The X Keyboard Extension:
Protocol Specification

Protocol Version 1.0 / Document Revision 1.0
X Consortium Standard

X Version 11, Release 6.4

Erik Fortune
Silicon Graphics, Inc.



Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Hewlett-Packard Company
Copyright © 1995, 1996 Digital Equipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS 1S”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Company, and Digital Equipment Corporation shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authori-
zation.



Acknowledgments

I am grateful for all of the comments and suggestions I have received over the years. I could not
possibly list everyone who has helped, but a few people have gone well above and beyond the call
of duty and simply must be listed here.

My managers here at SGI, Tom Paquin (now at Netscape) and Gianni Mariani were wonderful.
Rather than insisting on some relatively quick, specialized proprietary solution to the keyboard
problems we were having, both Tom and Gianni understood the importance of solving them in a
general way and for the community as a whole. That was a difficult position to take and it was
even harder to maintain when the scope of the project expanded beyond anything we imagined
was possible. Gianni and Tom were unflagging in their support and their desire to “do the right
thing” despite the schedule and budget pressure that intervened from time to time.

Will Walker, at Digital Equipment Corporation, has been a longtime supporter of XKB. His help
and input was essential to ensure that the extension as a whole fits and works together well. His
focus was AccessX but the entire extension has benefited from his input and hard work. Without
his unflagging good cheer and willingness to lend a hand, XKB would not be where it is today.

Matt Landau, at the X Consortium, stood behind XKB during some tough spots in the release and
standardization process. Without Matt’s support, XKB would likely not be a standard for a long
time to come. When it became clear that we had too much to do for the amount of time we had
remaining, Matt did a fantastic job of finding people to help finish the work needed for standard-
ization.

One of those people was George Sachs, at Hewlett-Packard, who jumped in to help out. His help
was essential in getting the extension into this release. Another was Donna Converse, who helped
figure out how to explain all of this stuff to someone who hadn’t had their head buried in it for
years.

Amber Benson and Gary Aitken were simply phenomenal. They jumped into a huge and compli-
cated project with good cheer and unbelievable energy. They were “up to speed” and contributing
within days. I stand in awe of the amount that they managed to achieve in such a short time.
Thanks to Gary and Amber, the XKB library specification is a work of art and a thousand times
easier to use and more useful than it would otherwise be.

I truly cannot express my gratitude to all of you, without whom this would not have been possible.
Erik Fortune

Silicon Graphics, Inc.
5 February 1996



The X Keyboard Extension

Protocol Specification

LLO  OVEIVIEW weniiiiieeeee ettt ettt ettt e sat e st eeat e et esaeeebeenane s 1
1.1 Conventions and ASSUIMPLIONS .....c..eeeertiriererrtereeienieeientteteettesteettesteeste et estesaeesaesaeenaesnees 1
2.0 KEYDOArd StALE ...cc..eeiiiiieiiiie et 2
2.1 Locking and Latching Modifiers and Groups ..........cccceevvveerieriiieniensieenie e e e eieene 2
22 Fundamental Components of XKB Keyboard State ...........ccccocveveriininiinnnineincnceenees 2
2.2.1  Computing Effective Modifier and Group .......c..cccceeceevereenenrienennenensienenreniens 3
2.2.2  Computing A State Field from an XKB State ..........ccocerveererienenienenienenienens 3
2.3 Derived Components of XKB Keyboard State............cccceviererieiinienieieneee e 3
2.3.1  Server Internal Modifiers and Ignore Locks Behavior...........ccccooceeiineencncenennen. 4
24 Compatibility Components of Keyboard State...........cccccocveviiriiiinieniniiniiencccneeees 4
3.0 VIrtUAl MOGIIETS ...eouiieiiiiiieeieee ettt sttt st 5
3.1 MOIfIEr DEfINITIONS ......eeueieieiieeieieeiteete ettt ettt sttt ettt ettt et e et et e saeetesaeeaeeaean 6
3.1.1  Inactive Modifier DefiNitions .........cccueruieieriiesienieieeieie et 7
32 Virtual Modifier Mapping ........coocueevieriiiniienieeite ettt sttt ettt sttt e saaesne e 7
4.0 Global Keyboard CONLIOLS ........coovuieiiiiiiiiiieiiieeeieeese ettt 7
4.1 The RepeatKeys CONMIOL .......ccoiiiiiiiiieierie ettt st 7
4.1.1  The PerKeyRepeat CONtrol ...........cceeiuiruieiinieniiiiese e 8
4.1.2  Detectable AULOTEPEAL......c..ueevuteriieiieeieeiteeeteete ettt ettt et ettt e saeeeaee e 8
4.2 The SIOWKEYS CONLIOL ....coouiiiiiiiiieiieiit ettt ettt sttt st esaaesaneees 8
4.3 The BounceKeys CONtrol.........cocueviriiniiiiniiienieiesteestteeeteeeit ettt s 8
4.4 The StickyKeys CONLIOL .....c..coueiiririiriiieieieiiteteeee sttt ettt ettt 9
4.5 The MouSeKeys CONLIOL.......ccc.eiiiiiiiiiiiiiieeteeite ettt ettt ettt st esaaesne e 9
4.6 The MouseKeySACCE] CONLIOL ........coueeiiriiiiiiniiiiiieenteesteeete et 10
4.6.1  Relative Pointer MOtION .....c..cooueruiirierieniinieieniteieeitesie ettt 10
4.6.2  Absolute Pointer MOtON. ......ccceiiiiirieriinieiieteieetesceteneete et 10
4.7 The AccessXKeYS CONLIOL.......oouiiiiiiieiieieieeieee ettt ettt 10
4.8 The AccessXTImeout CONIOL.........ccveciirieriiniiriirieiertee et 11
4.9 The AccessXFeedback COntrol.......c..cociveeriireeniinieninienienteneeteeetee et 11
4.10 The Overlayl and Overlay2 CONtrols ..........cceceeririereiienieiiereee e 12
4.11 “Boolean” Controls and The EnabledControls Control .........c..c.ccccerieiieriineniieninceenenn 12
4.12 Automatic Reset of Boolean Controls...........coccevuireenirienenienenienenieieereneetenieeeeseeenee 12
5.0 Key Event Processing OVEIVIEW ...........covviieeiiiieniiieeniieenieeesiee et eree e s 13
6.0 Key Event Processing in the SeTVer.........ccccoeciieriiiiiiiiieniieecieeeeee e 14
6.1 AppPlying Global CONLIOLS ....c..eevuieiiriiiiiiieiineeie ettt 14
6.2 KEY BERAVIOL ..ottt st st ettt et sae e 14
6.3 KEY ACHIONS ..ottt ettt ettt e sttt e s bt e e be e s it e eabeesabeebee e 15
6.4 Delivering a Key or Button Event to @ CLent..........cccceeeeverienenienenicnenicneeieniceeeneenee 22
6.4.1  XKB Interactions With Core Protocol Grabs ..........c..ccceveriineniininniencnicnennn 22
7.0 Key Event Processing in the Clent............cooviiiiiiiiiiiiiiniieeieeeeeeeeeee e 23
7.1 Notation and TerminolOZY........ccocueevuiiriiiriiiniiiiierte ettt sttt e e s 23
7.2 Determining the KeySym Associated with a Key Event........c..cccccoceeiininiininnicncnncnene. 24
T 2.1 Y TYPCS. ettt ettt sttt sttt sttt 24
7.2.2  Key SYMDOL M ...cocviiiiiiiiiiiiniieieseee ettt 25
7.3 Transforming the KeySym Associated with a Key Event ..........ccoocoeoiiiiiinininninienne 26
7.4 Client Map EXAmMPIE........ooviiiiiiiiiiiiieiieeieeete ettt ettt sttt n 27
11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-1



The X Keyboard Extension

Protocol Specification

8.0 SymDbOIIC NAMES ...c..veiuiiiiiiiiieiieetereeeeet ettt 28
9.0 Keyboard INdICALOTS .......ccueiiiiiiiiiiiiiiecieccee e 29
9.1 Global Information About INdicators..........c.ceeeriirieriiiere e 29
9.2 Per-Indicator Information.........c..ccceoieviirieiiinieniinieeneereeeeee e 30
0.2.1  INAICAOT IMIAPS ..eouvieeiiieiiieieeite ettt ettt sttt st ettt e st st sateebee et s 30
10.0  Keyboard BellS........ccooiiiiiiiiiiieie et 33
10.1 Client Notification 0f BelLS ......cc.eecirieiinieiiiiei e 33
10.2 Disabling Server Generated Bells ..........cooieiiiiiiiiniiiiienieeiciceece e 33
10.3 Generating Named Bells ......ccc.ooiiiiiiiiiniiiiiiiiceicnteeteeteeeee et 33
10.4 Generating Optional Named Bells ........cocoeiiiiiiiiiiiiieie e 33
10.5 Forcing a Server Generated Bell ............cooiiiiiiiiiiiiiiiiiiicceteeee e 34
11.0  Keyboard GEOMEIIY ......ccccuiiiiuiiiiiieeiiieeeitee ettt ettt et e st esiee e 34
11.1 Shapes and OULLINES .......c.eeoeeruerieriieieiteeeeee ettt sttt st ettt e e enee 35
11.2 SECLIOMS ...t st s 35
11.3 DOOAAAS ... e e e 36
114 Keyboard Geometry EXamPIe ........ccceiuieiiiieiinieiieiese ettt 37
12.0 Interactions Between XKB and the Core Protocol ...........ccccceveeviiiniiniicincenncnnne. 38
12.1 Group Compatibility AP ....cceevueeiiriieiinieeiteeeete ettt ettt 38
12.1.1 Setting a Passive Grab for an XKB State.........ccccceceererieninienenieninieneeienene 39
12.2 Changing the Keyboard Mapping Using the Core Protocol..........c.cccccceevecieerincncnennenn. 39
12.2.1 Explicit Keyboard Mapping COMPONENLS.........c.ceerverrerrenvenrerereeeenienenresrennenne 39
12.2.2  Assigning Symbols TO GIOUPS .....cceeueerieruierierierieiiesieete ettt 40
12.2.3  Assigning Types To Groups of Symbols for a Key........ccccoeveiiniiininiiniieenne 41
12.2.4  Assigning Actions To KeYS......cceeriiriiiiiniiiiiiee e 42
12.2.5 Updating Everything EISe .........ccceciiiiiiniiiiiieeeee e 43
12.3 Effects of XKB on Core Protocol EVents..........cc.coceviiieninieninieninicccrceereceeeeeenne 43
12.4 Effect of XKB on Core Protocol REqUESLS.........cc.coceeriirienerieninienecicicerceeteiceeesieenee 44
12.5 Sending Events t0 CHENES. .......coouiiiiiiiieieeiieieeete ettt sttt ettt see e 45
13.0 The Server Database of Keyboard Components...........cccccueevuveeniieenieeenveennneennns 45
13.1 COMPONENT NAIMES ...eovveiieniiritiiieiieteeteeteete ettt ettt ettt sat et sbt e b s st e besatesbeensesaeenee 45
13.2 Partial Components and Combining Multiple COmMPONENLS..........ccceeverveeeenieeseenieeeenaenne 46
13.3 COomMPONENE HINES....coouiiiiiiiieiiieiieecete ettt ettt e st et esateebeesaee s 47
13.4 Keyboard COMPONENLS ........ccoueiiiririeniiiteniieeeitete ettt ettt st st sese e saeenee 47
13.4.1 The Keycodes COMPONENL........cccccueuiriruiriiririiniiienienieieieeerereeene et 47
13.4.2  The Types COMPONENL ......cc.ceciiriiriiriieiinieeienieeie st sitenteeite sttt eee e ene 47
13.4.3 The Compatibility Map COMPONENL ........coeeruiruirierieniiieieicieieeeeeeee e 48
13.4.4 The Symbols COMPONENL.....ccc.cvuiriirierriirieiierieerienitenie ettt 48
13.4.5 The Geometry COMPONENL.......cc.eetirteeriireerieriierieniteniententeeitenteeetenteeerenieeeesaeenee 48
13.5 Complete KEYMaPS .......coouiiiiiiiiiiieie e 49
14.0 Replacing the Keyboard “On-the-Fly™ ........ccccoiiiiiniiiiiieeieceeeeeeeee e 49
15.0 Interactions Between XKB and the X Input EXtension ...........ccoccoeveeniieiiennennne. 49
15.1 Using XKB Functions with Input Extension Keyboards ..........c.cccccoeoieiiniininiininnineene 50
15.2 Pointer and Device Button ACtions ...........ccccccueiiiiiiiniiiiiniiiiicicicccccece e 50
15.3 Indicator Maps for EXtension DeVICeS ..........ceceevuireeniirienenienenienienicicetenieeeeieeee e 51
15.4 Indicator Names for EXtension DeVICes .........c.cevirieririeriinienienieieeeeee e 51
11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-2



The X Keyboard Extension

Protocol Specification

16.0  XKB Protocol REQUESES ......cccuviriieriieiieniieiieesiteeiee ettt 51
16.1 BITOTS .ottt sttt sttt st st b e ettt b et sae e 51
16.1.1  Keyboard EITOTS.......c.coeeiiriiriiniieiinieeteseee ettt et 52

16.1.2  Side-Effects Of EITOTS........coiriiriiiiriiiiinieicreetee ettt 52

16.2 COMIMON THPES...eentiititieiieteeteet ettt ettt ettt ettt ettt e st st e be e st e bt e st enbeentesbeeneesaeenes 52
16.3 REQUESES ...ttt ettt ettt s b et e b e sttt e st e bee it s 56
16.3.1 Initializing the X Keyboard EXtenSion.......c.cccevuervieiniiriieeniiiiienieeiee e 56

16.3.2  Selecting EVENLS.....ccueiiiiiiiiiiieiiieite ettt ettt sttt st e n 57

16.3.3 Generating Named Keyboard Bells ..........ccccceevieriiiniinniiniiiiiienieeeenieeeeen 58

16.3.4 Querying and Changing Keyboard State ...........ccccceeviiriieeniiennieniieniee e 59

16.3.5 Querying and Changing Keyboard COontrols...........ccocueeveereernieeniienseenieeneennnenn 61

16.3.6 Querying and Changing the Keyboard Mapping ..........cccceeeervieeriersieeneeenieennnenn 66

16.3.7 Querying and Changing the Compatibility Map.........ccccceevveerniieniienneenieeeennnenn 72

16.3.8 Querying and Changing INdiCators ..........cceevveerierrieeniiniiienieeieeste et 74

16.3.9 Querying and Changing Symbolic Names..........cccccovvuervieenieeiniieniiensieenieeeenneen 78

16.3.10 Querying and Changing Keyboard GEOMELrY ........cccceevveereirriieniiensieenieeieennnenn 82

16.3.11 Querying and Changing Per-Client FIags ...........cccccevviiiiiiniiiiniiniienicnieeeeen 84

16.3.12 Using the Server’s Database of Keyboard Components ...........ccccceevueeriennueennenn 85

16.3.13 Querying and Changing Input Extension Devices...........ccecuerviieriernieerienneennnenn 89

16.3.14 Debugging the X Keyboard EXtENSION ......c.ceevuerviieniiriieenieiiienieeiee e 92

16.4 BVEIES oottt ettt e e e e et e e e tb e e e e aa e e e bt e e etbee e araeeaareaeaaes 93
16.4.1 Tracking Keyboard Replacement...........ccccevuereeneriencnieninienienieniceieneeeeeeenne 93

16.4.2 Tracking Keyboard Mapping Changes ...........ccocereererienerienenienienieneeeenieenns 95

16.4.3 Tracking Keyboard State Changes.........c.ccooereenerienenieninieninieneereneeeeneeenne 96

16.4.4 Tracking Keyboard Control Changes........cc.ccoccevereerenienenienenienienieneeeeneeenns 97

16.4.5 Tracking Keyboard Indicator State Changes ..........ccccceceeverienenienenienennienenn 98

16.4.6 Tracking Keyboard Indicator Map Changes ..........ccoceeeererienenienenienenneennenn 98

16.4.7 Tracking Keyboard Name Changes ..........cccccoceeverieneniencnienenienieeieneeeeneeenne 99

16.4.8 Tracking Compatibility Map Changes.......c..ccoccveevierernienienienienenieneeeeneene 100

16.4.9 Tracking Application Bell REqQUESLES .........coceeverervienirniinieiinienceieiceeeeenee 101

16.4.10 Tracking Messages Generated by Key AcCtions .......c..cccceeeeveneeneneencnneenennne. 102

16.4.11 Tracking Changes to AccessX State and Keys ........cocevevievinieniniencnnencnne. 102

16.4.12 Tracking Changes To Extension Devices......c..ccoceevvereenienieniinieniniencneencenne. 103

Appendix A. Default Symbol Transformations A-1

1.0  Interpreting the Control MOdIfier.........ccoviiiiiiiiieniiiiieie e A-1
2.0  Interpreting the Lock MOIfIEr.........coviiiiiiiiiiiiiiiieiecccceceeeeee e A-1
2.1 Locale-Sensitive CapitaliZation.........cooeeeveerieiiienienieeniieeieenite ettt esieesee e A-1

22 Locale-Insensitive CapitaliZation ...........coceevervierernienienieneeienieetceeeteeeceee et A-1

2.2.1  Capitalization Rules for Latin-1 KeySyms..........cccceeveevieneenirveninenenienennns A-2

2.2.2  Capitalization Rules for Latin-2 KeySyms.......c..ccccoeceevieneenineencneenenienennns A-2

2.2.3  Capitalization Rules for Latin-3 KeySyms.......c..ccccevveeviereenirieencneenenienennens A-2

2.24  Capitalization Rules for Latin-4 KeySyms.......c..ccccevveeviireeninienineenenienennens A-2

2.2.5  Capitalization Rules for Cyrillic KEySYmS ......ccccecuereeriineenirieeninienenieniennns A-3

2.2.6  Capitalization Rules for Greek Keysyms.........cccceceveeviinennincencnenieniencnnens A-3

2.2.7  Capitalization Rules for Other KeySyms .........ccccoceveeviiniennineninencnienennen, A-4

Appendix B. Canonical Key Types B-1

1.0 Canonical KeY TYPES ....ceoriiiiiiiiiiiiieieeete ettt B-1
1.1 The ONE_LEVEL KEY TYPE ...ccueetieiiiiieiiereeteste ettt s B-1
11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-3



The X Keyboard Extension Protocol Specification

1.2 The TWO_LEVEL KeY TYPE...cutetieiiiiieierie ettt s B-1
1.3 The ALPHABETIC KeY TYPE .eeuvteeiiiiiiiiiiiieeiteiteee ettt sttt sttt B-1
1.4 The KEYPAD KEY TYPE ...eveeuiiriiiiiniteieeteieetesteete sttt sttt et s B-1

Appendix C. New KeySyms C-1

L.O INEW KEYSYIMS ..ottt C-1
1.1 KeySyms Used by the ISO9995 Standard..........ccccceveeirinininenineneneeieieeeeeeeeenens C-1
1.2 KeySyms Used to Control The Core POInter .........cccccevvueerieriiienieniienieeceeeeieeneeeeen C-2
1.3 KeySyms Used to Change Keyboard Controls...........ceceveeiereenieneeneneeneneeneneenennns C-2
1.4 KeySyms Used To Control The SEIVET ........cccueiieieriieiierieieneeieeiee et C-3
1.5 KeySyms for Non-Spacing Diacritical Keys........cccoeveerviiinieriiiiniiniiinieeceeceieeseeeeen C-3

Appendix D. Protocol Encoding D-1

1.0 SYNLACIC CONVENTIONS. ..ceuvvieeiiieeiieeeiieeeieeesieeesteeesreeeseteeesareesnsreessreessseeesseens D-1
2.0 COMMON TYPES .eniiiieiiiiiiiee ettt ettt sttt et e sb e e s s D-2
3.0 EITOTS ettt et b et D-7
4.0 Y ACHONS. c.uetieiiiie ettt ettt ettt et e et e et eeeabeestaeesnsaeesnseeennseees D-8
5.0 Key BERaVIOTS ...ccoueiiiiiiiiiiieiee e D-12
6.0 REQUESES c.neiieiiiie ettt et ettt e D-13
7.0 EVENES ...t D-32
11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-4



The X Keyboard Extension Protocol Specification

1.0

1.1

Overview
This extension provides a number of new capabilities and controls for text keyboards.

The core X protocol specifies the ways that the Shift, Control and Lock modifi-
ers and the modifiers bound to the Mode_switch or Num_Lock keysyms interact to
generate keysyms and characters. The core protocol also allows users to specify that a
key affects one or more modifiers. This behavior is simple and fairly flexible, but it
has a number of limitations that make it difficult or impossible to properly support
many common varieties of keyboard behavior. The limitations of core protocol sup-
port for keyboards include:

* Use of a single, uniform, four-symbol mapping for all keyboard keys makes it difficult
to properly support keyboard overlays, PC-style break keys or keyboards that comply
with ISO9995 or a host of other national and international standards.

» Use of a modifier to specify a second keyboard group has side-effects that wreak havoc
with client grabs and X toolkit translations and limit us to two keyboard groups.

* Poorly specified locking key behavior requires X servers to look for a few “magic” key-
syms to determine which keys should lock when pressed. This leads to incompatibili-
ties between X servers with no way for clients to detect implementation differences.

* Poorly specified capitalization and control behavior requires modifications to X library
source code to support new character sets or locales and can lead to incompatibilities
between system-wide and X library capitalization behavior.

* Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, there is no
reliable way to indicate whether or not using shift should “cancel” the lock modifier.

* The lack of any explicit descriptions for indicators, most modifiers and other aspects of
the keyboard appearance requires clients that wish to clearly describe the keyboard to a
user to resort to a mishmash of prior knowledge and heuristics.

This extension makes it possible to clearly and explicitly specify most aspects of key-
board behavior on a per-key basis. It adds the notion of a numeric keyboard group to
the global keyboard state and provides mechanisms to more closely track the logical
and physical state of the keyboard. For keyboard control clients, this extension pro-
vides descriptions and symbolic names for many aspects of keyboard appearance and
behavior. It also includes a number of keyboard controls designed to make keyboards
more accessible to people with movement impairments.

The X Keyboard Extension essentially replaces the core protocol definition of a key-
board. The following sections describe the new capabilities of the extension and the
effect of the extension on core protocol requests, events and errors.

Conventions and Assumptions

This document uses the syntactic conventions, common types, and errors defined in
sections two through four of the specification of the X Window System Protocol. This
document assumes familiarity with the fundamental concepts of X, especially those
related to the way that X handles keyboards. Readers who are not familiar with the
meaning or use of keycodes, keysyms or modifiers should consult (at least) the first
five chapters of the protocol specification of the X Window System before continuing.

11/6/97

Protocol Version 1.0/Document Revision 1.0 1



The X Keyboard Extension Protocol Specification

2.0

2.1

2.2

Keyboard State

The core protocol description of keyboard state consists of eight modifiers (Shift,
Lock, Control, and Mod1-Mod5). A modifier reports the state of one or modifier
keys, which are similar to qualifier keys as defined by the ISO9995 standard:

Qualifier key A key whose operation has no immediate effect, but which, for as long as it is
held down, modifies the effect of other keys. A qualifier key may be, for
example, a shift key or a control key.

Whenever a modifier key is physically or logically depressed, the modifier it controls
is set in the keyboard state. The protocol implies that certain modifier keys lock (i.e.
affect modifier state after they have been physically released) but does not explicitly
discuss locking keys or their behavior. The current modifier state is reported to clients
in a number of core protocol events and can be determined using the Query-—
Pointer request.

The XKB extension retains the eight “real” modifiers defined by the core protocol but
extends the core protocol notion of keyboard state to include up to four keysym groups,
as defined by the ISO9995 standard:

Group: A logical state of a keyboard providing access to a collection of characters. A
group usually contains a set of characters which logically belong together and
which may be arranged on several shift levels within that group.

For example, keyboard group can be used to select between multiple alphabets on a
single keyboard, or to access less-commonly used symbols within a character set.

Locking and Latching Modifiers and Groups

With the core protocol, there is no way to tell whether a modifier is set due to a lock or
because the user is actually holding down a key; this can make for a clumsy user-inter-
face as locked modifiers or group state interfere with accelerators and translations.

XKB adds explicit support for locking and latching modifiers and groups. Locked

modifiers or groups apply to all future key events until they are explicitly changed.
Latched modifiers or groups apply only to the next key event that does not change

keyboard state.

Fundamental Components of XKB Keyboard State
The fundamental components of XKB keyboard state include:

The locked modifiers and group

The latched modifiers and group

The base modifiers and group (for which keys are physically or logically down)

The effective modifiers and group (the cumulative effect of the base, locked and latched
modifier and group states).

» State of the core pointer buttons.

The latched and locked state of modifiers and groups can be changed in response to
keyboard activity or under application control using the XkbLatchLockState
request. The base modifier, base group and pointer button states always reflect the log-
ical state of the keyboard and pointer and change only in response to keyboard or
pointer activity.

11/6/97

Protocol Version 1.0/Document Revision 1.0 2



The X Keyboard Extension Protocol Specification

2.2.1

2.2.2

2.3

Computing Effective Modifier and Group

The effective modifiers and group report the cumulative effects of the base, latched
and locked modifiers and group respectively, and cannot be directly changed. Note
that the effective modifiers and effective group are computed differently.

The effective modifiers are simply the bitwise union of the base, latched and locked
modifiers.

The effective group is the arithmetic sum of the base, latched and locked groups. The
locked and effective keyboard group must fall in the range Group1-Group4, so they
are adjusted into range as specified by the global GroupsWrap control as follows:

* Ifthe RedirectIntoRange flag is set, the four least significant bits of the groups
wrap control specify the index of a group to which all illegal groups correspond. If the
specified group is also out of range, all illegal groups map to Group1.

* Ifthe ClampIntoRange flag is set, out-of-range groups correspond to the nearest
legal group. Effective groups larger than the highest supported group are mapped to the
highest supported group; effective groups less than Group1 are mapped to Groupl.
For example, a key with two groups of symbols uses Group2 type and symbols if the
global effective group is either Group3 or Group4.

* If neither flag is set, group is wrapped into range using integer modulus. For example, a
key with two groups of symbols for which groups wrap uses Groupl symbols if the
global effective group is Group3 or Group?2 symbols if the global effective group is
Group4.

The base and latched keyboard groups are unrestricted eight-bit integer values and are
not affected by the GroupsWrap control.

Computing A State Field from an XKB State

Many events report the keyboard state in a single state field. Using XKB, a state field
combines modifiers, group and the pointer button state into a single sixteen bit value
as follows:

* Bits O through 7 (the least significant eight bits) of the effective state comprise a mask
of type KEYMASK which reports the state modifiers.

* Bits 8 through 12 comprise a mask of type BUTMASK which reports pointer button
state.

* Bits 13 and 14 are interpreted as a two-bit unsigned numeric value and report the state
keyboard group.

* Bit 15 (the most significant bit) is reserved and must be zero.

It is possible to assemble a state field from any of the components of the XKB key-
board state. For example, the effective keyboard state would be assembled as
described above using the effective keyboard group, the effective keyboard modifiers
and the pointer button state.

Derived Components of XKB Keyboard State

In addition to the fundamental state components, XKB keeps track of and reports a
number of state components which are derived from the fundamental components but
stored and reported separately to make it easier to track changes in the keyboard state.
These derived components are updated automatically whenever any of the fundamen-
tal components change but cannot be changed directly.

11/6/97

Protocol Version 1.0/Document Revision 1.0 3



The X Keyboard Extension Protocol Specification

2.3.1

2.4

The first pair of derived state components control the way that passive grabs are acti-
vated and the way that modifiers are reported in core protocol events that report state.
The server uses the ServerInternalModifiers, IgnoreLocksModifiers
and ITgnoreGroupLock controls, described in section 2.3.1, to derive these two
states as follows:

* The lookup state is the state used to determine the symbols associated with a key event
and consists of the effective state minus any server internal modifiers.

* The grab state is the state used to decide whether a particular event triggers a passive
grab and consists of the lookup state minus any members of the ignore locks modifiers
that are not either latched or logically depressed. If the ignore group locks control is
set, the grab state does not include the effects of any locked groups.

Server Internal Modifiers and Ignore Locks Behavior
The core protocol does not provide any way to exclude certain modifiers from client
events, so there is no way to set up a modifier which affects only the server.

The modifiers specified in the mask of the InternalMods control are not reported
in any core protocol events, are not used to determine grabs and are not used to calcu-
late compatibility state for XKB-unaware clients. Server internal modifiers affect only
the action applied when a key is pressed.

The core protocol does not provide any way to exclude certain modifiers from grab
calculations, so locking modifiers often have unanticipated and unfortunate side-
effects. XKB provides another mask which can help avoid some of these problems.

The locked state of the modifiers specified in mask of the ITgnoreLockMods control
is not reported in most core protocol events and is not used to activate grabs. The only
core events which include the locked state of the modifiers in the ignore locks mask
are key press and release events that do not activate a passive grab and which do not
occur while a grab is active. If the ITgnoreGroupLock control is set, the locked
state of the keyboard group is not considered when activating passive grabs.

Without XKB, the passive grab set by a translation (e.g. Alt<KeyPress>space)
does not trigger if any modifiers other than those specified by the translation are set,
with the result that many user interface components do not react when either Num
Lock or when the secondary keyboard group are active. The ignore locks mask and the
ignore group locks control make it possible to avoid this behavior without exhaus-
tively grabbing every possible modifier combination.

Compatibility Components of Keyboard State

The core protocol interpretation of keyboard modifiers does not include direct support
for multiple groups, so XKB reports the effective keyboard group to XKB-aware cli-

ents using some of the reserved bits in the state field of some core protocol events, as
described in section 2.2.2.

This modified state field would not be interpreted correctly by XKB-unaware clients,
so XKB provides a group compatibility mapping (see section 12.1) which remaps the
keyboard group into a core modifier mask that has similar effects, when possible.
XKB maintains three compatibility state components that are used to make non-XKB
clients work as well as possible:

* The compatibility state corresponds to the effective modifier and effective group state.

11/6/97

Protocol Version 1.0/Document Revision 1.0 4



The X Keyboard Extension Protocol Specification

3.0

» The compatibility lookup state is the core-protocol equivalent of the lookup state.
» The compatibility grab state is the nearest core-protocol equivalent of the grab state.

Compatibility states are essentially the corresponding XKB state, but with keyboard
group possibly encoded as one or more modifiers; section 12.1 describes the group
compatibility map, which specifies the modifier(s) that correspond to each keyboard

group.

The compatibility state reported to XKB-unaware clients for any given core protocol

event is computed from the modifier state that XKB-capable clients would see for that
same event. For example, if the ignore group locks control is set and group 2 is locked,
the modifier bound to Mode_switch is not reported in any event except (Device)Key-

Press and (Device)KeyRelease events that do not trigger a passive grab.

Note Referring to clients as “XKB-capable” is somewhat misleading in this context. The
sample implementation of XKB invisibly extends the X library to use the keyboard
extension if it is present. This means that most clients can take advantage of all of
XKB without modification, but it also means that the XKB state can be reported to cli-
ents that have not explicitly requested the keyboard extension. Clients that directly
interpret the state field of core protocol events or that interpret the keymap directly
may be affected by some of the XKB differences; clients that use library or toolkit
routines to interpret keyboard events automatically use all of the XKB features.

XKB-aware clients can query the keyboard state at any time or request immediate
notification of a change to any of the fundamental or derived components of the key-
board state.

Virtual Modifiers

The core protocol specifies that certain keysyms, when bound to modifiers, affect the
rules of keycode to keysym interpretation for all keys; for example, when Num_Lock
is bound to some modifier, that modifier is used to choose shifted or unshifted state for
the numeric keypad keys. The core protocol does not provide a convenient way to
determine the mapping of modifier bits, in particular Mod 1 through Mod5, to keysyms
such as Num_Lock and Mode_switch. Clients must retrieve and search the modifier
map to determine the keycodes bound to each modifier, and then retrieve and search
the keyboard mapping to determine the keysyms bound to the keycodes. They must
repeat this process for all modifiers whenever any part of the modifier mapping is
changed.

XKB provides a set of sixteen named virtual modifiers, each of which can be bound to
any set of the eight “real” modifiers (Shift, Lock, Control and Mod1-Mod5 as
reported in the keyboard state). This makes it easier for applications and keyboard lay-
out designers to specify to the function a modifier key or data structure should fulfill
without having to worry about which modifier is bound to a particular keysym.

The use of a single, server-driven mechanism for reporting changes to all data struc-
tures makes it easier for clients to stay synchronized. For example, the core protocol
specifies a special interpretation for the modifier bound to the Num_Lock key. When-
ever any keys or modifiers are rebound, every application has to check the keyboard
mapping to make sure that the binding for Num_Lock has not changed. If Num_Lock is
remapped when XKB is in use, the keyboard description is automatically updated to

11/6/97

Protocol Version 1.0/Document Revision 1.0 5



The X Keyboard Extension Protocol Specification

3.1

reflect the new binding, and clients are notified immediately and explicitly if there is a
change they need to consider.

The separation of function from physical modifier bindings also makes it easier to
specify more clearly the intent of a binding. X servers do not all assign modifiers the
same way — for example, Num_Lock might be bound to Mod2 for one vendor and to
Mod4 for another. This makes it cumbersome to automatically remap the keyboard to
a desired configuration without some kind of prior knowledge about the keyboard lay-
out and bindings. With XKB, applications simply use virtual modifiers to specify the
behavior they want, without regard for the actual physical bindings in effect.

XKB puts most aspects of the keyboard under user or program control, so it is even
more important to clearly and uniformly refer to modifiers by function.

Modifier Definitions

Use an XKB modifier definition to specify the modifiers affected by any XKB control
or data structure. An XKB modifier definition consists of a set of real modifiers, a set
of virtual modifiers, and an effective mask. The mask is derived from the real and vir-
tual modifiers and cannot be explicitly changed — it contains all of the real modifiers
specified in the definition plus any real modifiers that are bound to the virtual modifi-
ers specified in the definition. For example, this modifier definition specifies the
numeric lock modifier if the Num_Lock keysym is not bound to any real modifier:

{ real_mods= None, virtual_mods= NumLock, mask= None }
If we assign Mod2 to the Num_Lock key, the definition changes to:
{ real_mods= None, virtual_mods= NumLock, mask= Mod2 }

Using this kind of modifier definition makes it easy to specify the desired behavior in
such a way that XKB can automatically update all of the data structures that make up a
keymap to reflect user or application specified changes in any one aspect of the key-
map.

The use of modifier definitions also makes it possible to unambiguously specify the
reason that a modifier is of interest. On a system for which the Alt and Meta keysyms
are bound to the same modifier, the following definitions behave identically:

{ real_mods= None, virtual_mods= Alt, mask= Modl1 }
{ real_mods= None, virtual_mods= Meta, mask= Modl1 }

If we rebind one of the modifiers, the modifier definitions automatically reflect the
change:

{ real_mods= None, virtual_mods= Alt, mask= Modl1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod4 }

Without the level of indirection provided by virtual modifier maps and modifier defi-
nitions, we would have no way to tell which of the two definitions is concerned with
Alt and which is concerned with Meta.

11/6/97

Protocol Version 1.0/Document Revision 1.0 6



The X Keyboard Extension Protocol Specification

3.1.1

3.2

4.0

4.1

Inactive Modifier Definitions
Some XKB structures ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if ( state matches { Shift } ) Do OneThing;
if ( state matches { Shift+NumLock } ) Do Another;

If the NumLock virtual modifier is not bound to any real modifiers, these effective
masks for these two cases are identical (i.e. they contain only Shift). When it is
essential to distinguish between OneThing and Another, XKB considers only those
modifier definitions for which all virtual modifiers are bound.

Virtual Modifier Mapping

XKB maintains a virtual modifier mapping, which lists the virtual modifiers associ-
ated with each key. The real modifiers bound to a virtual modifier always include all
of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping.

For example, if Mod3 is bound to the Num_Lock key by the core protocol modifier

mapping, and the NumLock virtual modifier is bound to they Num_Lock key by the
virtual modifier mapping, Mod3 is added to the set of modifiers associated with the
NumLock virtual modifier.

The virtual modifier mapping is normally updated automatically whenever actions are
assigned to keys (see section 12.2 for details) and few applications should need to
change the virtual modifier mapping explicitly.

Global Keyboard Controls

The X Keyboard Extension supports a number of global key controls, which affect the
way that XKB handles the keyboard as a whole. Many of these controls make the key-
board more accessible to the physically impaired and are based on the AccessDOS
packagel.

The RepeatKeys Control

The core protocol only allows control over whether or not the entire keyboard or indi-
vidual keys should autorepeat when held down. The RepeatKeys control extends this
capability by adding control over the delay until a key begins to repeat and the rate at
which it repeats. RepeatKeys is also coupled with the core autorepeat control;
changes to one are always reflected in the other.

The RepeatKeys control has two parameters. The autorepeat delay specifies the
delay between the initial press of an autorepeating key and the first generated repeat
event in milliseconds. The autorepeat interval specifies the delay between all subse-
quent generated repeat events in milliseconds.

1. AccessDOS provides access to the DOS operating system for people with physical impairments and was devel-
oped by the Trace R&D Center at the University of Wisconsin. For more information on AccessDOS, contact the
Trace R&D Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison
WI 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

11/6/97

Protocol Version 1.0/Document Revision 1.0 7



The X Keyboard Extension Protocol Specification

4.1.1

4.1.2

4.2

4.3

The PerKeyRepeat Control

When RepeatKeys are active, the PerKeyRepeat control specifies whether or
not individual keys should autorepeat when held down. XKB provides the PerKey—
Repeat for convenience only, and it always parallels the auto-repeats field of the
core protocol GetKeyboardControl request — changes to one are always
reflected in the other.

Detectable Autorepeat

The X server usually generates both press and release events whenever an autorepeat-
ing key is held down. If an XKB-aware client enables the DetectableAutore—
peat per-client option for a keyboard, the server sends that client a key release event
only when the key is physically released. For example, holding down a key to generate
three characters without detectable autorepeat yields:

Press — Release — Press — Release — Press — Release
If detectable autorepeat is enabled, the client instead receives:
Press — Press — Press — Release

Note that only clients that request detectable autorepeat are affected; other clients con-
tinue to receive both press and release events for autorepeating keys. Also note that
support for detectable autorepeat is optional; servers are not required to support detect-
able autorepeat, but they must correctly report whether or not it is supported.

Section 16.3.11 describes the XkbPerClientF1lags request, which reports or
changes values for all of the per-client flags, and which lists the per-client flags that
are supported.

The SlowKeys Control

Some users often bump keys accidentally while moving their hand or typing stick
toward the key they want. Usually, the keys that are bumped accidentally are hit only
for a very short period of time. The S1owKeys control helps filter these accidental
bumps by telling the server to wait a specified period, called the SlowKeys acceptance
delay, before delivering key events. If the key is released before this period elapses, no
key events are generated. The user can then bump any number of keys on their way to
the one they want without generating unwanted characters. Once they have reached
the key they want, they can then hold it long enough for S1owKeys to accept it.

The S1owKeys control has one parameter; the slow keys delay specifies the length of
time, in milliseconds, that a key must be held down before it is accepted.

When SlowKeys are active, the X Keyboard Extension reports the initial press,
acceptance, rejection or release of any key to interested clients using AccessXNo—

tify events. The AccessXNotify eventis described in more detail in section
16.4.

The BounceKeys Control

Some people with physical impairments accidentally “bounce” on a key when they
press it. That is, they press it once, then accidentally press it again immediately. The
BounceKeys control temporarily disables a key after it has been pressed, effectively
“debouncing” the keyboard.

11/6/97

Protocol Version 1.0/Document Revision 1.0 8



The X Keyboard Extension Protocol Specification

4.4

4.5

The BounceKeys has a single parameter. The BounceKeys delay specifies the period
of time, in milliseconds, that the key is disabled after it is pressed.

When BounceKeys are active, the server reports the acceptance or rejection of any
key to interested clients by sending an AccessXNotify event. The AccessXNo-
tify eventis described in more detail in section 16.4.

The StickyKeys Control

Some people find it difficult or impossible to press two keys at once. The Stick—
yKeys control makes it easier for them to type by changing the behavior of the modi-
fier keys. When St ickyKeys are enabled, a modifier is latched when the user
presses it just once, so the user can first press a modifier, release it, then press another
key. For example, to get an exclamation point (!) on a PC-style keyboard, the user can
press the Shift key, release it, then press the 1 key.

By default, St ickyKeys also allows users to lock modifier keys without requiring
special locking keys. The user can press a modifier twice in a row to lock it, and then
unlock it by pressing it one more time.

Modifiers are automatically unlatched when the user presses a non-modifier key. For
instance, to enter the sequence Shift+Ctr1+7Z the user could press and release the
Shift key to latch the Shift modifier, then press and release the Ctrl key to latch the
Control modifier — the Ctrl key is a modifier key, so pressing it does not unlatch
the Shift modifier, but leaves both the Shift and Control modifiers latched,
instead. When the user presses the Z key, it will be as though the user pressed
Shift+Ctrl+Z simultaneously. The Z key is not a modifier key, so the Shift and
Control modifiers are unlatched after the event is generated.

A locked a modifier remains in effect until the user unlocks it. For example, to enter
the sequence (“XKB”) on a PC-style keyboard with a typical US/ASCII layout, the
user could press and release the Shift key twice to lock the Shift modifier. Then,
when the user presses the 9, *, x, k, b, ‘, and 0 keys in sequence, it will generate
(“XKB”). To unlock the Shift modifier, the user can press and release the Shift key.

Two option flags modify the behavior of the St ickyKeys control:

* Ifthe XkbAX_TwoKeys flag is set, XKB automatically turns St i ckyKeys off if the
user presses two or more keys at once. This serves to automatically disable StickyKeys
when a user who does not require sticky keys is using the keyboard.

* The XkbAX_LatchToLock controls the locking behavior of StickyKeys; the
StickyKeys control only locks modifiers as described above if the
XkbAX_LatchToLock flag is set.

The MouseKeys Control

The MouseKeys control lets a user control all the mouse functions from the key-
board. When MouseKeys are enabled, all keys with MouseKeys actions bound to
them generate core pointer events instead of normal key press and release events.

The MouseKey s control has a single parameter, the mouse keys default button, which
specifies the core pointer button to be used by mouse keys actions that do not explic-
itly specify a button.

11/6/97

Protocol Version 1.0/Document Revision 1.0 9



The X Keyboard Extension Protocol Specification

4.6

4.6.1

4.6.2

4.7

The MouseKeysAccel Control

If the MouseKeysAccel control is enabled, the effect of a pointer motion action
changes as a key is held down. The mouse keys delay specifies the amount of time
between the initial key press and the first repeated motion event. The mouse keys inter-
val specifies the amount of time between repeated mouse keys events. The steps to
maximum acceleration field specifies the total number of events before the key is trav-
elling at maximum speed. The maximum acceleration field specifies the maximum
acceleration. The curve parameter controls the ramp used to reach maximum accelera-
tion.

When MouseKeys are active and a SA_MovePtr key action (see section 6.3) is
activated, a pointer motion event is generated immediately. If MouseKeysAccel is
enabled and if acceleration is enabled for the key in question, a second event is gener-
ated after mouse keys delay milliseconds, and additional events are generated every
mouse keys interval milliseconds for as long as the key is held down.

Relative Pointer Motion

If the SA_MovePtr action specifies relative motion, events are generated as follows:
The initial event always moves the cursor the distance specified in the action; after
steps to maximum acceleration events have been generated, all subsequent events
move the pointer the distance specified in the action times the maximum acceleration.
Events after the first but before maximum acceleration has been achieved are acceler-
ated according to the formula:

max_accel

d(step) = action_delta x ( )X stepeurveFactor

steps_to maxcurveFactor

Where action_delta is the offset specified by the mouse keys action, max_accel and
steps_to_max are parameters to the MouseKeysAccel ctrl, and the curveFactor is
computed using the MouseKeysAccel curve parameter as follows:

curve
1000

curveFactor(curve) = 1 +

With the result that a curve of 0 causes the distance moved to increase linearly from
action_delta to (max_accel x action_delta) , and the minimum legal curve of -1000 causes
all events after the first move at max_accel. A negative curve causes an initial sharp
increase in acceleration which tapers off, while a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events
generated by the action approaches steps_to_max.

Absolute Pointer Motion

If an SA_MovePtr action specifies an absolute position for one of the coordinates
but still allows acceleration, all repeated events contain any absolute coordinates spec-
ified in the action.

The AccessXKeys Control
If AccessXKeys is enabled many controls can also be turned on or off from the key-
board by entering the following standard key sequences:

* Holding down a shift key by itself for eight seconds toggles the S1owKeys control.

11/6/97

Protocol Version 1.0/Document Revision 1.0 10



The X Keyboard Extension Protocol Specification

4.8

4.9

* Pressing and releasing a shift key five times in a row without any intervening key
events and with less than 30 seconds delay between consecutive presses toggles the
state of the StickyKeys control.

* Simultaneously operating two or more modifier keys deactivates the St ickyKeys
control.

Some of these key sequences optionally generate audible feedback of the change in
state, as described in section 4.9, or cause XkbAccessXNotify events as described
in section 16.4.

The AccessXTimeout Control

In environments where computers are shared, features such as S1owKeys present a
problem: if S1owKeys is on, the keyboard can appear to be unresponsive because
keys have no effect unless they are held for a certain period of time. To help address
this problem, XKB provides an AccessXTimeout control to automatically change
the value of any global controls or AccessX options if the keyboard is idle for a speci-
fied period of time.

The AccessXTimeout control has a number of parameters which affect the duration of
the timeout and the features changed when the timeout expires.

The AccessX Timeout tield specifies the number of seconds the keyboard must be idle
before the global controls and AccessX options are modified. The AccessX Options
Mask field specifies which values in the AccessX Options field are to be changed, and
the AccessX Options Values field specifies the new values for those options. The
AccessX Controls Mask field specifies which controls are to be changed in the global
set of enabled controls, and the AccessX Controls Values field specifies the new val-
ues for those controls.

The AccessXFeedback Control

If AccessXFeedback is enabled, special beep-codes indicate changes in keyboard
controls (or some key events when S1lowKeys or StickyKeys are active). Many
beep codes sound as multiple tones, but XKB reports a single XkbBel1lNotify
event for the entire sequence of tones.

All feedback tones are governed by the AudibleBell control. Individual feedback
tones can be explicitly enabled or disabled using the accessX options mask or set to
deactivate after an idle period using the accessX timeout options mask. XKB defines
the following feedback tones:

Feedback Name Bell Name Default Sound Indicates
FeatureFB AX_FeatureOn rising tone Keyboard control enabled
AX_FeatureOff falling tone Keyboard control disabled
AX_FeatureChange two tones Several controls changed state
IndicatorFB AX_IndicatorOn high tone Indicator Lit
AX_IndicatorOff low tone Indicator Extinguished

AX_IndicatorChange two hightones Several indicators changed state
SlowWarnFB AX_SlowKeysWarning three high tones  Shift key held for four seconds
SKPressFB AX_SlowKeyPress single tone  Key press while S1owKeys are on
SKReleaseFB AX_SlowKeyRelease  single tone Key release while S1owKeys are on
SKAcceptFB  AX_SlowKeyAccept  single tone  Key event accepted by S1lowKeys
SKRejectFB  AX_SlowKeyReject low tone Key event rejected by S1owKeys

11/6/97

Protocol Version 1.0/Document Revision 1.0 11



The X Keyboard Extension Protocol Specification

4.10

4.11

4.12

Feedback Name Bell Name Default Sound Indicates
StickyKeysFB AX_StickyLatch low tone then Modifier latched by StickyKeys
high tone
AX_StickyLock high tone Modifier locked by StickyKeys
AX_StickyUnlock low tone  Modifier unlocked by StickyKeys

BKRejectFB AX_BounceKeysReject low tone  Key event rejected by BounceKeys

Implementations that cannot generate continuous tones may generate multiple beeps
instead of falling and rising tones; for example, they can generate a high-pitched beep
followed by a low-pitched beep instead of a continuous falling tone.

If the physical keyboard bell is not very capable, attempts to simulate a continuous
tone with multiple bells can sound horrible. Set the DumbBe 11FB AccessX option to
inform the server that the keyboard bell is not very capable and that XKB should use
only simple bell combinations. Keyboard capabilities vary wildly, so the sounds gen-
erated for the individual bells when the DumbBe 11FB option is set are implementa-
tion specific.

The Overlay1 and Overlay2 Controls

A keyboard overlay allows some subset of the keyboard to report alternate keycodes
when the overlay is enabled. For example a keyboard overlay can be used to simulate
a numeric or editing keypad on keyboard that does not actually have one by generating
alternate of keycodes for some keys when the overlay is enabled. This technique is
very common on portable computers and embedded systems with small keyboards.

XKB includes direct support for two keyboard overlays, using the Overlayl and
Overlay?2 controls. When Overlayl is enabled, all of the keys that are members
of the first keyboard overlay generate an alternate keycode. When Overlay?2 is
enabled, all of the keys that are members of the second keyboard overlay generate an
alternate keycode.

To specify the overlay to which a key belongs and the alternate keycode it should gen-
erate when that overlay is enabled, assign it either the KB_Overlayl or
KB_Overlay?2 key behaviors, as described in section 6.2.

“Boolean” Controls and The EnabledControls Control

All of the controls described above, along with the AudibleBell control (described
in section 10.2) and the TgnoreGroupLock control (described in section 2.3.1)
comprise the boolean controls. In addition to any parameters listed in the descriptions
of the individual controls, the boolean controls can be individually enabled or disabled
by changing the value of the EnabledControls control.

The following non-boolean controls are always active and cannot be changed using
the EnabledControls control or specified in any context that accepts only bool-
ean controls: GroupsWrap (section 2.2.1), EnabledControls, InternalMods
(section 2.3.1), and IgnoreLockMods (section 2.3.1) and PerKeyRepeat (sec-
tion 4.1)

Automatic Reset of Boolean Controls

The auto-reset controls are a per-client value which consist of two masks that can con-
tain any of the boolean controls (see section 4.11). Whenever the client exits for any
reason, any boolean controls specified in the auto-reset mask are set to the correspond-

11/6/97

Protocol Version 1.0/Document Revision 1.0 12



The X Keyboard Extension Protocol Specification

5.0

ing value from the auto-reset values mask. This makes it possible for clients to “clean
up after themselves” automatically, even if abnormally terminated.

For example, a client that replace the keyboard bell with some other audible cue might
want to turn off the AudibleBell control (section 10.2) to prevent the server from
also generating a sound and thus avoid cacophony. If the client were to exit without
resetting the AudibleBell control, the user would be left without any feedback at
all. Setting AudibleBell in both the auto-reset mask and auto-reset values guaran-
tees that the audible bell will be turned back on when the client exits.

Key Event Processing Overview

There are three steps to processing each key event in the X server, and at least three in
the client. This section describes each of these steps briefly; the following sections
describe each step in more detail.

1. First, the server applies global keyboard controls to determine whether the key event
should be processed immediately, deferred, or ignored. For example, the S1owKeys
control can cause a key event to be deferred until the slow keys delay has elapsed while
the RepeatKeys control can cause multiple X events from a single physical key press
if the key is held down for an extended period. The global keyboard controls affect all
of the keys on the keyboard and are described in section 4.0.

2. Next, the server applies per-key behavior. Per key-behavior can be used to simulate or indi-
cate some special kinds of key behavior. For example, keyboard overlays, in which a key
generates an alternate keycode under certain circumstances, can be implemented using per-
key behavior. Every key has a single behavior, so the effect of key behavior does not
depend on keyboard modifier or group state, though it might depend on global keyboard
controls. Per-key behaviors are described in detail in section 6.2.

3. Finally, the server applies key actions. Logically, every keysym on the keyboard has some
action associated with it. The key action tells the server what to do when an event which
yields the corresponding keysym is generated. Key actions might change or suppress the
event, generate some other event, or change some aspect of the server. Key actions are
described in section 6.3.

If the global controls, per-key behavior and key action combine to cause a key event,
the client which receives the event processes it in several steps.

1. First the client extracts the effective keyboard group and a set of modifiers from the
state field of the event. See section 2.2.2 for details.

2. Using the modifiers and effective keyboard group, the client selects a symbol from the list
of keysyms bound to the key. Section 7.2 discusses symbol selection.

3. If necessary, the client transforms the symbol and resulting string using any modifiers that
are “left over” from the process of looking up a symbol. For example, if the Lock modifier
is left over, the resulting keysym is capitalized according to the capitalization rules speci-
fied by the system. See section 7.3 for a more detailed discussion of the transformations
defined by XKB.

4. Finally, the client uses the keysym and remaining modifiers in an application-specific way.
For example, applications based on the X toolkit might apply translations based on the
symbol and modifiers reported by the first three steps.

11/6/97

Protocol Version 1.0/Document Revision 1.0 13



The X Keyboard Extension Protocol Specification

6.0

6.1

6.2

Key Event Processing in the Server

This section describes the steps involved in processing a key event within the server
when XKB is present. Key events can be generated due to keyboard activity and
passed to XKB by the DDX layer, or they can be synthesized by another extension,
such as XTEST.

Applying Global Controls

When the X Keyboard Extension receives a key event, it first checks the global key
controls to decide whether to process the event immediately or at all. The global key
controls which might affect the event, in descending order of priority, are:

» If akey is pressed while the BounceKeys control is enabled, the extension generates
the event only if the key is active. When a key is released, the server deactivates the key
and starts a bounce keys timer with an interval specified by the debounce delay.

If the bounce keys timer expires or if some other key is pressed before the timer
expires, the server reactivates the corresponding key and deactivates the timer. Neither
expiration nor deactivation of a bounce keys timer causes an event.

* Ifthe SlowKeys control is enabled, the extension sets a slow keys timer with an inter-
val specified by the slow keys delay, but does not process the key event immediately.
The corresponding key release deactivates this timer.

If the slow keys timer expires, the server generates a key press for the corresponding
key, sends an XkbAccessXNotify and deactivates the timer.

* The extension processes key press events normally whether or not the RepeatKeys
control is active, but if RepeatKeys are enabled and per-key autorepeat is enabled
for the event key, the extension processes key press events normally, but it also initiates
an autorepeat timer with an interval specified by the autorepeat delay. The correspond-
ing key release deactivates the timer.

If the autorepeat timer expires, the server generates a key release and a key press for the
corresponding key and reschedules the timer according to the autorepeat interval.

Key events are processed by each global control in turn: if the BounceKeys control
accepts a key event, S1owKeys considers it. Once S1owKeys allows or synthesizes
an event, the RepeatKeys control acts on it.

Key Behavior

Once an event is accepted by all of the controls or generated by a timer, the server
checks the per-key behavior of the corresponding key. This extension currently
defines the following key behaviors:

Behavior Effect
KB_Default Press and release events are processed normally.
KB_Lock If a key is logically up (i.e. the corresponding bit of the core key map

is cleared) when it is pressed, the key press is processed normally
and the corresponding release is ignored. If the key is logically down
when pressed, the key press is ignored but the corresponding release
is processed normally.

11/6/97

Protocol Version 1.0/Document Revision 1.0 14



The X Keyboard Extension Protocol Specification

6.3

Behavior Effect
KB_RadioGroup If another member of the radio group specified by index is logically
flags: CARDS down when a key is pressed, the server synthesizes a key release for
index: CARDS the member that is logically down and then processes the new key

press event normally.

If the key itself is logically down when pressed, the key press event
is ignored, but the processing of the corresponding key release
depends on the value of the RGA11owNone bit in flags. If it is set,
the key release is processed normally; otherwise the key release is
also ignored.

All other key release events are ignored.

KB_Overlayl If the Overlayl control is enabled, events from this key are
key: KEYCODE reported as if they came from the key specified in key. Otherwise,
press and release events are processed normally.

KB_Overlay?2 If the Overlay?2 control is enabled, events from this key are
key: KEYCODE reported as if they came from the key specified in key. Otherwise,
press and release events are processed normally.

The X server uses key behavior to determine whether to process or filter out any given
key event; key behavior is independent of keyboard modifier or group state (each key
has exactly one behavior.

Key behaviors can be used to simulate any of these types of keys or to indicate an
unmodifiable physical, electrical or software driver characteristic of a key. An
optional permanent flag can modify any of the supported behaviors and indicates that
behavior describes an unalterable physical, electrical or software aspect of the key-
board. Permanent behaviors cannot be changed or set by the XkbSetMap request.
The permanent flag indicates a characteristic of the underlying system that XKB can-
not affect, so XKB treats all permanent behaviors as if they were KB_Default and
does not filter key events described in the table above.

Key Actions

Once the server has applied the global controls and per-key behavior and has decided
to process a key event, it applies key actions to determine the effects of the key on the
internal state of the server. A key action consists of an operator and some optional
data. XKB supports actions which:

change base, latched or locked modifiers or group

move the core pointer or simulate core pointer button events
change most aspects of keyboard behavior

terminate or suspend the server

send a message to interested clients

simulate events on other keys

Each key has an optional list of actions. If present, this list parallels the list of symbols
associated with the key (i.e. it has one action per symbol associated with the key). For
key press events, the server looks up the action to be applied from this list using the
key symbol mapping associated with the event key, just as a client looks up symbols
as described in section 7.2; if the event key does not have any actions, the server uses
the SA_NoAction event for that key regardless of modifier or group state.

Key actions have essentially two halves; the effects on the server when the key is
pressed and the effects when the key is released. The action applied for a key press

11/6/97

Protocol Version 1.0/Document Revision 1.0 15



The X Keyboard Extension Protocol Specification

event determines the further actions, if any, that are applied to the corresponding
release event or to events that occur while the key is held down. Clients can change the
actions associated with a key while the key is down without changing the action
applied next time the key is released; subsequent press-release pairs will use the newly
bound key action.

Most actions directly change the state of the keyboard or server; some actions also
modify other actions that occur simultaneously with them. Two actions occur simulta-
neously if the keys which invoke the actions are both logically down at the same time,
regardless of the order in which they are pressed or delay between the activation of
one and the other.

Most actions which affect keyboard modifier state accept a modifier definition (see
section 3.0) named mods and a boolean flag name useModMap among their argu-
ments. These two fields combine to specify the modifiers affected by the action as fol-
lows: If useModMap is True, the action sets any modifiers bound by the modifier
mapping to the key that initiated the action; otherwise, the action sets the modifiers
specified by mods. For brevity in the text of the following definitions, we refer to this
combination of useModMap and mods as the “action modifiers.”

The X Keyboard Extension supports the following actions:

Action Effect
SA_NoAction * No direct effect, though SA_NoAction events may change
the effect of other server actions (see below).
SA_SetMods * Key press adds any action modifiers to the keyboard’s base
mods: MOD_DEF modifiers.
useModMap: BOOL » Key release clears any action modifiers in the keyboard’s base
clearLocks: BOOL modifiers, provided that no other key which affects the same

modifiers is logically down.
* If no keys were operated simultaneously with this key and
clearLocks is set, release unlocks any action modifiers.

SA_LatchMods » Key press and release events have the same effect as for
mods: MOD_DEF SA_SetMods; if no keys were operated simultaneously with
useModMap: BOOL the latching modifier key, key release events have the following
clearLocks: BOOL additional effects:
latchToLock: BOOL * Modifiers that were unlocked due to clearLocks have no further
effect.

o If latchToLock is set, key release locks and then unlatches any
remaining action modifiers that are already latched.

* Finally, key release latches any action modifiers that were not
used by the clearLocks or latchToLock flags.

SA_LockMods » Key press sets the base and possibly the locked state of any
mods: MOD_DEF action modifiers. If noLock is True, only the base state is
useModMap: BOOL changed.
noLock: BOOL * For key release events, clears any action modifiers in the key-
noUnlock: BOOL board’s base modifiers, provided that no other key which

affects the same modifiers is down. If noUnlock is False and
any of the action modifiers were locked before the correspond-
ing key press occurred, key release unlocks them.

11/6/97 Protocol Version 1.0/Document Revision 1.0 16



The X Keyboard Extension

Protocol Specification

Action Effect
SA_SetGroup * If groupAbsolute is set, key press events change the base key-
group: INTS board group to group; otherwise, they add group to the base

groupAbsolute: BOOL
clearLocks: BOOL

SA_LatchGroup
group: INTS
groupAbsolute: BOOL
clearLocks: BOOL
latchToLock: BOOL

SA_LockGroup
group: INTS
groupAbsolute: BOOL

SA_MovePtr
X, y: INT16
noAccel: BOOL
absoluteX: BOOL
absoluteY: BOOL

keyboard group. In either case, the resulting effective keyboard
group is brought back into range depending on the value of the
GroupsWrap control for the keyboard.

* Ifan SA_TSOLock key is pressed while this key is held down,
key release has no effect, otherwise it cancels the effects of the
press.

* If no keys were operated simultaneously with this key and
clearLocks is set, key release also sets the locked keyboard
group to Groupl.

» Key press and release events have the same effect as an
SA_SetGroup action; if no keys were operated simulta-
neously with the latching group key and the clearLocks flag
was not set or had no effect, key release has the following addi-
tional effects:

* If latchToLock is set and the latched keyboard group is
non-zero, the key release adds the delta applied by the corre-
sponding key press to the locked keyboard group and subtracts
it from the latched keyboard group. The locked and effective
keyboard group are brought back into range according to the
value of the global GroupsWrap control for the keyboard.

* Otherwise, key release adds the key press delta to the latched
keyboard group.

* If groupAbsolute is set, key press sets the locked keyboard
group to group. Otherwise, key press adds group to the locked
keyboard group. In either case, the resulting locked and effec-
tive group is brought back into range depending on the value of
the GroupsWrap control for the keyboard.

* Key release has no effect.

e If MouseKeys are not enabled, this action behaves like
SA_NoAction, otherwise this action cancels any pending
repeat key timers for this key and has the following additional
effects.

» Key press generates a core pointer Mot ionNotify event
instead of the usual KeyPress. If absoluteX is True, x speci-
fies the new pointer X coordinate, otherwise x is added to the
current pointer X coordinate; absoluteY and y specify the new
Y coordinate in the same way.

* If noAccel is False, and the MouseKeysAccel keyboard
control is enabled, key press also initiates the mouse keys timer
for this key; every time this timer expires, the cursor moves
again. The distance the cursor moves in these subsequent
events is determined by the mouse keys acceleration as
described in section 4.6.

* Key release disables the mouse keys timer (if it was initiated by
the corresponding key press) but has no other effect and is
ignored (does not generate an event of any type).

11/6/97

Protocol Version 1.0/Document Revision 1.0 17



The X Keyboard Extension

Protocol Specification

Action

Effect

SA_PtrBtn
button: CARDS
count: CARDS
useDfltBtn: BOOL

SA_LockPtrBtn
button: BUTTON
noLock: BOOL
noUnlock: BOOL
useDfltBtn: BOOL

SA_SetPtrDflt
affect: CARDS8
value: CARDS
dfitBtnAbs: BOOL

If MouseKeys are not enabled, this action behaves like
SA_NoAction.

If useDfitBin is set, the event is generated for the current
default core button. Otherwise, the event is generated for the
button specified by button.

If the mouse button specified for this action is logically down,
the key press and corresponding release are ignored and have
no effect.

Otherwise, key press causes one or more core pointer button
events instead of the usual key press. If count is 0, key press
generates a single ButtonPress event; if count is greater
than 0, key press generates count pairs of ButtonPress and
ButtonRelease events.

If count is O, key release generates a core pointer ButtonRe—
lease which matches the event generated by the correspond-
ing key press; if count is non-zero, key release does not cause a
ButtonRelease event. Key release never causes a key
release event.

If MouseKeys are not enabled, this action behaves like
SA_NoAction.

Otherwise, if the button specified by useDfitBtn and button is
not locked, key press causes a ButtonPress instead of a key
press and locks the button. If the button is already locked or if
noLock is True, key press is ignored and has no effect.

If the corresponding key press was ignored, and if noUnlock is
False, key release generates a ButtonRelease event
instead of a key release event and unlocks the specified button.
If the corresponding key press locked a button, key release is
ignored and has no effect.

If MouseKeys are not enabled, this action behaves like
SA_NoAction.

Otherwise, both key press and key release are ignored, but key
press changes the pointer value specified by affect to value, as
follows:

If which is SA_AffectDf1tBtn, value and dfitBtnAbs spec-
ify the default pointer button used by the various pointer
actions as follow: If dfitBtnAbs is True, value specifies the but-
ton to be used, otherwise, value specifies the amount to be
added to the current default button. In either case, illegal button
choices are wrapped back into range.

11/6/97

Protocol Version 1.0/Document Revision 1.0 18



The X Keyboard Extension

Protocol Specification

Action

Effect

SA_TISOLock
dfitlsGroup: False
mods: MOD_DEF
useModMap: BOOL
noLock: BOOL
noUnlock: BOOL
noAffectMods: BOOL
noAffectGrp: BOOL
noAffectPtr: BOOL
noAf