = coordinates(elements(:,1),:);

22 b = coordinates(elements(:,2),:);

23 sx = reshape (a,2 * nE,1) * (1 −quad nodes) + reshape (b,2 * nE,1) * (1+quad nodes);

24 sx = 0.5 * reshape (sx',nQ * nE,2);

25

26 %*** evaluate gh elementwise at (left, right, midpoint)

27

28 uDh left = uDh(elements(:,1));

29 uDh right = uDh(elements(:,2));

30 uDh sx = uDh left * (1 −quad nodes) + uDh right * (1+quad nodes);

31 uDh sx = 0.5 * reshape (uDh sx',nQ * nE,1);

32 pSLP = evaluateV(coordinates,dirichlet,phiDh,sx) ...

33 − evaluateK(coordinates,elements,uDh,sx) ...

34 − 0.5 * uDh sx ...

35 + evaluateV(coordinates, elements, phiNh,sx) ...

36 − evaluateK(coordinates,neumann,uNh,sx);

37 if nargin == 11

38 pSLP = pSLP + evaluateN(vertices, volumes,fh,sx);

39 end

40

41 %*** evaluate arclength −derivative p' elementwise at (left,right)

42 pSLP prime = reshape (pSLP,nQ,nE)' * [ −3 1 ; −1 3 ; 4 −4] * sqrt (0.75);

43

44 %*** return ind(j) = diam(Ej) * | | [ V * phi − (K+1/2) * gh ]' | | {L2(Ej) }ˆ2

45 indSLP = 2 * pSLP prime.ˆ2 * quad weights;

46

47 %*** compute second equation estimate

48 quad nodes(3)=[];

49 nQ=length (quad nodes);

50 %*** build vector of all quadrature nodes as (nQ * nE x 2) −matrix

51 a = coordinates(elements(:,1),:);

52 b = coordinates(elements(:,2),:);

53 sx = reshape (a,2 * nE,1) * (1 −quad nodes) ...

54 + reshape (b,2 * nE,1) * (1+quad nodes);

55 sx = 0.5 * reshape (sx',nQ * nE,2);

56
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57 %*** sx2element(j) returns the element number k such that sx(j,: ) lies on Ek

58 sx2element = reshape ( repmat ((1:nE),nQ,1),nQ * nE,1);

59 %*** compute vector of (squared) element −widths

60 h = sum((a −b).ˆ2,2);

61

62 %*** compute outer normal vector

63 normal = b −a;

64 normal = [normal(:,2), −normal(:,1)]./ repmat ( sqrt (h),1,2);

65

66 %*** evaluate p1 = (1/2 −Kadj) * phih at (left,right)

67 pHYP = 0.5 * phiNh(sx2element) ...

68 − evaluateKadj(coordinates,elements,phiNh,sx,normal(s x2element,:)) ...

69 − evaluateKadj(coordinates,dirichlet,phiDh,sx,normal( sx2element,:));

70

71 if nargin == 11

72 pHYP=pHYP− evaluateKadj(coordinates,elements,lambdah,sx,normal (sx2element,:)) ...

73 +0.5 * lambdah(sx2element);

74 end

75

76 pHYP=pHYP−evaluateW(coordinates,elements,uDh+uNh,sx,normal(sx 2element,:));

77

78 %*** evaluate integrand p = (1/2 −Kadj) * phih − W* gh = p1 + p2'

79 pHYP = reshape (pHYP,nQ,nE)';

80

81 %*** return ind(j) = diam(Ej) * ||(1/2 −K* )phih+(Vgh') ' | | {L2(Ej) }ˆ2

82 indHYP = 0.5 * h. * (pHYP.ˆ2 * quad weights);

9.9. Computation of Weighted-Residual Error Estimator ρℓ for the Mixed BVP
(Listing 40). Similar to the two preceding sections, the residual of the mixed BVP (7.9)
measured in the dual norm provides a reliable and efficient error estimator

|||uℓ −Uℓ|||A ≃ |||(resN,ℓ, resD,ℓ)|||A⋆ ,

where

resD,ℓ := V Φℓ − (1/2 +K)UD,ℓ + V ΦN,ℓ −KUℓ,

resN,ℓ := (1/2 −K ′)ΦN,ℓ −K ′Φℓ −W (Uℓ + UD,ℓ),

and where uℓ ∈ Hℓ denotes the exact solution of (7.9) with perturbed data UN,ℓ and ΦD,ℓ.
The localization techniques from the hypersingular case as well as the case of Symm’s integral
equation apply analogously. Therefore, we consider the weighted-residual error estimator

ρ2ℓ := ‖h1/2ℓ res′D,ℓ‖2L2(ΓD) + ‖h1/2ℓ resN,ℓ‖2L2(ΓN ),(9.21)

which provides an upper bound for the error, i.e., |||uℓ − Uℓ|||A . ρℓ with a constant which
depends only on Γ and an upper bound for the local mesh-ratio κ(Eℓ).
Inclusion of Volume Forces: As before, one may also include volume forces. To that end,
let Uℓ denote the Galerkin solution of the mixed problem with volume force (8.46) and define
the estimator by

ρ2ℓ := ‖h1/2ℓ (resD,ℓ −N0Fℓ)
′‖2L2(ΓD) + ‖h1/2ℓ (resN,ℓ − (1/2 −K ′)Λℓ)‖2L2(ΓN ),(9.22)

where Λℓ ∈ P0(Eℓ) denotes the solution of (8.29).

Remark 9.3. Obviously, one has to include data oscillations to obtain a reliable error estimator

for the perturbed problem, i.e.,

|||u−Uℓ|||A . ρℓ + oscD,ℓ + oscN,ℓ
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for the case (9.21) and

|||u−Uℓ|||A . ρℓ + ρV,ℓ + oscD,ℓ + oscN,ℓ + oscΩ,ℓ

for (9.22). Here, ρV,ℓ is the weighted-residual error estimator for Symm’s integral equation

V Λℓ = N0Fℓ, i.e., ρV,ℓ := ‖h1/2ℓ (V Λℓ − N0Fℓ)
′‖Γ. This is used to control the error of the

approximation of N1Fℓ by (1/2 −K ′)Λℓ.

To call the function for the mixed problem without volume forces (9.21), use

[indSLP,indHYP] = computeEstMixResidual(coordinates,dirichlet,neumann, ...

uNh,phiDh,uDh,phiNh);

For the case with volume forces (9.22), use

[indSLP,indHYP] = computeEstMixResidual(vertices,coordinates,volumes, ...

dirichlet,neumann,uNh,phiDh, ...

uDh,phiNh,fh,lambdah);

The arrays vertices , volumes , coordinates , dirichlet , neumann describe the volume
mesh as well as the boundary mesh in case of (9.22). The vectors uNh, phiDh describe the
solution Uℓ = (Uℓ,Φℓ) ∈ Xℓ. It is important, that uNh has one entry for every coordinate,
where the entries which don’t correspond to a degree of freedom on the Neumann boundary are
zero. The data (UD,ℓ,ΦN,ℓ) is given by the vectors uDh and phiNh . In case of non-homogeneous
volume forces (9.22), one has to provide the discretized volume data fh , as well as the solution
vector lambdah of (8.29) which represents Λℓ and is used to compute N1Fℓ.

The implementation in Listing 40 combines the techniques from the two previous sections,
and we therefore omit further details.
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