

ModelMaker Code Explorer

Manual

Version	1.00

Date:	January 16th 2001

Copyright © 2001 ModelMaker

http://www.modelmaker/demon.nl

http://www.delphicase.com

info@modelmaker.demon.nl

info@delphicase.com

�
Contents

� INHOPG \o "1-4" �Contents	� GANAARBLOKJE _Toc504275828 � PAGVERWZG _Toc504275828 �2��

Introduction	� GANAARBLOKJE _Toc504275829 � PAGVERWZG _Toc504275829 �4��

Installation	� GANAARBLOKJE _Toc504275830 � PAGVERWZG _Toc504275830 �4��

Supported Versions	� GANAARBLOKJE _Toc504275831 � PAGVERWZG _Toc504275831 �4��

Demo limitations	� GANAARBLOKJE _Toc504275832 � PAGVERWZG _Toc504275832 �4��

Upgrading	� GANAARBLOKJE _Toc504275833 � PAGVERWZG _Toc504275833 �4��

Uninstalling	� GANAARBLOKJE _Toc504275834 � PAGVERWZG _Toc504275834 �4��

IDE Integration	� GANAARBLOKJE _Toc504275835 � PAGVERWZG _Toc504275835 �5��

Showing the Explorer	� GANAARBLOKJE _Toc504275836 � PAGVERWZG _Toc504275836 �5��

Docking / Undocking the Explorer	� GANAARBLOKJE _Toc504275837 � PAGVERWZG _Toc504275837 �5��

Adding commands to Delphi toolbars	� GANAARBLOKJE _Toc504275838 � PAGVERWZG _Toc504275838 �5��

Browsing	� GANAARBLOKJE _Toc504275839 � PAGVERWZG _Toc504275839 �5��

General display settings	� GANAARBLOKJE _Toc504275840 � PAGVERWZG _Toc504275840 �5��

Synchronization and Displayed module	� GANAARBLOKJE _Toc504275841 � PAGVERWZG _Toc504275841 �5��

Contents view	� GANAARBLOKJE _Toc504275842 � PAGVERWZG _Toc504275842 �6��

Members view	� GANAARBLOKJE _Toc504275843 � PAGVERWZG _Toc504275843 �6��

Filters	� GANAARBLOKJE _Toc504275844 � PAGVERWZG _Toc504275844 �6��

Sorting	� GANAARBLOKJE _Toc504275845 � PAGVERWZG _Toc504275845 �6��

Editing	� GANAARBLOKJE _Toc504275846 � PAGVERWZG _Toc504275846 �7��

Basics	� GANAARBLOKJE _Toc504275847 � PAGVERWZG _Toc504275847 �7��

Limitations	� GANAARBLOKJE _Toc504275848 � PAGVERWZG _Toc504275848 �7��

Editing is line based	� GANAARBLOKJE _Toc504275849 � PAGVERWZG _Toc504275849 �7��

Comments	� GANAARBLOKJE _Toc504275850 � PAGVERWZG _Toc504275850 �9��

Unsupported language constructs	� GANAARBLOKJE _Toc504275851 � PAGVERWZG _Toc504275851 �9��

Bad formatted entities	� GANAARBLOKJE _Toc504275852 � PAGVERWZG _Toc504275852 �9��

Include files	� GANAARBLOKJE _Toc504275853 � PAGVERWZG _Toc504275853 �9��

Contents view	� GANAARBLOKJE _Toc504275854 � PAGVERWZG _Toc504275854 �9��

Add Descendant Class/Interface/Object and Edit	� GANAARBLOKJE _Toc504275855 � PAGVERWZG _Toc504275855 �10��

Rename	� GANAARBLOKJE _Toc504275856 � PAGVERWZG _Toc504275856 �10��

Delete	� GANAARBLOKJE _Toc504275857 � PAGVERWZG _Toc504275857 �10��

Cut, Copy and Paste	� GANAARBLOKJE _Toc504275858 � PAGVERWZG _Toc504275858 �10��

Members view	� GANAARBLOKJE _Toc504275859 � PAGVERWZG _Toc504275859 �10��

Add / Edit Field	� GANAARBLOKJE _Toc504275860 � PAGVERWZG _Toc504275860 �10��

Add / Edit Method	� GANAARBLOKJE _Toc504275861 � PAGVERWZG _Toc504275861 �10��

Add / Edit Property	� GANAARBLOKJE _Toc504275862 � PAGVERWZG _Toc504275862 �10��

Add / Edit Method Resolution Clause	� GANAARBLOKJE _Toc504275863 � PAGVERWZG _Toc504275863 �11��

Add / Edit Module procedure	� GANAARBLOKJE _Toc504275864 � PAGVERWZG _Toc504275864 �11��

Add / Edit Local procedure	� GANAARBLOKJE _Toc504275865 � PAGVERWZG _Toc504275865 �11��

Rename	� GANAARBLOKJE _Toc504275866 � PAGVERWZG _Toc504275866 �11��

Change Visibility	� GANAARBLOKJE _Toc504275867 � PAGVERWZG _Toc504275867 �11��

Convert to	� GANAARBLOKJE _Toc504275868 � PAGVERWZG _Toc504275868 �11��

Cut, Copy and Paste	� GANAARBLOKJE _Toc504275869 � PAGVERWZG _Toc504275869 �12��

Copy To / Move To	� GANAARBLOKJE _Toc504275870 � PAGVERWZG _Toc504275870 �12��

Rearrange Code	� GANAARBLOKJE _Toc504275871 � PAGVERWZG _Toc504275871 �12��

Code Templates	� GANAARBLOKJE _Toc504275872 � PAGVERWZG _Toc504275872 �12��

Creating a template	� GANAARBLOKJE _Toc504275873 � PAGVERWZG _Toc504275873 �12��

Registering a code template	� GANAARBLOKJE _Toc504275874 � PAGVERWZG _Toc504275874 �13��

Applying a code template	� GANAARBLOKJE _Toc504275875 � PAGVERWZG _Toc504275875 �13��

Parametrizing a template using macros	� GANAARBLOKJE _Toc504275876 � PAGVERWZG _Toc504275876 �13��

Copy, Paste and Conversions	� GANAARBLOKJE _Toc504275877 � PAGVERWZG _Toc504275877 �14��

Drag and Drop support	� GANAARBLOKJE _Toc504275878 � PAGVERWZG _Toc504275878 �14��

Contents view	� GANAARBLOKJE _Toc504275879 � PAGVERWZG _Toc504275879 �15��

Members view	� GANAARBLOKJE _Toc504275880 � PAGVERWZG _Toc504275880 �15��

Resource modules (forms)	� GANAARBLOKJE _Toc504275881 � PAGVERWZG _Toc504275881 �15��

Resource Classes	� GANAARBLOKJE _Toc504275882 � PAGVERWZG _Toc504275882 �15��

Component fields	� GANAARBLOKJE _Toc504275883 � PAGVERWZG _Toc504275883 �16��

Event Handler methods	� GANAARBLOKJE _Toc504275884 � PAGVERWZG _Toc504275884 �16��

��
Introduction

ModelMaker Code Explorer for Delphi 5 is a substitute for the standard code explorer that ships with the Delphi IDE. ModelMaker Code Explorer offers:

A Browser: Improved navigation in the IDE based on the proven concepts used in ModelMaker. Classes and members are displayed in two views allowing fast navigation and filtering.

An Editor: Instantly create, edit, delete and copy / convert classes, members and module procedures with the same ease and concepts as in ModelMaker. Editing itself is reduced to selecting options in dialogs or simple drag and drop operations.

In short: improved overview and navigation and radically speeding up development.

ModelMaker Code Explorer is part of the ModelMaker family of Native Delphi Tools. And many concepts and ideas were taken from ModelMaker for Delphi, the Native Productivity, Refactoring and UML modeller.

If you need more editing and refactoring power or want to visualize (existing) code in UML diagrams, you should try ModelMaker. There’s a free demo available at the web-site.

Installation

ModelMaker Code Explorer should be ONLY installed and uninstalled using the ModelMaker Code Explorer installer. Attempting to manually install or uninstall the explorer could worst case result in errors in the Delphi IDE and loss of data.

Supported Versions

Each Delphi version requires a specific explorer. Currently only Delphi 5.02 is supported. To ensure that the correct version of Delphi is installed, each version explorer has it’s own installer. For example to install the Delphi 5 version, use InstallD5.exe. If the installer does not run or displays errors on starting, there is a version mismatch and the explorer will not function properly either.

Demo limitations

The Explorer demo version will expire without further notice 30 days after installation. Upon expiration the demo will uninstall itself and you can, but do not need to run the Installer. There are no other limitations or pop-up windows in the demo version.

Upgrading

If you have previously installed ModelMaker Code Explorer (demo) and want to install a licensed version or a newer demo version, you do not need to uninstall your current version, even if had expired before.

Uninstalling

If you no longer want to use the ModelMaker Code Explorer, use the installer to uninstall it. Do not attempt to manually uninstall the explorer as this might lead to errors in the IDE or loss of data.

If the (un) installer fails, you can manually remove the expert using regedit (Click Start, Run and type regedit). In regedit open key:

HKEY_CURRENT_USER\Software\Borland\Delphi\5.0\Experts

And remove the string value named

MideXExpert

And close regedit. After restarting Delphi the explorer will no longer appear.

IDE Integration

Showing the Explorer

After installation, there will be a new menu item in Delphi’s main menu ‘View|ModelMaker Explorer’. There is only one explorer available even if you open a file in a new edit window.

Docking / Undocking the Explorer

You can dock the explorer window in an editor window, and it will stay there if you create a desktop setting while the explorer is visible.

Adding commands to Delphi toolbars

ModelMaker Code Explorer adds some commands to the Delphi command list:

Show ModelMaker Explorer

Locate in Explorer.

These commands can be added to the Delphi toolbars. To do this, invoke Delphi’s toolbar Customize dialog (right click on toolbar). You’ll find a new category named MMX which lists the available Explorer related commands.

Browsing

ModelMaker Code Explorer displays a structured view of a source module (file) being edited in the IDE editor. A module can be a unit, program or library file etc. Two interconnected views are used to improve navigation and allow filtering. In the Contents view classes, interfaces etc. are displayed. The Members view displays a filtered view of the members contained by the class or module selected in the Contents view.

General display settings

The Properties|Display tab contains some general display settings. Here you choose between ModelMaker or IDE style images and select which state images are displayed in the e.g. the Contents and Members views.

Synchronization and Displayed module

The ‘Properties|General’ tab contains some settings which let you customize when and how often the explorer re-synchronizes with the source code in the editor.

Source Module Types contains a comma separated list of file extensions that define file types that will be treated as ‘source files’. The explorer will attempt to parse only those file types. All other file types - such as .dfm and .txt -are not parsed and displayed.

These are the events that can invoke a (re-)synchronization:

Manual Refresh from the popup menu.

Module (de-)activated - after you switched to another module, opened or closed a module etc.

Module saved - e.g. after you saved the file or project

Module modified - after you changed text in the editor.

In the ‘Properties|General’ tab you’ll find settings to adjust which events cause the explorer to resynchronize and with what delay. If your machine is fast, you should decrease the delays and check the ‘After Modifying Module’ option, which results in faster synchronization. On a slower machine you should at least increase the modified delay or switch of re-synchronization ‘After Modifying Module’.

The Refresh button in the Members view toolbar acts as an synchronization state indicator. If it’s disabled, the explorer is synchronized with the IDE editor’s source, if it’s enabled, it not synchronized. The manual refresh command in the pop up menus is always enabled.

If multiple editor windows are opened, the displayed module depends on whether the explorer is docked in an editor window or not. If it is docked, the explorer will display the top most module in that editor window, even if another editor window is active. If the explorer is undocked (floating), the topmost module of the currently active editor window will be displayed.

Contents view

Classes, Interfaces, Objects and dispinterfaces are displayed in the Contents view. The module itself is represented by ‘Module’ entity. Classes can be ordered by code order, name, or hierarchically based on inheritance. Use the popup menu to change the order style. The Properties|Display tab contains the same order styles and an additional option to enable display of a type image. Resource classes (forms, data modules, reports etc.) are displayed with a different image.

If a module contains a method implementation, but not the class declaration (as might be the case in include files), the class will be displayed in bold, indicating you cannot edit it.

Members view

The Members view displays a filtered set of members (fields, procedure, properties etc.) contained by the entity selected in the Contents view. For a class this can be: field, method, property and method resolution clause. If the module entity is selected, a list of public and private (module) procedures and the uses clauses are displayed. Nested procedures are displayed for both class methods or module procedures.

Special rules and behavior applies to resource modules (e.g. forms and data modules).

Display of members is controlled by filters and sorting modes.

Note that ModelMaker Code Explorer unlike ModelMaker does not discriminate between ‘normal’ properties and event type properties.

Filters

The Members view filters are located in the Filter toolbar. Use popup menu Toolbars to show or hide this toolbar. The Visibility filter lets you filter on visibility: private, protected, public etc. The Type filter (only active for classes) lets you filter on field, method property etc.

The display of nested procedures for both methods and module procedures is controlled by the local procedure filter.

To quickly display all members, use the Reset filter command from the popup menu. This will reset all filters. Note that this command does not affect the settings for the resource module associated filter overrides like Hide components.

Be aware that the filter toolbar is active, even if you hide it.

The filter button control behavior can be adjusted using the ‘Properties|General’ tab. Choose between:

Click includes/excludes the clicked option and Ctrl+Click exclusively selects the clicked option

Click exclusively selects the clicked option, Ctrl+Click includes/excludes the clicked option.

Default is Ctrl+Click is exclusive.

Sorting

Members are displayed according to the selected sorting mode (popup menu)

Code: class members appear in the order as declared in the class interface. Module procedures appear in the order of the declaration. Method and public procedure implementation orders are not taken into account here.

Name: members are sorted on name only.

Visibility: members are primary sorted on visibility, then on name

Kind: members are primary sorted on type (fields, constructors, destructors, other methods, properties), then on name

Visibility Kind: primary on visibility, secondary on kind and finally on name. This is the order in which class members usually appear in a class interface.

Kind Visibility: primary on kind, secondary visibility and finally on name.

The sorting mode used for display has no effect on the order of the actual code. To change the order in code, use the Rearrange Code command in either the Contents view or Members view.

Nested procedures are always displayed in code order after the containing method or procedure.

Module uses clauses are always displayed after all procedures.

Editing

Basics

ModelMaker Code Explorer helps editing the general structure of a module: create, edit, rename a class, create, rename properties and access methods etc. All other editing such as implementing methods is done in the IDE editor. With ModelMaker Code Explorer editing is instant: you do not need to enter a special editing mode because the browser is the editor. To rename a class or property, simply double click it or use the inplace editor (F2).

All edit actions work directly on the IDE edit buffers. As a result all changes can be undone with the standard Delphi Undo/Redo mechanism. If you do not like the result of an action, simply press Ctrl+Z in the editor.

Before an edit action is executed, the read only state of the module’s edit buffer is checked. If the module is marked read-only, ModelMaker Code Explorer can mark it read-write (after your confirmation). However you must still take care of making the underlying file writable before you will be able to save it.

The ModelMaker Code Explorer must be synchronized before it can edit anything. Check the chapter on synchronization. In short: if the refresh button on the members view toolbar is enabled the explorer is out of sync and all editing commands will fail. To avoid flicker, the commands are not enabled/disabled each time the explorer’s synchronization status changes.

Renaming an entity (or editing and changing the name) will not result in replacing all references in code to that entity. Only limited renaming is performed: for example changing a class’s name will rename the ancestor attribute in all descendants in that module only. Renaming a property will update the read and write access members (field and methods) but not the code in these methods.

There are some options in the ‘Properties|Code’ tab which let you customize some generic editing features.

For editing resource modules (e.g. forms, data modules) special rules apply, check the chapter on resource modules.

Limitations

There are some limitations and restrictions on the format that is required for editing. This gives a summary:

Editing is line based

Although the browser does not require special text formatting, all editing is line based. When an entity is edited, all other code on the same line is replaced with the new declaration. As a result all comments etc. are removed. Also you should not put two entities on a single line. If entities share the same line, they will be removed if either of them is edited. For example:

type TSample = class(TControl) // << type and class declaration

private

 I, J: Integer; // this is OK

 K: Integer; L: Integer; // << K and L share the same line

protected

 function GetEnabled: Boolean;

 virtual;

 abstract;

 procedure SetEnabled(Value: Boolean); public // << SetEnabled and public

 property Enabled: Boolean

 read GetEnabled

 write SetEnabled;

published

 property OnClick; end; // << OnClick and end share same line

implementation

// Method header and begin share line

procedure TSample.SetEnabled(Value: Boolean); begin

 end; // Indenting is OK

In the above example:

The class TSample and the type declaration are two entities on a single line. If you rename the class, the type declaration will be removed.

The fields I and J are treated as a single entity. If you edit this entity, you’ll edit both at the same time. However, the comment will be removed!

The fields K and L are two entities sharing the same line. Editing either of them will result in the other being removed.

The visibility specifier protected and the function GetEnabled are OK because they does not share lines with other entities.

Entities SetEnabled and public share a line. Editing SetEnabled (or the property) will remove the public declaration.

The property Enabled is OK

The property OnClick and the class’s end are one the same line. Editing OnClick will remove the end.

The SetEnabled implementation header and begin are on the same line. Editing the method (or property) will remove the begin and result in compilation errors.

Generally there should not be a problem as long as you put all entities on a new line. This is conform the implicit coding standard as can be seen in the standard VCL units. All code added with the explorer will adhere to this rule. Here’s the same code that can be edited without problems:

type

TSample = class(TControl)

private

 I, J: Integer;

 K: Integer;

 L: Integer;

protected

 function GetEnabled: Boolean;

 virtual;

 abstract;

 procedure SetEnabled(Value: Boolean);

public

 property Enabled: Boolean

 read GetEnabled

 write SetEnabled;

published

 property OnClick;

end;

implementation

procedure TSample.SetEnabled(Value: Boolean);

begin

 end; // Indenting is OK

Comments

The editor does not associate comments to entities (yet). As a consequence:

Comments on the same line as an entity are removed if the entity is edited. Actually only when the decalration is reinserted, some operations like Change Visibility and Rearrange Code will copy the complete line.

Comments before or after the entity are not moved with the entity when the entity is moved. For example: if the visibility of a property is changed, only the declaration is moved.

Unsupported language constructs

Conditional defines are not interpreted. There are too many complications involved with editing code like:

TSample = class (TControl)

{$IFDEF A}

protected

function Sample: {$IFDEF VER130) LongWord; override

 {$ELSE} Integer; virtual {$ENDIF};

{$ELSE}

public

function Sample(A: Integer = 0): LongWord;

{$ENDIF}

end;

dispinterfaces should not be edited. Not all constructs on a dispinterface are recognized.

Although the old style object types are supported, the dialogs do not check for all possible conflicts. You could declare an override method (would still generate correct as virtual).

Bad formatted entities

Entities that do contain (ore seem to contain) syntax errors (conditional defines are not interpreted!) can be edited. The editor will replace the declaration up to the line the syntax was correct. As an advantage of this approach editing will solve discrepancies between method declarations and method implementation headers.

Include files

Include files are not opened with the main file. If an include file is opened in the editor and it’s extension is in the source module types list, it will be parsed. ModelMaker Code Explorer will try to compensate for incomplete classes and provide stub classes (displayed as bold) and method declarations wherever possible. However you cannot edit a stubbed class.

Contents view

The Contents view (popup) contains all commands related to editing classes. The module entity cannot be edited. Next paragraphs describe the non-obvious commands only. Special rules apply for resource modules. Check the chapter resource modules.

Add Descendant Class/Interface/Object and Edit

Displays the class editor dialog. Here you enter name, ancestor, interface support (classes), GUID (interfaces) and specify the visibility. For a public class the declaration is placed in the interface section of a module. For a private class it will be placed in the implementation.

Add Descendant command will preset the type and ancestor with the relevant information. For classes the interface support list will be copied form the ancestor.

Resource classes cannot be created or edited.

Rename

Invokes inplace editing. Renames a class and changes the ancestor for all descendants in the same module. Renaming resource classes is treated by renaming the resource.

Delete

Deletes the class and all it’s methods. Resource classes cannot be deleted.

Cut, Copy and Paste

Copy and Paste is described in detail in the Chapter Copy, Paste and Conversions.

Cut is implemented as a Copy followed by a Delete. The restrictions that apply to Delete also apply to Cut.

Members view

The Members view (popup) contains all commands related to editing class members (fields, methods) and module procedures. Next paragraphs describe the non-obvious commands only. Special rules apply for Components and Event handlers in resource classes. Check the chapter resource modules.

Add / Edit Field

Displays the Field editor dialog. If multiple fields are declared in a single comma separated list, they are treated and edited as a single entity. Component fields are treated differently. Fields are obviously not allowed in interfaces.

Add / Edit Method

Displays the Method editor dialog. Add will insert a new method and it’s implementation, Edit will update both declaration and implementation. If a method is marked abstract, the implementation will be removed if it contained no code other than the main block’s begin end pair. If other code was found, you’ll get a warning and the implementation is left in the source.

Add / Edit Property

Displays the Property editor dialog. This is perhaps the most time saving feature in the explorer. Depending on the settings for read and write access not only the property will be created and updated, but also the access members (fields and methods). The ‘Properties|Code’ tab contains defaults for newly created properties and access members.

Most options in the Property editor dialog are rather self explanatory. The read / write access settings need some elaboration. ModelMaker Code Explorer associates access members with a property. Whenever the property changes (rename, edit) the associated access members will be updated.

A property’s (state) field is associated by name and data type. The field name must be the state field prefix (default ‘F’) plus the property name. For example field FValid for property Valid. The field and property’s data type must be equal. Array and indexed properties cannot be linked to state fields.

A property’s read access method is associated by name, parameters and data type. The method name must be the read method field prefix (default ‘Get’) plus the property name. For example field GetValid for property Valid. The method must be a function and the method and property’s data type must be equal. The parameter list must match the property and is depending property’s array and index specifiers.

A property’s write access method is associated by name and parameters. The method name must be the write method field prefix (default ‘Set’) plus the property name. For example field SetValid for property Valid. The method must be a procedure. The parameter list must match the property and is depending property’s array and index specifiers.

When a property is edited, the currently associated members are displayed. If ‘Custom’ is checked, no member is associated. If you change access, members that are no longer needed will be removed and new ones will be created as needed (associated members only, custom members are never updated or removed).

If you select a property, the associated members are automatically (invisibly) included in the selection. As a result: copying a property will not only copy the property declaration but also the access members. But deleting a property will also delete it’s associated members.

If you check ‘custom’ read/write access you can define non-default access: read form a record type field, access non-default named methods etc. ModelMaker Code Explorer will not update custom members whatsoever. Nor will it associate those members with the property in selections.

Add / Edit Method Resolution Clause

Lets you select an interface and method and an implementing method. Drop down lists help to select available interfaces and methods.

Add / Edit Module procedure

Lets you add a new procedure to the module and edit existing ones. The implementation will be created / removed according the setting for ‘external’. If the procedure implementation contains any other code than the main begin end pair, the implementation is not removed and you’ll get a warning.

Add / Edit Local procedure

Methods and Module Procedure can have nested procedures in their implementation. With this command you add or edit them. Whether local procedures are displayed or not depends on the setting of the Local procedures filter.

Rename

Renames the focused item by activating the inplace editor. Renaming Components and Event handlers is treated differently. Check the chapter on resource modules.

Change Visibility

In a class this command will move the declarations of the selected members to the new visibility section. In a module, declarations will be added to / removed from the unit interface.

Convert to

Converts a field to property or method maintaining compatible attributes.

Convert a method to a field or property (only functions) or module procedure.

Convert a nested procedure to a method (inside class) or Module procedure

Convert a property to a field or method.

All conversion involving properties will first check the property’s read access members and update those and then remove the property if applicable,

Cut, Copy and Paste

Copy and Paste of members is used to copy move and convert members. Check the Chapter Cut, Copy and Paste for details.

Cut is implemented as a Copy followed by a Delete. To Cut the same restrictions apply as to Delete

Copy To / Move To

The selected members can be copied / moved to a class or the module. The same conversion rules apply as described in the chapter Copy / Paste

Rearrange Code

Is used to manually rearrange a class interface and implementation or a Module’s procedure declarations and implementations. For a class the interface and method implementations are displayed. For a Module the public procedure declarations and procedure implementations are displayed. Use drag and drop to move entities or use one of the predefined sorting styles.

If you check the option ‘Reformat interface declarations’ the declarations will be regenerated and wrapped rather than plain copying the current code.

Note that you can create impossible orders just as with normal editing: event handlers and components must have default visibility. This implicates that no entities with other visibilities can precede them - you’ll get a warning if this occurs. Also property access members must be defined before the property itself - this is not checked.

Classes can be rearranged in the code by drag and drop in the Contents view’s ‘order by code’ mode.

Code Templates

Like ModelMaker, ModelMaker Code Explorer supports the use of Code Templates. They are like user definable patterns and consists of a (usually consistent) set of members that is put in a code template source file. This template can then be applied to a class whenever needed again. The template file acts like a structured persistent copy / paste buffer. The powerful aspect is that templates can be parametrized using user definable macros. ModelMaker Code Explorer will extract the macros, let you edit them and before importing the template file expand the macros. The template files can be edited in Delphi, but should not be imported in ModelMaker directly.

Code Templates can be shared with ModelMaker. Check ‘Installing’ for details.

Creating a template

To create a code template, in the Members view select the members you want the template to contain use the popup menu 'Create code template’. You'll be prompted for a file name. ModelMaker Code Explorer then generates the selected members as part of a stand-in class named TCodeTemplate. Here's an example of a simple template file containing a simple Items array property with a standard TList implementation.

unit SimpleItems;

 TCodeTemplate = class (TObject)

 private

 FItems: TList;

 protected

 function GetItems(Index: Integer): TObject;

 public

 property Items[Index: Integer]: TObject read GetItems;

 end;

function TCodeTemplate.GetItems(Index: Integer): TObject;

begin

 Result := TObject(FItems[Index]);

end;

Registering a code template

Code Templates can be registered on the Code Template palette (members view popup). This palette, which is similar to Delphi’s component palette, makes applying a template very easy. To register a template on this palette, you either specify this when you create the template, or use the (un)register template commands from the palette’s popup.

The Template palette contents and lay-out is shared with ModelMaker if this enabled during installation.

Applying a code template

To apply a previously created template, select the popup menu 'Apply template’ from the Members view. You'll be prompted for a template file name. If you have registered the template, simply click the appropriate button on the template palette. ModelMaker Code Explorer will import the members contained by the first class in the template unit (this could actually be any unit) and add them to the currently selected class. Other classes and all module related code in the unit is ignored.

Parametrizing a template using macros

You can parametrize a code template by adding macros to the template unit. When applying a template, ModelMaker Code Explorer will first extract the macro parameters and let you edit them. Then, after expand the code template, the template is finally applied. Parametrizing templates allows you to create more generic templates. A macro definition should be formatted as:

//DEFINEMACRO:macroname=macro description

The standard ModelMaker macro rules apply. Check the web-site for details. Parametrizing the above example could for example be done like this.

unit SimpleItems;

//DEFINEMACRO:Items=name of array property

//DEFINEMACRO:TObject=type of array property

//DEFINEMACRO:FItems=TList field storing items

 TCodeTemplate = class (TObject)

 private

 <!FItems!>: TList;

 protected

 function Get<!Items!>(Index: Integer): <!TObject!>;

 public

 property <!Items!>[Index: Integer]: <!TObject!> read Get<!Items!>;

 end;

function TCodeTemplate.Get<!Items!>(Index: Integer): <!TObject!>;

begin

 Result := <!TObject!>(<!FItems!>[Index]);

end;

If you apply this template, ModelMaker Code Explorer will show a dialog with the list of parameters you defined: Items, TObject and FItems allowing you to change them for example in Members, TMember and FMembers. This way the template can be applied depending on the context

Copy, Paste and Conversions

When copying and pasting entities, ModelMaker uses a plain text format that could even be pasted straight into the editor. However, pasting using the explorer will invoke automatic conversions, resolve name space restrictions etc.

There are basically four types of entities that serve as a source for copying:

An entire class or interface - copy a class in the contents view

A selection of class members - copy members in the members view

A set of module procedures including declaration and visibility - copy the module item for all procedures

A set of nested procedures - nested procedures are normalized so that all children are included if a parent is selected. Nested procedures cannot be mixed with other types.

When a property is included in a selection, it’s associated access members (field, methods) are automatically included too. Check Add/Edit Property.

What happens if you paste a copied source depends on where the target on which you paste it. There are 6 types of targets:

A class or interface

The module entity

A class member, but not a method (field, property)

A class method

A module procedure

Other module entities (uses clauses)

The next table gives the results for a paste action depending on the source/target combination

Target view�
Contents view�
Members view�
�
Target entity�
Module�
Class�
Class method or nested procedure in method�
Other class member�
Module procedure or nested procedure in module�
Other module entities�
�
Source�
�
�
�
�
�
�
�
Class�
Insert as new class�
Insert members�
Insert members�
Insert members�
Convert methods to procedures�
Convert methods to procedures�
�
Members�
Convert to procedures�
Insert members�
Insert members�
Insert members�
Convert methods to procedures�
Convert methods to procedures�
�
Procedures�
Insert as new procedures.�
Convert to methods�
Convert to methods�
Convert to methods�
Insert as new procedures�
Insert as new procedures in module�
�
Nested Procedures�
Insert as new (not nested) procedures.�
Convert to methods�
Insert as nested procedures�
Convert to methods�
Insert as nested procedures�
Insert as new procedures in module�
�

Whenever a member is inserted, name space conflicts are resolved by adding a number to the name (Perform1, Perform2 etc. Except for nested procedures which are inserted as is.

Drag and Drop support

ModelMaker Code Explorer has extensive Drag and Drop support to edit relations and copy, move or convert members.

Contents view

Drag and drop within the Contents view is dependent on the ‘Order by’ mode.

Order by Code - use drag and drop to move a class’s declaration before or after an other class’s declaration. The implementation is not affected by this operation.

Order by Hierarchy - use drag and drop to change class inheritance relations.

All modes: use drag and drop to add interface support to a class. In this case the dragged source must be an interface and the drop target must be a class.

The Contents view accepts members dragged from the Members view. What happens when a set of members is dropped in the Contents view depends on the drop target. The next table gives the results for a drop action depending on the source/target combination.

Drop Target�
Module�
Class�
�
Drag Source�
�
�
�
Members�
Convert methods to procedures�
Insert members�
�
Procedures�
Insert as new procedures.�
Convert to methods�
�
Nested Procedures�
Insert as new (not nested) procedures.�
Convert to methods�
�

If the Shift-key is pressed when dropping the members, the members will be moved rather than copied.

Members view

The members view currently only acts as a drag source form which members can be dragged to the contents view.

Resource modules (forms)

Resource modules are modules that contain a form or data module or any other class that has an associated dfm and is designed visually. A resource class is the class associated with the resource. For example in Form1: TForm1, Form1 is the resource, TForm1 is the resource class. Basically you should use the Object Inspector to change attributes for forms, data modules and their components. Also event handlers (the methods that Delphi will for example create for handling a TButton.OnClick event) must be created and using the Object Inspector.

However, ModelMaker Code Explorer can be used on any non-component and non-event handler method in a resource class.

How ModelMaker Code Explorer actually works with resource classes can be adjusted for a great deal with the ‘Properties|General|Resource Modules’ options.

Resource Classes

Resource classes (the class associated with the form) are displayed with a form icon in the Contents view.

If you have the option ‘Select Root Component’ checked in ‘Properties|General|Resource Modules’ the form will be selected in the Object Inspector if you click at the class in the Contents view.

Special restrictions apply to editing resource classes.

Resource classes cannot be edited using the class editor dialog, they can only be renamed inplace. Renaming a resource class - e.g. TForm1 into TMyForm - will rename the resource name : Form1 into MyForm. Delphi composes the resource class name by preceding the resource name with a ‘T’. Therefore the renamed class name must start with a T. The explorer enforces this.

Deleting or Cutting a resource class using the explorer is not allowed. This is enforced by the explorer.

A resource class can be copied and pasted. The copy is ONLY a copy of the source, the associated form and components and the .dfm file are NOT copied. You can however use Copy / Paste to copy all members to another unit.

Component fields

In the source code associated with a resource module, Components are fields with a default visibility (immediately succeeding the class declaration without a visibility specifier like private etc.). Delphi does not allow any non-component fields to have default visibility.

ModelMaker Code Explorer handles Component fields differently from other fields depending on the settings in ‘Properties|General|Resource Modules’.

If the option ‘ Hide Components’ is checked, component fields will be hidden (all fields with default visibility in a resource class) regardless of the settings of the Members view filter (Filter override).

If the option ‘Select Component’ is checked, the component will be selected in the Object Inspector if you click at the field in the explorer.

Editing a component with the Field editor dialog is not allowed. Only (inplace) renaming is supported. Renaming the field’s name will rename the component just as if you renamed the component in the Object Inspector.

Component fields cannot be Converted and the visibility cannot be changed.

If the option ‘Block Delete Component’ is checked, you will be prevented form deleting components with the explorer. If this option is not checked, deleting the field will (after confirmation) actually delete the component form the resource.

Copy (to) is enabled, but does not make much sense because only the component’s declaration is copied, not the component itself.

Cutting components and Move to (or moving by drag and drop) is always blocked because only code is cut, not the associated component.

Event Handler methods

Event handlers are the methods that Delphi will create for handling Component events. For example the Button1Click method that handles the Button1.OnClick event. In the source code event handlers are methods with a default visibility (immediately succeeding the class declaration and components, without a visibility specifier e.g. private)

ModelMaker Code Explorer handles Event handler methods differently from other methods depending on the settings in ‘Properties|General|Resource Modules’.

If the option ‘Hide Event handlers’ is checked, the explorer will hide Event handler methods (all methods with default visibility in a resource class) regardless of the settings of the Members view filter (Filter override).

Editing an event handler using the method editor dialog can be blocked with the option ‘Event handlers: Block Edit’. If you do edit methods using this dialog you should know what you’re doing as Delphi imposes several restrictions on event handlers: Parameter types must match those of the handled event and the visibility should be default. However if an event handler is no longer wired to any component’s event, it can be treated as a normal method. Renaming an event handler method will take care of updating the linked component just as if you would have renamed the method using the Object Inspector. Inplace renaming is always safe.

If the option ‘Block Delete and Cut Event handler’ is checked, you will be prevented from deleting or cutting an event handler with the explorer. Converting an event handler is blocked with the same option.

Block Change visibility prevents you form changing the visibility for event handlers.

Copying event handers is enabled and perfectly safe and can be quite useful.

ModelMaker Code Explorer v1.x		Page � PAG �3� of � AANTALPAG * SAMENVGOPMAAK �16�

