How to Write To Hardware Ports in Windows Using Delphi

Author:	Alan Young, ajtech@apc.net

Editor:		Anatoly Podgoretsky, kvk@estpak.ee

Revision:	August 23, 1997

� TOC \o "1-3" �How to Write To Hardware Ports in Windows Using Delphi	� GOTOBUTTON _Toc396994045 � PAGEREF _Toc396994045 �1��

FIRST	� GOTOBUTTON _Toc396994046 � PAGEREF _Toc396994046 �2��

APPOLOGY	� GOTOBUTTON _Toc396994047 � PAGEREF _Toc396994047 �2��

THE PROBLEM	� GOTOBUTTON _Toc396994048 � PAGEREF _Toc396994048 �2��

THE DOCUMENTED WAY	� GOTOBUTTON _Toc396994049 � PAGEREF _Toc396994049 �3��

THE UNDOCUMENTED WAY	� GOTOBUTTON _Toc396994050 � PAGEREF _Toc396994050 �4��

BUT WHAT ABOUT NT?	� GOTOBUTTON _Toc396994051 � PAGEREF _Toc396994051 �4��

RESOURCES	� GOTOBUTTON _Toc396994052 � PAGEREF _Toc396994052 �5��

SECOND	� GOTOBUTTON _Toc396994053 � PAGEREF _Toc396994053 �6��

THIRD	� GOTOBUTTON _Toc396994054 � PAGEREF _Toc396994054 �9��

DELPHI 2 Direct Port I/O	� GOTOBUTTON _Toc396994055 � PAGEREF _Toc396994055 �9��

FOURTH	� GOTOBUTTON _Toc396994056 � PAGEREF _Toc396994056 �10��

DELPHI 2 Direct Port I/O	� GOTOBUTTON _Toc396994057 � PAGEREF _Toc396994057 �10��

FIFTH	� GOTOBUTTON _Toc396994058 � PAGEREF _Toc396994058 �13��

�

This document is a compilation of a lot of code snippets, FAQ's, etc that I found on USENET newsgroups,web pages, etc. I will acknowledge all that I remember, otherwise, thanks all!

I put all this together because I needed it. I hope some of you can use it.

�
FIRST

a summary document from comp.lang.pascal.delphi.misc

Re: Port command and win95, a summary.

Martin Larsson(martin.larsson@delfi-data.msmail.telemax.no) posted at 10/08/1996 01:57:45

Eric Liptrot wrote:

There's been a lot of correspondence on this subject over the last few months so it's obviously a common problem. Is there anybody out there who can summarise the situation in a logical manner?

I'm not an expert on this, but I'll give it a shot.

APOLOGY

This was supposed to be a quick summary. It ended up being quite long. Hope it's not too boring...

THE PROBLEM

Under MS-DOS, an application has control of the entire machine. This gives the programmer a lot of freedom. To maximize speed, you can access the hardware directly if necessary.

Under Windows 3.x, this freedom was somewhat limited. You were no longer allowed to write directly to the screen, among other things. The problem is obvious: since the user could have any number of applications running, there was no guarantee that they were not accessing the same hardware simultaneously.

Another problem that showed up was that you had to be nice to the other applications running at the same time. Win 3.x is co-operatively multitasked, meaning that each application determines when it's done and other applications can run. Hogging the CPU for longer periods of time was not considered nice.

But the fact that no applications would run unless we as programmers said so, could be worked to our advantage when accessing the hardware. Since the application were guaranteed full control over the machine for as long as it wished, it could, when it got the CPU, muck with the I/O ports or memory, but not give up control until it was done.

Unfortunately, progress caught up with us; now there's Win32 (Windows NT and Windows 95). These are true operating systems, with true pre-emptive multi-tasking. Each thread (the execution unit) gets a certain amount of time with the processor. When the time is up, or a thread with higher priority comes along, the system will switch to the next thread, even though the first thread is not done. This switching can occur between any two assembly instructions; there's no guarantee that a thread will be able to complete any number of instructions before it's pre-empted, and there might be a long time 'till the next timeslot.

�
This brings up a real problem with direct hardware access. A typical I/O read, for instance, is composed of several assembly instructions:

	mov dx, AddressPort

	mov al, Address

	out dx, al

	jmp Wait

Wait:

	mov dx, DataPort

	in al, dx

While the state of all registers are preserved on a thread-switch, the state of the I/O ports are not. So, it is very possible that three applications have their way with 'your' I/O port between the 'out' and the 'in' instructions above.

THE DOCUMENTED WAY

The solution to this problem is to somehow tell all other applications that Currently MyProg is using port 546, and everybody else better stay in line. What's needed is a mutex. Unfortunately, to use a mutex, all applications have to agree on a name for that mutex. But even if that was possible, you'd easily get into some thorny problems. Consider two applications App1 and App2. Both wants to execute the above code. Unfortunately, they're created by different people with different views, so App1 asks for the AddressPortMutex first, while App2 asks for the DataPortMutex first. And, by a sad coincidence, App1 gets the AddressPortMutex, then the system swithes to App2, which aquires the DataPortMutex, and we're deadlocked. App2 can't get the address port, 'cause App1 has that. App1 can't get the data port, 'cause App2 has that. And we're still waiting...

The correct way to solve this problem is to create a device driver that owns the port/memory area. Access to the hardware is supported through an API. A typical function would be

	GetIOPortData(AddressPort, DataPort : word) : Byte;

GetIOPortData would aquire a mutex that protects both (possibly all) ports, then access the ports, and finally releasing the mutex before returning to the caller. If different threads are calling this function at the same time, one will get there first, the others must wait.

Writing a device driver is not easy. It must be done in assembler or C, and they are really hard to debug. And just to be safe, a device driver for Windows 95 (a VxD) isn't compatible with a device driver for Windows NT (a VDD, for virtual device driver). They are said to converge, and Windows NT 6.0 and Windows 2000 might have compatible device drivers, but until then, we're stuck with writing two separate pieces of code.

For more info see (for instance):

Microsoft's Windows 95 Device Driver Kit

Microsoft's Windows NT Device Driver Kit

Microsoft Press' Systems Programming for Windows 95 by Walter Oney

Also, check out Vireo's VtoolsD library for writing VxD's in C. http://www.vireo.com/.

THE UNDOCUMENTED WAY

The above problem isn't too real. An application that accesses the hardware directly, is usually using some specialized hardware. A machine-configuration like that tend to run one application only, who's sole purpose is to access that hardware. In such a scenario, writing a device driver seems too much trouble. After all, the reason the thing is running on Windows, is just to get the nice GUI for (almost) free, not that 10 applications can be running simultaneously.

Fortunately, Windows 95 is built to be compatible with Windows 3.x. This means that direct I/O must be allowed, simply because a lot of Win 3.x programs uses it. To access the I/O ports, simply step down to assembly. The following code was supplied by Arthur Hoornweg (hoornweg@hannover.sgh-net.de):

function getport(p:word):byte; stdcall;

begin

	asm

		push edx

		push eax

		mov dx,p

		in al,dx

		mov @result,al

		pop eax

		pop edx

	end;

end;

Procedure Setport(p:word;b:byte);Stdcall;

begin

asm

push	edx

push	eax

mov		dx,p

mov		al,b

out		dx,al

pop		eax

pop		edx

end;

end;

Francois Piette also has some direct I/O access functions at http://rtfm.netline.be/fpiette/portiofr.htm (see section THIRD) and Anatoly Podgoretskt (see section FOURTH)

BUT WHAT ABOUT NT?

The above will not work on Windows NT. NT is a much more robust operating system, and allowing all and everybody acces to the hardware anytime they wanted, would seriously endager the stability.

In addition, NT is cross platform, and access to I/O ports might be wildly different on different processors.

Even so, it is possible to access the I/O ports directly under NT on x86 processors. This is highly undocumented, and will probably dissapear in future versions of the operating system.

I have not much information on the process, but an article by D. Roberts in the May, 1996 issue of Dr. Dobb's Journal looks promising: Direct Port I/O and Windows NT. This seems to be the only DDJ I'm missing, so I can't verify it. See http://www.ddj.com for ordring of back-issues.

Windows Developer's Journal does have an article on Port I/O under Windows. It's written by Karen Hazzah, and appeared in the June 1996 issue. See http://www.wdj.com for ordering of back-issues.

RESOURCES

(Note, I know very little about these resources, check them out yourself.)

There are newsgroups dedicated to the topic of writing VxD's and VDD's:

comp.os.ms-windows.programmer.nt.kernel-mode	(VDD)

comp.os.ms-windows.programmer.vxd			(VxD)

Dejanews (http://www.dejanews.com) turned up quite a few hits on 'device driver direct I/O access 95'.

BlueWater Systems have developed OCX's for direct I/O, memory access and interrupt handling under all Win32 platforms. They also seem to offer custom built device drivers. See their page at http://www.bluewatersystems.com/.

I know some other company has been advertising here for their ability to write custom VxD's. But I can't find that reference.

mailto:martin.larsson@delfi-data.msmail.telemax.no

http://www.delfidata.no/users/~martin

SECOND

Some code from ME done in Delphi 1.0, shows how to access hardware ports. Uses joystick as an example. Shows how to use BASM for low-level hardware access.

PROGRAM Gameapp;

USES WINCRT,winprocs;

{==}

CONST

	ONN =1;

 OFF=0 ;

	{ must be * 256 because it is high byte }

	STICK1 = 1*256;			{ bit 1 set for analog 1 }

	STICK2 = 2*256;			{ bit 2 set for analog 2 }

	STICK3 = 4*256;			{ bit 3 set for analog 3 }

 STICK4 = 8*256;			{ bit 4 set for analog 4 }

	BUTTON1 = 16;			{ bit 5 set for button 1 }

	BUTTON2 = 32;			{ bit 6 set for button 2 }

	BUTTON3 = 64;			{ bit 7 set for button 3 }

	BUTTON4 = 128;			{ bit 8 set for button 4 }

{==}

VAR

	gvalue1,gvalue2	: INTEGER;

	buttn1,buttn2		: BYTE;

	P								: PChar;

	M								: LongInt;

{==}

function stick(joy:INTEGER):INTEGER;

{required input:

	1 = analog stick 1

	2 = analog stick 2

	4 = analog stick 3

	8 = analog stick 4

sample calls:

	value=stick(1*256); reads stick 1,

 value=stick(2*256); reads stick 2

 value=stick(4*256); reads stick 3

 value=stick(8*256); reads stick 4

 (remember your binary arithmetic)

output:

	unsigned int (16 bit output) as opposed to 8 bit output

	for BIOS routines.

	returns value = 0 if no joystick is connected

}

VAR

	Value : INTEGER;

BEGIN

	Value:=0;

 ASM

	 @@START:

			PUSH AX

	 	PUSH CX

		 PUSH DX

{ we are really setting hi byte here }

 CLI { clear interrupts }

			MOV		AX,joy		{ get stick to read }

 	MOV		AL,0			{ zero out low byte }

	 MOV		DX,201H		{; /* game port address 	*/}

		 MOV 	AL,11111111b	{; /* set bit map 	*/}

	 	OUT 	DX,AL 	{; /* force to unstable 	*/}

		 MOV 	CX,0			{; /* set counter 	*/}

		@@TOP:

 		IN		AL,DX			{; /* read port 	*/}

		 TEST	AL,AH			{; /* test selected port 	*/}

		 JZ		@@GOODEXIT		{; /* branch when stable 	*/}

	 	LOOP	@@TOP			{; /* CX=CX-1, loop again 	*/}

		 JMP		@@TIMEOUT		{; /* timeout when cx=65536 	*/}

 	@@GOODEXIT:

	 	NEG		CX				{; /* two's complement CX 	*/}

											{ /* forces positive values	*/}

		 MOV		value,CX		{; /* put value into CX 	*/}

 STI { turn interrupts back on }

			POP		DX

		 POP		CX

		 POP		AX

 	JMP		@@BYE			{ and get outta here }

	 @@TIMEOUT:

 STI { turn interrupts back on }

		 POP		DX

	 	POP		CX

		 POP		AX

			MOV		value,0;		{; /* function is zero if timeout */}

	 @@BYE:

	END; {basm}

 stick:=value;

END;

{==}

function push_button(button:BYTE):BYTE;

var

	value:BYTE;

BEGIN

	asm

	 PUSH AX

	 PUSH DX

 CLI						 { clear interrupts }

	 MOV DX, 201H {; /* game port address */}

	 IN AL, DX {; /* read state of buttons */}

	 NOT AL {; /* invert so that 1 = on */}

	 TEST AL, button {; /* compare */}

	 JNZ @@PRESSED {; /* if pressed return ON */}

 STI						 { turn interrupts back on}

 POP DX {; /* BUTTON IS OFF */}

	 POP AX {; /* if got to here */}

 mov value, 0; { 0=OFF}

 jmp @@QUIT

	@@PRESSED:

 STI { interrupts back on!}

	 POP DX {; /* BUTTON IS ON if got to here */}

	 POP AX {;}

 mov value, 1 { on}

 @@QUIT:

 END;

 push_button:=value;

END;

{==}

BEGIN {main}

	gotoxy(18,2);

	write('Game Port Test Program by Alan Young (c) 7/15/93');

	gotoxy(25,25);

	write('Press any key to exit program.');

	gotoxy(28,6);

	write('Game Port Button Status');

	gotoxy(28,7);

	write(' 1 2');

 gotoxy(28,15);

	write('Game Port Analog Values ');

	gotoxy(28,16);

	write(' 1 2');

 while NOT Keypressed DO BEGIN

		buttn1:=push_button(BUTTON1);

	 buttn2:=push_button(BUTTON2);

		gotoxy(33,8);

	 write(buttn1,' ',buttn2);

 gvalue1:=stick(STICK1);

	 gvalue2:=stick(STICK2);

 gotoxy(30,17);

	 write(gvalue1:4);

 gotoxy(41,17);

	 write(gvalue2:4);

 END;

END.

�
THIRD

some code from WWW (Francois Piette) FranHois Piette also has some direct I/O access functions at

http://rtfm.netline.be/fpiette/portiofr.htm

DELPHI 2 Direct Port I/O

function PortIn(IOAddr : WORD) : BYTE;

begin

	asm

		mov dx,IOAddr

	 in al,dx

 	mov result,al

 end;

end;

procedure PortOut(IOAddr : WORD; Data : BYTE);

begin

 asm

 	mov dx,IOAddr

 mov al,Data

 out dx,al

 end;

end;

Warning:	Under Windows-NT, the OS will intercept many port I/O. The I/O instruction will not go to the hardware until the OS agree. Most of the time there is a driver which will emulate the I/O. This is necessary for security reason. If you need real direct I/O under NT, you should consider writing a driver.

There is no problem under Windows 95.

�
FOURTH

DELPHI 2 Direct Port I/O

These six functions was written by Anatoly Podgoretsky. The main difference are: these procedures use all power of Pascal (BASM) of Delphi 2 and Delphi 3. Very small and effective code.

unit Port95;

{

**

* Description:	Port95 - very simple unit, that lets you access port 		*

* 						under Window 95,not under Windows NT.				*

* Status:			Freeware									*

*						You can freely use or distribute this unit				*

* Target:			Delphi 2/3 only under Windows 95					*

* Version:		1.0 (April 27, 1997)							*

* Status:			Freeware									*

* Author:			Anatoly Podgoretsky							*

* Address:		kvk@estpak.ee								*

* Tips:				font Courier, tabs = 2							*

* Problems:		Word Read/Write utulities may problems on some computers		*

* or interface cards, that can't access whole word.			*

* To prevent it You can use slow equivalent of these			*

* procedures with suffix LS (Low Speed)					*

* Copyright:	Copyright (C) 1997, NPS							*

**}

interface

function PortReadByte(Addr:Word)	 : Byte;

function PortReadWord(Addr:Word)	 : Word;

function PortReadWordLS(Addr:Word) : Word;

procedure PortWriteByte(Addr:Word; Value:Byte);

procedure PortWriteWord(Addr:Word; Value:Word);

procedure PortWriteWordLS(Addr:Word; Value:Word);

implementation

{**

 * Port Read byte function							*

 * Parameter: port address		 					*

 * Return: 		byte value from given port 				*

 **}

function PortReadByte(Addr:Word) : Byte; assembler; register;

asm

	MOV	DX,AX

 IN	AL,DX

end;

�
{**

 * HIGH SPEED Port Read Word function					*

 * Parameter: port address		 					*

 * Return:	 	word value from given port 				*

 * Comment: 	may problem with some cards and computers		*

 *						that can't to access whole word, usually it work.	*

 **}

function PortReadWord(Addr:Word) : Word; assembler; register;

asm

	MOV	DX,AX

 IN	AX,DX

end;

{**

 * LOW SPEED Port Read Word function					*

 * Parameter: port address		 					*

 * Return:	 	word value from given port 				*

 * Comment: 	work in all cases, only to adjust DELAY if need	*

 ***}

function PortReadWordLS(Addr:Word) : Word; assembler; register;

const

	Delay = 150;		// depending of CPU speed and cards speed

asm

	MOV		DX,AX

 IN		AL,DX			// read LSB port

	MOV		ECX,Delay

@1:

	LOOP	@1				// delay between two reads

	XCHG	AH,AL

 INC		DX				// port+1

	IN		AL,DX			// read MSB port

	XCHG	AH,AL			// restore bytes order

end;

{**

 * Port Write byte function							*

 * Parameter: port address		 					*

 **}

procedure PortWriteByte(Addr:Word; Value:Byte); assembler; register;

asm

	XCHG	AX,DX

	OUT		DX,AL

end;

�
{**

 * HIGH SPEED Port Write word procedure				*

 * Comment: 	may problem with some cards and computers		*

 *						that can't to access whole word, usually it work.	*

 **}

procedure PortWriteWord(Addr:word; Value:word); assembler; register;

asm

	XCHG	AX,DX

	OUT		DX,AX

end;

{**

 * LOW SPEED Port Write Word procedure					*

 * Parameter: port address		 					*

 * Return:	 	word value from given port 				*

 * Comment: 	work in all cases, only to adjust DELAY if need	*

 **}

procedure PortWriteWordLS(Addr:word; Value:word); assembler; register;

const

	Delay = 150;		// depending of CPU speed and cards speed

asm

	XCHG	AX,DX

	OUT		DX,AL			// port LSB

	MOV		ECX,Delay

@1:

	LOOP	@1				// delay between two writes

	XCHG	AH,AL

 INC		DX				// port+1

	OUT		DX,AL			// port MSB

end;

end.

Warning:	Under Windows-NT, the OS will intercept many port I/O. The I/O instruction will not go to the hardware until the OS agree. Most of the time there is a driver which will emulate the I/O. This is necessary for security reason. If you need real direct I/O under NT, you should consider writing a driver.

There is no problem under Windows 95.

�
FIFTH

There is a driver VXD for WIN95 I/O access. The author is listed below. victor@ivi.ugatu.ac.ru

Victor I.Ishikeev It is called HWPORT95.zip and it is located at

ftp://sunsite.icm.edu.pl/pub/delphi/ftp/32free/hwport95.zip

I couldn’t get it to work for me but I still only have Delphi 1.0 16 bit. It appears to be for 32 bit use only.

NT port access... A SOLUTION :-)

Andrew Clark(andyc@rmpd-ngh.demon.co.uk) posted at 12/23/1996 16:14:17

Hi all,

After reading many postings requesting an equivalent to the Delphi1 / TurboPascal PORT[] command for NT, and recently being asked for a solution from a colleague, I got my head down and think I have came up with a solution...

With a hint from the most recent Delphi FAQ R0.02 (cheers goto R.E.den Braasem) I tracked down a file called DIRECTIO.ZIP from the May 1996 issue of Dr Dobb's Journal (www.ddj.com check the ftp site ftp.ddj.com) within this is a driver called GIVEIO.SYS by Dale Roberts which allows access to the full port address range. Once you have this driver, it needs to be installed into the ControlPanel\Devices list. One way to do this is to get hold of a small program called LOADDRV by Paula Tomlinson which can be found in the May 1995 issue of Windows Developers Journal...

ftp.mfi.com/pub/windev/1995/may95.zip

This program will install GIVEIO.SYS into the drivers list and from the ControlPanel you can then Start the driver (set it's start mode to automatic to load every time).

With the driver loaded and started you enable it from your program by calling the CreateFile function and supplying the driver name (preceded by a \\.\\ cookie :{), after this your program will be able to access the IO ports without exceptions :)

To make this more user friendly I made a component wrapper for the port access, this Enables the driver upon creation and allows the ports to be accessed as an array (ala Delphi1) i.e.

port[$378]:=10; { write }

tick := port[$40]; { read }

BTW if you drop this component onto the form without the GIVEIO driver Installed and Started, you'll get an exception.

Here's D2 my component (almost totally uncommented !)...

>---------------cut here------------------<

unit Port;

interface

uses

	Windows,Messages,SysUtils,Classes,

	Graphics,Controls,Forms, Dialogs;

type

	EPortError = class(Exception);

	TPort = class(TComponent)

		private

			procedure Outport(Address,Data:Word);

			function InPort(Address:Word):Word;

		public

			constructor Create(AOwner:TComponent);override;

			property Port[index:Word]:Word

										read InPort

										write OutPort;

										default;

	end;

	procedure Register;

implementation

procedure TPort.OutPort(Address,Data:Word);

asm

	mov dx,Address

	mov ax,Data

	out dx,ax

end;

function TPort.InPort(Address:Word):Word;

asm

	mov dx,Address

	in ax,dx

end;

constructor TPort.Create(AOwner:TComponent);

var

	h : Integer;

begin

	Inherited Create(AOwner);

				{ load the driver }

	h:=CreateFile('\\.\\giveio',

								GENERIC_READ,

								0,

								nil,

								OPEN_EXISTING,

								FILE_ATTRIBUTE_NORMAL,

								0);

				{ warn if driver not there }

	if H=INVALID_HANDLE_VALUE then

		raise EPortError.Create('GiveIO Driver Not Installed');

				{ we don't actually need the handle, as loading the driver

					enables the free port access for the period of the

					program }

	CloseHandle(h);

end;

procedure Register;

begin

	RegisterComponents('AndyC', [TPort]);

end;

end.

>---------------uncut here------------------<

NB: this component should work in 95 without the need for a driver, just remove the Create procedure.

I don't pretend to fully understand the driver, as I am actually still only using W3.11 and have no idea about the guts of NT, but have bodged all this together for an NT colleague and it seems to work fine. And that's good enough for me. :)

If you find anything blatently wrong with the above stuff, please let me know, I'd rather have an etheric ear-bashing than a good smack round the head off my colleague when his app turns its toes up !!!

andyc@rmpd-ngh.demon.co.uk

SIXTH

An example showing how to write to the parallel port and control an infrared remote control device.

{

 A pair of diodes are necesary:

 - An infra-red emmiter LED.

 - A infrared receiver diode.

infrared LED must be conected to bit 5 of the parallel port (pin 7)

receiver diode must be conected to pin 12 of the parallel port

of course, two diodes must be conected to ground (pin 20).

with this simple circuit you can control any infraredm device (TVs,etc)

Unit: IRU

Version: 1.0=B7

Description: This unit allows you to control infrared devices, such as

 TVs, videos, etc., simply putting a pair of diodes in the

 parallel port.

Date: December, 1995.

Programmed by: MACRO (macro@policc.unex.es)

You can use and modify this code on your programs,

but remember to give me credit :-)

}

unit iru;

interface

const IRcodeLength=3D300; {Memory in bytes for each code,

 can be increased to obtain more resolution}

 rate=3D20; {Is a delay that defines the sample frequency,

 20 value works well in a DX2, must be

 decreased for slower systems}

type IRcode=3Darray[1..IRcodeLength] of byte;

procedure receiveIRcode(var x:IRcode);

{ This procedure waits until a IR code is received, then hold

 it in 'x' IRcode type variable.

 Be sure of put the emitter LED very close to the receiver DIODE.}

procedure sendIRcode (var x:IRcode);

{ This procedure dumps the IR code specified in 'x' thru the

 IR LED}

implementation

procedure receiveIRcode(var x:IRcode);

var i,j:word;

begin

 for i:=3D1 to IRcodeLength do x[i]:=3D0;

 repeat until (port[$379] AND 32)=3D0;

 asm cli; end;

 for i:=3D1 to IRcodeLEngth DO

 begin

 asm mov cx,rate;

 @1: in al,$61

 and al,0

 out dx,al

 loop @1 end;

 x[i]:=3Dport[$379];

 end;

 asm sti; end;

 j:=3D0; for i:=3D1 to IRcodeLength do x[i]:=3D(x[i] and 32) xor 32;

end;

procedure sendIRcode (var x:IRcode);

var i:word; v:byte;

begin

 port[$61]:=3Dport[$61] or 1; port[$43]:=3D182;

 port[$42]:=3D30; port[$42]:=3D0;

 for i:=3D1 to IRCodeLength DO

 begin

 v:=3Dx[i];

 asm

 mov dx,$378

 mov cx,rate

 @1: in al,$61

 and al,v

 out dx,al

 loop @1

 end;

 end;

 port[$61]:=3Dport[$61] and 252;

end;

begin

end.

-------------end of document-------------------------

How to Write To Hardware Ports

How to Write To Hardware Ports

�PAGE �12�

�PA
