
The Hugs 98 User’s Guide

The Hugs 98 User’s Guide

Table of Contents
The Hugs 98 License.. -999

1. Introduction .. -999

1.1. Other sources of information.. -999
1.1.1. Other documentation.. -999
1.1.2. Mailing lists.. -999

2. Using Hugs.. -999

2.1. Basic operation.. -999
2.2. Loading and editing Haskell module files... -999
2.3. Getting information... -999
2.4. Miscellaneous commands... -999

3. Changing the behaviour of Hugs.. -999

3.1. Hugs options... -999
3.1.1. Language options.. -999
3.1.2. Module loading options.. -999
3.1.3. Specifying a source file editor.. -999
3.1.4. Evaluation and printing options.. -999
3.1.5. Resource usage options.. -999

3.2. Environment variables used by Hugs.. -999
3.3. Standalone programs... -999
3.4. Compiling modules that use the Foreign Function Interface.. -999

4. HugsvsHaskell 98 and addenda.. -999

4.1. Haskell 98 non-compliance... -999
4.1.1. Lexical structure... -999
4.1.2. Expressions... -999
4.1.3. Declarations and bindings.. -999
4.1.4. Modules.. -999
4.1.5. Predefined types and classes... -999

4.2. Addenda to Haskell 98.. -999
4.2.1. Foreign Function Interface... -999
4.2.2. Hierarchical Namespace Extension.. -999

5. Language extensions supported by Hugs and GHC... -999

5.1. Syntactic extensions.. -999
5.1.1. Recursive do-notation... -999
5.1.2. Parallel list comprehensions (a.k.a. zip-comprehensions).. -999

5.2. Type class extensions.. -999
5.2.1. More flexible contexts.. -999

3

5.2.2. More flexible instance declarations.. -999
5.2.3. Overlapping instances... -999
5.2.4. Multiple parameter type classes... -999
5.2.5. Functional dependencies.. -999

5.3. Quantified types.. -999
5.3.1. Rank 2 types... -999
5.3.2. Polymorphic components... -999
5.3.3. Existential quantification.. -999

5.4. Type annotations in patterns.. -999
5.5. Implicit parameters... -999

5.5.1. Implicit-parameter type constraints.. -999
5.5.2. Implicit-parameter bindings... -999

6. Hugs-specific language extensions.. -999

6.1. Typed extensible records... -999
6.2. Restricted type synonyms... -999
6.3. Here documents... -999
6.4. Hugs debugging primitives... -999

6.4.1. Using HugsHood.. -999
6.4.1.1. Breakpoints.. -999
6.4.1.2. Breakpoint Example... -999

6.4.2. Differences from Hood... -999
6.4.2.1. Observing character strings.. -999
6.4.2.2. Unevaluated expressions.. -999
6.4.2.3. Interaction with the root optimisation.. -999
6.4.2.4. Known problems.. -999

6.4.3. Reporting HugsHood bugs... -999

7. Miscellaneous... -999

7.1. Hugs 98 release history... -999
7.1.1. January 1999 (Beta release).. -999
7.1.2. May 1999.. -999
7.1.3. November 1999.. -999

7.1.3.1. February 2000.. -999
7.1.3.2. July 2000.. -999

7.1.4. February 2001... -999
7.1.5. December 2001... -999
7.1.6. November 2002.. -999
7.1.7. November 2003.. -999

4

The Hugs 98 License
The Hugs 98 system is Copyright© Mark P Jones, Alastair Reid, the Yale Haskell Group, and the OGI
School of Science & Engineering at OHSU, 1994–2003, All rights reserved, and is distributed as free
software under the following license.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither name of the copyright holders nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND THE CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5

Chapter 1. Introduction
In September 1991, Mark Jones released a functional programming system calledGofer, which provided
a compact, portable implementation of a Haskell-like language. The system also included experimental
type system extensions, many of which later became part of Haskell. On Valentine’s Day 1995, Mark
releasedHugs(Haskell User’s Gofer System), a derivative of Gofer with greater Haskell compliance.
Hugs versions are named after the version of Haskell they support; Hugs 98 was released in January
1999. Mark gave up the maintainership of Hugs in January 2000.

Hugs 98 still aims to be a fairly lightweight, portable implementation, and now adheres closely to
Haskell 98. It also supports several extensions shared with other Haskell implementations:

• Hugs supports standardized extensions (addenda) to Haskell 98, for interfacing to foreign languages
and structuring the module space.

• With the appropriate options (seeSection 3.1.1), it is also possible to turn on a number of language
extensions, most of which are also supported by the Glasgow Haskell Compiler
(http://www.haskell.org/ghc/) (GHC), though some are specific to Hugs.

• Hugs comes with a large collection of libraries, also shared with other Haskell implementations, and
described in separate documentation (http://www.haskell.org/ghc/docs/latest/html/libraries.html).

Though these features make Hugs highly compatible with other implementations, it is primarily intended
as interpreter and programming environment for developing Haskell programs. If your application
involves large programs or speed is critical, you may strike Hugs’s limitations, and may wish to try a
Haskell compiler.

1.1. Other sources of information

1.1.1. Other documentation

The Hugs 98 User Manual

This was the definitive reference for earlier versions of Hugs, though parts of it are now out-of-date.
Much of it remains relevant, particularly Section 7 on Hugs extensions, and it should be consulted
in several areas that this Guide does not cover well. The manual is available in several formats:
HTML (http://cvs.haskell.org/Hugs/pages/hugsman/index.html), PDF
(http://cvs.haskell.org/Hugs/downloads/hugs.pdf), gzipped Postscript
(http://cvs.haskell.org/Hugs/downloads/hugs.ps.gz), gzipped tar-ed html
(http://cvs.haskell.org/Hugs/downloads/html.tar.gz), dvi
(http://cvs.haskell.org/Hugs/downloads/hugs.dvi), WinHelp(zipped)

6

Chapter 1. Introduction

(http://cvs.haskell.org/Hugs/downloads/hugs-hlp.zip) and HTMLHelp(win32 help format)
(http://www.galois.com/~sof/hugs98.chm).

Haskell 98 Language and Libraries: the Revised Report

The definitive reference for the Haskell 98 language and standard libraries, published by Cambridge
University Press, and also available online (http://www.haskell.org/definition/).

Haskell Core Libraries (http://www.haskell.org/ghc/docs/latest/html/libraries.html)

A collection of libraries shared by Haskell implementations, including Hugs.

comp.lang.functional FAQ (http://www.cs.nott.ac.uk/Department/Staff/mpj/faq.html)

General information about functional programming.

More information about Haskell may be found on the Haskell home pagehttp://www.haskell.org/ and the
Hugs home pagehttp://www.haskell.org/hugs/.

1.1.2. Mailing lists
There are a number of mailing lists where people discuss Hugs and Haskell, all with archives of past
postings:

hugs-users (http://www.haskell.org/mailman/listinfo/hugs-users):

This is the place for general discussion about using Hugs.

hugs-bugs (http://www.haskell.org/mailman/listinfo/hugs-bugs):

Use this list for reporting bugs. This is more likely to be effective than direct mail to the authors or
maintainers of Hugs. We do read this mailing list – but so do many other people, who might be able
to give you more appropriate or timely advice than us! Before reporting a bug, check the list of
known deviations from Haskell 98 (seeSection 4.1).

cvs-hugs (http://www.haskell.org/mailman/listinfo/cvs-hugs):

Discussion of the development of Hugs takes place on this list. This list also receives commit
messages from the Hugs CVS repository (http://cvs.haskell.org/cgi-bin/cvsweb.cgi/hugs98/).

haskell-cafe (http://www.haskell.org/mailman/listinfo/haskell-cafe):

An informal list for chatting about Haskell. This is an ideal place for beginners to get help with
Haskell, but Hugs-specific questions would be better directed at the Hugs lists.

7

Chapter 1. Introduction

haskell (http://www.haskell.org/mailman/listinfo/haskell):

A lower-volume list for more technical discussion of Haskell. Please do not post beginner questions
or Hugs-specific questions to this list.

There are several other Haskell-related mailing lists served bywww.haskell.org . See
http://www.haskell.org/mailman/listinfo/ for the full list.

Some Haskell-related discussion also takes place in the Usenet newsgroupcomp.lang.functional

(news:comp.lang.functional).

8

Chapter 2. Using Hugs
The interpreter may be started with a command line of the form

hugs [option ...] [file ...]

On many systems it can also be found in the system menus, and may be started by (double) clicking on a
file with a “ .hs ” or “ .lhs ” extension.

Hugs takes options from the command line and elsewhere (seeSection 3.1), and then loads the Haskell
Prelude module, as well as as any modules specified on the command line.

Hugs starts with a banner like

__ __ __ __ ____ ___ ___
|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard
||___|| ||__|| ||__|| __|| Copyright (c) 1994-2003
||--|| ___|| World Wide Web: http://haskell.org/hugs
|| || Report bugs to: hugs-bugs@haskell.org
|| || Version: November 2003 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help
Prelude>

The prompt stringPrelude> indicates that the current module is the HaskellPrelude (assuming no
modules were specified on the command line). At this prompt, you can type Haskell expressions to be
evaluated, and also enter commands of the form“ :cmd”, wherecmd may be abbreviated to a single
letter.

2.1. Basic operation

expr

Evaluate a Haskell expression. The expression cannot be broken over multiple lines. Usually, the
value is simply converted to a string (usingshow) and printed:

Prelude> 1+2
3

9

Chapter 2. Using Hugs

The printing style can be changed with the-u option (seeSection 3.1.4).

However, ifexpr has typeIO t for some typet , the resulting IO action is performed:

Prelude> print (1+2) » putStrLn "bye"
3
bye

Usually the value produced by this action is ignored, but this can be changed with the+I option (see
Section 3.1.4).

On ambiguous types: If the type of expr is ambiguous, defaulting is applied to each
ambiguous type variable v whose constraints all have the form C v where C is a standard class,
and at least one of these classes is a numeric class, or is Show, Eq or Ord . (This is an extension
of the Haskell 98 rule applied to top-level definitions in modules, which requires a numeric
class.) It is an error if any ambiguous type variables cannot be handled in this way. For example,
consider

Prelude> reverse []
[]

Here a Show constraint on the list elements arises from Hugs’s use of show to display the result,
so the type of the elements defaults to Integer , removing the ambiguity.

:type expr

Print the type ofexpr , without evaluating it. Usually the defaulting rules (discussed above) are not
applied to the type before printing, but this can be changed with the+T option (seeSection 3.1.4).

:set [option ...]

Set command line options. SeeSection 3.1for a list of available options. On Win32, the new option
settings are saved to the registry, and so persist across Hugs sessions. To make settings persistent on
other systems, put them in theHUGSFLAGSenvironment variable.

If no options are given, list the available options and their current settings.

:quit

Exit the interpreter.

10

Chapter 2. Using Hugs

2.2. Loading and editing Haskell module files
The Hugs prompt accepts expressions, but not Haskell definitions. These should be placed in text files
containing Haskell modules, and these modules loaded into Hugs either by listing them on the command
line, or by using the commands listed here. Hugs assumes that each Haskell module is in a separate file.
You can load these files by name, or by specifying a module name.

Hugs maintains a notion of acurrent module, initially the Prelude and normally indicated by the
prompt. Expressions presented to Hugs are interpreted within the scope of the current module, i.e. they
may refer to unexported names within the module.

:load [file-or-module ...]

Clear all files except thePrelude and modules it uses, and then load the specified files or modules
(if any). The last module loaded becomes the current module.

You may specify a literal filename. The named file may contain a Haskell module with any name,
but you can’t load two modules with the same name together. To include a literal space in a
filename, either precede it with a backslash or wrap the whole filename double quotes. Double
quoted filenames may also contain the escape sequences“ \ ”, “ \" ” and “ \\ ”. Other bachslashes
are interpreted literally.

When asked to load a moduleM, Hugs looks for a filedir / M.hs or dir / M.lhs , wheredir is a
directory in its search path. (The“ / ” is used on Unix systems; Windows systems use“ \ ”.) The
search path may be changed using the-P option, while the set of suffixes tried may be changed
using the-S option (seeSection 3.1.2). The file found should contain a Haskell module calledM.

In mapping compound module names likeA.B.C to files, the dots are interpreted as slashes, leading
to filenamesdir /A/B/C.hs or dir /A/B/C.lhs .

Modules imported by Haskell modules are resolved to filenames in the same way, except that an
extra directory is searched first when

• the importing module was loaded by specifying a filename in that directory, or

• the importing module was found relative to that directory.

This fits nicely with the scenario where you load a module

Prelude> :load /path/to/my/project/code.hs
Main>

where the directory/path/to/my/project contains other modules used directly or indirectly by
the moduleMain in code.hs . For example, supposeMain importsA.B.C , which in turn importsD.
These may be resolved to filenames/path/to/my/project/A/B/C.hs , and (assuming that is

11

Chapter 2. Using Hugs

found),/path/to/my/project/D.hs . However imports from modules found on the search path
do not use the extra directory.

:also [file-or-module ...]

Read the specified additional files or modules. The last module loaded becomes the current module.

:reload

Clear all files except thePrelude and modules it uses, and then reload all the previously loaded
modules.

:module module

Set the current module for evaluating expressions.

:edit [file]

The :edit command starts an editor program to modify or view a Haskell module. Hugs suspends
until the editor terminates, and then reloads the currently loaded modules. The-E option (see
Section 3.1.3) can be used to configure Hugs to your editor of choice.

If no filename is specified, Hugs edits the current module.

:find name

Edit the module containing the definition ofname.

2.3. Getting information

:?

Display a brief summary of the commands listed here.

12

Chapter 2. Using Hugs

:names [pattern ...]

List names that match any of the listed patterns and are defined in any of the currently loaded
modules. Patterns resemble filename patterns:* matches any substring,? matches any character,
[chars] matches any ofchars , with char - char standing for a range of characters, and
\ char matcheschar .

If no patterns are given, all names defined in any of the currently loaded modules are listed.

:info [name]

Describe the named objects. Qualified names may be used for objects defined or imported in any
loaded module other than the current one.

If no arguments are given, the names of all currently loaded files are printed.

:browse [all] [module ...]

List names exported by the specified modules (which must already be loaded). If “all ” is given, list
all names in scope inside the modules. If no modules are given, it describes the current module.

:version

Print the version of the Hugs interpreter. Major releases of Hugs are identified by a month and year:

Prelude> :version
- Hugs Version November 2003

Development snapshots are identified by a date inYYYYMMDDform.

2.4. Miscellaneous commands

:! [command]

Shell escape. If thecommand is omitted, run a shell.

13

Chapter 2. Using Hugs

:cd dir

Change the working directory of Hugs todir . If dir begins with “~/ ”, the “~” is replaced by your
home directory.

:gc

Force a garbage collection.

14

Chapter 3. Changing the behaviour of
Hugs

3.1. Hugs options
The behaviour of Hugs may be modified by options. These are initially set to default values, and then
read from the following sources in order:

1. (Windows only) the registry under theHKEY_LOCAL_MACHINEkey.

2. (Windows only) the registry under theHKEY_CURRENT_USERkey. This step is skipped if the
environment variable IGNORE_USER_REGISTRY is set, providing an emergency workaround if
the settings are invalid.

3. (Hugs for Windows only) the GUI settings.

4. (Mac OS prior to Mac OS X) the preferences file “Hugs Preferences ”.

5. The environment variable HUGSFLAGS, if set.

6. The Hugs command line.

Most options can be changed within Hugs using the:setcommand (seeSection 2.1).

Hugs takes two kinds of options:

• Toggles like+t or -t , which start with+ or - to turn them on or off, respectively.

• Options that set a parameter value, like-P str , in which - could be replaced by+, the choice making
no difference.

3.1.1. Language options

+98

Accept only Haskell 98. This is on by default, and cannot be changed within Hugs. Turning this off
enables several special Hugs extensions, which are described inChapter 5, Chapter 6and theHugs
98 User Manual.

-c num

Set constraint cutoff limit in the type checker tonum (default: 40). SeeSection 5.2.2.

15

Chapter 3. Changing the behaviour of Hugs

+o

Allow certain overlapping instances (a Hugs extension; default: off). SeeSection 5.2.3for details.

+O

Allow certain overlapping instances (a Hugs extension; default: off). These are the same
overlapping instances as accepted by+o, but+Oalso accepts ambiguous uses of these instances,
even though this is unsafe (seeSection 5.2.3).

+H

Supporthere documents(named after similar things in Unix shells), another way of writing large
string literals (seeSection 6.3). This extension is turned off by default.

3.1.2. Module loading options

+l

Literate scripts as default (default: off).

Files with names ending in“ .hs ” are always treated as ordinary Haskell, while those ending in
“ .lhs ” are always treated as literate scripts. This option determines whether other files are literate
scripts or not. (SeeSection 3.3for an example.)

+.

Print dots to show progress while loading modules (default: off).

+q

Print nothing to show progress while loading modules (default: on).

+w

Always show which files were loaded (default: off).

-F cmd

Preprocess source files before loading. Instead of reading a source file directly, Hugs will execute
cmd with the source file name as argument, and read the standard output.

This is handy for preprocessing source files with the C preprocessor, or some preprocessor
implementing a language extension. However it is slower. In particular (because of the way Hugs
handles imports), the preprocessor will be run twice on files that import modules that have not been
loaded yet.

16

Chapter 3. Changing the behaviour of Hugs

-P str

Set search path for source files tostr , which should be a list of directories separated by colons
(semicolons on Windows, DOS or Macs). A null entry in this list will be replaced by the previous
search path; a nullstr means the default path. Any occurrences of{Hugs} in this string will be
replaced by the Hugs library directory. Similarly,{Home} is expanded to your home directory. An
entry of the form “directory /* ” means all the immediate subdirectories ofdirectory . The
default value is

.:{Hugs}/libraries:{Hugs}/oldlib

The interpreter won’t let you change the search path if that would prevent it from reading the
Prelude .

-S str

Set list of filename suffixes.

Normally, when you import a moduleM, Hugs looks for filesM.hs andM.lhs in each directory in
you search path. With this option, you can change this list, in a similar way to the-P option for the
search path. By default, the suffix list is“ .hs:.lhs ”, which gives the behaviour just described.
(NB: the“ : ” is the Unix separator. Windows or Macs use“ ; ” instead.) If you use-S:.xhs then the
suffix list becomes“ .hs:.lhs:.xhs ”, so Hugs will look forM.hs , M.lhs andM.xhs .

A null entry in this list will be replaced by the previous suffix list; a nullstr means the default list.

The interpreter won’t let you change the suffix list if that would prevent it from reading the
Prelude , i.e. you must include“ .hs ”. Note also that the interpreter knows that files ending in
“ .lhs ” are literate scripts; no other suffix is treated that way.

This option can be useful in conjunction with the preprocessor option (-F). The preprocessor can
examine the filename to decide what to do with the file.

3.1.3. Specifying a source file editor

-E str

Specify the editor used by the:edit command (seeSection 2.2). For example, to have Hugs invoke
vi to edit your files, use

-Evi

The argument string is actually a template string that gets expanded by Hugs, via the following rules:

17

Chapter 3. Changing the behaviour of Hugs

• all occurrences of%dare replaced by the line number of where the last error occurred (if any).
Please consult your editor’s documentation for ways of specifying the line number.

• all occurrences of%sare replaced by the name of the file. If an occurrence of%s is both preceded
by and followed by space, the filename is enclosed in double-quotes.

• all occurrences of%f are replaced by the absolute filename (provided your platform lets you find
the absolute path to a file.) Most of the time,%swill be just fine, but in case your editor doesn’t
handle relative filenames correctly, try using%f.

• all occurrences of%%are replaced by%.

• (win32 only): if the-E string is prefixed with the character “&”, then the invocation is
asynchronous, that is, the editor process is created, but Hugs won’t wait for the editor to
terminate.

• (win32 only): if the-E string is prefixed with the character “! ”, then the invocation will be
asynchronous and use the underlying command processor/shell to execute the command.

If neither%snor%f occurs within the-E string, then the filename is appended before invoking the editor.

Here are some example editor configurations:

• TextPad

-E"c:/Program Files/TextPad 4/textpad \"%s\"(%d)"

• vi and clones

-E"vi +%d %s"

• gnuclient (for use with (X)Emacs)

-E"gnuclient +%d %s"

3.1.4. Evaluation and printing options

-p str

Set prompt string tostr (default: “%s> ”). Any %s in str will be replaced by the current module
name.

-r str

Set the string denoting the last expression tostr (default: “$$”).

18

Chapter 3. Changing the behaviour of Hugs

+k

Show kind errors in full (default: off).

In Haskell, each type expression has akind. These kinds do not appear in the source language, but
they are checked for consistency. By default, Hugs reports such errors as anIllegal type . For
example, the declaration

instance Monad Int

gives rise to the error

ERROR "Test.hs":4 - Illegal type in class constraint

However if+k is given, the error message is identified as aKind error , and is expanded to
include the conflicting kinds:

ERROR "Test.hs":4 - Kind error in class constraint
*** constructor : Int
*** kind : *
*** does not match : * -> *

Also, when+k is given, the output of the:info will include kind information for classes and type
constructors:

Prelude> :info Monad
- constructor class with arity * -> *
...
Prelude> :info Int
- type constructor with kind *

+T

Apply defaulting rules to types before printing (default: off).

When printing out types, the interpreter will normally not try to simplify types by applying
defaulting rules, e.g.,

Prelude> :t 1
1 :: Num a => a
Prelude>

With the+T option, the interpreter attempts to“default” types first, using the same rules as for
expressions (seeSection 2.1):

Prelude> :set +T
Prelude> :t 1
1 :: Integer
Prelude>

19

Chapter 3. Changing the behaviour of Hugs

+Q

Qualify names when printing (default: off).

By default, the interpreter will print out names without qualifying them with their defining modules.
Most of the time that’s exactly what you want, but can become confusing if you re-define types and
functions; the error messages not pinning down what entity it is referring to. To have the interpreter
qualify the names, use+Q. Typically, you use+Qwhen resolving errors, but turn it back off again
afterwards.

+t

Print the type of each expression evaluated (default: off).

Normally Hugs merely prints the value of each expression evaluated:

Prelude> 1+2
3

With the+t option, it also adds the type of the expression:

Prelude> :set +t
Prelude> 1+2
3 :: Integer

Note that defaulting has been applied to the type of the expression in order to evaluate it, so the type
differs from that reported by the:type command (assuming that the+T option is not used):

Prelude> :type 1+2
1 + 2 :: Num a => a

+u

Useshow to display results (default: on).

By default, the values of expressions typed at the prompt are printed using theshow member of the
Show class:

Prelude> [Just (2+3), Nothing]
[Just 5,Nothing]

You can define this function as desired for any new datatype. If the type of the expression is not an
instance of theShow class, an error results:

Prelude> id
ERROR - Cannot find "show" function for:
*** Expression : id
*** Of type : a -> a

With the-u option, a built-in printer is used instead, and this works for any type:

20

Chapter 3. Changing the behaviour of Hugs

Prelude> :set -u
Prelude> id
id
Prelude> \x -> x
v1497
Prelude> [Just (2+3), Nothing]
[Maybe_Just 5,Maybe_Nothing]

Another feature of the built-in printer is its treatment of failures (or exceptions). Normally, an
exception causes immediate failure of the expression:

Prelude> :set +u
Prelude> 1 + 2/0

Program error: divide by zero

Prelude> [1, 2 + error "foo", 3]
[1,
Program error: foo

However the built-in printer prints the whole value, with embedded exceptions:

Prelude> :set -u
Prelude> [1, 2 + error "foo", 3]
[1,{error "foo"},3]

Sometimes a component could produce one of two or more exceptions, but the built-in printer
shows only one of them:

Prelude> 1 + error "foo" + error "bar"
{error "foo"}

+I

Display results of IO programs (default: off).

By default, an expression ofIO type typed at the prompt is executed for effect, but the final value it
produces is discarded. When+I is used, such an expression is evaluated, and then its result is
printed withPrelude.print :

Prelude> :set +I
Prelude> (return ’a’ :: IO Char)
’a’
Prelude>

i.e., evaluating an IO actionmwith +I in effect is equivalent to evaluating“do { x <- m ;

print x } ” with -I .

21

Chapter 3. Changing the behaviour of Hugs

3.1.5. Resource usage options

-h num

Set the maximum size in the Hugs heap (default:250k). The argument should be a decimal number,
and may by suffixed with “k” (thousands), “M” (millions) or “G” (billions, if your machine has that
much memory). Case is not significant. The heap size is measured in cells, each of which usually
comprises twoint s (taking up 8 bytes on most common architectures).

Setting this option with:setdoes not change the heap size for the current execution of Hugs. On
Win32, however, all options are saved to the registry, so it will take effect the next time Hugs is run.

+s

Print statistics after each evaluation (default: off).

For each evaluation, this option shows

• the number of reductions performed (a crude measure of the amount of work performed by the
interpreter),

• the total number of cells allocated during evaluation, and

• the number of garbage collections that occurred during evaluation (if any).

Note that even the most trivial evaluation involves several reductions and cells, because Hugs wraps
the expression in code to print the value and catch exceptions:

Prelude> True
True
(25 reductions, 46 cells)

Note that the cell count measures the total amount of allocation, rather than the number of cells in
use at any time (theresidency). For that, the+g option may be more useful. In general these
statistics cannot be safely used for much more than spotting general trends.

+g

Print the number of cells recovered after each garbage collection (default: off). This can be useful
for analysing theresidencyof an algorithm, the amount of memory is is actually using at each point
in time. For example,

Prelude> :set +g
Prelude> length [1..60000]
{{Gc:237618}}{{Gc:237617}}{{Gc:237616}}{{Gc:237623}}{{Gc:237621}}
{{Gc:237628}}{{Gc:237623}}{{Gc:237618}}60000

22

Chapter 3. Changing the behaviour of Hugs

We see that the computation creates a lot of cells, but the number recovered on each garbage collection is
roughly the same, so its residency is constant. In contrast, with

Prelude> let xs = [1..60000] in sum xs ‘div‘ length xs
{{Gc:237510}}{{Gc:213862}}{{Gc:190948}}{{Gc:170500}}{{Gc:152225}}
{{Gc:135925}}{{Gc:121350}}{{Gc:108350}}{{Gc:96750}}{{Gc:86375}}
{{Gc:77125}}{{Gc:68860}}{{Gc:61490}}{{Gc:72948}}{{Gc:97265}}{{Gc:129688}}
{{Gc:172916}}{{Gc:230551}}30000

we see that the amount reclaimed by each garbage collection is steadily falling until a certain point
(because the original list is retained). These examples use the default heap size of 250000 cells; this
may be changed with the-h option.

Since these garbage collection messages will be unpredictably interleaved with the desired output,
you would usually only turn+g on to analyse memory problems, and then turn it off afterwards.

+R

Enable root optimisation (default: on).

This usually gives a small gain in speed, but you might want to turn it off if you’re using the
observation-based debugger (seeSection 6.4.2.3).

3.2. Environment variables used by Hugs
Hugs also consults a number of environment variables on systems that support them. The method for
setting these varies with the system.

EMACS

(Windows only) If this variable is set, Hugs is assumed to be running in an Emacs subshell (with
different line termination conventions on input).

HOME

The user’s home directory. This is substituted for{Home} in the argument of the-P option (see
Section 3.1.2), and for “~” in the argument of the:cd command (seeSection 2.4).

HUGSFLAGS

Additional options for Hugs, processed before any given on the command line (seeSection 3.1).
Within this string, options may be separated by whitespace. To include a literal space in an option,

23

Chapter 3. Changing the behaviour of Hugs

either precede it with a backslash or wrap the whole option in double quotes. The following
example assumes a shell compatible with the Unix Bourne shell:

HUGSFLAGS=’+k -E"vi +%d"’
export HUGSFLAGS

Double quoted options may also contain the escape sequences “\ ”, “ \" ” and “\\ ”. Other bachslashes
are interpreted literally.

HUGSDIR

The Hugs library directory. This is substituted for{Hugs} in the argument of the-P option (see
Section 3.1.2).

IGNORE_USER_REGISTRY

(Windows only) If this variable is set, options are not read from the user portion of the Registry (see
Section 3.1). You might use this to recover if your registry settings get messed up somehow.

SHELL

The shell that is invoked by the:! command (seeSection 2.4).

3.3. Standalone programs

runhugs [option ...] file

Therunhugs command is an interpreter for an executable Hugs script, which must be a file containing a
HaskellMain module. For example, an executable file might contain the lines

#!/usr/local/bin/runhugs +l

> module Main where
> main = putStr "Hello, World\n"

When this file is executed,runhugs will invoke themain function. Any arguments given on the
command line will be available through thegetArgs action.

3.4. Compiling modules that use the Foreign
Function Interface

ffihugs [+G] [option ...] [+Lcc-option ...] file

24

Chapter 3. Changing the behaviour of Hugs

Suppose you have some C functions intest.c and some ffi declarations for those functions inTest.hs

and the code intest.c needs to be compiled with-lm . To use these with Hugs, you must first use
ffihugs to generateTest.c , compile it and link it againsttest.c with -lm to produceTest.so :

ffihugs +G +L"test.c" +L"-lm" Test.hs

(If Test.hs depends on other ffi modules, you’ll have to compile them first.) Now you can run Hugs as
normal; whenTest.hs is loaded, Hugs will loadTest.so .)

hugs Test.hs

and then use the imported or exported functions.

25

Chapter 4. Hugs vs Haskell 98 and
addenda
In +98 mode, Hugs supportsHaskell 98 (http://www.haskell.org/definition/) and some standardized
extensions (described by addenda to the Haskell 98 report).

4.1. Haskell 98 non-compliance
Hugs deviates from Haskell 98 in a few minor ways, listed here corresponding to the relevant sections of
the Report.

4.1.1. Lexical structure

Restricted character set

The Haskell report specifies that programs may be written using Unicode. Hugs only accepts the
ISO8859-1 (Latin-1) subset at the moment.

Floating point literals

Hugs is confused by such things as “0xy ”, “ 0oy ”, “ 9e+y ” and “9.0e+y ”, because it doesn’t look
far enough ahead.

4.1.2. Expressions

Interaction of fixities with thelet /lambda meta-rule

Hugs doesn’t use the fixity of operators until after parsing, and so fails to accept legal (but weird)
Haskell 98 expressions like

let x = True in x == x == True

Restricted syntax for left sections

In Hugs, the expression must be an fexp (orcase or do). Legal expressions like(a+b+)) and
(a*b+)) are rejected.

26

Chapter 4. Hugs vs Haskell 98 and addenda

4.1.3. Declarations and bindings

Slight relaxation of polymorphic recursion

Hugs’s treatment of polymorphic recursion is less restrictive than Haskell 98 when the functions
involved are mutually recursive. Consider the following example:

data BalancedTree a = Zero a | Succ (BalancedTree (a,a))

zig :: BalancedTree a -> a
zig (Zero a) = a
zig (Succ t) = fst (zag t)

zag (Zero a) = a
zag (Succ t) = snd (zig t)

As with many operations on non-regular (or nested) types,zig andzag need to be polymorphic in the
element type. In Haskell 98, the bindings of the two functions are interdependent, and thus
constitute a single binding group. When type inference is performed on this group,zig may be
used at different types, because it has a user-supplied polymorphic signature. However,zag may
not, and the example is rejected, unless we add an explicit type signature forzag . (It could be
argued that this is a bug in Haskell 98.)

In Hugs, the binding ofzig depends on that ofzag , but not vice versa. (The binding ofzag is
considered to depend only on the explicit signature ofzig .) It is possible to infer a polymorphic
type forzag , and from that forzig . This type matches the declared signature, so Hugs accepts this
example.

Relaxation of type classes

Contrary to the the Report (4.3.1), Hugs allows the types of the member functions of a classC a to
impose further constraints ona, as in

class Foo a where
op :: Num a => a -> a -> a

Different implementation of the monomorphism restriction for top-level bindings

For example, Hugs rejects the following example from the Haskell 98 Report, 4.5.5:

module M where
import List
len1 = genericLength "Hello"
len2 = (2*len1) :: Rational

27

Chapter 4. Hugs vs Haskell 98 and addenda

This module consists of two binding groups, containinglen1 andlen2 respectively. Type inference on
the first (len1) triggers the monomorphism restriction, so thatlen1 is assigned the monomorphic
type(Num a => a) . The next step differs between Haskell 98 and Hugs:

• In Haskell 98, type inference is then performed onlen2 , resolving the type variablea to
Rational , and the module is legal.

• In Hugs, the defaulting rule is applied tolen1 , instantiating the type variablea to Integer .
Then type inference onlen2 fails.

4.1.4. Modules

Implicit module header

In Haskell 98, if the module header is omitted, it defaults to “module Main(main) where ”. In
Hugs it defaults to “module Main where ”, because many people test small modules without
module headers.

Implicit export list

In Haskell 98, a missing export list means all names defined in the current module. In Hugs, it is
treated as “(module M) ”, whereM is the current module. This is almost the same, differing only
when an imported module is aliased asM.

Type synonyms in export and import lists

Hugs allows theT(..) syntax for type synonyms in export and import lists. It also allows the form
T() for type synonyms in import lists.

Mutually recursive modules are not supported

Note that although the Haskell 98 specification of thePrelude and library modules is recursive,
Hugs achieves the same effect by putting most of these definitions in a moduleHugs.Prelude that
these modules import.

Weird treatment of(:)

The Hugs prelude exports(:) as if it were an identifier, even though this is not permitted in
user-defined modules. This means that Hugs incorrectly rejects the following:

module Foo where
import Prelude()
cs = ’a’:cs

28

Chapter 4. Hugs vs Haskell 98 and addenda

4.1.5. Predefined types and classes

Unicode is not supported

The typeChar is limited to the ISO8859-1 subset of Unicode.

Rational literals lose precision

In Haskell 98, a floating point literal like1.234e-5 stands for “fromRational (1234 %

100000000) ”. In particular, if the literal is ofRational type, the fraction is exact. In Hugs such
literals are stored as double precision floating point numbers. If the literal is ofRational type, it
usually denotes the same number, but some precision may be lost.

Floating point values are printed differently

Haskell 98 specifies thatshow for floating point numbers is the functionNumeric.showFloat , but
Hugs uses an internal function with slightly different semantics.

DerivedRead instances do not work for some infix constructors.

Derived instances for large tuples are not supplied

In Haskell 98, all tuple types are instances ofEq, Ord , Bounded , Read, andShow if all their
component types are. Hugs defines these instances only for tuple types of size 5 or less (3 or less in
the small Hugs configuration).

4.2. Addenda to Haskell 98
These addenda describe extensions that have been standardized across haskell implementations.

4.2.1. Foreign Function Interface
The Haskell Foreign Function Interface, as described in theFFI addendum
(http://www.cse.unsw.edu.au/~chak/haskell/ffi/) is implemented except for the following limitations:

• Only theccall calling convention is supported. All others are flagged as errors.

• foreign export is not implemented.

• foreign import wrapper are only implemented for the x86, PowerPC and Sparc architectures and
has been most thoroughly tested on Windows and Linux using gcc.

29

Chapter 4. Hugs vs Haskell 98 and addenda

Modules containingforeign declarations must be compiled withffihugs before use (seeSection 3.4).

4.2.2. Hierarchical Namespace Extension
TheHaskell Hierarchical Namespace Extension (http://www.haskell.org/hierarchical-modules/) allows
dots in module names, e.g.System.IO.Error , creating a hierarchical module namespace. Hugs has
supported this since the December 2001 release. When searching for the source file corresponding to a
hierarchical name, Hugs replaces the dots with slashes.

30

Chapter 5. Language extensions
supported by Hugs and GHC
These experimental features are enabled with the-98 option. Most are described inSection 7 of the
Hugs 98 User Manual(http://cvs.haskell.org/Hugs/pages/hugsman/exts.html). Those described in this
chapter are also supported byGHC (http://www.haskell.org/ghc/) with appropriate options, though in
some cases the GHC versions are more general

5.1. Syntactic extensions

5.1.1. Recursive do-notation
The recursive do-notation (also known as mdo-notation) is implemented as described in:A recursive do
for Haskell, Levent Erkök and John Launchbury,Haskell Workshop 2002, pages: 29–37. Pittsburgh,
Pennsylvania.

The do-notation of Haskell does not allow recursive bindings, that is, the variables bound in a
do-expression are visible only in the textually following code block. Compare this to a let-expression,
where bound variables are visible in the entire binding group. It turns out that several applications can
benefit from recursive bindings in the do-notation, and this extension provides the necessary syntactic
support.

Here is a simple (yet contrived) example:

import Control.Monad.Fix

justOnes = mdo xs <- Just (1:xs)
return xs

As you can guessjustOnes will evaluate toJust [1,1,1,...

TheControl.Monad.Fix module introduces theMonadFix class, defined as

class Monad m => MonadFix m where
mfix :: (a -> m a) -> m a

The functionmfix dictates how the required recursion operation should be performed. If recursive
bindings are required for a monad, then that monad must be declared an instance of theMonadFix class.
For details, see the above mentioned reference.

TheControl.Monad.Fix module also defines instances ofMonadFix for List , Maybe andIO .
Furthermore, several other monad modules provide instances of theMonadFix class, including the

31

Chapter 5. Language extensions supported by Hugs and GHC

Control.Monad.ST andControl.Monad.ST.Lazy modules for Haskell’s internal state monad (strict
and lazy, respectively).

There are three important points in using the recursive-do notation:

• The recursive version of the do-notation uses the keywordmdo (rather thando).

• You should “import Control.Monad.Fix ”.

• Hugs should be started with the flag-98 .

The web page:“http://www.cse.ogi.edu/PacSoft/projects/rmb” contains up to date information on
recursive monadic bindings.

Historical note: The old implementation of the mdo-notation (and most of the existing documents) used
the nameMonadRec for the class and the corresponding library.

5.1.2. Parallel list comprehensions (a.k.a.
zip-comprehensions)
Parallel list comprehensions are a natural extension to list comprehensions. List comprehensions can be
thought of as a nice syntax for writing maps and filters. Parallel comprehensions extend this to include
thezipWith family.

A parallel list comprehension has multiple independent branches of qualifier lists, each separated by a
“ | ” symbol. For example, the following zips together two lists:

[(x, y) | x <- xs | y <- ys]

The behavior of parallel list comprehensions follows that ofzip , in that the resulting list will have the
same length as the shortest branch.

We can define parallel list comprehensions by translation to regular comprehensions. Given a parallel
comprehension of the form:

[e | p1 <- e11, p2 <- e12, ...
| q1 <- e21, q2 <- e22, ...
...

]

This will be translated to:

[e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...]
[(q1,q2) | q1 <- e21, q2 <- e22, ...]
...

]

32

Chapter 5. Language extensions supported by Hugs and GHC

where“zipN ” is the appropriate zip for the given number of branches.

5.2. Type class extensions

5.2.1. More flexible contexts
In Haskell 98, contexts consist of class constraints on type variables applied to zero or more types, as in

f :: (Functor f, Num (f Int)) => f String -> f Int -> f Int

In class and instance declarations only type variables may be constrained. With the-98 option, any type
may be constrained by a class, as in

g :: (C [a], D (a -> b)) => [a] -> b

Classes are not limited to a single argument either (seeSection 5.2.4).

5.2.2. More flexible instance declarations
In Haskell 98, instances may only be declared for adata or newtype type constructor applied to type
variables. With the-98 option, any type may be made an instance:

instance Monoid (a -> a) where ...
instance Show (Tree Int) where ...
instance MyClass a where ...
instance C String where

This relaxation, together with the relaxation of contexts mentioned above, makes the checking of
constraints undecidable in general (because you can now code arbitrary Prolog programs using
instances). To ensure that type checking terminates, Hugs imposes a limit on the depth of constraints it
will check, and type checking fails if this limit is reached. You can raise the limit with the-c option, but
such a failure usually indicates that the type checker wasn’t going to terminate for the particular
constraint problem you set it.

Note that GHC implements a different solution, placing syntactic restrictions on instances to ensure
termination, though you can also turn these off, in which case a depth limit like that in Hugs is used.

33

Chapter 5. Language extensions supported by Hugs and GHC

5.2.3. Overlapping instances
With the relaxation on the form of instances discussed in the previous section, it seems we could write

class C a where c :: a
instance C (Bool,a) where ...
instance C (a,Char) where ...

but then in the expressionc :: (Bool,Char) , either instance could be chosen. For this reason,
overlapping instances are forbidden:

ERROR "Test.hs":4 - Overlapping instances for class "C"
*** This instance : C (a,Char)
*** Overlaps with : C (Bool,a)
*** Common instance : C (Bool,Char)

However if the+o option is set, they are permitted when one of the types is a substitution instance of the
other (but not equivalent to it), as in

class C a where toString :: a -> String
instance C [Char] where ...
instance C a => C [a] where ...

Now for the type[Char] , the first instance is used; for any type[t] , wheret is a type distinct from
Char , the second instance is used. Note that the context plays no part in the acceptability of the
instances, or in the choice of which to use.

The above analysis omitted one case, where the typet is a type variable, as in

f :: C a => [a] -> String
f xs = toString xs

We cannot decide which instance to choose, so Hugs rejects this definition. However if the+Ooption is
set, this declaration is accepted, and the more general instance is selected, even though this will be the
wrong choice iff is later applied to a list ofChar .

Hugs used to have a+moption (for multi-instance resolution, if Hugs was compiled withMULTI_INST

set), which accepted more overlapping instances by deferring the choice between them, but it is currently
broken.

Sometimes one can avoid overlapping instances. The particular example discussed above is similar to the
situation described by theShow class in thePrelude . However there overlapping instances are avoided
by adding the methodshowList to the class

34

Chapter 5. Language extensions supported by Hugs and GHC

5.2.4. Multiple parameter type classes
In Haskell 98, type classes have a single parameter; they may be thought of as sets of types. In Hugs,
they may have one or more parameters, corresponding to relations between types, e.g.

class Isomorphic a b where
from :: a -> b
to :: b -> a

5.2.5. Functional dependencies
Multiple parameter type classes often lead to ambiguity. Functional dependencies (inspired by relational
databases) provide a partial solution, and were introduced inType Classes with Functional
Dependencies, Mark P. Jones, InProceedings of the 9th European Symposium on Programming, LNCS
vol. 1782, Springer 2000.

Functional dependencies are introduced by a vertical bar:

class MyClass a b c | a -> b where

This says that theb parameter is determined by thea parameter; there cannot be two instances of
MyClass with the same first parameter and different second parameters. The type inference system then
uses this information to resolve many ambiguities. You can have several dependencies:

class MyClass a b c | a -> b, a -> c where

This example could also be written

class MyClass a b c | a -> b c where

Similarly more than one type parameter may appear to the left of the arrow:

class MyClass a b c | a b -> c where

This says that thec parameter is determined by thea andb parameters together; there cannot be two
instances ofMyClass with the same first parameter and second parameters, but different third
parameters.

35

Chapter 5. Language extensions supported by Hugs and GHC

5.3. Quantified types

5.3.1. Rank 2 types
In Haskell 98, all type signatures are implicitly universally quantified at the outer level, for example

id :: a -> a

Variables bound with alet or where may be polymorphic, as in

let f x = x in (f True, f ’a’)

but function arguments may not be: Haskell 98 rejects

g f = (f True, f ’a’)

However, with the-98 , the functiong may be given the signature

g :: (forall a. a -> a) -> (Bool, Char)

This is called arank 2type, because a function argument is polymorphic, as indicated by theforall

quantifier.

Now the functiong may be applied to expression whose generalized type is at least as general as that
declared. In this case the choice is limited: we can write

g id
g undefined
g (const undefined)

or various equivalent forms

g (\x -> x)
g (id . id . id)
g (id id id)

There are a number of restrictions on such functions:

• Functions that take polymorphic arguments must be given an explicit type signature.

• In the definition of the function, polymorphic arguments must be matched, and can only be matched
by a variable or wildcard (_) pattern.

36

Chapter 5. Language extensions supported by Hugs and GHC

• When such functions are used, the polymorphic arguments must be supplied: you can’t just useg on
its own.

GHC, which supports arbitrary rank polymorphism, is able to relax some of these restrictions.

Hugs reports an error if a type variable in aforall is unused in the enclosed type.

An important application of rank 2 types is the primitive

runST :: (forall s. ST s a) -> a

in the moduleControl.Monad.ST . Here the type signature ensures that objects created by the state
monad, whose types all refer to the parameters , are unused outside the application ofrunST . Thus to
use this module you need the-98 option. Also, from the restrictions above, it follows thatrunST must
always be applied to its polymorphic argument. Hugs does not permit either of

myRunST :: (forall s. ST s a) -> a
myRunST = runST

f x = runST $ do
...
return y

(though GHC does). Instead, you can write

myRunST :: (forall s. ST s a) -> a
myRunST x = runST x

f x = runST (do
...
return y)

5.3.2. Polymorphic components
Similarly, components of a constructor may be polymorphic:

newtype List a = MkList (forall r. r -> (a -> r -> r) -> r)
newtype NatTrans f g = MkNT (forall a. f a -> g a)
data MonadT m = MkMonad {

my_return :: forall a. a -> m a,
my_bind :: forall a b. m a -> (a -> m b) -> m b

}

So that the constructors have rank 2 types:

37

Chapter 5. Language extensions supported by Hugs and GHC

MkList :: (forall r. r -> (a -> r -> r) -> r) -> List a
MkNT :: (forall a. f a -> g a) -> NatTrans f g
MkMonad :: (forall a. a -> m a) ->

(forall a b. m a -> (a -> m b) -> m b) -> MonadT m

As with functions having rank 2 types, such a constructor must be supplied with any polymorphic
arguments when it is used in an expression.

The record update syntax cannot be used with records containing polymorphic components.

5.3.3. Existential quantification
It is also possible to have existentially quantified constructors, somewhat confusingly also specified with
forall , but before the constructor, as in

data Accum a = forall s. MkAccum s (a -> s -> s) (s -> a)

This type describes objects with a state of an abstract types , together with functions to update and query
the state. Theforall is somewhat motivated by the polymorphic type of the constructorMkAccum,
which is

s -> (a -> s -> s) -> (s -> a) -> Accum a

because it must be able to operate on any state.

Some sample values of theAccum type are:

adder = MkAccum 0 (+) id
averager = MkAccum (0,0)

(\x (t,n) -> (t+x,n+1))
(uncurry (/))

Unfortunately, existentially quantified constructors may not contain named fields. You also can’t use
deriving with existentially quantified types.

When we match against an existentially quantified constructor, as in

runAccum (MkAccum s add get) [] = ??

we do not know the type ofs , only thatadd andget take arguments of the same type ass . So our
options are limited. One possibility is

runAccum (MkAccum s add get) [] = get s

Similarly we can also write

38

Chapter 5. Language extensions supported by Hugs and GHC

runAccum (MkAccum s add get) (x:xs) =
runAccum (MkAccum (add x v) add get) xs

This particular application of existentials – modelling objects – may also be done with a Haskell 98
recursive type:

data Accum a = MkAccum { add_value :: a -> Accum a, get_value :: a}

but other applications do require existentials.

5.4. Type annotations in patterns
Haskell 98 allows expressions to be annotated with type signatures. With the-98 option, these
annotations are also allowed on patterns:

f (x::Int) = fromIntegral x :: Double

Moreover type variables in pattern annotations are treated specially: unless the type variable is already
bound (by another pattern annotation), it is universally quantified over the pattern and its scope, e.g.

snoc (xs::[a]) (x::a) = xs++[x] :: [a]

Occurrences of the type variable in type signatures within this scope are bound to this type variable. In
the above example the second and third occurrences ofa are bound by the first. This permits locally
defined variables to be given signatures in situations where it would be impossible in Haskell 98:

sortImage :: Ord b => (a -> b) -> [a] -> [a]
sortImage (f::a->b) = sortBy cmp

where
cmp :: a -> a -> Ordering
cmp x y = compare (f x) (f y)

Note that the relationship between signature declarations and pattern annotations is asymmetrical:
pattern annotations may capture type variables in signature declarations, but not vice versa. There is no
connection between the type variables in the type signature ofsortImage and those in its definition, but
the occurrence ofa in the signature ofcmp is bound by the pattern(f::a->b) .

In GHC, type variables bound by pattern annotations are existentially quantified, and so may be
instantiated. Thus the following is accepted by GHC but not Hugs:

g (xs::[a]) = xs ++ "\n"

39

Chapter 5. Language extensions supported by Hugs and GHC

GHC also allowsresult type signatures, where a type signature is attached to the left side of a function
definition, but Hugs does not.

5.5. Implicit parameters
Implicit parameters are implemented as described inImplicit parameters: dynamic scoping with static
types, J Lewis, MB Shields, E Meijer, J Launchbury,27th ACM Symposium on Principles of
Programming Languages (POPL’00), Boston, Jan 2000. Note however that the binding syntax in that
paper, using keywordsdlet andwith , has been replaced by the form presented below.

(Most of the following, still rather incomplete, documentation is due to Jeff Lewis.)

A variable is calleddynamically boundwhen it is bound by the calling context of a function and
statically boundwhen bound by the callee’s context. In Haskell, all variables are statically bound.
Dynamic binding of variables is a notion that goes back to Lisp, but was later discarded in more modern
incarnations, such as Scheme, as dynamic binding can be very confusing in an untyped language.
Unfortunately typed languages, in particular Hindley-Milner typed languages like Haskell, only support
static scoping of variables.

However, by a simple extension to the type class system of Haskell, we can support dynamic binding.
Basically, we express the use of a dynamically bound variable as a constraint on the type. These
constraints lead to types of the form(?x::t’) => t , which says“this function uses a
dynamically-bound variable?x of type t’ ”. For example, the following expresses the type of asort

function, implicitly parameterized by a comparison function namedcmp.

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]

The dynamic binding constraints are just a new form of predicate in the type class system.

An implicit parameter occurs in an expression using the special form?x , wherex is any valid identifier
(e.g.ord ?x is a valid expression). Use of this construct also introduces a new dynamic-binding
constraint in the type of the expression. For example, the following definition shows how we can define
an implicitly parameterized sort function in terms of an explicitly parameterizedsortBy function:

sortBy :: (a -> a -> Bool) -> [a] -> [a]

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
sort = sortBy ?cmp

5.5.1. Implicit-parameter type constraints
Dynamic binding constraints behave just like other type class constraints in that they are automatically

40

Chapter 5. Language extensions supported by Hugs and GHC

propagated. Thus, when a function is used, its implicit parameters are inherited by the function that
called it. For example, oursort function might be used to pick out the least value in a list:

least :: (?cmp :: a -> a -> Bool) => [a] -> a
least xs = fst (sort xs)

Without lifting a finger, the?cmp parameter is propagated to become a parameter ofleast as well. With
explicit parameters, the default is that parameters must always be explicit propagated. With implicit
parameters, the default is to always propagate them.

An implicit-parameter type constraint differs from other type class constraints in the following way: all
uses of a particular implicit parameter must have the same type. This means that the type of(?x, ?x) is
(?x::a) => (a,a) , and not(?x::a, ?x::b) => (a, b) , as would be the case for type class
constraints.

You can’t have an implicit parameter in the context of a class or instance declaration. For example, both
these declarations are illegal:

class (?x::Int) => C a where ...
instance (?x::a) => Foo [a] where ...

Reason: exactly which implicit parameter you pick up depends on exactly where you invoke a function.
But the“invocation” of instance declarations is done behind the scenes by the compiler, so it’s hard to
figure out exactly where it is done. The easiest thing is to outlaw the offending types.

Implicit-parameter constraints do not cause ambiguity. For example, consider:

f :: (?x :: [a]) => Int -> Int
f n = n + length ?x

g :: (Read a, Show a) => String -> String
g s = show (read s)

Here,g has an ambiguous type, and is rejected, butf is fine. The binding for?x at f ’s call site is quite
unambiguous, and fixes the typea.

5.5.2. Implicit-parameter bindings
An implicit parameter isboundusing the standardlet or where binding forms. For example, we define
themin function by bindingcmp:

min :: [a] -> a
min = let ?cmp = (<=) in least

41

Chapter 5. Language extensions supported by Hugs and GHC

A group of implicit-parameter bindings may occur anywhere a normal group of Haskell bindings can
occur, except at top level. That is, they can occur in alet (including in a list comprehension or
do-notation), or awhere clause. Note the following points:

• An implicit-parameter binding group must be a collection of simple bindings to implicit-style
variables (no function-style bindings, and no type signatures); these bindings are neither polymorphic
or recursive.

• You may not mix implicit-parameter bindings with ordinary bindings in a singlelet expression; use
two nestedlet s instead. (In the case ofwhere you are stuck, since you can’t nestwhere clauses.)

• You may put multiple implicit-parameter bindings in a single binding group; but they arenot treated as
a mutually recursive group (as ordinarylet bindings are). Instead they are treated as a non-recursive
group, simultaneously binding all the implicit parameters. The bindings are not nested, and may be
re-ordered without changing the meaning of the program. For example, consider:

f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y

The use of?x in the binding for?y does not “see” the binding for?x , so the type off is

f :: (?x::Int) => Int -> Int

42

Chapter 6. Hugs-specific language
extensions
These experimental features are unique to Hugs. Except of the debugging primitives, they require the
-98 option.

6.1. Typed extensible records
Trex is a very powerful and flexible record system. SeeSection 7.2 of theHugs 98 User Manual
(http://cvs.haskell.org/Hugs/pages/hugsman/exts.html#sect7.2) for details.

To use equality andshow on extensible records, a module must importHugs.Trex . This module also
defines an empty record value and type:

emptyRec :: Rec EmptyRow

6.2. Restricted type synonyms
Restricted type synonyms are a mechanism for defining abstract datatypes. You can achieve similar
effects, and more portably, using the Haskell 98 module system.

The idea is that you can say that a type synonym is transparent in the definitions of certain functions (the
operations on the type), but opaque elsewhere, by writing

type Table a b = [(a,b)] in
empty :: Table a b,
isEmpty :: Table a b -> Bool,
add :: a -> b -> Table a b -> Table a b,
search :: a -> Table a b -> Maybe b

empty = []
isEmpty = null
add a b t = (a,b):t
search = lookup

or equivalently

type Table a b = [(a,b)] in empty, isEmpty, add, search

empty :: Table a b
empty = []

43

Chapter 6. Hugs-specific language extensions

...

SeeSection 7.3.5 of theHugs 98 User Manual
(http://cvs.haskell.org/Hugs/pages/hugsman/exts.html#sect7.3.5) for details.

6.3. Here documents
These expressions (named after similar things in Unix shells) are another way of writing string literals,
often useful for large strings. Everything from“ to ” (including newlines and backslashes, but not$

characters) is treated as literal text, and layout is ignored. The exception is the$ character, so that you
can embed the value of the variablevar in the string by writing$(var) . To get a literal$ character,
write $$ — single$ characters are not allowed.

When the+H option is given, the following

letter name = “Dear $(name),
Here are some characters: \ ’ ‘ ".
To learn more, send $$10 to the address below.”

is equivalent the Haskell 98 declaration

letter name = "Dear " ++ quote name ++ ",\n\
\Here are some characters: \\ ’ ‘ \".\n\
\To learn more, send $10 to the address below."

The function

class Quote where
quote :: a -> String

(basically no change forString andChar , andshow for everything else) comes from theHugs.Quote

module, which also defines several common instances, and should be imported if you use the$(var)

form. (This module also requires the-98 option.)

6.4. Hugs debugging primitives
This release of Hugs contains support for debugging by observations inspired by the Andy Gill’s Hood
library:

44

Chapter 6. Hugs-specific language extensions

1. Andy Gill, Debugging Haskell by Observing Intermediate Data Structures, in Draft Proceedings of
the 2000 Haskell Workshop.

2. The Haskell Object Observation Debugger http://www.haskell.org/hood/.

Hood is a portable Haskell library that implements the combinator

Observable a => observe :: String -> a -> a

The partial application

observe tag

behaves exactly like the identity function, but also records the value of data to which it is applied. Any
observations made are reported at the end of the computation. Thetag argument is used to label the
observed value when it is reported. Non-strict semantics is preserved —observe does not evaluate its
second argument.

HugsHood uses the same observation model but differs in a number of ways.

• It is much faster. This is because HugsHood is implemented within the Hugs evaluator and uses
primitive builtin functions. Performance depends upon the volume of observations. More frequent
observations incur a higher overhead. As a simple comparison, a test program which executed 1
million reductions and made 250 observations incurred a 625 percent overhead when observations
were made with the Hood library but just 10 percent when using HugsHood.

Caveat: When not using observations, the modifications to the evaluator to support HugsHood imposes
an overhead of about 6 percent.

• It is possible to easily observe arbitrary data structures. HugsHood implements the primitive

observe :: String -> a -> a

which is unconstrained by the need to build instances of theObservable class for each user defined
data type whose values are being observed. HugsHood uses an internal primitive function to display
observed values. This may be considered both an advantage and a disadvantage: one does not need to
define how to observe values, but one cannot define special user views of data.

• No modification to the program (apart from instrumentation withobserve) is required. The Hood
library must be invoked using a special IO monadic combinator to ensure that observations are
collected and displayed.

• There are a number of minor differences in the display format which are a consequence of the Hugs
implementation. These are described below.

45

Chapter 6. Hugs-specific language extensions

6.4.1. Using HugsHood
Modules that use HugsHood combinators must import the moduleHugs.Observe . Its only role is to
provide the necessary primitive definitions, namely:

primitive observe :: String -> a -> a
primitive bkpt :: String -> a -> a
primitive setBkpt :: String -> Bool -> IO ()

6.4.1.1. Breakpoints

HugsHood implements breakpoints. A program can be instrumented with thebkpt function. The partial
application

bkpt bkpt_name

behaves exactly like the identity function, except that before it returns its argument it checks if
bkpt_name is enabled, and if it is the user is presented with the opportunity to view observed data. A
small set of commands is available when Hugs halts due to a breakpoint:

p [tag_name]

Print observations made since the computation began. If an observation tag is suppled then only the
associated observations will be displayed. Otherwise all observations will be displayed.

c [n]

Continue with program evaluation. With no arguments, evaluation will continue until another active
breakpoint is encountered. The optional numeric argument will skipn active breakpoints before
stopping.

s bkpt_name

Set a breakpoint.

r [bkpt_name]

Reset a named breakpoint or, if no breakpoint name is supplied, reset all breakpoints.

46

Chapter 6. Hugs-specific language extensions

A breakpoint is by default disabled. It can be enabled by using thes command in the debug breakpoint
dialogue, or by using thesetBkpt combinator. Clearly at least one breakpoint must be enabled using
setBkpt before a breakpoint dialogue can be triggered.

6.4.1.2. Breakpoint Example

Here is a very simple program using the three combinators.

import Hugs.Observe

prog n = do { setBkpt "fib" True; putStr $ show (observe "fun" f n) }
f 0 = 1
f n = n * (bkpt "fib" $ observe "fun" f (n-1))

The following sample session shows how thep andc commands can be used.

Main> prog 4
Break @ fib> p

»»»> Observations «««

fun
{ \ 4 -> _
}

Break @ fib> c
Break @ fib> p

»»»> Observations «««

fun
{ \ 4 -> _
, \ 3 -> _
}

Break @ fib> c 2
Break @ fib> p

»»»> Observations «««

fun
{ \ 4 -> _
, \ 3 -> _
, \ 2 -> _

47

Chapter 6. Hugs-specific language extensions

, \ 1 -> _
}

Break @ fib> c
24
(98 reductions, 299 cells)

»»»> Observations «««

fun
{ \ 4 -> 24
, \ 3 -> 6
, \ 2 -> 2
, \ 1 -> 1
, \ 0 -> 1
}

10 observations recorded

6.4.2. Differences from Hood
HugsHood uses a similar style of display to Hood, though there are differences. One trivial difference is
that Hood reports tags with a leading“ - ” while HugsHood does not.

Consider now more significant differences.

6.4.2.1. Observing character strings

HugsHood (and Hood) reports lists using the cons operator.

Observe> observe "list" [1..3]
[1,2,3]

»»»> Observations «««

list
(1 : 2 : 3 : [])

This is too verbose for lists of characters, so HugsHood reports strings in the usual format:

Observe> observe "string" [’a’..’d’]
"abcd"

48

Chapter 6. Hugs-specific language extensions

»»»> Observations «««

string
"abcd"

If only the initial part of the string is evaluated, a trailing“ ... ” is reported.

Observe> take 2 $ observe "string" [’a’..’d’]
"ab"

»»»> Observations «««

string
"ab..."

This is clearly ambiguous, because evaluating the expression

observe "string" "ab..."

will give the same result, but in practice the ambiguity should be easy to resolve.

6.4.2.2. Unevaluated expressions

The“_” symbol is used to indicate an unevaluated expression. In Hood all unevaluated expressions will
be displayed using“_”. In HugsHood,“_” denotes an unevaluated expression, but not all unevaluated
expressions are denoted by“_”.

For example the expressionfst $ observe "pair" (1,2) yields

- pair
(1, _)

in both Hugs and HugsHood. However,fst $ observe "pair" (’a’,’b’) yields

pair
(’a’,’b’)

in HugsHood, and(’a’, _) in Hood. This is because HugsHood (unlike Hood) does not actually
record evaluation steps. It merely maintains an internal pointer to that part of the heap representing the
tagged expression. If the expression in not in weak head normal form, then it obviously has not been
evaluated and so it is reported as just“_”; otherwise it displayed. Integer constants like1 and2 are not in
WHNF, as they must be coerced to the correct type when evaluated. Characters though are in WHNF so
it is not possible to discern whether a character was evaluated.

49

Chapter 6. Hugs-specific language extensions

Another consequence of the HugsHood implementation by pointers rather than Hood’s implementation
by tracing evaluation is that the strictness behaviour of a function can be masked. Consider the example:

lazy pair = let x = observe "fst" fst pair
y = snd pair

in (y,x)

For the expressionlazy (1,2) Hood reports

- fst
{ \ (1, _) -> 1
}

while HugsHood reports

fst
{ \ (1,2) -> 1
}

HugsHood should not be used to deduce the strictness behaviour of a function, or it should be done only
with caution.

6.4.2.3. Interaction with the root optimisation

The Hugs compiler uses an optimisation when generating code that builds expressions on the heap. If a
function definition has the form

f arg1 .. argN = f arg1 .. argM

where 1≤ M≤ N, then the expression graph forf arg1 .. argM is copied rather than rebuilt from
individual application nodes. This interacts with the observation algorithm so that observing functions of
the above form gives unexpected results.

For instance consider the expression

observe "fold" foldl (+) 0 [1..3]

When the root optimisation is applied to the compilation offoldl , we see

fold
{ \ primPlusInteger 6 [] -> 6
, \ { \ 3 3 -> 6

} 3 (3 : []) -> 6
, \ { \ 1 2 -> 3

} 1 (2 : 3 : []) -> 6

50

Chapter 6. Hugs-specific language extensions

, \ { \ 0 1 -> 1
} 0 (1 : 2 : 3 : []) -> 6

instead of the expected

fold
{ \ { \ 0 1 -> 1

, \ 1 2 -> 3
, \ 3 3 -> 6
} 0 (1 : 2 : 3 : []) -> 6

}

The first form reports the arguments at each application offoldl , while the second reports the
arguments for just the initial application (the one marked byobserve).

The root optimisation can be disabled using the-R option. This can be done from the command line or
by using:s -R at the Hugs prompt. If you want to compile the prelude definitions without the root
optimisation you must invoke Hugs with the-R option.

Testing of execution time with and without the root optimisation for a selection of 23 benchmarks from
the nofib suite has been carried out. All but 5 tests resulted in an execution time penalty of less than 3%
when running without root optimisation (some even showed a very minor speedup).

6.4.2.4. Known problems

Hugs can produce infinite (cyclic) dictionaries when implementing overloading. The observation
reporting mechanism does not detect these at present, which leads to a non-terminating report. We plan
to address this in a future release.

6.4.3. Reporting HugsHood bugs
Please report bugs to Richard Watson,<rwatson@usq.edu.au >

In particular, if the message

Warning: observation sanity counter > 0

appears, and your program has not terminated abnormally, please report the error situation.

51

Chapter 7. Miscellaneous

7.1. Hugs 98 release history
These are the release notes for the program since it was renamed Hugs 98, reflecting substantial
compliance with Haskell 98 (though with numerous optional extensions). Archives of older versions of
Gofer (http://www.cse.ogi.edu/~mpj/goferarc/index.html) andHugs
(http://www.cse.ogi.edu/~mpj/hugsarc/index.html) are still available from Mark Jones’s web page.

7.1.1. January 1999 (Beta release)
Headline news for this release includes:

• Hugs goes Haskell 98! Hugs 98 is the first released Haskell system to support the new standard for
Haskell 98.

• Hugs goes Open Source! Hugs 98 is the first Hugs release to be distributed as Open source software.
Responding to requests from users, this relaxes the conditions of use and distribution of previous
releases, and will hopefully make it easier to use Hugs for a wide range of projects.

This release of Hugs also merges the features of several earlier releases into one single system. This
includes:

• The module system and dynamic linking facilities of Hugs 1.4 (June 1998);

• The type system extensions (multi-parameter classes, TREX, rank-2 polymorphism, existentials, etc.)
of Hugs 1.3c p1 (March 1998);

• New features and modifications to support the draft Haskell 98 standard;

• A whole range of bug fixes and additions for all of the above.

7.1.2. May 1999
This release is largely conformant with Haskell 98, including monad and record syntax, newtypes,
strictness annotations, and modules. In addition, it comes packaged with the libraries defined in the most
recent version of the Haskell Library Report and with extension libraries that are compatible with GHC
3.0 and later.

Additional features of the system include:

52

Chapter 7. Miscellaneous

• “Import chasing”: a single module may be loaded, and Hugs will chase down all imports as long as
module names are the same as file names and the files are found in the current path.

• A simple GUI for Windows to facilitate program development.

• Library extensions to support concepts such as concurrency, mutable variables and arrays, monadic
parsing, tracing (for debugging), graphics, and lazy state threads.

• A Win32 library for complete access to windows, graphics, and other important OS functionalities and
a graphics library for easy access to Win32 graphics.

• A “foreign interface” mechanism to facilitate interoperability with C.

7.1.3. November 1999

• BSD-style license (replacing the Artistic License)

• new commands:browseand:version

• experimental multi-instance resolution and:xplain command

• functional dependencies

• zero parameter type classes

• better handling of overlapping instances

• various bug fixes

7.1.3.1. February 2000

This is purely a bug-fix release of Hugs98 November 99. It fixes the following problems:

• If you defined an instance which inherited a method via a superclass, hugs would go into an infinite
loop. Fortunately, most people weren’t doing this (except Chris Okasaki...).

• There were a couple of holes in the implementation of implicit parameters (“with ” wasn’t always
being scoped properly, sometimes capturing implicit parameters outside of its scope).

• Functional dependencies weren’t being properly propagated in some cases with derived instances
(“ instance P ... => Q ... ”).

7.1.3.2. July 2000

This is purely a bug-fix release of Hugs98 February 2000.

53

Chapter 7. Miscellaneous

7.1.4. February 2001
This is a major release that incorporates bug fixes as well as several new features and enhancements that
have been developed for Hugs over the last year. It is announced with the intention that it will remain a
stable and lightweight implementation of Haskell 98 + extensions for some considerable time.

A list of the most important new features looks as follows:

• A Foreign Function Interface closely modelled after the one provided by GHC.

• Built-in, Hood-like debugging support.

• Parallel list comprehensions, a.k.a. zip-comprehensions.

• A new syntax for recursive monad bindings.

• A new GUI under Windows that doesn’t consume all CPU time.

• Support for the MacOS platform integrated into the main distribution.

• Corrections of all bugs reported for the January 2001 beta release.

7.1.5. December 2001
The most important features of this new release are:

• The incompatibilities between Hugs and the Haskell Graphics Library have been fixed, and binaries
for the HGL are now available on the Hugs download page.

• The missing standard librariesDirectory , CPUTime, Time andLocale have been added along with
a complete implementation of Haskell 98IO .

• Hugs is now delivered with most of thehslibs libraries installed in thelib/exts/ directory. The
added modules cover theEdison , Parsec , HaXml, QuickCheck , concurrent , monad andhtml

subdirectories ofhslibs .

• The:setoption now refuses the user to set a module search path that doesn’t contain thePrelude .
This is to protect users from accidentally rendering their Hugs setups unusable, esp. so on Windows
machines where the options are persisted to the Registry.

• MacOS X is now one of the supported unix ports, with pre-built binaries available on the download
page.

• Experimental support is provided for hierarchical module names, where a module nameA.B.C is
mapped onto the file pathA/B/C { .hs ,.lhs } and appended to each of the path prefixes inHUGSPATH

until the name of a readable file is found.

54

Chapter 7. Miscellaneous

7.1.6. November 2002
Feature highlights of this new release are:

• Much improved FFI support (contributed by Alastair Reid), bringing Hugs really very close to the
Haskell FFI specification.

• Adoption of a significant subset of GHC’s hierarchical libraries (contributed by Ross Paterson).

• An (allegedly) complete implementation of the Haskell98 module system (Sigbjorn Finne).

• Numerous bug fixes since the previous major release in Dec 2001.

7.1.7. November 2003
There has been substantial internal restructuring. In addition to numerous bug fixes, user-visible changes
include:

• The beginnings of a User’s Guide (though still incomplete).

• TheDouble type is now double-precision on most architectures.

• Hugs now relies on the same hierarchical libraries as GHC and Nhc98, and provides almost all of
them. For now, compatibility with the old libraries is provided by stub modules, but users are
encouraged to migrate to the new libraries.

• Full support for imprecise exceptions (but not asynchronous ones). Most runtime errors are now
reported by applyingprint to anException (formerly the built-in printer was applied to the faulty
redex).

• Integrated .NET support (on Windows platforms).

• The-e , -f , -i , -N , -W and-X options and the:project command have been removed.

55

